
Fully Homomorphic Message Authenticators

Rosario Gennaro1 Daniel Wichs2

1The City College of CUNY

2Northeastern University

Asiacrypt 2013



Introduction Construction Extensions

Our Results

Fully Homomorphic MACs
A way to authenticate data so that the result of any function F can also be
authenticated as the correct evaluation of F over the authenticated data

What does it mean
A client stores some data with a server D and a MAC TD on D computed
using a short secret key sk. When queried on a function F , the server
returns y = F (D) and a short tag Ty which can be verified as correct using
sk.



Introduction Construction Extensions

Our Results

Fully Homomorphic MACs
A way to authenticate data so that the result of any function F can also be
authenticated as the correct evaluation of F over the authenticated data

What does it mean
A client stores some data with a server D and a MAC TD on D computed
using a short secret key sk. When queried on a function F , the server
returns y = F (D) and a short tag Ty which can be verified as correct using
sk.



Introduction Construction Extensions

Labeled Data and Programs

To differentiate data (and the computations performed on it) we rely
on labels;
When the client authenticates D, she chooses a label τ for it, which is
given as input to the authentication algorithm;
Correspondingly we consider labeled programs P , where each input of
the program has an associated label τ indicating which data it should
be evaluated on.

Think of labels as a filenames, e.g. "Class Grades"
Later the query is "Please return the average of Class Grades"

Homomorphic authenticators allow to authenticate the output of a
labeled program, given authentication tags for correspondingly labeled
input data.

Given a labeled program P on n inputs whose labels are τ1, . . . , τn, and
Data D1, . . . , Dn with authentication tags T1, . . . , Tn
Anybody can homomorphically compute a short authentication tag Ty
that authenticates the output y = P (D1, . . . , Dn).



Introduction Construction Extensions

Labeled Data and Programs

To differentiate data (and the computations performed on it) we rely
on labels;
When the client authenticates D, she chooses a label τ for it, which is
given as input to the authentication algorithm;
Correspondingly we consider labeled programs P , where each input of
the program has an associated label τ indicating which data it should
be evaluated on.

Think of labels as a filenames, e.g. "Class Grades"
Later the query is "Please return the average of Class Grades"

Homomorphic authenticators allow to authenticate the output of a
labeled program, given authentication tags for correspondingly labeled
input data.

Given a labeled program P on n inputs whose labels are τ1, . . . , τn, and
Data D1, . . . , Dn with authentication tags T1, . . . , Tn
Anybody can homomorphically compute a short authentication tag Ty
that authenticates the output y = P (D1, . . . , Dn).



Introduction Construction Extensions

Labeled Data and Programs

To differentiate data (and the computations performed on it) we rely
on labels;
When the client authenticates D, she chooses a label τ for it, which is
given as input to the authentication algorithm;
Correspondingly we consider labeled programs P , where each input of
the program has an associated label τ indicating which data it should
be evaluated on.

Think of labels as a filenames, e.g. "Class Grades"
Later the query is "Please return the average of Class Grades"

Homomorphic authenticators allow to authenticate the output of a
labeled program, given authentication tags for correspondingly labeled
input data.

Given a labeled program P on n inputs whose labels are τ1, . . . , τn, and
Data D1, . . . , Dn with authentication tags T1, . . . , Tn
Anybody can homomorphically compute a short authentication tag Ty
that authenticates the output y = P (D1, . . . , Dn).



Introduction Construction Extensions

Labeled Data and Programs

To differentiate data (and the computations performed on it) we rely
on labels;
When the client authenticates D, she chooses a label τ for it, which is
given as input to the authentication algorithm;
Correspondingly we consider labeled programs P , where each input of
the program has an associated label τ indicating which data it should
be evaluated on.

Think of labels as a filenames, e.g. "Class Grades"
Later the query is "Please return the average of Class Grades"

Homomorphic authenticators allow to authenticate the output of a
labeled program, given authentication tags for correspondingly labeled
input data.

Given a labeled program P on n inputs whose labels are τ1, . . . , τn, and
Data D1, . . . , Dn with authentication tags T1, . . . , Tn
Anybody can homomorphically compute a short authentication tag Ty
that authenticates the output y = P (D1, . . . , Dn).



Introduction Construction Extensions

Labeled Data and Programs

To differentiate data (and the computations performed on it) we rely
on labels;
When the client authenticates D, she chooses a label τ for it, which is
given as input to the authentication algorithm;
Correspondingly we consider labeled programs P , where each input of
the program has an associated label τ indicating which data it should
be evaluated on.

Think of labels as a filenames, e.g. "Class Grades"
Later the query is "Please return the average of Class Grades"

Homomorphic authenticators allow to authenticate the output of a
labeled program, given authentication tags for correspondingly labeled
input data.

Given a labeled program P on n inputs whose labels are τ1, . . . , τn, and
Data D1, . . . , Dn with authentication tags T1, . . . , Tn
Anybody can homomorphically compute a short authentication tag Ty
that authenticates the output y = P (D1, . . . , Dn).



Introduction Construction Extensions

Labeled Data and Programs

To differentiate data (and the computations performed on it) we rely
on labels;
When the client authenticates D, she chooses a label τ for it, which is
given as input to the authentication algorithm;
Correspondingly we consider labeled programs P , where each input of
the program has an associated label τ indicating which data it should
be evaluated on.

Think of labels as a filenames, e.g. "Class Grades"
Later the query is "Please return the average of Class Grades"

Homomorphic authenticators allow to authenticate the output of a
labeled program, given authentication tags for correspondingly labeled
input data.

Given a labeled program P on n inputs whose labels are τ1, . . . , τn, and
Data D1, . . . , Dn with authentication tags T1, . . . , Tn
Anybody can homomorphically compute a short authentication tag Ty
that authenticates the output y = P (D1, . . . , Dn).



Introduction Construction Extensions

Labeled Data and Programs

To differentiate data (and the computations performed on it) we rely
on labels;
When the client authenticates D, she chooses a label τ for it, which is
given as input to the authentication algorithm;
Correspondingly we consider labeled programs P , where each input of
the program has an associated label τ indicating which data it should
be evaluated on.

Think of labels as a filenames, e.g. "Class Grades"
Later the query is "Please return the average of Class Grades"

Homomorphic authenticators allow to authenticate the output of a
labeled program, given authentication tags for correspondingly labeled
input data.

Given a labeled program P on n inputs whose labels are τ1, . . . , τn, and
Data D1, . . . , Dn with authentication tags T1, . . . , Tn
Anybody can homomorphically compute a short authentication tag Ty
that authenticates the output y = P (D1, . . . , Dn).



Introduction Construction Extensions

Labeled Data and Programs

To differentiate data (and the computations performed on it) we rely
on labels;
When the client authenticates D, she chooses a label τ for it, which is
given as input to the authentication algorithm;
Correspondingly we consider labeled programs P , where each input of
the program has an associated label τ indicating which data it should
be evaluated on.

Think of labels as a filenames, e.g. "Class Grades"
Later the query is "Please return the average of Class Grades"

Homomorphic authenticators allow to authenticate the output of a
labeled program, given authentication tags for correspondingly labeled
input data.

Given a labeled program P on n inputs whose labels are τ1, . . . , τn, and
Data D1, . . . , Dn with authentication tags T1, . . . , Tn
Anybody can homomorphically compute a short authentication tag Ty
that authenticates the output y = P (D1, . . . , Dn).



Introduction Construction Extensions

Labeled Data and Programs

To differentiate data (and the computations performed on it) we rely
on labels;
When the client authenticates D, she chooses a label τ for it, which is
given as input to the authentication algorithm;
Correspondingly we consider labeled programs P , where each input of
the program has an associated label τ indicating which data it should
be evaluated on.

Think of labels as a filenames, e.g. "Class Grades"
Later the query is "Please return the average of Class Grades"

Homomorphic authenticators allow to authenticate the output of a
labeled program, given authentication tags for correspondingly labeled
input data.

Given a labeled program P on n inputs whose labels are τ1, . . . , τn, and
Data D1, . . . , Dn with authentication tags T1, . . . , Tn
Anybody can homomorphically compute a short authentication tag Ty
that authenticates the output y = P (D1, . . . , Dn).



Introduction Construction Extensions

Composition

We construct homomorphic authenticators that are composable i.e.
the result y and its computed tag Ty can be used as input to another
homomorphic evaluation.

Assume that the tags T1, . . . , Tn authenticate some data y1, . . . , yn as
the outputs of some labeled programs P1, . . . , Pn

Let P ∗ be an n-input labeled program then anybody can compute T ∗

that authenticates y∗ = P ∗(y1, . . . , yn) using only the pairs (yi, Ti).



Introduction Construction Extensions

Composition

We construct homomorphic authenticators that are composable i.e.
the result y and its computed tag Ty can be used as input to another
homomorphic evaluation.

Assume that the tags T1, . . . , Tn authenticate some data y1, . . . , yn as
the outputs of some labeled programs P1, . . . , Pn

Let P ∗ be an n-input labeled program then anybody can compute T ∗

that authenticates y∗ = P ∗(y1, . . . , yn) using only the pairs (yi, Ti).



Introduction Construction Extensions

Composition

We construct homomorphic authenticators that are composable i.e.
the result y and its computed tag Ty can be used as input to another
homomorphic evaluation.

Assume that the tags T1, . . . , Tn authenticate some data y1, . . . , yn as
the outputs of some labeled programs P1, . . . , Pn

Let P ∗ be an n-input labeled program then anybody can compute T ∗

that authenticates y∗ = P ∗(y1, . . . , yn) using only the pairs (yi, Ti).



Introduction Construction Extensions

Related Work

Homomorphic authenticators (and signatures) for linear functions were
constructed for the application of network coding (starting from
[JMSW02])
Homomorphic signatures for polynomials were presented in [BF11]
We were the first to consider arbitrary functions
Following our work, [CF13] shows a very nice and simple approach for
functions F described by shallow arithmetic circuits.



Introduction Construction Extensions

Related Work

Homomorphic authenticators (and signatures) for linear functions were
constructed for the application of network coding (starting from
[JMSW02])
Homomorphic signatures for polynomials were presented in [BF11]
We were the first to consider arbitrary functions
Following our work, [CF13] shows a very nice and simple approach for
functions F described by shallow arithmetic circuits.



Introduction Construction Extensions

Related Work

Homomorphic authenticators (and signatures) for linear functions were
constructed for the application of network coding (starting from
[JMSW02])
Homomorphic signatures for polynomials were presented in [BF11]
We were the first to consider arbitrary functions
Following our work, [CF13] shows a very nice and simple approach for
functions F described by shallow arithmetic circuits.



Introduction Construction Extensions

Related Work

Homomorphic authenticators (and signatures) for linear functions were
constructed for the application of network coding (starting from
[JMSW02])
Homomorphic signatures for polynomials were presented in [BF11]
We were the first to consider arbitrary functions
Following our work, [CF13] shows a very nice and simple approach for
functions F described by shallow arithmetic circuits.



Introduction Construction Extensions

Related Work: SNARGs

Succint Non-interactive Arguments [M94] can be used to produce short
proofs that a certain computation is correct.

Unfortunately SNARGs must rely on non-standard assumption (e.g.
random oracle, or knowledge assumptions) [GW11], while our construction
relies only on FHE and PRF security.



Introduction Construction Extensions

Related Work: Secure Delegation

Delegation of Computation: The dual problem in which the client
authenticates the function F to the server, and then queries it on the input
D to get an authenticated result y = F (D) [GGP10]. Can be used by
outsourcing a universal circuit CD which has the data D hard-wired in it
and the function F is the input. While this approach yields efficient
verification, it also:

requires interaction: client must create a challenge for F ;
bounds the size of the function F ;
does not yield a composable scheme;
requires the data D to be authenticated in one-shot.

Secure Memory Delegation Presented first by [CKLR11] is composable
and has fast verification. However it is still interactive, and also requires
the client to maintain state.



Introduction Construction Extensions

Related Work: Secure Delegation

Delegation of Computation: The dual problem in which the client
authenticates the function F to the server, and then queries it on the input
D to get an authenticated result y = F (D) [GGP10]. Can be used by
outsourcing a universal circuit CD which has the data D hard-wired in it
and the function F is the input. While this approach yields efficient
verification, it also:

requires interaction: client must create a challenge for F ;
bounds the size of the function F ;
does not yield a composable scheme;
requires the data D to be authenticated in one-shot.

Secure Memory Delegation Presented first by [CKLR11] is composable
and has fast verification. However it is still interactive, and also requires
the client to maintain state.



Introduction Construction Extensions

Related Work: Secure Delegation

Delegation of Computation: The dual problem in which the client
authenticates the function F to the server, and then queries it on the input
D to get an authenticated result y = F (D) [GGP10]. Can be used by
outsourcing a universal circuit CD which has the data D hard-wired in it
and the function F is the input. While this approach yields efficient
verification, it also:

requires interaction: client must create a challenge for F ;
bounds the size of the function F ;
does not yield a composable scheme;
requires the data D to be authenticated in one-shot.

Secure Memory Delegation Presented first by [CKLR11] is composable
and has fast verification. However it is still interactive, and also requires
the client to maintain state.



Introduction Construction Extensions

Related Work: Secure Delegation

Delegation of Computation: The dual problem in which the client
authenticates the function F to the server, and then queries it on the input
D to get an authenticated result y = F (D) [GGP10]. Can be used by
outsourcing a universal circuit CD which has the data D hard-wired in it
and the function F is the input. While this approach yields efficient
verification, it also:

requires interaction: client must create a challenge for F ;
bounds the size of the function F ;
does not yield a composable scheme;
requires the data D to be authenticated in one-shot.

Secure Memory Delegation Presented first by [CKLR11] is composable
and has fast verification. However it is still interactive, and also requires
the client to maintain state.



Introduction Construction Extensions

Related Work: Secure Delegation

Delegation of Computation: The dual problem in which the client
authenticates the function F to the server, and then queries it on the input
D to get an authenticated result y = F (D) [GGP10]. Can be used by
outsourcing a universal circuit CD which has the data D hard-wired in it
and the function F is the input. While this approach yields efficient
verification, it also:

requires interaction: client must create a challenge for F ;
bounds the size of the function F ;
does not yield a composable scheme;
requires the data D to be authenticated in one-shot.

Secure Memory Delegation Presented first by [CKLR11] is composable
and has fast verification. However it is still interactive, and also requires
the client to maintain state.



Introduction Construction Extensions

Related Work: Secure Delegation

Delegation of Computation: The dual problem in which the client
authenticates the function F to the server, and then queries it on the input
D to get an authenticated result y = F (D) [GGP10]. Can be used by
outsourcing a universal circuit CD which has the data D hard-wired in it
and the function F is the input. While this approach yields efficient
verification, it also:

requires interaction: client must create a challenge for F ;
bounds the size of the function F ;
does not yield a composable scheme;
requires the data D to be authenticated in one-shot.

Secure Memory Delegation Presented first by [CKLR11] is composable
and has fast verification. However it is still interactive, and also requires
the client to maintain state.



Introduction Construction Extensions

Birds-eye View Of Our Construction

Our construction uses Fully Homomorphic Encryption (FHE) and
Pseudo-Random Functions (PRF). For security parameter k, to
generate a key the client will choose

pk an FHE public key;
K a PRF secret key;
and a subset S of [1 . . . k] of size k/2;

To authenticate data D, the client will produce as a tag k ciphertexts
c1, . . . , cn as follows:

If i ∈ S then ci = FHEpk(D; ri) otherwise ci = FHE(0, PRFK(i));
When queried on a function F the server returns y = F (D) and k
ciphertexts γ1, . . . , γk computed by evaluating F over the ciphertexts
c1, . . . , cn:

i.e. compute γi by applying the FHE evaluation procedure for F to ci;
To verify y, γ1, . . . , γk the client checks:

If i ∈ S that ci decrypts to y;
If i /∈ S, the client can recompute ci (does not depend on data, only
on short PRF key K) and apply the FHE evaluation procedure and
check if it outputs γi.



Introduction Construction Extensions

Birds-eye View Of Our Construction

Our construction uses Fully Homomorphic Encryption (FHE) and
Pseudo-Random Functions (PRF). For security parameter k, to
generate a key the client will choose

pk an FHE public key;
K a PRF secret key;
and a subset S of [1 . . . k] of size k/2;

To authenticate data D, the client will produce as a tag k ciphertexts
c1, . . . , cn as follows:

If i ∈ S then ci = FHEpk(D; ri) otherwise ci = FHE(0, PRFK(i));
When queried on a function F the server returns y = F (D) and k
ciphertexts γ1, . . . , γk computed by evaluating F over the ciphertexts
c1, . . . , cn:

i.e. compute γi by applying the FHE evaluation procedure for F to ci;
To verify y, γ1, . . . , γk the client checks:

If i ∈ S that ci decrypts to y;
If i /∈ S, the client can recompute ci (does not depend on data, only
on short PRF key K) and apply the FHE evaluation procedure and
check if it outputs γi.



Introduction Construction Extensions

Birds-eye View Of Our Construction

Our construction uses Fully Homomorphic Encryption (FHE) and
Pseudo-Random Functions (PRF). For security parameter k, to
generate a key the client will choose

pk an FHE public key;
K a PRF secret key;
and a subset S of [1 . . . k] of size k/2;

To authenticate data D, the client will produce as a tag k ciphertexts
c1, . . . , cn as follows:

If i ∈ S then ci = FHEpk(D; ri) otherwise ci = FHE(0, PRFK(i));
When queried on a function F the server returns y = F (D) and k
ciphertexts γ1, . . . , γk computed by evaluating F over the ciphertexts
c1, . . . , cn:

i.e. compute γi by applying the FHE evaluation procedure for F to ci;
To verify y, γ1, . . . , γk the client checks:

If i ∈ S that ci decrypts to y;
If i /∈ S, the client can recompute ci (does not depend on data, only
on short PRF key K) and apply the FHE evaluation procedure and
check if it outputs γi.



Introduction Construction Extensions

Birds-eye View Of Our Construction

Our construction uses Fully Homomorphic Encryption (FHE) and
Pseudo-Random Functions (PRF). For security parameter k, to
generate a key the client will choose

pk an FHE public key;
K a PRF secret key;
and a subset S of [1 . . . k] of size k/2;

To authenticate data D, the client will produce as a tag k ciphertexts
c1, . . . , cn as follows:

If i ∈ S then ci = FHEpk(D; ri) otherwise ci = FHE(0, PRFK(i));
When queried on a function F the server returns y = F (D) and k
ciphertexts γ1, . . . , γk computed by evaluating F over the ciphertexts
c1, . . . , cn:

i.e. compute γi by applying the FHE evaluation procedure for F to ci;
To verify y, γ1, . . . , γk the client checks:

If i ∈ S that ci decrypts to y;
If i /∈ S, the client can recompute ci (does not depend on data, only
on short PRF key K) and apply the FHE evaluation procedure and
check if it outputs γi.



Introduction Construction Extensions

Birds-eye View Of Our Construction

Our construction uses Fully Homomorphic Encryption (FHE) and
Pseudo-Random Functions (PRF). For security parameter k, to
generate a key the client will choose

pk an FHE public key;
K a PRF secret key;
and a subset S of [1 . . . k] of size k/2;

To authenticate data D, the client will produce as a tag k ciphertexts
c1, . . . , cn as follows:

If i ∈ S then ci = FHEpk(D; ri) otherwise ci = FHE(0, PRFK(i));
When queried on a function F the server returns y = F (D) and k
ciphertexts γ1, . . . , γk computed by evaluating F over the ciphertexts
c1, . . . , cn:

i.e. compute γi by applying the FHE evaluation procedure for F to ci;
To verify y, γ1, . . . , γk the client checks:

If i ∈ S that ci decrypts to y;
If i /∈ S, the client can recompute ci (does not depend on data, only
on short PRF key K) and apply the FHE evaluation procedure and
check if it outputs γi.



Introduction Construction Extensions

Birds-eye View Of Our Construction

Our construction uses Fully Homomorphic Encryption (FHE) and
Pseudo-Random Functions (PRF). For security parameter k, to
generate a key the client will choose

pk an FHE public key;
K a PRF secret key;
and a subset S of [1 . . . k] of size k/2;

To authenticate data D, the client will produce as a tag k ciphertexts
c1, . . . , cn as follows:

If i ∈ S then ci = FHEpk(D; ri) otherwise ci = FHE(0, PRFK(i));
When queried on a function F the server returns y = F (D) and k
ciphertexts γ1, . . . , γk computed by evaluating F over the ciphertexts
c1, . . . , cn:

i.e. compute γi by applying the FHE evaluation procedure for F to ci;
To verify y, γ1, . . . , γk the client checks:

If i ∈ S that ci decrypts to y;
If i /∈ S, the client can recompute ci (does not depend on data, only
on short PRF key K) and apply the FHE evaluation procedure and
check if it outputs γi.



Introduction Construction Extensions

Birds-eye View Of Our Construction

Our construction uses Fully Homomorphic Encryption (FHE) and
Pseudo-Random Functions (PRF). For security parameter k, to
generate a key the client will choose

pk an FHE public key;
K a PRF secret key;
and a subset S of [1 . . . k] of size k/2;

To authenticate data D, the client will produce as a tag k ciphertexts
c1, . . . , cn as follows:

If i ∈ S then ci = FHEpk(D; ri) otherwise ci = FHE(0, PRFK(i));
When queried on a function F the server returns y = F (D) and k
ciphertexts γ1, . . . , γk computed by evaluating F over the ciphertexts
c1, . . . , cn:

i.e. compute γi by applying the FHE evaluation procedure for F to ci;
To verify y, γ1, . . . , γk the client checks:

If i ∈ S that ci decrypts to y;
If i /∈ S, the client can recompute ci (does not depend on data, only
on short PRF key K) and apply the FHE evaluation procedure and
check if it outputs γi.



Introduction Construction Extensions

Birds-eye View Of Our Construction

Our construction uses Fully Homomorphic Encryption (FHE) and
Pseudo-Random Functions (PRF). For security parameter k, to
generate a key the client will choose

pk an FHE public key;
K a PRF secret key;
and a subset S of [1 . . . k] of size k/2;

To authenticate data D, the client will produce as a tag k ciphertexts
c1, . . . , cn as follows:

If i ∈ S then ci = FHEpk(D; ri) otherwise ci = FHE(0, PRFK(i));
When queried on a function F the server returns y = F (D) and k
ciphertexts γ1, . . . , γk computed by evaluating F over the ciphertexts
c1, . . . , cn:

i.e. compute γi by applying the FHE evaluation procedure for F to ci;
To verify y, γ1, . . . , γk the client checks:

If i ∈ S that ci decrypts to y;
If i /∈ S, the client can recompute ci (does not depend on data, only
on short PRF key K) and apply the FHE evaluation procedure and
check if it outputs γi.



Introduction Construction Extensions

Birds-eye View Of Our Construction

Our construction uses Fully Homomorphic Encryption (FHE) and
Pseudo-Random Functions (PRF). For security parameter k, to
generate a key the client will choose

pk an FHE public key;
K a PRF secret key;
and a subset S of [1 . . . k] of size k/2;

To authenticate data D, the client will produce as a tag k ciphertexts
c1, . . . , cn as follows:

If i ∈ S then ci = FHEpk(D; ri) otherwise ci = FHE(0, PRFK(i));
When queried on a function F the server returns y = F (D) and k
ciphertexts γ1, . . . , γk computed by evaluating F over the ciphertexts
c1, . . . , cn:

i.e. compute γi by applying the FHE evaluation procedure for F to ci;
To verify y, γ1, . . . , γk the client checks:

If i ∈ S that ci decrypts to y;
If i /∈ S, the client can recompute ci (does not depend on data, only
on short PRF key K) and apply the FHE evaluation procedure and
check if it outputs γi.



Introduction Construction Extensions

Birds-eye View Of Our Construction

Our construction uses Fully Homomorphic Encryption (FHE) and
Pseudo-Random Functions (PRF). For security parameter k, to
generate a key the client will choose

pk an FHE public key;
K a PRF secret key;
and a subset S of [1 . . . k] of size k/2;

To authenticate data D, the client will produce as a tag k ciphertexts
c1, . . . , cn as follows:

If i ∈ S then ci = FHEpk(D; ri) otherwise ci = FHE(0, PRFK(i));
When queried on a function F the server returns y = F (D) and k
ciphertexts γ1, . . . , γk computed by evaluating F over the ciphertexts
c1, . . . , cn:

i.e. compute γi by applying the FHE evaluation procedure for F to ci;
To verify y, γ1, . . . , γk the client checks:

If i ∈ S that ci decrypts to y;
If i /∈ S, the client can recompute ci (does not depend on data, only
on short PRF key K) and apply the FHE evaluation procedure and
check if it outputs γi.



Introduction Construction Extensions

Birds-eye View Of Our Construction

Our construction uses Fully Homomorphic Encryption (FHE) and
Pseudo-Random Functions (PRF). For security parameter k, to
generate a key the client will choose

pk an FHE public key;
K a PRF secret key;
and a subset S of [1 . . . k] of size k/2;

To authenticate data D, the client will produce as a tag k ciphertexts
c1, . . . , cn as follows:

If i ∈ S then ci = FHEpk(D; ri) otherwise ci = FHE(0, PRFK(i));
When queried on a function F the server returns y = F (D) and k
ciphertexts γ1, . . . , γk computed by evaluating F over the ciphertexts
c1, . . . , cn:

i.e. compute γi by applying the FHE evaluation procedure for F to ci;
To verify y, γ1, . . . , γk the client checks:

If i ∈ S that ci decrypts to y;
If i /∈ S, the client can recompute ci (does not depend on data, only
on short PRF key K) and apply the FHE evaluation procedure and
check if it outputs γi.



Introduction Construction Extensions

Intuition of Security Proof

Intuitively, the only way that an attacker can lie about the output
y = F (D) is by producing a tag (γ̂1, . . . , γ̂k) where the ciphertexts γ̂i
for i /∈ S are computed correctly but for i ∈ S they are all modified so
as to encrypt the wrong output.
This should be hard due to

the semantic security of the FHE (hard to tell which ciphertexts
encrypt the data and which ones encrypt 0)
the security of the PRFs (the ciphertexts creating using pseudo-random
coins should be indistinguishable from regular ciphertexts).



Introduction Construction Extensions

Intuition of Security Proof

Intuitively, the only way that an attacker can lie about the output
y = F (D) is by producing a tag (γ̂1, . . . , γ̂k) where the ciphertexts γ̂i
for i /∈ S are computed correctly but for i ∈ S they are all modified so
as to encrypt the wrong output.
This should be hard due to

the semantic security of the FHE (hard to tell which ciphertexts
encrypt the data and which ones encrypt 0)
the security of the PRFs (the ciphertexts creating using pseudo-random
coins should be indistinguishable from regular ciphertexts).



Introduction Construction Extensions

Intuition of Security Proof

Intuitively, the only way that an attacker can lie about the output
y = F (D) is by producing a tag (γ̂1, . . . , γ̂k) where the ciphertexts γ̂i
for i /∈ S are computed correctly but for i ∈ S they are all modified so
as to encrypt the wrong output.
This should be hard due to

the semantic security of the FHE (hard to tell which ciphertexts
encrypt the data and which ones encrypt 0)
the security of the PRFs (the ciphertexts creating using pseudo-random
coins should be indistinguishable from regular ciphertexts).



Introduction Construction Extensions

Intuition of Security Proof

Intuitively, the only way that an attacker can lie about the output
y = F (D) is by producing a tag (γ̂1, . . . , γ̂k) where the ciphertexts γ̂i
for i /∈ S are computed correctly but for i ∈ S they are all modified so
as to encrypt the wrong output.
This should be hard due to

the semantic security of the FHE (hard to tell which ciphertexts
encrypt the data and which ones encrypt 0)
the security of the PRFs (the ciphertexts creating using pseudo-random
coins should be indistinguishable from regular ciphertexts).



Introduction Construction Extensions

Drawback 1: Verification Time

The size of the key and the tags is independent of the size of the data;
However the client verification time requires time proportional to the
computation of F (note that the client has to recompute γi from ci
using the FHE evaluation procedure for F ).



Introduction Construction Extensions

Drawback 1: Verification Time

The size of the key and the tags is independent of the size of the data;
However the client verification time requires time proportional to the
computation of F (note that the client has to recompute γi from ci
using the FHE evaluation procedure for F ).



Introduction Construction Extensions

Fast Verification Time

If we are willing to add interaction to our scheme we can obtain fast
verification (independent of the size of the program) by outsourcing the
verification task to the server!



Introduction Construction Extensions

Drawback 2: Verification Queries

Our construction is secure in the setting where the attacker cannot
make verification queries to test whether a maliciously produced tag
verifies correctly.

Similar to rejection problem in FHE-based secure delegation:
verification queries provide a decryption oracle for the FHE, which kills
semantic security
In practice, this means the client must stop using the scheme whenever
she gets the first tag that doesn’t verify correctly.



Introduction Construction Extensions

Drawback 2: Verification Queries

Our construction is secure in the setting where the attacker cannot
make verification queries to test whether a maliciously produced tag
verifies correctly.

Similar to rejection problem in FHE-based secure delegation:
verification queries provide a decryption oracle for the FHE, which kills
semantic security
In practice, this means the client must stop using the scheme whenever
she gets the first tag that doesn’t verify correctly.



Introduction Construction Extensions

Drawback 2: Verification Queries

Our construction is secure in the setting where the attacker cannot
make verification queries to test whether a maliciously produced tag
verifies correctly.

Similar to rejection problem in FHE-based secure delegation:
verification queries provide a decryption oracle for the FHE, which kills
semantic security
In practice, this means the client must stop using the scheme whenever
she gets the first tag that doesn’t verify correctly.



Introduction Construction Extensions

Handling Verification Queries

Assume that the FHE scheme satisfies an additional randomness
homomorphism property:

Recall that if c = FHEpk(D; r) then there is an algorithm Eval such
that for any function F : Eval(F, c) = FHE(F (D); r∗) for some
randomness r∗.
A randomness homomorphic FHE also has a second algorithm REval
such that r∗ = REval(F, r)

then our scheme remains secure in the presence of verification queries
the client will accept only queries where the randomness can be traced
to the original randomness
rejection of a verification query now does not provide the attacker with
a meaningful decryption oracle for the FHE



Introduction Construction Extensions

Handling Verification Queries

Assume that the FHE scheme satisfies an additional randomness
homomorphism property:

Recall that if c = FHEpk(D; r) then there is an algorithm Eval such
that for any function F : Eval(F, c) = FHE(F (D); r∗) for some
randomness r∗.
A randomness homomorphic FHE also has a second algorithm REval
such that r∗ = REval(F, r)

then our scheme remains secure in the presence of verification queries
the client will accept only queries where the randomness can be traced
to the original randomness
rejection of a verification query now does not provide the attacker with
a meaningful decryption oracle for the FHE



Introduction Construction Extensions

Handling Verification Queries

Assume that the FHE scheme satisfies an additional randomness
homomorphism property:

Recall that if c = FHEpk(D; r) then there is an algorithm Eval such
that for any function F : Eval(F, c) = FHE(F (D); r∗) for some
randomness r∗.
A randomness homomorphic FHE also has a second algorithm REval
such that r∗ = REval(F, r)

then our scheme remains secure in the presence of verification queries
the client will accept only queries where the randomness can be traced
to the original randomness
rejection of a verification query now does not provide the attacker with
a meaningful decryption oracle for the FHE



Introduction Construction Extensions

Handling Verification Queries

Assume that the FHE scheme satisfies an additional randomness
homomorphism property:

Recall that if c = FHEpk(D; r) then there is an algorithm Eval such
that for any function F : Eval(F, c) = FHE(F (D); r∗) for some
randomness r∗.
A randomness homomorphic FHE also has a second algorithm REval
such that r∗ = REval(F, r)

then our scheme remains secure in the presence of verification queries
the client will accept only queries where the randomness can be traced
to the original randomness
rejection of a verification query now does not provide the attacker with
a meaningful decryption oracle for the FHE



Introduction Construction Extensions

Handling Verification Queries

Assume that the FHE scheme satisfies an additional randomness
homomorphism property:

Recall that if c = FHEpk(D; r) then there is an algorithm Eval such
that for any function F : Eval(F, c) = FHE(F (D); r∗) for some
randomness r∗.
A randomness homomorphic FHE also has a second algorithm REval
such that r∗ = REval(F, r)

then our scheme remains secure in the presence of verification queries
the client will accept only queries where the randomness can be traced
to the original randomness
rejection of a verification query now does not provide the attacker with
a meaningful decryption oracle for the FHE



Introduction Construction Extensions

Handling Verification Queries

Assume that the FHE scheme satisfies an additional randomness
homomorphism property:

Recall that if c = FHEpk(D; r) then there is an algorithm Eval such
that for any function F : Eval(F, c) = FHE(F (D); r∗) for some
randomness r∗.
A randomness homomorphic FHE also has a second algorithm REval
such that r∗ = REval(F, r)

then our scheme remains secure in the presence of verification queries
the client will accept only queries where the randomness can be traced
to the original randomness
rejection of a verification query now does not provide the attacker with
a meaningful decryption oracle for the FHE



Introduction Construction Extensions

Open Questions

Do we really need FHE?
Remove the limitation on Verification Queries

Do randomness homomorphic FHE schemes exist?

Fully Homomorphic Signatures: add public verification to our
scheme;
Can we obtain verification time independent of F? Without
interaction and using only standard assumptions?
Reduce size of tags (right now O(k) where k is the security parameter)



Introduction Construction Extensions

Open Questions

Do we really need FHE?
Remove the limitation on Verification Queries

Do randomness homomorphic FHE schemes exist?

Fully Homomorphic Signatures: add public verification to our
scheme;
Can we obtain verification time independent of F? Without
interaction and using only standard assumptions?
Reduce size of tags (right now O(k) where k is the security parameter)



Introduction Construction Extensions

Open Questions

Do we really need FHE?
Remove the limitation on Verification Queries

Do randomness homomorphic FHE schemes exist?

Fully Homomorphic Signatures: add public verification to our
scheme;
Can we obtain verification time independent of F? Without
interaction and using only standard assumptions?
Reduce size of tags (right now O(k) where k is the security parameter)



Introduction Construction Extensions

Open Questions

Do we really need FHE?
Remove the limitation on Verification Queries

Do randomness homomorphic FHE schemes exist?

Fully Homomorphic Signatures: add public verification to our
scheme;
Can we obtain verification time independent of F? Without
interaction and using only standard assumptions?
Reduce size of tags (right now O(k) where k is the security parameter)



Introduction Construction Extensions

Open Questions

Do we really need FHE?
Remove the limitation on Verification Queries

Do randomness homomorphic FHE schemes exist?

Fully Homomorphic Signatures: add public verification to our
scheme;
Can we obtain verification time independent of F? Without
interaction and using only standard assumptions?
Reduce size of tags (right now O(k) where k is the security parameter)



Introduction Construction Extensions

Open Questions

Do we really need FHE?
Remove the limitation on Verification Queries

Do randomness homomorphic FHE schemes exist?

Fully Homomorphic Signatures: add public verification to our
scheme;
Can we obtain verification time independent of F? Without
interaction and using only standard assumptions?
Reduce size of tags (right now O(k) where k is the security parameter)


	Introduction
	Construction
	Extensions

