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Abstract. We present the first chosen-ciphertext secure public-key encryption
schemes resilient to continuous tampering of arbitrary (efficiently computable)
functions. Since it is impossible to realize such a scheme without a self-destruction
or key-updating mechanism, our proposals allow for either of them. As in the pre-
vious works resilient to this type of tampering attacks, our schemes also tolerate
bounded or continuous memory leakage attacks at the same time. Unlike the pre-
vious results, our schemes have efficient instantiations, without relying on zero-
knowledge proofs. We also prove that there is no secure digital signature scheme
resilient to arbitrary tampering functions against a stronger variant of continuous
tampering attacks, even if it has a self-destruction mechanism.
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1 Introduction

We study the tampering attack security, or equivalently the related-key attack security,
of public-key cryptosystems. The tampering attacks allow an adversary to modify the
secret of a target cryptographic device and observe the effect of the changes at the
output. For instance, the tampering attacks are mounted on the IND-CCA game of a
public-key encryption (PKE) scheme, where an adversary may tamper with the secret-
key and observe the output of the decryption oracle with the tampered secret.

Theoretical treatment of tampering attack is first considered independently by Gen-
naro et al. [23] and Bellare and Kohno [6]. The former treated arbitrary (efficiently
computable) tampering functions, whereas the latter considered a restricted class of
tampering functions.

Since allowing for all tampering functions is very challenging, Gennaro et al. [23]
make a strong compromise that a trusted-third party may publish its verification key (of
a secure digital signature scheme) as a part of public parameters where an adversary is
not allowed to modify the parameters, and each user may obtain a signature on their
secrets issued by the trusted-third party. We call this model the on-line model (called
the algorithmic tamper-proof security model in [23]). On the other hand, Bellare and
Kohno [6] assume no trusted party. However, its subsequent works [4, 5, 7, 37, 30, 35,
22] allow a trusted party to play a minimum role, where it makes a public parameter, but
once it did, it does nothing. An adversary is not allowed to modify the public parameter.
We call this model the common reference string (CRS) model.



Gennaro et al. [23] suggested that it is impossible to realize chosen-ciphertext attack
(CCA) secure PKE and digital signature schemes resilient to all tampering functions
even in the on-line model. Therefore, they allowed a cryptosystem to self-destruct,
meaning that when detecting tampering, a cryptographic device can erase all internal
data, so that an adversary cannot obtain anything more from the device.

Other known ways to bypass the impossibility result are (1) to use a key-updating
mechanism, i.e., to allow a device to update its inner secret with fresh randomness [28],
and (2) to allow an adversary to submit a bounded number of tampering queries (the
bounded tampering model) [14].

Tampering is further classified into persistent or non-persistent (due to [27]). In
persistent tampering attacks, each tampering is applied to the current version of the
secret that has been overwritten by the previous tampering function, i.e., when an adver-
sary queries (φ1, x1) and (φ2, x2) to device G(s, ·) in this order, it receives G(φ1(s), x1)
and G(φ2(φ1(s)), x2), where φ1, φ2 are tampering functions and x1, x2 are inputs to
device G. In non-persistent tampering attacks, tampering is always applied to the
original secret, i.e., an adversary receives G(φ1(s), x1) and G(φ2(s), x2) when submit-
ting the above queries. We insist that for PKE and digital signature schemes without
a key-update mechanism, non-persistent tampering is stronger than persistent tamper-
ing, because an adversary that breaks a cryptosystem in a persistent tampering attack
also breaks the same system in a non-persistent tampering attack. It is not clear in a
cryptosystem with a key-updating mechanism the similar relation holds.

In this paper we focus on the common reference string (CRS) model (as mentioned
above), where we assume a public parameter is generated by a trusted third party and
assume that an adversary is not allowed to modify it. This setting is common in many
prior works, e.g., [4, 5, 7, 37, 30, 28, 14, 35, 22].

At CRYPTO 2011, Kalai, Kanukurthi, and Sahai [28] considered the continual
tampering and leakage (CTL) model, assuming tampering is persistent, and PKE
and digital signature schemes are allowed to have a key-update algorithm, which up-
dates a secret key with fresh (non-tampered) randomness between periods of tamper-
ing and leakage. This security model is considered in the CRS model. The proposed
PKE scheme is one-bit-message encryption scheme based on [10] and is only chosen-
plaintext attack (CPA) secure. Therefore, in their CTL security model, an adversary
is not allowed to access the decryption oracle, which means that an adversary cannot
observe the effect of tampering at the output of the decryption oracle. Instead, it can
observe the effect of tampering at the output of the leakage oracle. We note that this
tampering attack is not trivially implied by a leakage attack, because tampered secret
φ(sk) is updated and the adversary can observe a partial information on the updated
secret, say L(Update(φ(sk))), from the leakage oracle. Their digital signature scheme
(with a key-update mechanism) is constructed based on their CTL secure PKE scheme
with simulation-sound non-interactive zero-knowledge proofs, which is simply ineffi-
cient. They also considered a digital signature scheme without a key-update mechanism
in the so-called continuous tampering and bounded leakage (CTBL) model. The digital
signature scheme may self-destruct (otherwise, it is impossible to prove the security).
They claim that it is secure against persistent tampering attacks in the CTBL model.
Remember that, if a digital signature scheme does not have a key-update mechanism,



non-persistent tampering is stronger than persistent tampering. We later prove that if a
digital signature scheme does not have a key-updating mechanism, it is impossible that
it is resilient to continuous non-persistent tampering (even if it can self-destruct).

At ASIACRYPT 2013, Damgård, Faust, Mukherjee, and Venturi [14] proposed
the bounded leakage and tampering (BLT) model. This setting allows a bounded
number of non-persistent tampering, as well as bounded memory leakage, in the CRS
model, where PKE has neither self-destructive nor key-update mechanism. In the BLT
model for PKE, in addition to having access to bounded memory leakage oracle, an
adversary is allowed to submit a bounded number of “pre-challenge" tampering queries
(φ,CT) to the decryption oracle and receive D(φ(sk),CT). It may also access the de-
cryption oracle with the original secret-key both in the pre-challenge and post-challenge
stages, as in the normal IND-CCA game. They presented a generic construction of IND-
CCA BLT secure PKE scheme from an IND-CPA BLT secure PKE scheme with tSE
NIZK proofs [15]. An instance of an IND-CPA BLT secure PKE scheme is BHHO
PKE scheme [9]. Using the technique of [2], they also consider a variant of the floppy
model [2], called the ι-Floppy model, where each user has individual secret y different
from secret-key sk and is allowed to execute an invisible key update, i.e., to update their
secret key sk using (non-tampered) secret y with (non-tampered) flesh randomness.

1.1 Our Results

We study continuous tampering of arbitrary functions against PKE and digital signa-
ture schemes, in the presence of bounded or continuous memory leakage. Due to the
impossibility result, we allow PKE and digital signature schemes to have either self-
destructive or key-updating mechanism. There is no IND-CCA PKE scheme resilient
to post-challenge tampering of arbitrary functions [14]. Indeed, one can break any PKE
scheme, by observing the output of the decryption oracle after tampering with the fol-
lowing effciently computable function:

φ(sk) =

sk if D(sk,CT∗) = m0, where CT∗ is a challenge ciphertext.
⊥ otherwise.

This attack is unavoidable even with self-destruction, key-updating, and bounded persistent/non-
persistent tampering in the on-line model (i.e., in the strongest compromised model).
Therefore, we allow tampering queries only in the pre-challenge stage against a PKE
scheme.

We present the first chosen-ciphertext secure PKE schemes secure against contin-
uous (pre-challenge) tampering of arbitrary functions. At the same time, our propos-
als tolerate bounded or continuous memory leakage of arbitrary functions. Interest-
ingly, by putting some parameters in the common reference string and providing a self-
destructive mechanism to the decryption algorithm, Qin and Liu’s PKE scheme [33]
is CTBL-CCA secure, meaning that it is IND-CCA secure resilient to continuous tam-
pering and bounded memory leakage. We also propose the first CTL-CCA secure PKE
scheme, meaning that it is IND-CCA secure resilient to continuous tampering and con-
tinual memory leakage. To the best of our knowledge, this is the first IND-CCA secure



PKE scheme resilient to continuous memory leakage without using zero-knowledge,
regardless of tampering.

Our security definitions basically model a non-persistent tampering attack, but it is
straightforward to modify it to a persistent one. We show that any PKE scheme with-
out a key-update mechanism that is CTBL-CCA secure against non-persistent tamper-
ing attacks is still CTBL-CCA secure against persistent tampering attacks. So is our
CTBL-CCA secure PKE scheme. However, it is not clear that when a PKE scheme has
a key-update mechanism, the similar relation holds.

We show that it is impossible to construct a secure digital signature scheme resilient
to (continuous) non-persistent tampering even if it has a self-destructive mechanism.
If a key-update mechanism should run only when tampering is detected, any digital
signature scheme with a key-update mechanism is insecure, either.

Comparison Among Continuous Tampering Models. Table 1 classifies security mod-
els related to our continuous tampering model. Here b-tamp indicates bounded tamper-
ing and c-tamp indicates continuous tampering. Similarly, b-leak indicates bounded
memory leakage and c-tamp indicates continuous memory leakage. persist indicates
persistent tampering and n-persist indicates non-persistent tampering. per./n-per. in-
dicates that the result in this row is effective against both persistent and non-persistent
tampering. c-tamp− indicates the case of KKS signature scheme [28], where an ad-
versary is allowed to submit a bounded number of tampering queries within each time
period, although the number of tampering queries overall is unbounded. Our result is
given in the gray area. Our CTL model imposes a more severe condition in that the
scheme is allowed to update secret keys only when it can detect tampering.

Table 1. Comparison: Continuous Tampering Models and Results

Primitives Self-Dest. Key Update Tampering Leakage Security Notes Results
PKE w/o. w/o. b-tamp b-leak CCA per./n-per. DFMV [14]
PKE w/o. w. c-tamp c-leak CCA ιFloppy DFMV [14]
PKE w. w. b-tamp - CCA post-tamp. Impossible([14])
PKE w/o. w/o. c-tamp - CCA per./n-per. Impossible ([23])
PKE w/o. w. c-tamp c-leak CPA persist KKS [28]
PKE w. w/o. c-tamp b-leak CCA per./n-per. This work
PKE w/o. w. c-tamp c-leak CCA n-persist This work

Sig w/o. w/o. c-tamp - CMA per./n-per. Impossible ([23])
Sig w. w/o. c-tamp b-leak ? persist KKS [28]
Sig w/o. w. c-tamp− c-leak CMA persist KKS [28]
Sig w. w/o. c-tamp - CMA n-persist Impossible

(This work)
Sig w/o. w. c-tamp - CMA n-persist Impossible

(This work)



1.2 Other Related Work

Considering a restricted class of tampering functions, we briefly mention two lines of
works.

One research stream derives from Bellare and Kohno’s [6], who study tampering (or
equivalently related-key) resilient security against specific primitives, such as pseudo-
random function (PRF) families, PKE, and identity-based encryption (IBE) schemes.
By restricting tampering functions, post-challenge tampering queries can be treated
in PKE. Currently, it is known that there is an IBE scheme (and hence, converted to
PKE) resilient to polynomial functions [7] (in the CRS model). Qin et al. [35] recently
claimed a broader class, but it is not correct [22] (Indeed, there is a counter exam-
ple [3]). Recently, Fujisaki and Xagawa proposed an IBE scheme resilient to some kind
of invertible functions [22]. In the above works, non-persistent tampering is considered,
and primitives have neither self-destruction nor key-update mechanism.

The other line of works comes from algebraic manipulation detection (AMD) codes [11,
12] and non-malleable codes (NMC) [19], whose codes can detect tampering of a cer-
tain class of functions. Dziembowski, Pietrzak, and Wichs [19] presented NMC and its
application to tamper-resilient security. In their model, a PKE scheme allows both self-
destruction and key-update mechanisms. An adversary accesses target device G with a
tampering query (φ, x) with φ ∈ Φ. If the decoding fails, i.e., Dec(φ(Enc(s)) = ⊥,
then G self-destructs. Otherwise, it returns G(s, x) and updates Enc(s). Faust, Mukher-
jee, Nielsen, and Ventrui [21] considered continuous NMC and apply it to tamper and
leakage resilient security (in the split-state model). Recently, Jafargholi and Wichs [27]
presented NMCs for a bounded number of any subset of a very broader class of tam-
pering functions. However, since an adversary must choose the subset before seeing the
parameters of the codes, this result is not effective against continuous tampering attacks
in this paper.

Independent Work. Independently of us, Faonio and Venturi [20] has recently showed 1

that the digital signature scheme proposed by Dodis et al. [16] and Qin-Liu PKE scheme [33]
are secure in the bounded leakage and tampering (BLT) model [14], where a bounded
number of non-persistent tampering and bounded memory leakage are allowed in the
CRS model. Since we have proved that there is no digital signature scheme resilient to
continuous non-persistent tampering even if self-destruction is allowed, it is reasonable
that the digital signature scheme is proven only secure against bounded tampering. As
for the PKE case in which Qin-Liu PKE scheme is proven BLT-CCA secure, the proof
analysis is somewhat close to ours, in the sense that it does not use the leakage oracle
in a black box way to simulate the effect of tampering (unlike [14]).

2 Preliminaries

For n ∈ N (the set of natural numbers), [n] denotes the set {1, . . . ,n}. We let negl(κ)
to denote an unspecified function f (κ) such that f (κ) = κ−ω (1) = 2−ω(1) log κ , saying

1 Their proposal has been submitted to IACR e-Print archive [20] after the deadline of ASI-
ACRYPT 2016. So, it is obvious that ours is independent of theirs. We have recently noticed
that it will also appear in ASIACRYPT 2016.



that such a function is negligible in κ. We write PPT and DPT algorithms to denote
probabilistic polynomial-time and deterministic poly-time algorithms, respectively. For
PPT algorithm A, we write y ← A(x) to denote the experiment of running A for
given x, picking inner coins r uniformly from an appropriate domain, and assigning
the result of this experiment to the variable y, i.e., y = A(x; r). Let X = {Xκ }κ∈N and
Y = {Yκ }κ∈N be probability ensembles such that each Xκ and Yκ are random variables
ranging over {0,1}κ . The (statistical) distance between Xκ and Yκ is Dist(Xκ : Yκ ) ,
1
2 · | Prs∈{0,1}κ [X = s] − Prs∈{0,1}κ [Y = s]|. We say that two probability ensembles,

X and Y , are statistically indistinguishable (in κ), denoted X
s
≈ Y , if Dist(Xκ : Yκ )

= negl(κ). In particular, we denote by X ≡ Y to say that X and Y are identical. We say
that X and Y are computationally indistinguishable (in κ), denoted X

c
≈ Y , if for every

non-uniform PPT D (ranging over {0,1}), {D(1κ ,Xκ )}κ∈N
s
≈ {D(1κ ,Yκ )}κ∈N.

2.1 Entropy and Extractor

The min-entropy of random variable X is defined as H∞ (X ) = − log (maxx Pr[X = x]).
We say that a function Ext : {0,1}`s × {0,1}n → {0,1}m is an (k, ε )-strong extractor
if for any random variable X such that X ∈ {0,1}n and H∞ (X ) > k, it holds that
Dist((S,Ext(S,X )), (S,Um )) ≤ ε , where S is uniform over {0,1}ls . Let H = {H } be a
family of hash functions H : {0,1}n → {0,1}m . H is called a family of universal hash
functions if ∀ x1, x2 ∈ {0,1}n with x1 , x2, PrH←H [H (x1) = H (x2)] = 2−m . Then,
The Leftover Hash Lemma (LHL) states the following.

Lemma 1 (Leftover Hash Lemma). Assume that the familyH of functions H : {0,1}n →
{0,1}m is a family of universal hash functions. Then for any random variable X such
that X ∈ {0,1}n and H∞ (X ) > m,

Dist((H,H (X )), (H,Um )) ≤
1
2

√
2−(H∞ (X )−m) ,

where H is a random variable uniformly chosen over H and Um is a random variable
uniformly chosen over {0,1}m .

Therefore, H constructs a (k,2−(k/2+1))-strong extractor where k = H∞ (X ) − m.
We use the notion of the average conditional min-entropy defined by Dodis et al.[18]

and its “chain rule". Define the average conditional min-entropy of random variable X
given random variable Y as

H̃∞ (X |Y ) , − log ( E
y←Y

[max
x

Pr[X = x |Y = y]]) = − log ( E
y←Y

[2−H∞ (X |Y=y)]).

Lemma 2 (“Chain Rule" for Average Min-Entropy [18]). When random variable Z
takes at most 2r possible values (i.e., #Supp(Z ) = 2r ) and X,Y are random variables,
then

H̃∞ (X |(Y, Z )) ≥ H̃∞ ((X,Y ) |Z ) − r ≥ H̃∞ (X |Z ) − r.

In particular,
H̃∞ (X |Z ) ≥ H∞ (X, Z ) − r ≥ H∞ (X ) − r.



Dodis et al.[18] proved that any strong extractor is an average-case strong extractor
for an appropriate setting of the parameters. As a special case, they showed any family
of universal hash functions is an average-case strong extractor along with the following
generalized version of the leftover hash lemma:

Lemma 3 (Generalized Leftover Hash Lemma [18]). Assume that the family H of
functions H : {0,1}n → {0,1}m is a family of universal hash functions. Then for any
random variables, X and Z,

Dist((H,H (X ), Z ), (H,Um , Z )) ≤
1
2

√
2−(H̃∞ (X |Z )−m) ,

where H is a random variable uniformly chosen over H and Um is a random variable
uniformly chosen over {0,1}m .

2.2 Hash Proof Systems

We recall the notion of the hash proof systems introduced by Cramer and Shoup [13].
Let C,K ,SK , and PK be efficiently samplable sets and let V be a subset in C. Let
Λsk : C → K be a hash function indexed by sk ∈ SK . A hash function family
Λ : SK × C → K is projective if there is a projection µ : SK → PK such that
µ(sk) ∈ PK defines the action of Λsk over subsetV . That is to say, for every C ∈ V ,
K = Λsk (C) is uniquely determined by µ(sk) and C. Λ is called γ-entropic [29] if for
all pk ∈ PK , C ∈ C\V , and all K ∈ K ,

Pr[K = Λsk (C) |(pk,C)] ≤ 2−γ ,

where the probability is taken over sk
U
← SK with pk = µ(sk). We note that this Λ is

originally called 2−γ-universal1 in [13]. By definition, we note that H∞ (Λsk (C) |(pk,C)) ≥
γ for all pk ∈ PK and C ∈ C\V .

Λ is called ε-smooth [13] if Dist((pk,C,Λsk (C)), (pk,C,K )) ≤ ε , where sk
U
←

SK , K
U
← K and C

U
← C\V are chosen at random and pk = µ(sk).

A hash proof system HPS = (HPS.param, HPS.pub, HPS.priv) consists of three
algorithms such that HPS.param takes 1κ and outputs an instance of params = (group,Λ,C,V ,SK ,PK , µ),
where group contains some additional structural parameters and Λ is a projective hash
function family associated with (C,V ,SK , PK , µ) as defined above. The determin-
istic public evaluation algorithm HPS.pub takes as input pk = µ(sk), C ∈ V and a
witness w such that C ∈ V and returns Λsk (C). The deterministic private evaluation
algorithm takes sk ∈ SK and returns Λsk (C), without taking withness w for C (if it
exists). A hash proof system HPS as above is said to have a hard subset membership
problem if two random elements C ∈ C and C′ ∈ C\V are computationally indistin-
guishable, that is, {C |C

U
← C}κ∈N

c
≈ {C′ |C′

U
← C\V}κ∈N.

2.3 All-But-One Injective Functions

We recall all-but-one injective functions (ABO) [34], which is a simple variant of all-
but-one injective trap-door functions [32].



A collection of (n, `lf)-all-but-one injective functions with branch collection B =

{Bκ }κ∈N is given by a tuple of PPT algorithms ABO = (ABO.gen,ABO.eval) with the
following properties:

– ABO.gen is a PPT algorithm that takes 1κ and any branch b∗ ∈ Bκ , and outputs a
function index iabo and domain X with 2n elements.

– ABO.eval is a DPT algorithm that takes iabo, b, and x ∈ X, and computes y =

ABO.eval(iabo,b, x).

We require that (n, `lf)-all-but-one injective functions given by ABO satisfies the
following properties:

1. For any b , b∗ ∈ Bκ , ABO.eval(iabo,b, ·) computes an injective function over the
domain X.

2. The number of elements in the image of ABO.eval(iabo,b∗, ·) over the domain X
is at most 2` lf .

3. For any b,b∗ ∈ Bκ , {ABO.gen(1κ ,b)}κ∈N
c
≈ {ABO.gen(1κ ,b∗)}κ∈N.

We note that ABO functions can be efficiently constructed under the DDH assump-
tion and the DCR assumption (See Appendix B).

3 Continuous Tampering and Bounded Leakage Resilient CCA
(CTBL-CCA) Secure Public-Key Encryption

A public-key encryption (PKE) scheme consists of the following four algorithms Π =

(Setup,K,E,D): The setup algorithm Setup is a PPT algorithm that takes 1κ and out-
puts public parameter ρ. The key-generation algorithm K is a PPT algorithm that takes
ρ and outputs a pair of public and secret keys, (pk, sk). The encryption algorithm E is
a PPT algorithm that takes public parameter ρ, public key pk and message m ∈ M,
and produces ciphertext ct ← Eρ (pk,m); HereM is uniquely determined by pk. The
decryption algorithm D is a DPT algorithm that takes ρ, sk and presumable cipher-
text ct, and returns message m = Dρ (sk,ct). We require for correctness that for ev-
ery sufficiently large κ ∈ N, it always holds that Dρ (sk,Eρ (pk,m)) = m, for every
ρ ∈ Setup(1κ ), every (pk, sk) generated by K(ρ), and every m ∈ M.

We say that PKE Π is self-destructive if the decryption algorithm can erase all
inner states including sk, when receiving an invalid ciphertext ct. We assume that public
parameter ρ is system-wide, i.e., fixed beforehand and independent of all users, and the
only public and secret keys are subject to the tampering attacks. This model is justified
in the environment where the common public parameter could be hardwired into the
algorithm codes and stored on tamper-proof hardware or distributed via a public channel
where tampering is infeasible or could be easily detected.

CTBL-CCA Security. For PKE Π and an adversary A = (A1, A2), we define the
experiment Exptctbl-cca

Π,A, (Φ1,Φ2,λ) (κ) as in Fig. 1. A may adaptively submit (unbounded)



polynomially many queries (φ,ct) to oracle RKDec 2, but φ should be in Φi appro-
priately. A may also adaptively submit (unbounded) polynomially many queries L to
oracle Leak, before seeing the challenge ciphertext ct∗. The total amount of leakage on
sk must be bounded by some λ bit length. We note that if Π has the self-destructive
property, RKDec does not answer any further query, or simply return⊥, after it receives
an invalid ciphertext such that Dρ (φ(sk),ct) = ⊥. We define the advantage of A against
Π with respects (Φ1,Φ2) as

Advctbl-cca
Π,A, (Φ1,Φ2,λ) (κ) , | 2 Pr[Exptctbl-cca

Π,A, (Φ1,Φ2,λ) (κ) = 1] − 1 |.

We say that Π is (Φ1,Φ2, λ)-CTBL-CCA secure if Advctbl-cca
Π,A, (Φ1,Φ2,λ) (κ) = negl(κ) for

every PPT A.

Exptctbl-cca
Π,A, (Φ1,Φ2,λ) (κ) :

ρ← Setup(1κ );
(pk,sk) ← K(ρ);

(m0,m1, st) ← A
RKDecΦ1 (·, ·),Leakλ (·)
1 (ρ,pk)

such that |m0 | = |m1 |;
β∗ ← {0,1};
ct∗ ← Eρ (pk,mβ∗ );

β ← A
RKDecΦ2 (·, ·)
2 (st,ct∗);

If β = β∗ ,
then return 1; otherwise 0.

RKDecΦ(φ,ct) :
If ct = ct∗ queried by A2,

then return ⊥;
If Dρ (φ(sk),ct) = ⊥,

then erase sk.
Return Dρ (φ(sk),ct).

————————————
Leakλ (Li ) : (Li : i-th query of A.)

If
∑i

j=1 |L j (sk) | > λ

then return ⊥;
Else return Li (sk).

Fig. 1. The experiment of the CTBL-CCA game.

We say that Π is CTBL-CCA secure if it is (Φall, {id}, λ)-CTBL-CCA secure, where
Φall is the class of all efficiently computable functions and id denotes the identity func-
tion.

Remark 1. This security definition models non-persistent tampering. However, it is
obvious that the persistent tampering version of CTBL-CCA security can be similarly
defined.

We now state the following fact.

Theorem 1. Suppose a PKE scheme Π without a key-update mechanism (as defined in
Sec. 5) is CTBL-CCA secure against non-persistent tampering attacks. Then, Π is also
CTBL-CCA secure against persistent tampering attacks.

Proof. For a PKE scheme without a key-update mechanism, persistent tampering queries

(φ1,ct1), (φ2,ct2), . . . , (φ` ,ct`)

2 A tampering function is called a related-key derivation (RKD) function in [6, 4].



can be simulated non-persistent tampering queries as

(φ1,ct1), (φ2 ◦ φ1,ct2), . . . , (φ` ◦ · · · ◦ φ1,ct`).

Leakage functions in the persistent tampering attack are also simulated as L′ = L ◦
φ` · · · ◦ φ1, where φ1, . . . , φ` denote all persistent tampering functions submitted before
leakage function L is submitted. So, if Π is CTBL-CCA secure against non-persistent
tampering attacks, then it is CTBL-CCA secure against persistent tampering attacks.

4 The CTBL-CCA Secure PKE Scheme

Let HPS = (HPS.param,HPS.pub,HPS.priv) be a hash proof system (described in
Sec. 2.2). Let ABO = (ABO.gen,ABO.eval) be a collection of all-but-one injective
(ABO) functions (described in Sec. 2.3). Let TCH be a target collision resistant hash
family. Let H = {H |H : {0,1}n → {0,1}`m } be a family of universal hash functions
with n = |K |. Let OTSig = (otKGen,otSign,otVrfy) a strong one-time signature
scheme. We assume vk = 0 < otKGen.

At ASIACRYPT 2013, Qin and Liu [33] proposed a new framework for construct-
ing an IND-CCA secure PKE scheme resilient to bounded memory leakage. Assume a
PKE scheme based on a hash-proof-system, where an encryption of m is constructed as
CT = (C,H,e) where C ←V with w, H ← H , and e = m ⊕ H (HPS.pub(PK,C,w)),
whereas the decryption is done by computing m = e ⊕ H (HPS.priv(SK,C)). Naor
and Segev [31] proved that such a PKE scheme is IND-CPA secure resilient to bounded
memory leakage. Qin and Liu transformed it to IND-CCA secure one resilient to bounded
memory leakage, by using a one-time lossy filter. We describe a slight modification of
Qin-Liu PKE scheme in Fig. 1. The difference is that (1) our construction divides the
original key generation algorithm into the Setup algorithm and the key generation al-
gorithm and puts ρ in the common reference string, and (2) replaces a one-time lossy
filter with a combination of a strong one-time signature scheme and an ABO injective
function. (Here (2) is not essential. It is just a matter of our preference to use an ABO
injective function. Any one-time lossy filter suffices for our purpose.)

We then have the following theorem.

Theorem 2. Let HPS be a γ-entropic hash proof system. Let ABO be (n, `lf)-all-but-
one injective function where n = log |K |. We assume the PKE scheme in Fig. 2 is
self-destructive. Then, it is (Φall, {id}, λ)-CTBL-CCA secure, as long as λ(κ) ≤ γ −
`lf − `m − 2η − log(1/ε ) where η(κ) = ω(log κ) and ε = 2−ω (log κ) , and for any PPT
adversary A with at most Q queries to RKDec oracle, Advctbl-cca

Π,A, (Φall, {id},λ) (κ) ≤

2ε tcr + 2εotsig + 4ε lossy + 4εSD + 2−η+2 + Q · 2−(γ−η−λ−` lf−`m−1) + 2ε,

where εotsig, ε lossy, and εSD denote some negligible functions such that Advot
OTSig,B (κ)

≤ εotsig, Advlossy
ABO,B′ (κ) ≤ ε lossy, and AdvSD

HPS,D (κ) ≤ εSD for any PPT adversaries, B,
B′ and D, respectively.



Set-Up Algorithm Setup(1κ ):
params← HPS.param(1κ )

where params =

(group,Λ,C,V ,SK ,PK , µ).
T← TCH where T : {0,1}∗ → Bκ .
Set b∗ = 0 as the lossy branch.
ιabo ← ABO.gen(1κ ,b∗).
A(·, ·) := ABO.eval(ιabo, ·, ·).
Return ρ = (T,params, A(·, ·)).

Key Generation Algorithm K(ρ):
sk ← SK .
Set pk := µ(sk).
Set PK := pk and SK := sk.
Return (PK,SK )

Encryption Algorithm Eρ (PK,m):
To encrypt a message m ∈ G,

C
U
←V with witness w.

K = HPS.pub(pk,C,w).
(vk,otsk) ← otKGen(1κ )
π = A(T(vk),K ). H ← H .
e = m ⊕ H (K ).
σ ← otSign(otsk, (C,e,vk, π)).
Return CT = (C,e,H,vk, π,σ).

Decryption Algorithm Dρ (SK,CT):
To decrypt a ciphertext CT,

Parse CT into (C,e,H,vk, π,σ).
If Vrfy(vk, (C,e,H,vk, π),σ) , 1,

then aborts.
Else K = Λsk (C).
If π , A(T(vk)),K ),

then aborts.
Else return m = e ⊕ H (K ).

Fig. 2. The CTBL-CCA secure PKE scheme based on Qin and Liu’s PKE

Proof Idea. Qin-Liu PKE scheme is leakage resilient. So, it is tempting to use the
leakage oracle in the black box way to simulate the RKDec oracle (as in [14]). However,
the strategy does not work for continual tampering, because Qin-Liu PKE scheme is just
bounded leakage resilient. In addition, even simulating the reply of a single tampering
query seems to exceed the leakage bound. So, we need to analyze the exact leakage
from tampering.

Let CT∗ = (C∗,e∗,H∗,vk∗, π∗,σ∗) be the challenge ciphertext and b∗ be the chal-
lenge bit. Let K∗ = ΛSK (C∗) and e∗ = mb∗ ⊕ H∗ (K∗). In an early hybrid game of the
proof, we set C∗ < V and set T(vk∗) as a lossy branch, as expected. Since A(T(vk∗), ·)
is lossy now, SK (and hence K∗) has large enough entropy after given CT∗. In the pre-
challenge stage, we take care of how much entropy on K∗ is preserved while answering
leakage and tampering queries.

We first observe that when a tampering query (φ,CT), where CT = (C,e,H,vk, π,σ),
is rejected by the decryption oracle, the leaked information on K∗ is at most log(1/p)-
bit where p = Pr[D(φ(SK ),CT) = ⊥]. This comes from the following simple lemma.

Lemma 4. For any random variables, X and Z, H∞ (X |Z = z) ≥ H∞ (X )−log
(

1
Pr[Z=z]

)
.

Proof. For any z ∈ Z ,

− log
(
max
x

(
Pr[X = x |Z = z]

))
= − log

(
max
x

(
Pr[X = x ∧ Z = z]

Pr[Z = z]

))
≥ − log

(
max
x

(
Pr[X = x]

))
− log

( 1
Pr[Z = z]

)
.



By the lemma above, we have

H∞ (K∗ |D(φ(SK ),CT) = ⊥) ≥ H∞ (K∗) − log(1/p). (1)

Next, we observe the case that tampering query (φ,CT) is accepted by the decryp-
tion oracle. Since the decryption oracle returns D(φ(SK ),CT), it would apparently re-
veal more information on K∗ except the fact that CT is a valid ciphertext with respects
to φ(SK ) 3. However, it is not true. Indeed, when submitting (φ,CT), the adversary has
already fixed D(φ(SK ),CT). In other word, we have

Hsh
(
D(φ(SK ),CT) | (D(φ(SK ),CT) , ⊥), (φ,CT),PK

)
= 0, (2)

where Hsh(X ) denotes the Shannon entropy of random variable X (i.e., Hsh(X ) :=
Ex←X [log 1

Pr[X=x] ]). This comes from the fact that A(T(vk), ·) is injective and π =

A(T(vk),Λφ(SK ) (C)) is fixed by CT. Therefore, we have

H̃∞ (K∗ |D(φ(SK ),CT), (D(φ(SK ),CT) , ⊥)) ≥ H∞ (K∗) − log(1/p′), (3)

where p′ = Pr[D(φ(SK ),CT) , ⊥]. Hence, the leaked information on K∗ in the “ac-
cepted" case is also at most log(1/p′). By definition, p + p′ = 1.

We note that if the adversary submits a tampering query (φ,CT) with p ≤ 2−η =

negl(κ) and the unlikely event that D(φ(SK ),CT) = ⊥ really occurs, the leakage on
K∗ is log(1/p) ≥ η = ω(log κ) bits. The event occurs only with a negligible probability
2−η . We note that if the event occurs with a probability more than 2−η , the leakage on
K∗ is less than η bits. So, we can say that when D(φ(SK ),CT) = ⊥ occurs, the leakage
on K∗ is bounded by η-bit except with a negligible probability 2−η . By definition, the
event D(φ(SK ),CT) = ⊥ can occur only once. The case with p′ ≤ 2−η = negl(κ) is
implied in the next analysis.

Since the decryption algorithm self-destructs when rejecting a ciphertext, the adver-
sary’s best strategy is to submit a sequence of tampering queries with p′ = non-negl
so that the decryption algorithm can accept as long a prefix of the sequence as possible.
Even with this strategy, however, leakage amount on K∗ is bounded by η-bit except
with probability 2−η .

We now consider a post-challenge (tampering) query, (id,CT), i.e., a normal decryp-
tion query, where CT = (C,e,H,vk, π,σ). In the post-challenge stage, we are interested
in how to prevent H∗ (K∗) from revealing any partial information. Even one bit leakage
would possibly break the system. To achieve the goal, we need to reject any invalid
ciphertext. The probability relies on the entropy of K = ΛSK (C) (where C < V). Since
the underlying hash proof system is γ-entropic, we can see that the remaining entropy
of K is at least γ − λ − η − `lf − `m (with an overwhelming probability). Here, λ is
the leakage amount via leakage oracle in the pre-challenge stage, 2` lf denotes the num-
ber of possible elements of π∗, where A(T(vk∗), ·) is lossy, and `m is the bit length

3 One can always use a “loose" bound such that H̃∞ (K∗ |D(φ(SK ),CT)) ≥ H∞ (K∗) − λ where
λ = log

(
D(φ(SK ),CT)

)
. However, the bound is too loose for our purpose.



of H∗ (K∗). Then, the probability that we cannot reject an invalid ciphertext is at most
2−(γ−λ−η−` lf−`m ) .

To summarize all the above, (a) just after the pre-challenge stage, the remaining
entropy of K∗ is at least H∞ (K∗) − λ − (η + 1) with an overwhelming probability. By
applying an appropriate universal hash H∗, we obtain H∗ (K∗) that is statistically close
to a true uniform `m-bit string. So, CT∗ conceals message mb∗ in the statistical sense.
(b) In the post-challenge stage, H∗ (K∗) reveals no information with an overwhelming
probability 1−Q · 2−(γ−λ−η−` lf−`m ) , where Q is the total number of decryption queries
in the post-challenge stage. Like this, the proposal is proven CTBL-CCA secure.

Proof of Theorem 2. Here we provide the formal proof of Theorem 2 by using the
standard game-hopping strategy. We denote by Si the event that adversary A wins in
Game i.

– Game 0: This game is the original CTBL-CCA game, where CT∗ = (C∗,e∗,H∗,vk∗, π∗,σ∗)
denotes the challenge ciphertext. By definition, Pr[S0] = Pr[β = β∗] and Advtbl-cca

Π,A, (Φall, {id},λ) (κ) =

|2 Pr[S0] − 1|.
– Game 1: This game is identical to Game 0, except that when we produce the chal-

lenge ciphertext CT∗, we instead computes K∗ = HPS.priv(sk,C∗). The change
is just conceptual and hence, it holds that Pr[S0] = Pr[S1].

– Game 2: This game is identical to Game 1, except that A is regarded as a defeat,
when it submits tampering query (φ,CT) such that T(vk) = T(vk∗) but σ is still
a valid signature on (C,e,H,vk, π), where CT = (C,e,H,vk, π,σ) (, CT∗). This
happens only when T(vk) = T(vk∗) with vk , vk∗ or A forges a signature with
respects to vk∗. So, we have Pr[S1] − Pr[S2] ≤ ε tcr + εotsig.

– Game 3: This game is identical to Game 2, except that we produce ρ and CT∗ as
follows: Before the step 3 in the set-up Setup, we run (vk∗,otsk∗) ← otKGen(1κ )
and set b∗ = T(vk∗). Then we do the same things in the subsequent steps. We pro-
duce the challenge ciphertext CT∗ similarly in Game 2 except that we instead use
(vk∗,otsk∗) generated in the set-up phase. The difference between the probabilities
of events, S2 and S3, are close because of indistinguishability between injective and
lossy branches. Indeed, we have Pr[S2] − Pr[S3] ≤ 2ε lossy.

– Game 4: This game is identical to Game 3, except that when producing CT∗, we
instead picks up C∗

U
← C\K . We then have Pr[S3] − Pr[S4] ≤ 2εSD.

– Game 5: This game is identical to the previous game, except that A is regarded
as a defeat, when it submits a tampering query (φ,CT) with p ≤ 2−η where p =

Pr[D(φ(SK ),CT) = ⊥] and the (unlikely) event that D(φ(SK ),CT) = ⊥ really
occurs. We then have Pr[S4] − Pr[S5] ≤ 2−η . Without loss of generality, we can
assume that A does not make a tampering query with p > 2−η in the subsequent
games.

– Game 6: We say that a sequence of tampering queries made by A is η-challenging,
if there is a prefix of the sequence such that the decryption oracle accepts the prefix
with probability ≤ 2−η . Let RDview be a random variable of the transcript between
adversary A and oracle RKDec in the pre-challenge stage and let

rdv = {(φ1,CT1,m1), . . . , (φq′ ,CTq′ ,mq′ )} where q′ ≤ Q.



be a transcript. If rdv is η-challenging, there is the minimum qmin ≤ q′ such that

Pr[RDview = rdv] ≤ Pr
[
∧
qmin
i=1

(
D(φi (SK ),CTi ) , ⊥

)]
≤ 2−η .

Game 6 is identical to the previous game except that RKDec “self-destructs" at
the (qmin + 1)-th tampering query of η-challenging rdv, even if RKDec accepts
the (qmin + 1)-th tampering query. (If it rejects an earlier tampering query, it self-
destructs at the query.) This experiment is just conceptual and is not required to be
executed in a polynomial time. We have Pr[S5] − Pr[S6] ≤ 2−η , because the prefix
is accepted at most 2−η .

– Game 7: In this game, for all post-challenge (decryption) query (id,CT) of A, we
return ⊥ if C ∈ C\V . This experiment is just conceptual and is not required to
be executed in a polynomial time. We evaluate the min-entropy of K = ΛSK (C)
derived from the post-challenge tampering query. Let Lview be the random variable
of the transcript between adversary A and oracle Leak in the pre-challenge stage.
When the first post-challenge decryption query is made, by the “chain rule" of the
average-min entropy,

H̃∞ (K |(RDview,Lview, π∗,H∗ (K∗))) ≥ H̃∞ (K |RDview) − λ − `lf − `m ,

where 2` lf denotes the number of elements in the image of “lossy" function π∗ =

A(T(vk∗), ·), and `m is the length of H∗ (K∗).
By lemma 4, we have

H∞ (K |RDview = rdv) ≥ H∞ (K ) − log
( 1
Pr[RDview = rdv]

)
≥ H∞ (K ) − η.

The second inequality comes from Pr[RDview = rdv] ≥ 2−η , because if rdv is η-
challenging, the adversary cannot make a post-challenge decryption query. There-
fore, for C ∈ C\V ,

H̃∞ (K |RDview) = − log
(

E
rdv←RDview

[2−H∞ (K |RDview=rdv)]
)
≥ γ − η,

because Λ is γ-entropic. Therefore,

H̃∞ (K |(RDview,Lview, π∗,H (K∗))) ≥ γ − η − λ − `lf − `m .

Since T(vk∗) , T(vk),

H̃∞ (π |(RDview,Lview, π∗,H (K∗))) = H̃∞ (K |(RDview,Lview, π∗,H (K∗))),

where π = AT(vk∗ ) (T(vk),K ) (injective). This means that RKDec accepts CT with
C ∈ C\V only with probability 2−(γ−η−λ−` lf−`m ) . Assuming that A submits Q
queries to RKDec in total, the probability that RKDec accepts at least one CT
with C ∈ C\V is bounded by Q · 2−(γ−η−λ−` lf−`m ) . Hence, we have

Pr[S6] − Pr[S7] ≤ Q · 2−(γ−η−λ−` lf−`m ) .



– Game 8: This is the last game we make. This game is identical to the previous
game except that we replace H∗ (K∗) with a uniformly random string from {0,1}`m .
Then it is clear that Pr[S7] = 1

2 because the view of A is independent of β∗. We
now show that the advantages in Game 7 and Game 8 are statistically close. Let
Reject be the event that D(φ(SK ),CT) = ⊥ in the pre-challenge stage. We note that
Pr[Reject] > 2−η , due to Game 5. In this game, by definition, all post-challenge
queries of “invalid" ciphertexts are rejected. So, the average min-entropy of K∗

even after all post-challenge queries are made is equivalent to the average min-
entropy of K∗ conditioned on the possible events that appear in the pre-challenge
stage. That is,

H̃∞ (K∗ |(RDview,Reject,Lview, π∗)) ≥ H̃∞ (K∗ |RDview,Reject) − λ − `lf

≥ γ − 2η − λ − `lf.

Remember that λ ≤ γ − 2η − `lf − `m − log(1/ε ) and H∗ is independent of the view
of the post-challenge decryption. By the generalized left-over hash lemma, H∗ (K∗)
is ε-close to the uniform distribution on {0,1}`m . We then have Pr[S7]−Pr[S8] ≤ ε .

By summing up the above inequalities, we have

Pr[S0] ≤
1
2

+ ε tcr + εotsig + 2ε lossy + 2εSD + 2−η+1 + Q · 2−(γ−η−λ−` lf−`m ) + ε,

and conclude the proof of the theorem, with Advctbl-cca
Π,A, (Φall, {id},λ) (κ) = 2 Pr[S0] − 1.

An Instantiation of CTBL-CCA Secure PKE with 1 − o(1) Leakage Rate. We
remark that even if we start with a hash proof system resilient to 1 − o(1) leakage
rate, we cannot obtain a CTBL-CCA secure PKE scheme with 1 − o(1) leakage rate in
general. To obtain an optimal leakage rate, we require γ

|SK | = 1 − o(1) for a γ-entropic
hash proof system. The cryptosystems of Boneh et al. [9] and Naor-Segev [31] do not
satisfy the condition, although they are IND-CPA secure resilient to 1 − o(1) leakage
rate.

Let n = pq be a composite number of distinct odd primes, p and q, and 1 ≤ d < p,q
be a positive integer. It is known that Z×

nd+1 � Znd × (Z/nZ)× and any element in

Z×
nd+1 is uniquely represented as (1 + n)δγn

d
(mod nd+1) for some δ ∈ Znd and γ ∈

(Z/nZ)× . For δ ∈ Znd , we write Edj(δ) to denote a subset in Z×
nd+1 such that Edj(δ) =

{(1 + n)δγn
d
| γ ∈ (Z/nZ)× }. It is well known that for any two distinct δ, δ′ ∈ Znd ,

it is computationally hard to distinguish a random element in Edj(δ) from a random
element in Edj(δ′) as long as the decision computational residue (DCR) assumption
holds true. Let C = Z×

nd+1 and V = Edj(0). Let SK = {0,1, . . . ,nd+1} ⊂ Z. Let
g ∈ V and PK = {µ(sk) | µ(sk) = gsk (mod nd+1) where sk ∈ SK } (= Edj(0)).
For C ∈ C, define Λsk (C) = Csk (mod nd+1). Then, Λ : SK × C → V is projective
and d log(n)-entropic and a hash proof system HPS is constructed on Λ. In addition,

leakge bound
the length of secret-key =

d log(n)−ω(log(κ))
(d+1) log(n) = 1 − o(1).



Corollary 1. By applying the DCR-based hash proof system above and the DCR based
instantiation of ABO injective function in Appendix B to the PKE scheme in Fig. 2, it
becomes a CTBL-CCA secure PKE scheme with 1− o(1) bounded memory leakage rate
under the DCR assumption.

5 Continuous Tampering and Leakage Resilient CCA (CTL-CCA)
Secure Public-Key Encryption

We say that PKE has a key-update mechanism if there is a PPT algorithm Update that
takes ρ and sk and returns an “updated" secret key sk′ = Updateρ (sk). We assume
that the key-updating mechanism Update can be activated only when the decryption
algorithm rejects a ciphertext. Therefore, one cannot update his secret key unless the de-
cryption algorithm has detected tampering. We require forΠ = (Setup,Update,K,E,D)
that for every sufficiently large κ ∈ N and ever I ∈ N, it always holds that Dρ (ski ,Eρ (pk,m)) =

m, for every ρ ∈ Setup(1κ ), every (pk, sk0) ∈ K(ρ), and every ski ∈ Updateρ (ski−1)
for i ∈ [I], and every m ∈ M.

CTL-CCA Security. For PKE with a key-update mechanism Π′ = (Setup,Update,
K,E,D) and an adversary A = (A1, A2), we define the experiment Exptctl-cca

Π,A, (Φ1,Φ2,λ) (κ)
as in Fig. 3. A may adaptively submit (unbounded) polynomially many queries (φ,ct)
to oracle RKDec, but it should be φ ∈ Φi appropriately. We remark that secret key sk
is updated using (non-tampered) flesh randomness only when the decryption algorithm
rejects a ciphertext. A may also adaptively submit (unbounded) polynomially many
queries L to oracle Leak, before seeing the challenge ciphertext ct∗. The total amount
of leakage on sk must be bounded by some λ bit length within each one period between
the key-updating mechanism are activated. We define the advantage of A against Π′

with respects to (Φ1,Φ2) as

Advctl-cca
Π,A, (Φ1,Φ2,λ) (κ) , | 2 Pr[Exptctl-cca

Π,A, (Φ1,Φ2,λ) (κ) = 1] − 1 |.

We say that Π is (Φ1,Φ2, λ)-CTL-CCA secure if Advctl-cca
Π,A, (Φ1,Φ2,λ) (κ) = negl(κ) for

every PPT A.
We say that Π is simply CTL-CCA secure if it is (Φall, {id}, λ)-CTL-CCA secure,

where Φall denotes the class of all efficiently computable functions and id denotes the
identity function.

Remark 2. This security definition models non-persistent tampering. However, it is
obvious that the persistent tampering version of CTL-CCA security can be similarly
defined.

6 Random Subspace Lemmas

The following random subspace lemma is provided by Agrawal et al. [2], but we im-
prove the bound using the analysis in Lemma A.1 given by Brakerski et al. [10].



Exptctl-cca
Π,A, (Φ1,Φ2,λ) (κ) :

ρ← Setup(1κ );
(pk,sk) ← K(ρ);
leaksum := 0;

(m0,m1, st) ← A
RKDecΦ1 (·, ·),Leakλ (·)
1 (ρ,pk)

such that |m0 | = |m1 |;
β∗ ← {0,1};
ct∗ ← Eρ (pk,mβ∗ );

β ← A
RKDecΦ2 (·, ·)
2 (st,ct∗);

If β = β∗ ,
then return 1; otherwise 0.

RKDecΦ(φ,ct) :
If ct = ct∗ queried by A2,

then return ⊥;
Return Dρ (φ(sk),ct).
If Dρ (φ(sk),ct) = ⊥,

Set sk← Updateρ (sk),
Set leaksum := 0.

Else do nothing.
————————————
Leakλ (L) :

If leaksum
:= leaksum + |L(sk) | > λ.
then return ⊥;

Else return L(sk).

Fig. 3. The experiment of the CTL-CCA game.

Lemma 5. Let 2 ≤ d < t ≤ n and λ < (d − 1) log(q). LetW ⊂ Fnq be an arbitrary
vector subspace in Fnq of dimension t. Let L : {0,1}∗ → {0,1}λ be an arbitrary function.
Then, we have

Dist
((

A,L(Av)
)
,
(
A,L(u)

))
≤

√
2λ

qd−1
,

where A := (a1, . . . ,ad ) ←Wd (seen as a n × d matrix), v ← Fdq , and u ←W .

If A ← Fn×dq and u ← Fq , then it is equivalent to Lemma A.1 given by Braker-
ski et al. [10]. The proof is given in the full version.

The following is an affine version of Lemma 5.

Lemma 6. Let 2 ≤ d < t ≤ n and λ < (d − 1) log(q). Let x ∈ Fnq be an arbitrary
vector. Let W ⊂ Fnq be an arbitrary vector subspace in Fnq of dimension t. Let L :
{0,1}∗ → {0,1}λ be an arbitrary function. Then, we have

Dist
((

A,L(x + Av)
)
,
(
A,L(x + u)

))
≤

√
2λ

qd−1
,

where A := (a1, . . . ,ad ) ←Wd (seen as a n × d matrix), v ← Fdq , and u ←W .



Proof. Let W ∈ Fn× tq be a matrix whose column vectors spanW , i.e.,W = span(W).
Now, we have

Dist
((

A,L(x + Av)
)
,
(
A,L(x + u)

))
= Dist

((
WRa,L(x + WRav)

)
,
(
Wra ,L(x + Wru )

))
( where A = WRa u = Wru )

= Dist
((

WRa,L′(Rav)
)
,
(
WRa,L′(ru )

))
( where L′(y) := L(x + Wy))

≤Dist
((

Ra,L′(Rav)
)
,
(
Ra,L′(ru )

))
≤

√
2λ

qd−1
,

where Ra ← F
t×d
q , v ← Fdq , and ru ← F

t
q .

We further provide the following lemma.

Lemma 7. Let 2 ≤ d ≤ t′ < t ≤ n and λ < (d−1) log(q). LetW ⊂ Fnq be an arbitrary
vector subspace in Fnq of dimension t. Let L : {0,1}∗ → {0,1}λ be an arbitrary function.
Then, we have

Dist
((

A,L(Av)
)
,
(
A,L(u)

))
≤

√
2λ

qd−1
+

√
2λ

qt ′−1 ,

whereW ′ is a random vector subspace inW of dimension t′ (independent of function
L), A := (a1, . . . ,ad ) ←W′d (seen as a n × d matrix), v ← Fdq , and u ←W .

Proof. Let W ∈ Fn× tq be a matrix whose column vectors spanW , i.e.,W = span(W).
Similary, let W′ ∈ Fn× t

′

q be a matrix whose column vectors span W ′, i.e., W ′ =

span(W′). Then, we have

Dist
((

A,L(Av)
)
,
(
A,L(u)

))
≤Dist

((
A,L(Av)

)
,
(
A,L(u′)

))
+ Dist

((
A,L(u′)

)
,
(
A,L(u)

))
( where u′ = W′r ′u )

≤
n
2

√
2λ

qd−1
+ Dist

(
L(u′),L(u)

)
( where u = Wru )

=

√
2λ

qd−1
+ Dist

(
L′(R′r ′u ),L′(ru )

)
( where W′ = WR′, L′(y) := L(Wy))

≤

√
2λ

qd−1
+

√
2λ

qt ′−1 ,

where R′ ← Ft× t ′q , v ← Fdq , r ′u ← F
t ′
q . and ru ← F

t
q .



Corollary 2. Let 2 ≤ d ≤ t′ < t ≤ n and λ < (d − 1) log(q). Let x ∈ Fnq be an
arbitrary vector. LetW ⊂ Fnq be an arbitrary vector subspace in Fnq of dimension t. Let
L : {0,1}∗ → {0,1}λ be an arbitrary function. Then, we have

Dist
((

A,L(x + Av)
)
,
(
A,L(x + u)

))
≤

√
2λ

qd−1
+

√
2λ

qt ′−1 ,

whereW ′ is a random vector subspace inW of dimension t′ (independent of function
L), A := (a1, . . . ,ad ) ←W′d (seen as a n × d matrix), v ← Fdq , and u ←W .

7 The CTL-CCA Secure PKE Scheme

In this section, we present a CTL-CCA-secure PKE scheme. We first provide the intu-
ition behind our construction.

Our starting point is a hash proof system based PKE scheme proposed by Agrawal et al. [2],
that is IND-CPA secure resilient to continuous memory leakage in the so-called Floppy
model, where a decryptor additionally owns secret α to refresh its secret key sk using
fresh randomness. The Floppy model assumes secret α is not leaked. The Agrawal et al.
scheme is as follows: pk = (g,gα , f ) is a public key and sk = s is the corresponding
secret-key such that f = g<α,s> , where g is a generator of cyclic group G of prime
order q, α, s ∈ (Z/qZ)n . In addition, the decryptor owns α as the key-update key. The
encryption of message m ∈ G under pk is ct = (gc ,e) = (grα ,m · f r ), while the de-
cryption is computed as e · (g<c,sk> )−1. The secret key sk is refreshed between each
two time periods as sk := sk + β where β ← ker(α) is chosen using secret α. Here,
f = g<α,s> = g<α,s+β> , because < α,β >= 0.

We first convert this scheme to an IND-CPA secure PKE scheme that is resilient
to continuous memory leakage in the model of Brakerski et al. [10], where the key-
update is executed without additional secret α. To do so, we pick up ` independent
vectors, v1, . . . ,v` ∈ ker(α), where ` < n − 1 = dim(ker(α)), and publish g̃V where
V = (v1, . . . ,v`) ∈ (Z/qZ)n×` is n × ` matrix with vi as i-th column. Here we assume
asymmetric pairing groups (e,G1,G2,GT ) where g, g̃ are generators of G1 and G2, re-
spectively. We then set pk = (g, g̃,gα , g̃V,Y ) and sk = gs such that Y = e(g, g̃)<α,s> .
Here, the encryption of message m ∈ GT under pk is ct = (gc ,e) = (grα ,m · Y r ),
while the decryption is computed as e · K−1, where K = e(gc , sk) = e(g, g̃)<c,s> .
The secret key sk is refreshed between each two time periods as sk := sk · g̃β where
β ← span(V) ⊂ ker(α). We note that random g̃β = g̃Vr ′ can be computed using public
g̃V with random vector r ′ ∈ F`q . This construction is an IND-CPA secure PKE scheme
resilient to continuous memory leakage in the sense of [10] under the extended matrix
d-linear assumption (on G1), which is implied by the SXDH assumption. We provide
the formal description of the scheme as well as the security proof in Appendix C.

The proposed PKE scheme (as described in Appendix C) is based on a hash proof
system where K = HPS.pub(Y,grα ,r) = HPS.priv(grα , sk) = e(g, g̃)<α,s> . We then
filter the hash key K using the one-time lossy filter technique [33] and finally obtain our
CTL-CCA secure construction.

We now describe our full-fledged scheme in Fig. 4.



Asymmetric Pairing. Let GroupG be a PPT algorithm that on input a security param-
eter 1κ outputs a bilinear paring (G1,G2,GT ,e,q,g, g̃) such that; G1, G2, and GT are
cyclic groups of prime order q, g, g̃ are generators of G1 and G2, respectively, and a
map e : G1 × G2 → GT satisfies the following properties:

– (Bilinear:) for any g ∈ G1, h ∈ G2, and any a,b ∈ Zq , e(ga ,hb ) = e(g,h)ab ,
– (Non-degenerate:) e(g, g̃) has order q in GT , and
– (Efficiently computable:) e(·, ·) is efficiently computable.

Symmetric External Diffie-Hellman (SXDH) Assumption. The symmetric external
DH assumption (SXDH) (on GroupG) is that the DDH problem is hard in both groups,
G1 and G2. The assumption implies that there is no efficiently computable mapping
between G1 and G2.

We now present our CTL-CCA secure PKE scheme in Fig. 4.

Set-Up Algorithm Setup(1κ ):
(G1,G2,GT ,e,q,g, g̃) ← GroupG. α = (α1, . . . ,αn ) ← (Z/qZ)n .

V = (v1, . . . ,v` ) ←
(
Ker(α)

)`
, where V ∈

(
Z/qZ

)n×`
and ` ≤ n − 2.

gα := (g1, . . . ,gn ) = (gα1 , . . . ,gαn ). g̃V := (g̃v1 , . . . , g̃v` ) where vi ∈ (Z/qZ)n .
T← TCH where T : {0,1}∗ → Bκ . Set b∗ = 0 as the lossy branch.
ιabo ← ABO.gen(1κ ,b∗). A(·, ·) := ABO.eval(ιabo, ·, ·).
Return ρ = (g, g̃,gα , g̃V,T, A(·, ·)).

Key Generation Algorithm K(ρ):

s = (s1, . . . , sn ) ←
(
Z/qZ

)n
.

g̃s = (g̃s1 , . . . , g̃sn ).
Y = e(gα , g̃s ) = e(g, g̃)〈α,s〉 .
Set pk := Y and sk := g̃s .
Return (pk, sk).

Key Updating Algo. Update(ρ, sk):

r′ ←
(
Z/qZ

)`
,

Let sk = g̃s .
Set sk := sk · g̃Vr ′ = g̃s+Vr ′ .(
where β := Vr′ ∈ span(V).

)
Return sk.

Encryption Algorithm Eρ (pk,m):
To encrypt a message m ∈ GT ,

r ← Z/qZ. K = Y r .
(vk,otsk) ← otKGen(1κ ).
π = A(T(vk),K ).
C = (gα )r . e = m · K .
σ ← otSign(otsk,C,e,vk, π)).
Return CT = (C,e,vk, π,σ).

Decryption Algorithm Dρ (sk,CT):
To decrypt a ciphertext ct,

Parse ct into (gc ,e,vk, π,σ).
If Vrfy(vk, (gc ,e,vk, π),σ) , 1,

then aborts.
Else K = e(gc , sk) = e(g, g̃)r 〈α,s〉 .
If π , A(T(vk)),K ),

then aborts.
Else return m = e · K−1.

Fig. 4. Our CTL-CCA secure PKE Scheme



Theorem 3. The PKE scheme in Fig. 4 is (Φall, {id}, λ)-CTL-CCA secure, as long as
λ(κ) < log(q) − `lf − `m − η − ω(log κ) with η(κ) = ω(log κ), and for any PPT
adversary A with at most Q queries to RKDec oracle, Advctl-cca

Π,A, (Φall, {id},λ) (κ) ≤

2ε tcr + 2εotsig + 4ε lossy + 4εex + 2−η+2 + Q · 2−(log(q)−η−λ−` lf−`m−1)

+2Q ·

√
2λ

q`−1 + 2Q ·

√
2λ

qn−1 +

√
2λ

qn−1 ,

εotsig, ε lossy, and εex denote some negligible functions such that Advot
OTSig,B (κ) ≤

εotsig, Advlossy
ABO,B′ (κ) ≤ ε lossy, and AdvexD (κ) ≤ εex for any PPT adversaries, B, B′

and D, respectively.

Due to the space limitation, the proof is given in the full version.

An Instantiation of CTL-CCA Secure PKE with 1
4−o(1) Leakage Rate. We remark

that the underlying hash proof system is log(q)-entropic and we have |sk | = n log(q).
By construction, we require 2 ≤ ` < n − 1. Hence, the best parameter for leakage rate
is n = 4 and ` = 2, where the resulting CTL-CCA secure PKE scheme has 1

4 − o(1)
leakage rate.

8 Impossibility of Non-Persistent Tampering Resilient Signatures

We show that there is no secure digital signature scheme resilient to the non-persistent
tampering attacks, if it does not have a key-updating mechanism (See for definition
Appendix D). This fact does not contradict [28] (in which they claim a tampering re-
silient digital signature scheme), because the persistent tampering attack is weaker than
the non-persistent attack. To prove our claim, we consider the following adversary. The
adversary runs the key-generation algorithm, Gen, and obtains two legitimate pairs of
verification and signing keys, (vk0, sk0) and (vk1, sk1). Then, it sets a set of functions
{φi(sk0,sk1) }, such that

φi(sk0,sk1) (sk) =

sk0 if the i-th bit of sk is 0,
sk1 otherwise.

For i = 1, . . . , |sk |, the adversary submit (φi(sk0,sk1) ,m) to the signing oracle and re-
ceives σi’s. Then the adversary finds bit bi such that Vrfy(vkbi ,m,σi ) = 1 for all i and
retrieves the entire secret key sk. This attack is unavoidable because both sk0 and sk1
are real secret keys and the signing algorithm cannot detect the tampering attack and
cannot self-destruct.

If the key-updating algorithm is allowed to run only when a tampering is detected
(which is the case of our definition), then there is no secure digital signature scheme
resilient to the non-persistent tampering attacks, even if it has both self-destructive and
key-updating mechanisms (See for definition Appendix D).



A Computational Hardness Assumptions

Let G be a PPT algorithm that takes security parameter 1κ and outputs a triplet G =

(G,q,g) where G is a group of prime order q that is generated by g ∈ G.

d-Linear Assumption. The d-linear assumption [26, 31] (where d ≥ 1), a generaliza-
tion of the linear assumption [8], states that there is a PPT algorithm G such that the
following two ensembles are computationally indistinguishable,{(

G,g1, . . . ,gd ,gd+1,g
r1
1 , . . . ,g

rd
d
,g

∑d
i=1 ri

d+1

)}
κ∈N

c
≈

{(
G,g1, . . . ,gd ,gd+1,g

r1
1 , . . . ,g

rd
d
,grd+1

d+1

)}
κ∈N

where G ← G(1κ ), and the elements g1, . . . ,gd+1 ∈ G and r1, . . . ,rd+1 ∈ Z/qZ are
chosen independently and uniformly at random. The DDH assumption (on G) is equiv-
alent to 1-linear assumption (on G) and these assumptions are progressively weaker:
For every d ≥ 1, the (d + 1)-linear assumption is weaker than the d-linear assumption.

Matrix d-Linear Assumption. We denote by Rki (Fm×nq ) the set of all m × n matrices
over Fq with rank i. The matrix d-linear assumption [31] states that there is a PPT
algorithm G such that, for any integers, m and n, and for any d ≤ i ≤ j ≤ min(m,n),
the following two ensembles are computationally indistinguishable,{

(G,g,gx) | G← G(1κ ); x← Rki (Fm×nq )
}
κ∈N

c
≈

{
(G,g,gx) | G← G(1κ ); x← Rk j (Fm×nq )

}
κ∈N

.

It is known that breaking the matrix d-Linear assumption implies breaking the d-Linear
assumption (on the same G). The following statement holds.

Lemma 8 ([31]). Breaking the matrix d-Linear assumption is at least as hard as break-
ing the d-Linear assumption (on the same G).

Extended Matrix d-Linear Assumption. We state a stronger version of the matrix
d-linear assumption, called the extended matrix d-linear assumption [2]. For matrix
x ∈ Fn×mq , we write ker(x) to denote the left kernel of x, i.e.,

ker(x) = {v ∈ Fnq | v
Tx = 0 ∈ F1×m

q }.

Here ker(x) is a subspace in Fnq of dimension (n − rank(x)). The matrix d-linear as-
sumption means that it is infeasible to distinguish gxi from gxj , where rank-i matrix xi
and rank- j matrix xi are chosen independently and uniformly for any d ≤ i < j ≤
min(n,m). Since dim(ker(xi)) = n− i and dim(ker(xj)) = n− j (with n− j < n− i), the
matrix d-linear assumption does not hold if an adversary additionally receive n− i inde-
pendent vectors orthogonal to x. However, one cannot yet distinguish them even if n− j



independent vectors orthogonal to x are given, as long as the matrix d-linear assump-
tion holds true. The extended matrix d-linear assumption [2] states that there is a PPT
algorithm G such that, for any integers, m and n, for any d ≤ i ≤ j ≤ min(m,n), and
for any ` ≤ n − j, the following two ensembles are computationally indistinguishable,{

(G,g,gx,v1, . . . ,v`) |G← G(1κ ); x← Rki (Fm×nq ); v1, . . . ,v` ← ker(x)
}
κ∈N

c
≈

{
(G,g,gx,v1, . . . ,v`) |G← G(1κ ); x← Rk j (Fm×nq ); v1, . . . ,v` ← ker(x)

}
κ∈N

.

The following statement holds.

Lemma 9 ([10, 2]). Breaking the extended matrix d-Linear assumption is at least as
hard as breaking the d-Linear assumption (on the same G).

The proof is implicitly in [10].

Decision Computational Residue (DCR) Assumption. Let n = pq be a composite
number of distinct odd primes, p and q, and 1 ≤ d < p,q be a positive integer. We say
that the DCR assumption holds if for every PPT A, there exists a parameter generation
algorithm Gen such that Advdcr

A (κ) =

Pr[Exptdcr−0
A (κ) = 1] − Pr[Exptdcr−1

A (κ) = 1]

is negligible in κ, where

Exptdcr−0
A (κ) :

n ← Gen(1κ ); R
U
← Z×

n2

c = Rn mod n2

return A(n,c).

Exptdcr−1
d,A (κ) :

n ← G(1κ ); R
U
← Z×

n2

c = (1 + n)Rn mod n2

return A(n,c).

B Instantiation of ABO Injective Functions

B.1 A Matrix Instantiation Based On DDH

Let G be a PPT algorithm that takes security parameter 1κ and outputs a triplet G =

(G,q,g) where G is a group of prime order q that is generated by g ∈ G. Let B =

{Z/qZ} be a branch collection associated with G = (G,q,g) generated by G.

– ABO.gen(1κ ,b∗) where b∗ ∈ Z/qZ: Pick up a random column vector u = (ui ) ∈
Gµ and a random column vector v = (v j ) ∈ Gµ . Compute matrix A = (Ai, j ) ∈
Gµ×µ as

A = (u · vT ) � g−(b∗ )Iµ =
(
uiv jg−(b∗ )δi, j

)
∈ Gµ×µ

where � denotes the componet-wise product of matrices over G, Iµ ∈ (Z/qZ)µ×µ

is the identity matrix and δi, j is Kronecker’s delta, i.e., δi, j = 1 if i = j and 0



otherwise. We note that rank(u · vT ) = 1 and, at least with probability 1 − 2µ
q ,

rank(A) = µ. We let A(b) to denote

A(b) := A � gbIµ =
(
uiv jg(b−b∗ )δi, j

)
∈ Gµ×µ .

Finally, output ιabo = A(·).
– ABO.eval(ιabo,b, x): On input matrix X ∈ (Z/qZ)µ×d , output

ABO.eval(ιabo,b, x) = A(b) · X ∈ Gµ×d .

This implementation realizes a collection of (µ · d log(q), (µ − 1)d log(q))-all-but-
one injective functions (under the DDH assumption).

B.2 DCR Based Instantiation

Let n = pq be a composite number of distinct odd primes, p and q, and 1 ≤ d <
p,q be a positive integer. It is known that Z×

nd+1 � Znd × (Z/nZ)× and any element

in Z×
nd+1 is uniquely represented as (1 + n)δγn

d
(mod nd+1) for some δ ∈ Znd and

γ ∈ (Z/nZ)× . For δ ∈ Znd , we write Edj(δ) to denote a subset in Z×
nd+1 such that

Edj(δ) = {(1+ n)δγn
d
| γ ∈ (Z/nZ)× }. It is known that for any two distinct δ, δ′ ∈ Znd ,

it is computationally hard to distinguish a random element in Edj(δ) from a random
element in Edj(δ′) as long as the decision computational residue (DCR) assumption
holds true.

– ABO.gen(1κ ,b∗) where b∗ ∈ {0,1}dκ : Pick up κ/2-bit distinct odd primes p,q and
compute n = pq. Then choose ιabo ← Edj(−b∗). Output ιabo.

– ABO.eval(ιabo,b, x): On input matrix x ∈ Znd , output

ABO.eval(ιabo,b, x) =
(
ιabo · (1 + n)b

) x
(∈ Edj(b − b∗)x ).

This implementation realizes a collection of (d log(n), log((p− 1)(q − 1)))-all-but-
one injective functions (under the DCR assumption).

C The Continuous Leakage Resileint CPA PKE Scheme

We propose an IND-CPA secure PKE scheme resilient to continuous memory leakage,
based on Agrawal et al. scheme [2].

– The Key Generation Algorithm: Choose (G1,G2,GT ,e,q,g, g̃) ← GroupG. Pick
up a random column vector α ← (Z/qZ)n . Pick up ` independent column vectors,
v1, . . . ,v` , in (Z/qZ)n uniformly from Ker(α) where 2 ≤ ` ≤ n−2. Set n× ` matrix
V = (v1, . . . ,v`). Set gα := (gα1 , . . . ,gαn )T . Set g̃V := (g̃v1 , . . . , g̃v` ). Pick up a
random column vector s ← (Z/qZ)n . Compute g̃s = (g̃s1 , . . . , g̃sn )T . Compute
Y = e(gα , g̃s ) = e(g, g̃)〈α,s〉. Set pk := (g, g̃,gα , g̃V,Y ) and sk := g̃s . Output
(pk, sk).



– The Key Update Algorithm: Take (pk, sk) as input. Choose a random column vec-
tor r ′ ← (Z/qZ)` and compute g̃β = g̃Vr ′ . Update sk := sk · g̃β = g̃s+β . Note that
β ∈ span(V) ⊂ ker(α). Output sk.

– The Encryption Algorithm: To encrypt m ∈ GT under pk, pick up random r ←
Z/qZ. Compute C = grα and K = Y r . Output CT = (C,e) where e = m · K .

– The Decryption algorithm: To decrypt ciphertext CT = (gc ,e) under sk, compute
K = e(gc , sk)(= e(g, g̃)<c,s> ). Output m = e · K−1.

We define IND-CPA security of PKE resilient to λ-continuous memory leakage [10]
as (∅,∅, λ)-CTL-CCA security of PKE.

Theorem 4. The above PKE scheme is (∅,∅, λ)-CTL-CCA secure, as long as λ(κ) <
` log(q) − ω(log κ), and for any PPT adversary A,

Advctl-cca
Π,A, (∅,∅,λ) (κ) ≤ +4εex + 2Q ·

√
2λ

q`−1 + 2Q ·

√
2λ

qn−1 +

√
2λ

qn−1 ,

where Q denotes the total number of key-updates in the running time of A.

Proof. Here we prove the theorem by using the standard game-hopping strategy. We
denote by Si the event that adversary A wins in Game i.

– Game 0: This game is the original game. We write CT∗ = (gc
∗

,e∗) where e∗ =

mb∗ · K∗ to denote the challenge ciphertext. Let us assume that Q is the maximum
number of the key-updates.
By definition, Pr[S0] = Pr[b = b∗] and Advctl-cca

Π,A, (∅,∅,λ) (κ) = |2 Pr[S0] − 1|.
– Game 1: In this game, we instead produce CT∗ as follows: Compute K∗ = e(gc

∗

, sk)
= e(g, g̃)r 〈α,s〉 and set e∗ = mb∗ · K∗. This change is just conceptual. Then,
Pr[S0] = Pr[S1].

– Game 2: This game is identical to Game 1, except that we choose ` indepen-
dent vectors v1, . . . ,v` ← ker(α,c∗) and set V = (v1, . . . ,v`). Since c∗ = r∗α,
ker(α,c∗) = ker(α). Hence, Pr[S1] = Pr[S2].

– Game 3: This game is identical to Game 2, except that when producing CT∗, we
instead pick up random vector c∗ ← Fnq . We note that since dim(ker(α,c∗)) =

n − 2 ≥ `, we can still choose ` independent vectors v1, . . . ,v` . The difference
between these two games is bounded by the extended matrix d-linear assumption.

Lemma 10. Under the extended matrix d-linear assumption in Appendix A, we
have Pr[S2] − Pr[S3] ≤ 2εex.

Proof. Let x ∈ (Z/qZ)n×2 whose columns are α and c, i.e., x = (α,c). Let
v1, . . . ,v` be ` independent random column vectors chosen via vi ← ker(x) =

ker(α,c) and set V = (v1, . . . ,v`). Now given gx and V = (v1, . . . ,v`), we can
simulate public and secret keys that the adversary sees during the game, as well as
the challenge ciphertext. In the case that rank(X ) = 1, we perfectly simulate Game
2. In the case that rank(X ) = 2, we perfectly simulate Game 3. Then, we have
Pr[S2] − Pr[S3] ≤ 2εex.



– Game 4 is defined as a sequence of Q+1 sub-games denoted by Games, 4.0, . . . ,4.Q.
For i = 0, . . . ,Q, we have
• Game 4.i: This game is identical to Game 4.0, except that at the last i key-

updates, we instead choose β ← ker(α) and update sk := sk · g̃β . We insist
that the first Q − i key-updates, β is chosen from span(V), whereas in the last
i key-updates, it is chosen from ker(α).

Game 4.0 is identical to Game 3. The difference between Games, 4.i and 4.i + 1, is
computationally bounded.
Indeed, by Corollary 2, we have

Dist
(
(V,L(s + Vr ′)) : (V,L(s + β))

)
≤

√
2λ

q`−1 +

√
2λ

qm−1 ,

where V←
(
ker(α,c∗)

)`
, r ′ ← (Z/qZ)` , and β ← ker(α), with dim(ker(α,c∗)) =

n−2 and dim(ker(α)) = n−1. So, we have Pr[S4.i]−Pr[S4.i+1] ≤
√

2λ
q`−1 +

√
2λ

qm−1 ,

Therefore Pr[S3] − Pr[S4.Q] ≤ Q
√

2λ
q`−1 + Q

√
2λ

qm−1

– Game 5: This game is identical to Game4.Q, except that we pick up random k∗ ←
Z/qZ and compute K∗ = e(g, g̃)k

∗

. This k∗ is statistically close to < c∗, s + β >.
By Lemma 3,

Dist((c∗,< c∗, s+β >,L(s+β),view) : (c∗, k∗,L(s+β),view)) ≤
1
2

2−
√

H̃∞ (s+β |L(s+β),view) ,

where view is fixed values containing α,V, and < α, s >. Let us repersent s =

s∗ + r′α such that s∗ ∈ ker(α) and r′ ∈ Z/qZ. Since s∗ and β are only random
variables in the above H̃∞, we have

H̃∞ (s+β |L(s+β),view) = H̃∞ (s∗+β |L(s+β)) ≥ H∞ (s∗+β)−λ = (n−1) log(q)−λ.

Therefore, we have Pr[S4.Q] − Pr[S5] ≤ 1
2

√
2λ

qn−1 . By construction, Pr[S5] = 1
2 .

To summarize the above, we have Pr[S0] − 1
2 =

2εex + Q ·

√
2λ

q`−1 + Q ·

√
2λ

qn−1 +
1
2

√
2λ

qn−1 .

D Continuos Tampering Secure Signature

A digital signature scheme Σ = (Setup,KGen,Sign,Vrfy) consists four algorithms.
Setup, the set-up algoritm, takes as input security parameter 1k and outputs public
parameter ρ. KGen, the key-generation algorithm, takes as input ρ and outputs a pair



comprising the verification and signing keys, (vk, sk). Sign, the signing algorithm,
takes as input (ρ, sk) and message m and produces signature σ. Vrfy, the verification
algorithm, takes as input verification key vk, message m and signature σ, as well as
ρ, and outputs a bit. For completeness, it is required that for all ρ ∈ Setup(1κ ), all
(vk, sk) ∈ KGen(ρ) and for all m ∈ {0,1}∗, it holds Vrfyρ (vk,m,Signρ (sk,m)) = 1.

We say that digital signature scheme Σ is self-destructive, if the signing algorithm
can erase all inner states including sk and does not work any more, when it can detect
tampering. We say that digital signature scheme Σ has a key-updating mechanism if
there is a PPT algorithm Update that takes ρ and sk and returns an “updated" secret
key sk′ = Updateρ (sk). We assume that the key-updating mechanism Update can be
activated only when the signing algorithm detects tampering.

CTBL-CMA Security. For digital signature scheme Σ and an adversary A, we define
the experiment Exptctbl-cma

Π,A, (Φ,λ) (κ) as in Fig. 5. We define the advantage of A against Π
with respects Φ as

Advctbl-cma
Σ,A, (Φ,λ) (κ) , Pr[Exptctbl-cma

Σ,A, (Φ,λ) (κ) = 1].

A may adaptively submit (unbounded) polynomially many queries (φ,CT) to oracle
RKSign, but it should be φ ∈ Φ. A may also adaptively submit (unbounded) polyno-
mially many queries L to oracle Leak. Finally, A outputs (m′,σ′). We say that A wins
if Vrfy(vk,m′,σ′) = 1 and m′ is not asked to RKSign. We note that if Sig has “self-
destructive” property, RKSign does not receive any further query from the adversary
or simply returns ⊥. We say that Σ is (Φ, λ)-CTBL-CMA secure if Advtbl-cma

Σ,A, (Φ,λ) (κ) =

negl(κ) for every PPT A.

Exptctbl-cma
Σ,A, (Φ,λ) (κ):

ρ← Setup(1κ );
(vk,sk) ← KGen(ρ);
(m′,σ′) ← ARKSignΦ (·, ·),Leakλ (·) (ρ,vk)
If m′ ∈ List or Vrfyρ (vk,m′,σ′) , 1,

then return 0;
Otherwise 1.

RKSignΦ(φ,m):
σ ← Signρ (φ(sk),m);
If σ = ⊥,

then erase sk.
Else return σ.

————————————
Leakλ (Li ): (Li : i-th query of A.)

If
∑i

j=1 |L j (sk) | > λ,
then return ⊥;

Else return Li (sk).

Fig. 5. The experiment of the CTBL-CMA game.

CTL-CMA Security. For digital signature scheme Σ = (Setup,KGen,Update,Sign,Vrfy)
with a key-updating mechanism and an adversary A, we define the experiment Exptctl-cma

Σ,A, (Φ,λ) (κ)
as in Fig. 6. We define the advantage of A against Σ with respects Φ as

Advctl-cma
Σ,A, (Φ,λ) (κ) , Pr[Exptctl-cma

Σ,A, (Φ,λ) (κ) = 1].



A may adaptively submit (unbounded) polynomially many queries (φ,CT) to oracle
RKSign, but it should be φ ∈ Φ. A may also adaptively submit (unbounded) polynomi-
ally many queries L to oracle Leak. Finally, A outputs (m′,σ′). We say that A wins if
Vrfy(vk,m′,σ′) = 1 and m′ is not asked to RKSign. We say that Σ is (Φ, λ)-CTL-CMA
secure if Advctl-cma

Σ,A, (Φ,λ) (κ) = negl(κ) for every PPT A.

Exptctbl-cma
Σ,A, (Φ,λ) (κ):

ρ← Setup(1κ );
(vk,sk) ← KGen(ρ);
(m′,σ′) ← ARKSignΦ (·, ·),Leakλ (·) (ρ,vk)
If m′ ∈ List or Vrfyρ (vk,m′,σ′) , 1,

then return 0;
Otherwise 1.

RKSignΦ(φ,m):
σ ← Signρ (φ(sk),m);
If σ = ⊥,

then return ⊥;
Set sk← Updateρ (sk);
Set leaksum := 0;

Else return σ.
————————————
Leakλ (L):

If leaksum
:= leaksum + |L(sk) | > λ,
then return ⊥;

Else return L(sk).

Fig. 6. The experiment of the CTL-CMA game.
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