
Hiding the Input Size

in Secure Two-Party Computation

Yehuda Lindell, Kobbi Nissim, Claudio Orlandi

Privacy on
(or a more privacy

sensitive social network)

My friends

should only see

our common

friends

Secure Computation

 Privacy

 Correctness

 Input Independence

 “The protocol is as secure as the ideal world”

Or is it?

8dx2rru3d0fW2TS

muv6tbWg32flqIo

s1e4xq13OtTzoJc

Cryptographic Protocol

f(x,y)

x y

z1

z2

Trusted Party

PSI

Friend list Friend list

Intersection

Privacy on
(or a more privacy

sensitive social network)

Friend list Friend list

+ size of friend list!

Yao’s protocol

Intersection

Privacy on
(or a more privacy

sensitive social network)

Friend list Friend list

+ size of friend list!

Yao’s protocol

Intersection

You learned more

than you were

supposed to!

Don’t worry, it’s

only metadata!

Privacy on
(or a more privacy

sensitive social network)

Padding?

𝑋 ∩ 𝑌

X=x1……xn Y=y1..ym

Z Z

8dx2rru3d0fW2TS

muv6tbWg32flqIo

s1e4xq13OtTzoJc

Z , m Z , n

X=x1……xn Y=y1..ym …xB ….…yB

B
B

 Just add a lot of “fake entries” to your DB

 Requires an upper bound 

 Inherent inefficiency 

Impossibility of Size-Hiding:

Proof by Authority

[G04] “…making no restriction on the relationship among the

lengths of the two inputs disallows the existence of secure

protocols for computing any nondegenerate functionality…”

[IP07] “…hiding the size of both inputs is impossible for

interesting functions…”

[HL10]“…We remark that some restriction on the input lengths is

unavoidable because, as in the case of encryption, to some extent

such information is always leaked…”

Impossibility of Size-Hiding:

Proof by Authority

[G04] “…making no restriction on the relationship among the

lengths of the two inputs disallows the existence of secure

protocols for computing any nondegenerate functionality…”

[IP07] “…hiding the size of both inputs is impossible for

interesting functions…”

[HL10]“…We remark that some restriction on the input lengths is

unavoidable because, as in the case of encryption, to some extent

such information is always leaked…”

Impossibility

 Is it impossible for

 Any nondegenerate functionality?

 What is nondegenerate?

 What does no restriction mean?

 All interesting functions?

 What is interesting?

 What about hiding one party’s input?

 Is it really like encryption? Is length information

always leaked?

This Work

 Part of a general research effort to revisit the

foundations of secure computation

 Do we have any proof that it’s impossible?

 If yes, where and for what functions?

 Is it impossible always or sometimes?

 If sometimes, can we characterize when?

 How do we define size hiding?

 Compare to recent work on fairness…

Input Size Can be Hidden Sometimes

 MicaliRabinKilian’03 (and many subsequent work…):

Zero Knowledge Sets (check membership without revealing the
size of the set)

 IshaiPaskin’07:

 Branching programs (reveal length of the branching
program but nothing else about input size)

 Implies set intersection, server input size is hidden

 AtenieseDeCristofaroTsudik’11:

 Specific protocol for set intersection, client input size is
hidden; efficient, in random oracle model

 Note: all these are for specific problems/restricted
class, and all hide only one party’s input

A Test Case: Standard Definition

 Standard definition, e.g. [Gol04]

 Need to know other party’s size in advance

 Introduces problem of input size dependence

 One party can choose its input after knowing the size of the
other party’s input (outside the scope of the protocol)

if |x|=|y|
z=f(x,y)

else
z = fail

x y

z

z

Defining Non-Input-Size Hiding

 Formulation [G04]:

 Our formulation:

 Security guarantees incomparable

if |x|=|y|
z=f(x,y)

Else
z = fail

x y

z

z

z=f(x,y)

x y

z,|y|

z,|x|

Defining Non-Input-Size Hiding

 Formulation [G04]:

 Our formulation:

 Security guarantees incomparable

if |x|=|y|
z=f(x,y)

Else
z = fail

x y

z

z

z=f(x,y)

x y

z,|y|

z,|x|

Standard protocols are

not secure for either

formulation!

Ideal Model - Classes

 Classes

 0: both input-sizes are leaked

 1: Bob learns |𝑥|, Alice does not learn 𝑦

 2: both input-sizes are not revealed

 Subclasses

 Who gets output?

 Is the output size leaked?

 Our classification is complete for symmetric functions

𝑓 𝑥, 𝑦 = 𝑓(𝑦, 𝑥)

Class 0

Class 0

𝑥

1 𝑦 , 𝑓(𝑥, 𝑦)

𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)

Class 1

Class
1.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)
Class
1.b

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥

1 𝑥 , 1 𝑓 𝑥,𝑦
Class
1.c

𝑥

𝑓(𝑥, 𝑦)

𝑦

Class
1.d

𝑥 𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)

1 𝑥 , 𝑓(𝑥, 𝑦)
Class
1.e

𝑥

1 𝑓 𝑥,𝑦

𝑦

Essentially equivalent classes

(outputs have same length)

Class 2

Class
2.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

𝑓(𝑥, 𝑦)
Class
2.b

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑓(𝑥,𝑦)
Class
2.c

𝑥

𝑓(𝑥, 𝑦)

𝑦

Positive Results

Class
1.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)

1 𝑥 , 1 𝑓 𝑥,𝑦
Class
1.c

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)
Class
1.e

𝑥

1 𝑓 𝑥,𝑦

𝑦

Tools

 Fully Homomorphic Encryption

 𝐺, 𝐸, 𝐷, 𝐸𝑣𝑎𝑙

 Correctness:

𝐷𝑠𝑘(𝐸𝑣𝑎𝑙𝑝𝑘 𝑓, 𝐸𝑝𝑘 𝑥 = 𝑓(𝑥)

 Circuit privacy:

𝐸𝑣𝑎𝑙𝑝𝑘 𝑓, 𝐸𝑝𝑘 𝑥 ≈ 𝐸𝑝𝑘(𝑓 𝑥)

Class 1.a

𝑝𝑘, 𝑐𝑥

𝑐𝑧 = 𝐸𝑣𝑎𝑙𝑝𝑘(𝑓(⋅, 𝑦), 𝑐) 𝑐𝑧

𝑧 = 𝐷𝑒𝑐𝑠𝑘 (𝑐𝑧)

𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛(1𝑘)

𝑐𝑥 ← 𝐸𝑛𝑐𝑝𝑘(𝑥)

Class
1.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)

𝑧

Class 1.a

 The devil is in the details

 In order to compute 𝑐𝑧, a circuit computing 𝑓(⋅, 𝑦) must

be known, but this involves knowing the output length

 Solution: 𝑃2 computes an upper bound (it can do this

since it knows |𝑥| and 𝑦

Computing an Upper Bound

 Example: set union

 𝑧 = 𝑥 ∪ 𝑦

 Clear that 𝑧 ≤ 𝑥 + |𝑦|

 But how long exactly?

Any upper bound reveals

information about |𝑦|

𝐸(𝑥)

𝑓(⋅, 𝑦)

𝐸(𝑧)

The Solution

𝐸(𝑥)

𝐸(|𝑧|)

𝑠𝑖𝑧𝑒𝑜𝑓(𝑓 ⋅, 𝑦)

𝐸(𝑥)

𝑓(⋅, 𝑦)

𝐸(𝑧) 𝐸(𝑧)

Alice opens ℓ = |𝑧|

Send

to Alice

𝑓ℓ(⋅, 𝑦)

ℓ

 Thm: FHE ⇒ ∀𝑓 can be securely computed in Classes 1.a/c/e

𝑝𝑘, 𝑐𝑥

𝑐ℓ

ℓ ℓ = 𝐷𝑒𝑐𝑠𝑘 (𝑐ℓ)

𝑐𝑧 = 𝐸𝑣𝑎𝑙𝑝𝑘(𝒇ℓ(⋅, 𝑦), 𝑐)

𝑐ℓ = 𝐸𝑣𝑎𝑙𝑝𝑘(𝒔𝒊𝒛𝒆𝒐𝒇(𝑓 ⋅, 𝑦), 𝑐)

𝑐𝑧

𝑧 = 𝐷𝑒𝑐𝑠𝑘 (𝑐𝑧)

𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛(1𝑘)

𝑐𝑥 ← 𝐸𝑛𝑐𝑝𝑘(𝑥)

𝑧

Class 1.a
Class
1.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)

The circuit for output of length

exactly ℓ

Positive Results

Class
2.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

𝑓(𝑥, 𝑦)
Class
2.b

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑓(𝑥,𝑦)
Class
2.c

𝑥

𝑓(𝑥, 𝑦)

𝑦

Two-Size Hiding Protocols

 Theorem: If FHE exists, then the following

functions can be securely computed in class 2

(semi-honest)

Greater than (Millionaire’s problem)

And other functions:

 Equality

Mean

 Variance

Median

Two-Size Hiding Protocols

 Theorem: If FHE exists, then the following

functions can be securely computed in class 2

(semi-honest)

Greater than (Millionaire’s problem)

And other functions:

 Equality

Mean

 Variance

Median

First example of protocols for

interesting functions

where the size of the input of

both parties is protected

Size Independent Protocols

 𝜋 is size independent for 𝑓 if

 Correct (except for 𝑛𝑒𝑔𝑙(𝑘))

 Computation efficient (runtime 𝑝𝑜𝑙𝑦(𝑖𝑛𝑝𝑢𝑡+𝑘))

 Communication efficient (bounded by 𝑝𝑜𝑙𝑦(𝑘))

 Construction idea: “compile” these insecure protocols
using FHE.

 (Concrete protocol for “greater than” in the paper)

Negative Results

Lower Bounds

 Theorem: There exist functions that cannot be

computed while hiding both parties’ input size

 Not everything can be computed in Class 2

 Examples: Inner product, Set Intersection, Hamming

distance, etc.

 Any protocol with “high” communication complexity

Class
2.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

𝑓(𝑥, 𝑦)

Class 1.b

 Theorem: There exist functions that cannot be

securely computed in class 1.b

 Proof: size-hiding OT

 𝑥 = selection bit

 𝑦 = (𝑦0, 𝑦1) two strings of different length

 𝑓 𝑥, 𝑦 = 𝑦𝑥

Class
1.b

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥

OT

𝑦0

𝑦1

𝑥

𝑦𝑥

Conclusions and Open Problems

Conclusions and Open Problems

 Open Problems

 (More) efficient protocols for specific tasks?

 Malicious security?

 Dealing with side-channel attacks (timing)?

 Hiding the input size is (sometimes) possible.

 Don’t give up!

 Landscape of size-hiding 2PC is very rich

 Many positive and negative results.

Summary of Feasibility

