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Abstract. Distance bounding protocols become more and more impor-
tant because they are the most accurate solution to defeat relay attacks.
They consist of two parties: a verifier and a prover. The prover shows that
(s)he is close enough to the verifier. In some applications such as payment
systems, using public-key distance bounding protocols is practical as no
pre-shared secret is necessary between the payer and the payee. How-
ever, public-key cryptography requires much more computations than
symmetric key cryptography. In this work, we focus on the efficiency
problem in public-key distance bounding protocols and the formal se-
curity proofs of them. We construct two protocols (one without privacy,
one with) which require fewer computations on the prover side compared
to the existing protocols, while keeping the highest security level. Our
construction is generic based on a key agreement model. It can be in-
stantiated with only one resp. three elliptic curve computations for the
prover side in the two protocols, respectively. We proved the security of
our constructions formally and in detail.

Keywords: distance bounding, RFID, NFC, relay attack, key agreement,
mafia fraud, distance fraud, distance hijacking

1 Introduction

Nowadays, various technologies, such as contactless payment (e.g. NFC), access
control in a building, remote keyless system (e.g. car keys) are part of our lives
since they provide us efficient usage of time and accessibility. However, these
applications are exposed to simple but dangerous attacks such as relay attacks.
A malicious person can abuse all these technologies by just relaying messages.

Distance bounding (DB) is a solution to detect the relay attacks. The de-
tection of the attack is simpler, cheaper and more practical than preventing it
because prevention could require a special hardware equipment [4]. The first DB
protocol is introduced by Brands and Chaum [9]. Basically in DB, the verify-
ing party measures the physical distance of the proving party by sending the
challenges and receiving the responses (they are generally 1 or 2 bit(s)). In the
end, if too many rounds have too long round trip times or too many incorrect
responses, the verifier rejects the proving party since he may be exposed to a
relay attack.

Threats for DB is not limited to only relay attacks. The other threats are
the following:



Distance Fraud (DF): A malicious, far-away prover tries to prove that (s)he
is close enough.

Mafia Fraud (MiM) [13] : A man-in-the-middle (MiM) adversary between a
verifier and a far-away honest prover tries to make the verifier accept.

Terrorist fraud (TF) [13] : A far-away malicious prover, with the help of the
adversary, tries to make the verifier accept, but without giving any advantage
to the adversary to later pass the protocol alone.

Distance Hijacking (DH) [12] : A far-away malicious prover takes advantage
of some honest and active provers who are close to the verifier to make the
verifier grant privileges to the far-away prover.

Privacy threat : An adversary tries to learn any useful information such as
the identity of a prover. In strong privacy, the adversary tries to identify the
identity of a prover with access to the prover’s secret (e.g. by corruption).

DB protocols are categorized as symmetric DB protocols (the verifier and
the prover share a secret) [34, 16, 5, 7, 6, 8, 23, 25, 24] and public-key DB protocols
(the verifier and the prover only know the public key of each other) [9, 10, 20,
17, 38, 37, 35].

In some applications, we cannot assume that the prover and the verifier have
established a secret. For example, in a payment system, it is not realistic to
assume that the payment terminal and the customer share a secret. We can
mention as an instance of a payment protocol the EMV standard [1] which
now uses the public-key DB protocol PaySafe from [11]. However, this protocol
sends nonces of several bits through the time-critical channel. Normally, a time-
critical exchange should only take a few nanoseconds to reach a distance bound
of meters with the speed of light, but sending a string of several bits typically
takes microseconds. This is why usual DB protocols only exchange single bits
through the time-critical phases. Actually, the protocol from [11] does not protect
against adversaries running computations at the speed of light but only against
adversaries using standard equipment which induce natural delays.

Although public-key distance bounding protocols are useful, it can cause
considerable energy consumption on the prover side since public-key cryp-
tography needs heavier computations than symmetric-key cryptography. Energy
constraints on most of the powerless devices using RFID and NFC technologies
cause very limited computation resources. One of the solutions could be to add
more computational power to these devices but it increases their costs.

In this paper, we construct new protocols called Eff-pkDB, Eff-pkDBp, and
Simp-pkDB (Eff-pkDBp is the privacy-preserving variant of Eff-pkDB).

Table 1 shows the security and the efficiency properties of previous protocols
and our protocols. We can see that most of the previous public-key DB protocols
[9, 10, 17, 38, 37, 35] do not concentrate on this efficiency problem, except HPO
[20]. So far, HPO is the most efficient one among them since it requires only
4 elliptic curve (EC) multiplications on the prover side, but it is not strong
private [36] and it is not secure against DH [22] and TF. In addition to this,
its security is based on several ad-hoc assumptions [20] which are not so well
studied: “OMDL”, “Conjecture 1”, “extended ODH” and “XL”.

2



Protocol MiM DF DH TF Privacy
Strong
Privacy

PK
Computations
for the Prover

Brands-Chaum [9] X X × × × × 1 commitment, 1
signature

HPO [20] X X × × X × 4 EC
multiplications

GOR [17] X X × × × ×

4 EC
multiplications, 1

encryption, 1
NIZK proof

PaySafe [11] X∗ × × × × × 1 signature

PrivDB [37] X X X × X X
1 signature, 1

IND-CCA
encryption

ProProx [38] X X X X × ×
n + 1

commitments, n
ZK proofs

eProProx [35] X X X X X X

1 encryption, s
hashing, n + 1

commitments, n
ZK proofs

Simp-pkDB X X × × × × 1 IND-CCA
decryption

Eff-pkDB X X X × × × 1 AKA protocol

Eff-pkDBp X X X × X X
1 IND-CCA

Encryption, 1
AKA protocol

Table 1. The review of the existing public-key DB protocols. X means that it is secure
for corresponding threat model and × means it is not. X∗ means that it is secure
against the adversaries that cannot relay the messages close to the speed of light. EC
is elliptic curve, ZK is zero knowledge, NIZK is non-interactive zero knowledge, AKA
is authenticated key agreement. Public key (PK) computations are counted only on
prover side. n is the number of rounds in the challenge phase and s is the security
parameter.

GOR [17] was constructed to have strong privacy, but it has been shown in
[36] that it is neither strong private nor private.

ProProx [38] satisfies all the security properties except privacy. Its version
eProProx [35] is secure against all threat models and strong private. However,
both ProProx and eProProx suffer from heavy cryptographic operations as zero-
knowledge (ZK) proofs. These are the only TF-secure protocols, but we can see
that their cost is unreasonable.
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PrivDB [37] and our new protocol Eff-pkDBp have the same security prop-
erties. However, PrivDB is a bit less efficient on the prover side than Eff-pkDBp

and it has no light privacy-less variant, contrarily to Eff-pkDBp.

Our lighter protocol Eff-pkDB and our first attempt Simp-pkDB in Appendix
B are the most efficient public-key DB protocols as seen in Table 1. Eff-pkDB
is secure against DF, MF, DH but it is not private. Simp-pkDB is secure only
against DF, MiM and not private. It is more efficient than the Brand-Chaum
protocol which has the same security level with Simp-pkDB. We focus on Eff-
pkDB in the rest of the paper since it gives higher security level. Eff-pkDB’s
variant Eff-pkDBp uses one extra encryption and it is strong private. We propose
an instance of these protocols based on the Gap Diffie-Hellman (GDH) problem
[30] in EC with a random oracle. The detailed efficiency analysis is presented in
Section 6.

PaySafe [11] is very efficient but we do not compare it with the other protocols
and our protocols since it assumes weaker adversarial model. It is only secure
against MiM. It is not secure against DF, DH and TF because the response of
the prover in the time critical phase which is a nonce picked by the prover does
not depend on any message of the verifier. It also does not protect the privacy
of the prover.

Our contributions are:

– We design two public-key DB protocols. The first protocol is secure against
DF, MF and DH but it is not private. It uses only one public key
related operation on the prover side. Basically, this protocol can be used
in applications not requiring privacy in a very efficient way. Then, we modify
this protocol by adding a public-key encryption to make it strong private.
Both protocols are quite efficient compared with the previous pro-
tocols. Our constructions are generic based on a key agreement protocol,
a weakly-secure symmetric DB protocols, and a cryptosystem. We formally
prove the security following the model of Boureanu-Vaudenay [8] which was
adapted to public-key DB in Vaudenay [37].

– We define a new key agreement (KA) security game (D-AKA). In literature,
the extended Canetti-Krawczyk (eCK) security model [27] is widely accepted
for KA. However, a weaker security model (D-AKA) is sufficient for
the security of our new public-key DB protocols since we care both the
efficiency and the security. Finally, we design a D-AKA secure key agreement
protocol (Nonce-DH) based on the hardness of the GDH problem and a
random oracle. The Nonce-DH key agreement protocol can be used in our
DB constructions.

We show in Appendix B another reasonable protocol Simp-pkDB which was
our first attempt to construct an efficient and a secure protocol. Although this
protocol is quite efficient and does not require any public-key of a verifier, it fails
in DH-security. This shows that it is hard to make a protocol which is secure for
MiM, DF, and DH at the same time. Adding privacy in protocols is yet another
challenge. Strong privacy cannot be achieved so easily as shown in Section 5.2.
HPO and GOR failed to on this.
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Organization of the paper: In Section 2, we give the formal definitions for the
notion of DB and all necessary security definitions we are considering in our new
protocols. In Section 3, we describe one time DB protocol OTDB [37] and give
new security results on this protocol. OTDB and all the results about OTDB can
be employed by Eff-pkDB or Eff-pkDBp in a very efficient way. In Section 4, we
introduce our new and weaker KA security model (D-AKA). Then, we construct
a new KA protocol Nonce-DH which is D-AKA secure. We have Nonce-DH to
show that both Eff-pkDB and Eff-pkDBp can employ it and to make more precise
efficiency analysis on these protocols. In Section 5, we introduce Eff-pkDB and
Eff-pkDBp with all security and privacy proofs. Finally, in Section 6, we do the
efficiency and security analyses of all previous public-key DB protocols in detail.

Acknowledgements. This work was partly sponsored by the ICT COST Action
IC1403 Cryptacus in the EU Framework Horizon 2020.

2 Definitions

The formalism in DB started by Avoine et al. [2]. Then, the first complete model
was introduced by Dürholz et al. [15] where the threat models are defined accord-
ing to the number of tainted time critical phase. The SKI model by Boureanu et
al. [5–7] is another formal model which includes a clear communication model
between parties in DB. The last model BV model [8] by Boureanu and Vaudenay
is a more natural multi-party security model.

In this section, we give the definitions from the literature that we use in our
security proofs.

2.1 Public Key Distance Bounding

Definition 1 (Public key DB Protocol [37]). A public key distance bound-
ing protocol is a two-party probabilistic polynomial-time (PPT) protocol and it
consists of a tuple (KP ,KV , V, P,B). Here, (KP ,KV ) are the key generation al-
gorithms of P and V , respectively. The output of KP is a secret/public key pair
(skP , pkP ) and similarly the output of KV is a secret/public key pair (skV , pkV ).
P is the proving algorithm, V is the verifying algorithm where the inputs of P
and V are from KP and KV . B is the distance bound. P (skP , pkP , pkV ) and
V (skV , pkV ) interact with each other. At the end of the protocol, V (skV , pkV )
outputs a final message OutV and have pkP as a private output. If OutV = 1,
then V accepts. If OutV = 0, then V rejects.

A public-key DB protocol is correct if and only if under honest execution,
whenever a verifier V and a close (to V) prover P run the protocol, then V
always outputs OutV = 1 and pkP .

Remark that this definition combines identification with DB: pkP is not an
input of the algorithm V , but it is an output. So, V learns the identity of P
during the protocol.
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We formalize the security notions of DB protocols. In the setting below, we
have parties called provers, verifiers and other actors. Each party has instances
and each instance I has its own location. It is called close to the instance J , if
d(I, J) ≤ B and far from J , if d(I, J) > B where d is a distance function.

An instance of an honest prover runs the algorithm denoted by
P (skP , pkP , pkV ). An instance of a malicious prover runs an arbitrary algorithm
denoted by P ∗. The verifier is always honest and its instances run V (skV , pkV ).
Without loss of generality, we say that the other actors are malicious. They may
run any algorithm.

The locations of the participants are elements of a metric space. We summa-
rize the communication and adversarial model (See [5] for the details):

DB protocols run in natural communication settings. There is a notion of
time, e.g. time-unit, a notion of measurable distance and a location. Besides,
timed communication follows the laws of physics, e.g., communication cannot be
faster than the speed of light. An adversary can see all messages (whenever they
reach him). He can change the destination of a message subject to constraints.

This communication and adversarial model will only play a role in the DF
and MiM security (defined below) but we will not have to deal with it. Indeed,
we will start from an existing weakly secure symmetric DB protocol (such as
OTDB [37]) and reduce the DF and MiM security of our protocol to the security
of that protocol. So, we do not need to formalize more this model.

Now, we explain the security games for the distance fraud, mafia fraud and
distance hijacking from [37].

Definition 2 (Distance fraud [37]). The game begins by running the key
setup algorithm KV which outputs (skV , pkV ). The game includes a verifier in-
stance V and instances of an adversary. Given pkV , the adversary generates
(skP , pkP ) with an arbitrary key setup algorithm K∗(pkV ) (instead of KP ). There
is no participant close to V. The adversary wins if V outputs OutV = 1 and pkP .
A DB protocol is DF-secure, if for any such game, the adversary wins with neg-
ligible probability.

Definition 3 (Mafia fraud (MiM security) [37]). The game begins by
running the key setup algorithms KV and KP which output (skV , pkV ) and
(skP , pkP ), respectively. The adversary receives pkV and pkP . The game consists
of several verifier instances including a distinguished one V, an honest prover P
with its instances which are far away from V and an adversary with its instances
at any location. The adversary wins if V outputs OutV = 1 and pkP . A DB
protocol is MiM-secure if for any such game, the probability of an adversary to
win is negligible.

Definition 4 (Distance hijacking [37]). The game consists of several verifier
instances V, V1, V2, ..., a far away adversary P, and also honest prover instances
P′,P′1,P

′
2.... A DB protocol (KP ,KV , V, P,B) having an initialization, a chal-

lenge and a verification phases is DH-secure if for all PPT algorithms K∗P and
A, the probability of P to win the following game is negligible.
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– KV → (skV , pkV ), KP ′ → (skP ′ , pkP ′).
– K∗P (pkP ′ , pkV ) → (skP , pkP ) and if pkP = pkP ′ , the game aborts. Then,

instances of P run A(skP , pkP , pkV , pkP ′), P′,P′1,P
′
2, ... run P (skp′ , pkV ),

V, V1, V2, ... run V (skV , pkV ).
– P interacts with P′,P′1,P

′
2, ... and V, V1, V2, ... during the initialization phase

of V and P′ concurrently.
– P′ and V continue interacting with each other in their challenge phase and

P remains passive even though he sees the exchanged messages.
– P interacts with P′,P′1,P

′
2, ... and V, V1, V2, ... in the verification phase con-

currently.

The adversary wins if V outputs OutV = 1 and pkP .

The notion of initialization/challenge/verification phase is arbitrary but the
notion of DH-security depends on this. To make it correspond to the notion in
[12], the challenge phase must correspond to the time critical part where the
verifier and the prover exchange challenge/response so fast that responses from
far away would be rejected.

Definition 5 (HPVP Privacy Game [19]). The privacy game is the follow-
ing: Pick b ∈ {0, 1} and let the adversary A play with the following oracles:
– CreateP(ID) → Pi : It creates a new prover identity of ID and returns its

identifier Pi.
– Launch() → π : It launches a new protocol with the verifier Vj and returns

the session identifier π.
– Corrupt(Pi) : It returns the current state of Pi. Current state means the all

the values in Pi’s current memory. It does not include volatile memory.
– DrawP(Pi, Pj) → vtag : It draws either Pi (if b = 0) or draws Pj (if b = 1)

and returns the virtual tag reference vtag. If one of the provers was already
an input of DrawP → vtag′ query and vtag′ has not been released, then it
outputs ∅.

– Free(vtag) : It releases vtag which means vtag can no longer be accessed.
– SendP(vtag,m) → m′ : It sends the message m to the drawn prover and

returns the response m′ of the prover. If vtag was not drawn or was released,
nothing happens.

– SendV(π,m) → m′ : It sends the message m to the verifier in the session π
and returns the response m′ of the verifier. If π was not launched, nothing
happens.

– Result(π) → b′ : It returns a bit that shows if the session π is accepted by
the verifier (i.e the message OutV ).
In the end of the game, the adversary outputs a bit g. If g = b, then A wins.

Otherwise, it loses.
A DB protocol is strong private if for all PPT adversaries, the advantage of

winning the privacy game is negligible.

We distinguish strong and weak privacy [33]. The weak privacy game does
not include any ‘Corrupt’ oracle. The other kind of classification is wide and
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narrow private. Wide privacy game is allowing to use the ‘Result’ oracle while
the narrow privacy game does not. In this paper, we implicitly consider wide
privacy by making OutV a protocol message, which means we always obtain this
bit without using ‘Result’ oracle.

2.2 Symmetric Distance Bounding

In this section, we give the useful definitions about the symmetric distance
bounding that we need to use for our public key distance bounding protocols.
Therefore, we do not explain all security notions for symmetric DB protocols.

Definition 6 (Symmetric DB Protocol [37]). A symmetric distance bound-
ing protocol is a two-party PPT protocol and it consists of a tuple (K, V, P,B).
Here, K is the key generation algorithm, P is the proving algorithm and V is the
verifying algorithm. The inputs of P and V is the output s of K. B is the dis-
tance bound. P (s) and V (s) interact with each other. At the end of the protocol,
V (s) outputs a final message OutV . If OutV = 1, then V accepts. If OutV = 0,
then V rejects.

A symmetric DB protocol is correct if and only if under honest execution,
whenever a verifier V and a close (to V) prover P run the protocol, then V
always outputs OutV = 1.

Definition 7 (One Time DF (OT-DF) [37]). The game begins by running a
malicious key setup algorithm K∗ which outputs s. It consists of a single verifier
instance V running V (s) and instances of an adversary P ∗. P ∗ receives s. There
is no participant close to V. The adversary wins if V outputs OutV = 1. A
symmetric DB protocol is OT-DF-secure, if for any such game, the adversary
wins with negligible probability.

Definition 8 (One Time MiM (OT-MiM) [37]). The game begins by run-
ning the key setup algorithm K which outputs s. It consists of a single verifier
instance V running V (s), a single far away prover instance P running P (s) and
instances of an adversary. The adversary wins if V outputs OutV = 1. A sym-
metric DB protocol is OT-MiM-secure, if for any such game, the probability that
the adversary wins is negligible.

Multi-verifier OT-MiM: The OT-MiM game with more than one verifier instance
is called as multi-verifier OT-MiM-security. We defined this new notion to be
able to have the result in Theorem 1 which helps us to prove the security of our
constructions.

Definition 9 (One Time DH (OT-DH) [37]). The game consists of a ver-
ifier instance V, a far away adversary P, and also honest (and close) prover
instance P′. A symmetric DB protocol (K, V, P,B) having an initialization, a
challenge and a verification phases is OT-DH-secure if for all PPT algorithms
A,K∗, the probability of P to win the following game is negligible.
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– K∗ → s, K → s′ . Then, P′ runs P (s′), V runs V (s) and P runs A(s).
– P interacts with P′ and V in their initialization phase concurrently.
– P′ and V continue interacting with each other in their challenge phase and

P remains passive even though he sees the exchanged messages.
– P interacts with P′ and V in their verification phase concurrently.

The adversary wins if V outputs OutV = 1.

Definition 10 (Multi-verifier Impersonation Fraud (IF) [3]). The game
begins by running the key setup algorithm K which outputs s. It consists of ver-
ifier instances running V (s) and an adversary with no inputs. The adversary
wins if any verifier instance outputs OutV = 1. A distance bounding protocol is
multi-verifier IF-secure, if for any such game, the probability of an adversary to
win is negligible.

The above definition is with several verifiers, contrarily to others, because we
will only use multi-verifier IF security.

MiM-security covers multi-verifier IF-security. So, if a DB protocol is MiM-
secure, then it is multi-verifier IF-secure.

We will see in Theorem 2 that OT-MiM-security also implies multi-verifier
IF-security for a DB following the canonical structure.

Definition 11 (Canonical Structure [37]). A symmetric DB protocol
(K, V, P,B) follows the canonical structure, if there exist an initializa-
tion/challenge/verification phases, P does not use s during the initialization
phase, V does not use s at all except for computing the final OutV , and the
verification phase is not interactive.

Remark that the notion of phase is used in DH and OT-DH security.

3 OTDB

As an example of one-time secure protocol, we can give the protocol OTDB by
Vaudenay [37] which is a symmetric DB adapted from Hancke-Kuhn protocol
[18]. The OTDB protocol follows the canonical structure (See Definition 11),
only requires one xor operation before the challenge phase on the prover side
and it is OT-DF, OT-MiM, multi-verifier OT-MiM and OT-DH secure [37]. (See
Figure 1.) We complement these known results by showing multi-verifier OT-
MiM security and multi-verifier IF-security.

Theorem 1. OTDB is multi-verifier OT-MiM secure.

Proof. Γ0: In this game, an adversary A plays multi-verifier OT-MiM game.
Here, we have a distinguished verifier instance V with other instances {V1, ..., Vk}
and one prover instance P. The success probability of Γ0 is p0.

Γ1 : We reduce Γ0 to Γ1 where at most one verifier instance outputs 1. Let’s
say E is an event in Γ0 where at least two verifier instances output 1 (OutV = 1).
To reduce Γ0 to Γ1, we show that Pr[E] is negligible.

9



V(s) initialization phase P (s)

pick m ∈ {0, 1}2n m−−−−−−−−−−−→ a = s⊕m

challenge phase
for i = 1 to n

pick ci ∈ {0, 1}, start timeri
ci−−−−−−−−−−−→ ri = a2i+ci−1

stop timeri
ri←−−−−−−−−−−−

verification phase
a = s⊕m,
check timeri ≤ 2B, ri =
a2i+ci−1

OutV−−−−−−−−−−−→

Fig. 1. OTDB

First, we define hybrid games Γi,j ’s to analyze Pr[E]. Γi,j is similar to Γ0

except the game stops right after Vi and Vj have sent their final outputs and
all OutV is replaced by 0 except Vi and Vj . The adversary wins the game if
OutVi

= OutVj
= 1.

In Γi,j , we define three kinds of arrays for the challenges. The first array CVi

includes the challenges sent by Vi, the second array CVj
includes the challenges

sent by Vj and the third array CP includes the challenges seen by P. The bits
in CVi and CVj are independent. We also define a response function respk(c) =
a2k+c−1 for each round k. Since the bits of the secret s are independent, the bits
of {respk(0)||respk(1)}nk=1 are independent as well. If CVi

[k] 6= CVj
[k], then the

adversary could have taken CP [k] = c where c is equal either CVi
[k] or CVj

[k]
and learned respk(c). So, he responds correctly to either Vi or Vj for sure, but
to the other instance with probability 1

2 . We define an event Eij,k where the
responses are correct for Vi and Vj in round k. Clearly, all events {Eij,k}nk=1 are
independent. So, Γi,j =

∏
k Pr[Eij,k]. Hence,

Pr[Eij,k] ≤ Pr[CVi
[k] = CVj

[k]] + Pr[Eij,k|CVi
[k] 6= CVj

[k]]

× Pr[CVi [k] 6= CVj [k]] ≤ 3

4

So, the adversary wins Γi,j with the probability ( 3
4 )n which is negligible.

Now, we can analyze E.

Pr[E] ≤
∑
i,j

Pr[Γi,j ] = negl(n)

Since E happens with the negligible probability, we can reduce Γ0 to Γ1 and
conclude p1−p0 is negligible. For Γ1 to succeed, only V must produce OutV = 1.

Γ2 : We reduce Γ1 to Γ2 where we simulate all verifier instances except V.
We can do this simulation because the messages but OutV sent by a verifier does
not depend on the secret. Since OutV = 0 for all verifier instance except V in the
winning case (only V can output 1), p1 ≤ p2.
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Now in Γ2, we are in OT-MiM game where there is only one verifier instance
V and one prover instance P. By using the OT-MiM-security result of OTDB
[37], we deduce p2 is negligible so p0 is negligible. ut

We prove the following result which will be used in Theorem 6.

Theorem 2. If a (symmetric) DB protocol following the canonical structure is
OT-MiM secure, then it is multi-verifier IF-secure.

Proof. We take an adversaryM playing the multi-verifier IF game.M interacts
with polynomially many verifier instances Vj ’s. We define adversaries Ai’s play-
ing the OT-MiM game. Ai simulatesM and takes the verifier instance Vi as V in
the OT-MiM game. Concretely, we number the Vj ’s by their order of appearance
during the simulation of M. When M queries V1, ..., Vi−1, Vi+1, ..., Vk (where k
is the total number of verifier instances), Ai just simulates them (this is possible
since the protocol follows the canonical structure. So, no message from the veri-
fier except OutV depends on s). If OutV needs to be returned to M, Ai returns
0. When M queries Vi, Ai relays it to V and sends the response of V to M.

Let Ei be the event in the multi-verifier IF game which is OutVi
= 1 and

all previously released OutV are equal to 0. Clearly, we have Pr[Mwins] =∑
i≥1 Pr[Mwins∧Ei]. On the other hand, Pr[Mwins∧Ei] ≤ Pr[Ai wins] because

for all coins makingM win the multi-verifier IF-game and Ei occur at the same
time, we have OutVj = 0 for all j < i and OutVi = 1 so the same coins make Ai
win the OT-MiM game. So, Pr[Mwins] ≤

∑
i≥1 Pr[Ai wins]. Due to OT-MiM

security, Pr[Ai wins] is negligible for every i. So, Pr[Mwins] is negligible. So, we
have multi-verifier IF-security. ut

Thanks to Theorem 2, OTDB is multi-verifier IF-secure.

4 Authenticated Key Agreement (AKA) Protocols

In this section, we show our new KA security model and some preliminaries about
the AKA protocols. The security models in this section are used to construct
secure and private public-key DB protocols in Section 5.

We note that the DB protocols we constructed in Section 5 can employ any
eCK-secure [27] key agreement protocol to have the same security properties.
However, eCK-security is stronger than we need in our protocols. Therefore, we
define a weaker notion to have simpler, more efficient and secure public-
key DB. Table 3 in Appendix A shows that Nonce-DH which is secure in our
weaker model is more efficient than the previous KA protocols.

Definition 12 (AKA in one-pass). A one-pass AKA protocol is a tuple
(GenA, GenB , D,A,B) of PPT algorithms. Let A and B be the two parties. A and
B generate secret/public key pairs (skA, pkA) and (skB , pkB) with the algorithms
GenA(1n) and GenB(1n), respectively where n is the security parameter. B picks
N from the sampling algorithm D and runs B(skB , pkB , pkA, N) which outputs
the session key s. Then, (s)he sends N and finally, A gets the session key s by
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running A(skA, pkA, pkB , N) (See Figure 2). We say that AKA is correct, if A
and B obtain the same s at the end of the protocol.

A(skA, pkA, pkB) B(skB , pkB , pkA)
N ← D(1n)

A(skA, pkA, pkB,N)→ s
N←−−−−−−−−−−− B(skB , pkB , pkA, N)→ s

Fig. 2. The structure of an authenticated key agreement (AKA) protocols in one pass.

Definition 13 (Decisional-Authenticated Key Agreement (D-AKA)
security). We define two oracles set up with skA, pkA, skB , pkB.
OA(., .) :
return A(skA, pkA, ., .)

OB(.) :

N ′ ← D(1n)
s′ ← B(skB , pkB , ., N

′)
return s′, N ′

Given b ∈ {0, 1} and the oracles OA(., .),OB(.), the game KAd−akab,A(n) is:

1. Challenger executes GenA(1n)→ (skA, pkA),GenB(1n)→ (skB , pkB), sets up
the oracles, calls OB(pkA)→ (s0, N) and picks s1 ∈ {0, 1}n. Then, he sends
sb, N, pkB , pkA to the adversary A.

2. A has access to the oracle OB(.) and OA(., .) under the condition of not
querying the oracle OA with the input (pkB , N). Eventually, A outputs b′.

3. The advantage of the game is

Adv(KAd−akaA(n) ) = Pr[KAd−aka0,A(n) = 1]− Pr[KAd−aka1,A(n) = 1].

A KA protocol (GenA(1n),GenB(1n), D,A,B) is D-AKA secure if for all PPT
algorithms A, Adv(KAd−akaA(n) ) is negligible.

We show that eCK-security implies D-AKA security in Theorem 8 in Appendix
A. It means that our new public-key DB protocols can employ eCK-secure key
agreement protocols as well.

Note that as a result of Lemma 1 in Appendix A, the probability that the
same nonce is picked by the oracle B is negligible when we have D-AKA security.

Definition 14 (D-AKAp privacy). Given b ∈ {0, 1} and the oracle OA(., .)

(defined in Definition 13), the game KAd−aka
p

b,A(n) is:

1. Challenger runs GenA(1n)→ (skA, pkA) and GenB(1n)→ (skB1
, pkB1

) , sets
up the oracle and gives pkA, pkB1

and skB1
to A.

2. A selects skB0 and pkB0
and sends them to the challenger.

3. Challenger executes D(1n) → N , B(skBb
, pkBb

, pk
skBb

A , N) → s. Then, he
sends s to the adversary A.

4. A has access to the oracle OA. Eventually, A outputs b′. (Remark that A
does not know N .)
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5. The advantage of the game is

Adv(KAd−aka
p

A(n) ) = Pr[KAd−aka
p

0,A(n) = 1]− Pr[KAd−aka
p

1,A(n) = 1].

A KA protocol (GenA(1n),GenB(1n), D,A,B) is D-AKAp private if for all

PPT algorithms A, Adv(KAd−aka
p

A(n) ) is negligible.

A(skA, pkA, pkB) B(skB , pkB , pkA)

pickN ∈ {0, 1}`,
H(g, pkB , pkA, pk

skA
B , N)→ s

N←−−−−−−−−−−− H(g, pkB , pkA, pk
skB
A , N)→ s

Fig. 3. The Nonce-DH key agreement protocol.

A One-Pass AKA Protocol (Nonce-DH): We construct a D-AKA secure proto-
col (Nonce-DH) based on the Diffie-Hellman (DH) [14] as in Figure 3. Here g is
a generator of a group of prime order q. g and q depend on a security param-
eter. The parties know each others’ public keys beforehand where pkA = gskA

and pkB = gskB and skA and skB are the corresponding secret keys which are
uniformly picked in Zq.

The party B has input (skB , pkB , pkA). He randomly picks N from {0, 1}` and
computes B(skB , pkB , pkA, N) = H(g, pkB , pkA, pk

skB
A , N) to get s. The party A

computes A(skA, pkA, pkB , N) = H(g, pkB , pkA, pk
skA
B , N) and gets s. Here, H is

a deterministic function.
Clearly, Nonce-DH is correct since H is deterministic.

Theorem 3. Assuming that the Gap Diffie-Hellman problem [30] is hard and
` = Ω(n), Nonce-DH is D-AKA secure and D-AKAp private in the random
oracle model.

The proof is in Appendix C.

5 Efficient Public Key Distance Bounding Protocol

In this section, we first introduce Eff-pkDB which is secure against DF, MF and
DH and then Eff-pkDBp a variant of it preserving the strong privacy as well.

5.1 Eff-pkDB

Eff-pkDB is constructed on an AKA in one-pass and a symmetric DB protocol.
P and V first agree on a secret key s using an AKA protocol. Then, they together
run a symmetric key DB protocol (symDB) by using s. Using OTDB as symDB
and Using Nonce-DH as an AKA protocol will appear to be enough for its
security.

Theorem 4. If symDB is OT-DF-secure, then Eff-pkDB is DF-secure.
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V(skV , pkV ) P(skP , pkP , pkV )
N ← D(1n)

A(skV , pkV , pkP , N)→ s
N,pkP←−−−−−−−−−−− B(skP , pkP , pkV , N)→ s

symDB(s)←−−−−−−−−−−→
OutV−−−−−−−−−−−→

Fig. 4. Public-key DB protocol based on D-AKA secure KA (Eff-pkDB)

Proof sketch: The malicious and far away prover with its instances play the DF
game. We can easily reduce it to the game where V and the adversary receive
the same s′ from outside (even if maliciously selected). Since symDB is OT-DF-
secure, the prover passes the protocol with negligible probability. ut

Theorem 5. If symDB is multi-verifier OT-MiM-secure and the key agreement
protocol with the algorithms GenA,GenB , A,B,D is D-AKA secure then Eff-
pkDB is MiM-secure.

Proof. Γi is a game and pi denotes the probability that Γi succeeds.
Γ0 : The adversary plays the MiM game in Eff-pkDB with the distinguished

verifier V, V’s instances and the prover instances. V receives pkP and a given N .
We call “matching instance” the instance who sends this N .

Γ1 : We reduce Γ0 to Γ1 where no nonce produced by any prover instance
is duplicated or equal to any nonce received by any a verifier instance before.
Thanks to Lemma 1 in Appendix 1, p1 − p0 is negligible. So, the matching
instance (if any) is unique and sets N before it is sent to V.

Γ2 : We simulate the prover instances and V as below in this game. Basically,
in Γ2, the prover and the verifier do not use the secret generated by the oracles
OB and OA, respectively.

P (.) (in Γ2)

run OB(pkV )→ (s0, N
′)

send N ′, pkP
pick s1

store (N ′, s1, pkP ) in T
run symDB(s1)

V (.) (in Γ2)

receive N ′, pkP
if (N ′, ., pkP ) ∈ T

retrieve s from T
where (N ′, s, pkP ) ∈ T

else:
s← OA(pkP , N

′)
run symDB(s)

With the reduction from Γ1 to Γ2, we show that the secret generated by A
and B are indistinguishable from the randomly picked secret. The reduction is
showed below:

We define the hybrid games Γ2,t to show p2 − p1 is negligible. Here, t ∈
{0, 1, 2, ..., k} and k is the number of prover instances bounded by a polynomial.

Γ2,i : V is simulated as in Γ2 and the jth instance of P is simulated as in Γ2

for j ≤ i and as in Γ1 for j > i. Clearly, Γ2,0 = Γ1 and Γ2,k = Γ2.
First, we show that Γ2,i and Γ2,i+1 are indistinguishable. For this, we use an

adversary B that plays the D-AKA game. B receives pkA, pkB , sb, N from the
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D-AKA challenger and simulates against the adversary A which distinguishes
Γ2,i and Γ2,i+1. B assigns pkV = pkA and pkP = pkB . B simulates each prover
Pj as described below.

Pj(.)

if j 6= i+ 1

OB(pkV )→ (s′, N ′)

if j ≤ i
pick s′

else:

s′ ← sb and N ′ ← N

if j ≤ i+ 1

store (N ′, s′, pkP ) to T

send N ′, pkP
run symDB(s′)

Note that if b = 0 which means sb is generated by the oracle B then B
simulates the game Γ2,i. Otherwise, he simulates Γ2,i+1.

For the verifier simulation, B first checks, if (N ′, ., pkP ) is stored by himself
as V in Γ2. Otherwise, he sends (pkP , N

′) to the oracle OA and receives s′. Since
(N, sb, pkP ) is always stored in T , (pkP , N) is not queried to OA oracle. In the
end of the game, A sends his decision. If A outputs i, then B outputs 0. If A
outputs i + 1, then B outputs 1. Clearly, the advantage of B is p2,i − p2,i+1.
Due to the D-AKA security, we obtain that p2,i − p2,i+1 is negligible. From the
hybrid theorem, we can conclude that p2,0 − p2,k is negligible where p2,0 = p1

and p2,k = p2.

Γ3 : We simulate the prover instances as below so that they do not run the
oracle OB to have N . The only change in this game is the generation of the
nonce. Since the prover in Γ3 picks the nonce from the same distribution that
OB picks, p3 = p2. This game shows that the prover generates N ′ (and also s1)
independently from OB .

P (.) (in Γ3)

pick N ′ ∈ D(1n)

send N ′, pkP
pick s1

store (N ′, s1, pkP ) to T

run symDB(s1)

Γ4 : We reduce Γ3 to the multi-verifier OT-MiM-security game Γ4 where
there is only matching instance and the other instances are simulated. With
this final reduction, we show that the adversary has to break the multi-verifier
OT-MiM-security of symDB in order to break the MiM-security of Eff-pkDB.

The reduction is the following. A3 plays the Γ3 game. We construct an adver-
sary A4

i in Γ4. A4
i receives N from the matching prover in Γ4. A4

i takes Pi as a
matching prover in Γ3 where i ∈ {1, ..., k}. A4

i simulates all of the provers except
Pi against A3. For Pi, A4

i just sends (pkP , N). In the end, if Pi is the matching
instance in Γ3 and A3 wins then A4

i wins. Therefore p3 ≤
∑
i p4,i where p4,i is
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the probability that A4
i wins. Due to multi-verifier OT-MiM-security, all p4,i’s

are negligible. So, p3 is negligible. Hence, p0 is negligible. ut

Theorem 6. If symDB is OT-MiM-secure, OT-DH-secure and follows the
canonical structure and if the key agreement protocol with the algorithms
GenA,GenB , A,B,D is D-AKA secure then Eff-pkDB is DH-secure.

Proof. Γi is a game and pi denotes the probability that Γi succeeds.
Γ0 : The adversary P with its instances plays the DH-security game in Eff-

pkDB with the distinguished verifier V and its instances and an honest prover
P′. The probability that the adversary succeeds in Γ0 is p0.

Γ1 and Γ2 : These games are like in the proof of Theorem 5 except that Pj
is replaced by P′j . The reduction from Γ0 to Γ1 and Γ2 is similar to the proof of
Theorem 5. So we can conclude that p2 − p0 is negligible.

We let N be the nonce produced by the instance of P′ and s1 be its key which
is playing a role during the challenge phase of V in the DH game.

We reduce Γ2 to Γ3 in which all OutV from a verifier instance who receives
pkP and N is replaced by 0 during the initialization phase. Intuitively, in this
case, OutV cannot be equal 1 because if it is 1, it means P′ impersonates P.
The reduction is as follows: During the initialization game, P′ sends messages
which do not depend on s1 because of the canonical structure, and which can
be simulated. So, we can reduce this phase to the multi-verifier IF game and
use Theorem 2 to show that p3 − p2 is negligible. This reduction shows that the
DH-adversary P cannot win the game with sending pkP and N generated by P′.

We reduce Γ3 to Γ4 where the game stops after the challenge phase for V.
Since the verification phase which is after the challenge phase is non-interactive
and OutV is determined at the end of the challenge phase, p4 = p3.

We reduce Γ4 to Γ5 which is OT-DH game. In Γ4, s1 has never been used
so s (the key of V which is given by the adversary) is independent from s1. In
this case, P′ and V run symDB with independent secrets. So, p5 = p4. Because
of the OT-DH security of symDB, p5 is negligible. ut

5.2 Eff-pkDBp

Eff-pkDB is not strong private as the public key of the prover is sent in clear.
Adding one encryption operation to Eff-pkDB is enough to have strong privacy.

Eff-pkDBp in Figure 5 is the following: The prover and the verifier generate
their secret/public key pairs by running the algorithms GenP (1n) and GenV (1n),
respectively. We denote (skP , pkP ) for the secret/public key pair of the prover and
(skV , pkV ) for the secret/public key pair of the verifier where skV = (skV1

, skV2
)

and pkV = (pkV1
, pkV2

) and the first key is used for the encryption and the sec-
ond key is used for the AKA protocol. The prover picks N from the sampling
algorithm D and generates s with the algorithm B(skP , pkP , pkV2

, N). Then, he
encrypts pkP and N with pkV1

. After, he sends the ciphertext e to the verifier.
The verifier decrypts e with skV1 and learns N and pkP which helps him to under-
stand who is interacting with him. Next, the verifier runs A(skV2

, pkV2
, pkP , N)
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and gets s. Finally, the prover and verifier run a symmetric DB protocol symDB
protocol with s.

V(skV , pkV ) P(skP , pkP , pkV )

N ← D(1n)
B(skP , pkP , pkV2

, N)→ s

pkP , N = DecskV1
(e)

e←−−−−−−−−−−− e = EncpkV1
(pkP , N)

A(skV2 , pkV2
, pkP , N)→ s

symDB(s)←−−−−−−−−−−→
OutV−−−−−−−−−−−→

Fig. 5. Eff-pkDBp: private variant of Eff-pkDB

Assuming that the AKA protocol is D-AKA secure and symDB is OT-X
secure symmetric key DB protocol for all X ∈ {DF,MiM,DH} and follows
canonical structure, we can easily show that Eff-pkDBp is X-secure from The-
orem 4, 5, 6. To prove this, we start from an adversary playing the X-security
game against Eff-pkDBp. We construct an adversary playing the same game
against Eff-pkDB to whom we give skV1

. The simulation is straightforward.

Theorem 7. Assuming the key agreement protocol is D-AKAp secure and the
cryptosystem is IND-CCA secure, then the Eff-pkDBp is strong private in the
HPVP model (Definition 5).

Proof. Γi is a game and pi denotes the probability that Γi succeeds.
Γ0 : The adversary A plays the HPVP privacy game.
Γ1 : The verifiers skip the decryption when they receive a ciphertext produced

by any prover and continue with the values encrypted by the prover. Because of
the correctness of the encryption scheme p1 = p0.

Γ2 : This game is the same with Γ1 except the provers encrypt a random
string instead of pkP , N . The verifier retrieves e and s from the table T so that
it does not decrypt any ciphertext that comes from a prover as in Γ1. Thanks
to the IND-CCA security (Verifiers are simulated using a decryption oracle due
to our Γ1 reduction. The use of this oracle is valid in IND-CCA game), p2 − p1

is negligible. So, P and V works as follows:
P (.) (in Γ2)

pick N ∈ D(1n)
s← B(skP , pkP , pkV2

, N)
pick r
e← EncpkV1

(r)

store (e, s) to T
send e
run symDB(s)

V (.) (in Γ2)
receive e
if (e, .) ∈ T

retrieve s from T
where (e, s) ∈ T

else:
(pk′, N)← DecskV1

(e)

s← A(skV2
, pkV2

, pk′, N)
run symDB(s)
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This reduction shows that the adversary cannot retrieve pkP and N from the
encryption.

Γ3 : It is the same with Γ3 except that we simulate the prover as below. In
this game, s is generated independently from skP and pkP .

P (.) (in Γ3)
(sk, pk)← GenB(1n)
pick N ∈ D(1n)
run s← B(sk, pk, pkV2

,N)
pick r
e← EncpkV1

(r)

store (e, s) to T
send e
run symDB(s)

We defined the hybrid games Γ3,t to show p3 − p2 is negligible. Here, t ∈
{0, 1, 2, ..., k} and k is the number of prover instances bounded by a polynomial.

Γ3,i : V is simulated as in Γ3 and the jth instance of P is simulated as in Γ3

if j ≤ i and as in Γ2 if j > i.
First, we show that Γ3,i and Γ3,i+1 are indistinguishable. For this, we use

an adversary B that plays D-AKAp game. B receives pkA, pkB1
and skB1 from

the D-AKAp challenger, picks (skB0
, pkB0

) and sends them to the challenger.
Finally, B receives s. After, he begins simulating against the adversary A that
wants to distinguish Γ3,i and Γ3,i+1.

Pi+1(.)
pick r
e← EncpkV (r)
store (e, s) to T
send e
run symDB(s)

B assigns pkV = pkA and pkP = pkB1
. For all of the prover simulations, if

j 6= i+ 1, Pj is simulated normally. V is simulated using the OA oracle. Corrupt
can be simulated since skB1

is available.
Note that if s is generated from B(skB0

, pkB0
, pkV , N) then B simulates Γ3,i+1

and if it is generated from B(skB1
, pkB1

, pkV , N) then B simulates Γ3,i.
For the verifier simulation, B first checks if (e, .) is stored by himself as V in

Γ3. Otherwise, he decrypts e and sends (pkPj
, N) to the oracle OA(pkP , N) and

receives s. In the end of the game, A sends his decision. If A outputs i, then B
outputs 1. If A outputs i + 1, then B outputs 0. Clearly, the advantage of B is
p3,i − p3,i+1 which is negligible because of the D-AKAp assumption. From the
hybrid theorem, we can conclude that p3,0 and p3,k is negligible where p3,0 = p2

and p3,k = p3.
Now, in Γ3, no identity is used by the provers. Hence, A does not have any

advantage to guess the prover which means p3 = 1
2 . As a result of it, p0 − 1

2 is
negligible.

Consequently, if we use D-AKA secure and D-AKAp private key agreement
protocol in Eff-pkDBp, then we have DF, MF, DH secure and strong private
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public-key DB protocol. For instance, Nonce-DH key agreement protocol is a
good candidate for Eff-pkDBp.

Difficulties of having strong privacy: The strong privacy is the hardest privacy
notion to achieve in DB protocols. Sending all prover messages with an IND-CCA
secure encryption is not always enough to have strong privacy. We exemplify
our argument as follows: Clearly, Eff-pkDB protocol is still DF-MiM and DH-
secure, if we replace the nonce selection by a counter. So, we can make a new
version of Eff-pkDBp based on the counter version of Eff-pkDB where the prover
sends his public key and the counter by an IND-CCA encryption. However,
clearly, it does not give strong privacy because when an adversary calls Corrupt
oracle, he learns the counter of two drawn provers. Since the adversary knows
the corresponding secret keys for both of them, he can easily differentiate the
drawn provers based on the counter. This attack is not possible in Eff-pkDBp

which uses a nonce instead of a counter because the nonce is in the volatile
memory. So, the adversary does not learn it with the Corrupt oracle.

6 Conclusion

Our main purpose in this work was to design an efficient and a secure public-
key DB protocol. First, we designed Eff-pkDB which is secure against DF, MiM
and DH. We did not consider privacy in this one because privacy is not the
main concern of some applications. Therefore, Eff-pkDB can be employed by
the applications that do not need privacy. Eff-pkDB is one of the most efficient
public key DB protocols compared to the previous ones (See Table 2).

Second, we added strong privacy to the Eff-pkDB protocol and obtained Eff-
pkDBp. We succeeded it by adding one public-key IND-CCA secure encryption.
In this case, the protocol is not as efficient as before but still one of the most
efficient ones with the same security and privacy properties.

In Table 2, we give the security properties of existing public-key DB protocols
along with the number of computations done on prover side. We use the number
of elliptic curve multiplications and hashing as a metric in our efficiency analysis.
We exclude GOR, ProProx and eProProx (in Table 1) since they clearly require
a lot more computation than the other public-key DB protocols. In our counting
for the number of computations in Table 2, 1 commitment is counted as 1 hashing
operation. For the signature, we prefer an efficient and existentially unforgeable
under chosen-message attacks resistant signature scheme ECDSA [21]. ECDSA
requires 1 EC multiplication, 1 mapping, 1 hashing, 1 modular inversion and 1
random string selection. For the IND-CCA encryption scheme, we use ECIES
[31] which requires 2 EC multiplications, 1 KDF, 1 symmetric key encryption,
1 MAC and 1 random string selection. For the D-AKA secure key agreement
protocol, we use Nonce-DH which requires 1 EC multiplication, 1 hashing and
1 random string selection.

We first compare the protocols considering the security and the efficiency
trade-off. Eff-pkDB and Simp-pkDB are the most efficient ones. However, Simp-
pkDB is secure only against MiM and DF. After Eff-pkDB, the second most
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Protocol Security Privacy
PK

operations
Number of Computations

Brands-Chaum [9] MiM, DF No Privacy
1 commitment,

1 signature

1 EC multiplication, 2 hashings,
1 mapping, 1 modular inversion,

1 random string selection

HPO [20] MiM, DF Weak Private
4 EC multiplications, 2 random

string selections, 2 mappings

PrivDB [37] MiM, DF, DH Strong Private
1 signature, 1

IND-CCA
encryption

3 EC multiplications, 2
hashings, 2 random string

selection, 1 modular inversion, 1
mapping, 1 symmetric key

encryption, 1 MAC

Simp-pkDB MiM, DF No Privacy 1 decryption
1 EC multiplication, 1 hashing,

1 symmetric key decryption,
MAC

Eff-pkDB MiM, DF, DH No privacy
1 D-AKA secure

KA protocol
1 EC multiplication, 1 hashing,

1 random string selection

Eff-pkDBp MiM, DF, DH Strong Private

1 IND-CCA
Encryption, 1
D-AKA secure
KA protocol

3 EC multiplications, 2
hashings, 2 random string
selections, 1 symmetric key

encryption, 1 MAC

Table 2. The review of the existing public-key DB protocols.

efficient protocol is Brands-Chaum protocol [9] but this protocol is only secure
against MiM and DF while Eff-pkDB is secure against DH as well.

Now, we compare the protocols considering security, privacy and efficiency
trade-off. In this case, HPO requires 4 EC multiplications while PrivDB and
Eff-pkDBp require 3 EC multiplications and 1 hashing. Hashing is more efficient
than elliptic curve multiplication so it looks like PrivDB and Eff-pkDBp are
more efficient. However, HPO has an advantage in efficiency if it is used in a
dedicated hardware allowing only EC operations. On the other hand, Eff-pkDBp

and PrivDB are secure against MiM, DF, DH and strong private while HPO is
only MiM and DF secure and only private.

Eff-pkDBp and PrivDB have the same security and privacy properties and
almost the same efficiency level. However, if we analyze the efficiency with more
metrics, we see that PrivDB requires extra 1 modular inversion and 1 mapping.
More importantly, Eff-pkDBp has lighter version Eff-pkDB which can be used
efficiently in the applications which do not need privacy.

One of the important useful property of Eff-pkDB is that it can employ any
D-AKA secure key agreement protocol to satisfy DF, MiM and DH security.
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A More results about D-AKA security model

KA Protocol Efficiency Security

MQV [29] 2.5 unproven

HMQV [26] 2.5 CK

KEA+ [28] 3 CK

NAXOS [27] 4 eCK

CMQV [32] 3 eCK

Nonce-DH 1 D-AKA
Table 3. Existing KA protocols with their security and efficiency. Efficiency column
shows the number of exponentiation done by per party.

The Extended Canetti-Krawczyk (eCK) Security Model [27]
The eCK security model consists of t parties with their certificated public

keys. The key exchange protocol is executed between two parties A and B.
When A starts a key exchange protocol with B, it is called as a session and A is
the owner of the session and B is the peer. A (initiator) starts the protocol by
sending a message MA, then B (responder) responds with a message MB. The
session id sid corresponds to an instance of A or B.

22



There is a probabilistic polynomial time (PPT) adversary A controlling
all communication and some instances. The activation of the parties starts by
Send(A,B,message) (or Send(B,A,message)). Besides Send, A can do following
queries:

– Long-Term Key Reveal(A): Outputs the long term public-key of A.
– Ephemeral Key Reveal(sid) Outputs an ephemeral key of a session sid.
– Reveal(sid): Outputs the session key of a completed session sid.
– Test(sid): If sid is clean then outputs s ← Reveal(sid) if b = 1, outputs
s← {0, 1}λ if b = 0 (λ is the size of the session key).
The advantage is the difference of the probability that A gives 1 for b = 0
and b = 1.

A clean session is basically a session where winning the game for A is not
trivial. See [27] for more details.

Theorem 8. If a key agreement protocol is eCK secure [27], then it is D-AKA
secure.

Proof. Let’s assume that there is an adversary A playing D-AKA game. We con-
struct an adversary B simulating the D-AKA game and playing the eCK game.
B receives all the public keys in the eCK game. B first picks two parties A and
B. Then, he creates a session sid between them by sending the query Send(A,B,
message) and he assigns the ephemeral public key of B as a nonce N . Then, he
sends the query Test(sid) and receives sb. Finally, he sends sb, N, pkB , pkA to A.
Whenever A calls the oracle OB(pkA′), B creates a new session sid′ with A′ on
behalf of B as explained above. Similarly, he assigns the ephemeral public key of
B as a nonce N ′. After, he sends the query Reveal(sid′) and receives the session
key s′. As a response of OB(pkA′), he sends s′, N ′ to A. In addition, whenever
A calls the oracle OA(pkB′ , N ′′), first, B checks if (pkB′ , N ′′) equals (pkB , N). If
it is not equal, he creates a new session sid′′ on behalf of B′ with the ephemeral
public key N ′′ and calls the oracle Reveal(sid′′) to receive the session key s′′.
Then, he responds to A with s′′. In the end, B outputs whatever A outputs.
The simulation of D-AKA game is perfect. So the advantage of B equals to the
advantage of A. Therefore, since the advantage of B is negligible, the advantage
of A is negligible as well. ut

As a result of Theorem 8, we can conclude any eCK secure key agreement
protocol can be used in Eff-pkDB. However, we suggest using D-AKA secure key
agreement protocols since they may require less public-key operations.

Lemma 1. We consider D-AKA secure key agreement protocol (GenA,GenB ,
D,A,B). We define the random variables (skA, pkA)← GenA(1n), (skB , pkB)←
GenB(1n), and (s,N) ← OB(pkA) and (s′, N ′) ← OB(pkA). We have that
Pr[N = N ′] is negligible. Furthermore, for all values u which could depend on
skA, pkA, skB , pkB, Pr[N = u] is negligible.
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Proof. We define an adversary A playing the D-AKA game as follows:
A

receive sb, N, pkB , pkA
(s′, N ′)← OB(pkA)
if N ′ = N

if s′ = sb
output 0

else:
output 1

else:
output b′ ←r {0, 1}

In this strategy, A wins if N = N ′ (except s1 = s0 and b = 1). Otherwise,
he wins with 1

2 probability.

Pr[Awin] =
1

2
(1− Pr[N = N ′]) + Pr[N = N ′]− Pr[N = N ′, s1 = s0, b = 1]

=
1

2
+

1

2
Pr[N = N ′]− Pr[N = N ′, s1 = s0, b = 1]

We know from the D-AKA security that Pr[Awin]− 1
2 is negligible. Pr[s1 =

s0] = 2−n is negligible as well. So, Pr[N = N ′] is negligible. Now, we need to
show that it holds for all values u.

Let v be the most probable value for N . We have

Pr[N = N ′] =
∑
w

Pr[N = N ′ = w]

=
∑
w

Pr[N = w]2

≥Pr[N = v]2

So, we have the following inequality in the end:

Pr[N = u] ≤ Pr[N = v] ≤
√

Pr[N = N ′]

We know that Pr[N = N ′] is negligible so Pr[N = u] is negligible.
ut

B Mafia and Distance Fraud Secure Public Key DB

We consider the Simp-pkDB protocol in Figure 6. In Simp-pkDB the prover P
selects a nonce N ∈ {0, 1}n where n is security parameter and sends it to the
verifier together with pk. Then verifier V selects a secret s ∈ {0, 1}n, encrypts
it with N by the public key pk of the prover and sends the encryption e to P.
After receiving e, P decrypts it with the secret key sk and gets s,N . If the N is
the nonce by P, then they run one-time secure symDB(s).

We show that this protocol is MiM-secure but not DH-secure. Simp-pkDB
requires only one operation which is IND-CCA decryption.
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V P(pk, sk)

pick s ∈ {0, 1}` N,pk←−−−−−−−−−−− pick N ∈ {0, 1}`

e = Encpk(s||N)
e−−−−−−−−−−−→ s,N = Decsk(e)

Verify(N)
symDB(s)←−−−−−−−−−−→
OutV−−−−−−−−−−−→

Fig. 6. Simp-pkDB

Theorem 9. If symDB is DF-secure then Simp-pkDB is DF-secure.

Proof. It is trivial.

Theorem 10. If symDB is one-time MiM-secure and the cryptosystem resists
chosen-ciphertext attacks (IND-CCA secure) then Simp-pkDB is MiM-secure.

Proof. Γi is a game and pi denotes the probability that Γi succeeds.
Γ0 : Adversary plays MiM game in the protocol in Figure 6 with the verifier

with its instances, the prover with its instances and other actors. Let’s assume
that the number of prover instances is k where k is polynomially bounded.

Let s, pk, N and e be the values seen by the distinguished instance V of the
verifier. Here e = Encpk(s||N). We group the prover’s instances as the following:

1. The provers seeing N and e,
2. The provers seeing e but another nonce N ′.
3. The provers not seeing e (see a ciphertext e′ which is not e).

The probability that an adversary succeeds in Γ0 is p0.

Γ1 : We reduce Γ0 to Γ1 where the first group has up to one prover instance
P. We call V and P the matching instances. The probability that more than one
prover picks same N is bounded by

(
k
2

)
2−` which is negligible. So, p1 − p0 is

negligible.
Γ2 : We reduce Γ1 to Γ2 where the matching P receives e after V has released

e which means that e which is encryption of s||N is only sent by the verifier. In
Γ1, the probability that V selects s after P has received e so that Decsk(e) = s
is 1

2` which means that p2 − p1 is negligible.
Γ3 : We reduce Γ2 to Γ3 where the provers are simulated as below:
The prover in the first group after receiving e run symDB(s) without de-

crypting e. Since e was released before, the value of s is already defined. The
provers in the second group, abort the protocol after receiving e. The provers in
the third group, call decryption oracle Decsk(.) after receiving e′ and check if the
nonce is the same nonce that was chosen by them. Then they run symDB(s′)
with s′ obtained from the decryption oracle.

The simulation gives identical result so the success probabilities in Γ3 and
Γ2 are the same.
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Γ4 : We reduce Γ3 to Γ4. We simulate V in Γ4. The simulation of V after
selecting s encrypts a random plaintext instead of s||N .

Γ3 and Γ4 are indistinguishable because of the IND-CCA security of the
encryption scheme. We construct an adversary B playing IND-CCA game and
simulating MiM game against the adversary A.
B receives pk from the IND-CCA game challenger and then B forwards it to

A. Firstly, B picks N, s ∈ {0, 1}` and r ∈ {0, 1}2` and assigns m0 = s||N,m1 =
r. Then he sends m0 and m1 to IND-CCA game challenger and receives the
response eb where eb = Encpk(m0) or Encpk(m1). If A interacts with V then B
sends eb, if A interacts with P, then B sends N . For the simulation of other
prover instances P′ (controlled by A), when P′ asks for the decryption of e′,
B sends e′ to IND-CCA game challenger and receives decryption of e′ to send
P′. In the end, if A succeeds then B outputs 0, otherwise he outputs 1. If A
succeeds given b = 0, then it means that he succeeds Γ3 and if A succeeds given
b = 1 then it means that he succeeds Γ4. Therefore we have the following success
probability of B.

Adv(B) = Pr[B → 1|b = 0] + Pr[B → 1|b = 1] = p3 − p4

Since we know that the advantage of B is negligible, we can deduce that
p3−p4 is negligible (if we multiply negligible function with a polynomial we still
have a negligible function).

Γ5 : Now in Γ5 we have at most two matching instances and they both
run symDB(s) with the same and fresh random s. In Γ5, The rest of the game
(including the selection of pk and sk and the the decryption oracle Decsk(.)) is
simulated by the adversary, Γ4 and Γ5 work the same. So p4 = p5. So they run
symDB(s). The success probability p5 of Γ5 is negligible because of the security
of OT-MiM-security of symDB.

As a conclusion, since p1−p0 = negl, p2−p1 = negl, p2−p3 = 0, p4−p3 = negl,
p5 − p4 = 0 and p5 = negl, we deduce that p0 is negligible.

DH-Security: The protocol in Figure 6 is not secure against DH because of
the attack in Figure B. In this attack, the malicious and far away prover P uses
honest and close prover P′ so that in the end V accepts P.

Basically, P chooses the same nonce that P′ chose. Then V encrypts s||N
with the public key pkP of P and then sends it to P. P decrypts e with his own
secret key skP and then behaves as if he is the verifier and prepares encryption
e′ = EncpkP′ with using P′’s public key pkP′ and sends it to P′. Since e′ is valid
encryption for P′, he continues by executing symDB(s) with V. In the end of the
protocol, V accepts P since V has the P’s public key. P′ is used by P only to be
able to pass the distance bounding phase of symDB(s) protocol.

C Security of Nonce-DH

Definition 15 (Gap Diffie-Hellman (GDH) [30]). Let G be a prime order
group and g ∈ G be a generator. We have the following problems:
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V (pkP) P(pkP, skP) P′(pkP ′ , skP′)

pick s
N,pkP′←−−−−−−−− pick N

e = EncpkP(s||N)
N,pkP←−−−−−−−−

e−−−−−−−−→ s,N = DecskP(e)

e′ = EncpkP′ (s||N)
e′−−−−−−−−→ s,N = DecskP′ (e

′)

Verify(N)

symDB(s)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
OutV−−−−−−−−→

Fig. 7. DH attack on Simp-pkDB.

– Computational Diffie-Hellman Problem (CDH): Given g,X, Y ∈ G
compute Z = gloggX.loggY .

– Decisional Diffie-Hellman Problem (DDH): Given g,X, Y, Z ∈ G,
decide if Z = gloggX.loggY or Z = gr where r is a random element.

The GDH problem is solving the CDH given (g,X, Y ) with the help of a DDH
oracle which answers whether a given quadruple is a Diffie-Hellman quadruple.

Theorem 11. Assuming that the GDH problem is hard and ` = Ω(n), Nonce-
DH is D-AKA secure in the random oracle model.

Proof. The game Γ0 is the D-AKA game. The challenger works as follows: He
picks q and g as described in Nonce-DH. He randomly picks skA, skB ∈ Zq,
and computes pkA = gskA , pkB = gskB . He picks randomly s1 ∈ {0, 1}n and
then he assigns (s0, N) ← OB(pkA). Then, he picks b ∈ {0, 1} and gives
g, q, pkA, pkB , N, sb to the adversary A. A has access to the oracle H, OA(., .)
(with the restriction not asking for pkB , N) and OB(.) defined below.

OA(., .)

Input: pk′B , N
′

if (pk′B , N
′) equals (pkB , N)

send ⊥
else:
s← H(g, pk′B , pkA, pk

′skA
B , N ′)

send s

OB(.)

Input: pk′A
pick N ′ ∈ {0, 1}`
s← H(g, pkB , pk

′
A, pk

′skB
A , N ′)

send (s,N ′)

H(.)
Input: U

if (U, .) ∈ T
send V where (U, V ) ∈ T
else:
pick V ∈ {0, 1}n
save (U, V ) to T
send V

H′(.)

Input: (w, x, y, z,N ′)
if w = g and 1← DDH(g, x, y, z) :
z ← ⊥

send H(w, x, y, z,N ′)
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We let ⊥ be a special symbol which is unavailable to A. The success proba-
bility of A in Γ0 is p0.

We reduce Γ0 to Γ1 where the oracle OB never selects again the nonce N
(which is obtained by the first call). Since a nonce in Γ0 is equal to N with the

probability
1

2`
, |p1 − p0| ≤ qB

2` where qB is the number of queries to OB . Due to

` = Ω(n), p1 − p0 is negligible.

We reduce Γ1 to Γ2 where we replace H with H ′. H ′ is defined with access
to a DDH oracle (as Definition 15) as the following:

Since there is one-to-one mapping in the transformation of (g, x, y, z,N ′), the
success probability of Γ2 remains the same which means p2 = p1.

We define another game Γ3 where the only difference from Γ2 is that we
replace the oracle OB with the oracle O′B .

O′B(.)

Input: pk′A
pick N ′ ∈ {0, 1}`
s← H(g, pkB , pk

′
A,⊥, N ′)

send (s,N ′)

Note that O′B queries H instead of H ′ and N ′ 6= N due to the reduction
to Γ1. Γ3 is exactly same with Γ2 so the success probabilities p3 and p2 are the
same as well.

Now in Γ3, skB is used only by the DDH oracle.

We reduce Γ3 to Γ4 where A does not make the query H ′(g, pkB , pkA, z,N)
with z = pkskBA . Indeed, any such query can be filtered using the DDH oracle and
stopped to solve the GDH problem. Since the GDH problem is hard, A in Γ3

selects z = pkskBA given (pkA, pkB) with negligible probability. Therefore, p4− p3

is negligible.

In Γ4, H(g, pkB , pkA,⊥, N) is queried only once and this query is done by
the challenger. Lastly, we reduce Γ4 to Γ5 where the challenger picks a random
s0 instead of picking s0 = H(g, pkB , pkA,⊥, N).

Γ4 and Γ5 are the same because if (g, pkB , pkA,⊥, N) is never being queried
again, it is not necessary that H stores ((g, pkB , pkA,⊥, N), s0) in T . So, p4 = p5.

In Γ5, s0 and s1 play a symmetric role and could be erased with b from the
game after sb is released. So, the state of the game after erasure of b, s0 and s1

are independent from b. Hence, p5 = 1
2 leading to p0 − 1

2 is negligible.

ut

Theorem 12. Assuming that ` = Ω(n), Nonce-DH is D-AKAp private in the
random oracle model.

Proof. The game Γ0 is D-AKAp game. The challenger works as follows: He picks
q and g as described in Nonce-DH. He selects skA, skB1

∈ Zq, and computes
pkA = gskA and pkB1

= gskB1 . Then, he sends pkA, pkB1
and skB1

to A. A selects
skB0

and pkB0
and sends them to the challenger. Next, the challenger picks

b ∈ {0, 1}, N ∈ {0, 1}`, queries (g, pkBb
, pkA, pk

skBb

A , N) to H and receives s. He
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sends s to A. A has access to the oracle H as defined in the proof of Theorem
11, and to the oracle OA(., .).

We reduce Γ0 to Γ1 where A never selects the same nonce with N in the
query of the oracle H or OA. The probability that he selects N is 1

2` so p2 − p1

is negligible.
We reduce Γ1 to Γ2 whereOB picks s at random instead of a response fromH.

Since, the query (g, pkBb
, pkA, pk

skBb

A , N) by the challenger is never done again,
we have p1 = p2. Now, b is never used in Γ2. It means that s is independent from
b, so p2 = 1

2 . Therefore, p0 − 1
2 is negligible.

ut
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