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Introduction

Multi-Party Computation

|deal world: n players, P = {P, ..., P.}




Introduction

Multi-Party Computation

Reality: n players, P = {Fy, ..., P.}




Introduction The Model

Multi-Party Computation

The Model: secure channels (with broadcast)




Introduction The Model

The Adversary

e unbounded central adversary LLLK’
e corrupts players ; l&

e passive/active g @ @

Threshold adversary:
e.g. strictly less then g corrupted players




Introduction The Model

Threshold Adversary




Introduction The Model

General Adversary

adversary structure Z = {73, .. ., Zz}




Introduction The Model

General Adversary

Conditions on the adversary structure Z:
e Q*(P.2)=P#Z,UZ NZ,Z,€Z
° Q3(P,Z) <P 7’é Z,'UZJ'UZ/( VZ,‘,ZJ',Z/( €z

Theorem ([HM97])

Z-secure MPC is possible iff

perfect security: Z satisfies Q3.
unconditional security: Z satisfies Q2.




Introduction Communication Complexity

Communication Complexity

e communication is expensive!
« known MPC protocols require | Z|*" bits of communication.

e near threshold, Q3: |Z| ~ (n73)

Example
n =30 = | Z| ~ 30'000'000:

Complexity |Z| |Z]? 1Z]?
Runtime 1 second | 347 days | 30 million years

Efficient protocols have a small exponent! )




Introduction

Communication Complexity

Communication Complexity

Setting Cond. | Bits / Mult. Reference
passive perfect | Q% | |Z] - Poly(n) | [Mau02]

active perfect Q3 | |Z)P-Poly(n) | [Mau02]

active perfect Q3 |Z|? - Poly(n) our result

active uncond. | Q% | |Z[*-Poly(n, k) | [Mau02]/[BFH*08]
active uncond. | Q3 | |Z]*-Poly(n, k) | [PSRO3]

active uncond. Q? | |Z] -Poly(n, k) | our result




Perfect Security Computation

The Computation

Specified by a circuit over finite field F:
e Input and output gates
e Addition gates
e Multiplication gates



Perfect Security VSS

Verifiable Secret Sharing (VSS)
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Perfect Security

Verifiable Secret Sharing (VSS)

VSS

=
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Perfect Security VSS

Verifiable Secret Sharing (VSS)

Let S = ZIC

A value s is shared if
e s splitin random summands s, . . ., Sz
e VP € S; knows s;.

Denote a shared s by [s].

Protocols: [Mau02]
e Share

e Reconstruct

Both protocols have complexity | Z| - Poly(n)




Perfect Security Computation

The Computation

Specified by a circuit over finite field F:
e Input and output gates: Share / Reconstruct | Z] - Poly(n)
e Addition gates: linearity of VSS for free!
e Multiplication gates of shared values:

a=ay+-+az, b=b 4+ +bg

zl 12 1zl 12|

ab—Za,Zb —ZZ(ab

i=1 j=1



Perfect Security Multiplication

Passive Multiplication

Multiplication([a], [b]) [Mau02]

For each (i,)) do
e Some P, € S;N S, shares a;b; as [v;]

|Z)? products
|Z] - Poly(n)

end
for free )

Complexity: |Z]* - Poly(n)




Perfect Security Multiplication

Passive Multiplication

Multiplication([a], [b]) [Mau02]
For each (i,)) do

e Some P, € S;N'S, shares a;b; as [v;] | Z| - Poly(n)
end
|Z]
[ab] = > "[vy] for free
ij=1
Optimization:
Complexity: | Z]| - Poly(n) Each P shares ) v;

|Z)? products

(iJ)ELk



Perfect Security Multiplication

Active Multiplication

Multiplication([a], [b]) [Mau02]

For each (i,)) do

o Every P, € 5N S; share a;b; as [v}s

end
|Z]
[ab] = > "[v}
iJj=1

|Z)? products
|Z] - Poly(n)

Check: [v}] — [vA] £ 0 VA

for free

Complexity:  ||Z|° - Poly(n)




Perfect Security Multiplication

Optimistic Active Multiplication

Assume Z, is the adversary set:

Optimistic Multiplication([a], [b], Zk)
For each (i, j) do |Z|? products
e Some P € S,‘ N Sj \ Ly shares a,'bj as [V,'J'] |Z| ° Poly(n)

end
|Z]

[ab] = > "[vy] for free
iJj=1

Protocol secure against Z,!

Complexity: |Z]* - Poly(n)




Perfect Security Multiplication

Optimistic Active Multiplication

Assume Z, is the adversary set:

Optimistic Multiplication([a], [b], Zk)
For each (i, j) do |Z|? products
e Some P € S,‘ N Sj \ Ly shares a,'bj as [V,'J'] |Z| ° Poly(n)

end
|Z]

[ab] = > "[vy] for free
iJj=1

Optimization:
Each P, shares Z vy

(iJ)elk —

Complexity:  |Z] - Poly(n)




Perfect Security Multiplication

Efficient Multiplication

Multiplication([a], [b])

For each Z, € Z do |Z| sets
e [ck] := Optimistic Multiplication([a], [b], Zk)- | Z] - Poly(n)

end

Check: [a1] — [ck] = 0 Yk 1Z)? - Poly(n)

If yes [ab] := [c1] , otherwise eliminate a cheater and repeat!

Complexity: | Z]* - Poly(n)

At most n times!



Perfect Security Multiplication

The Computation

Specified by a circuit over finite field F:
e Input and output gates: Share / Reconstruct | Z] - Poly(n)
e Addition gates: linearity of VSS for free!
« Multiplication gates : Optimistic Multiplication |Z]*- Poly(n)



Overview

Unconditional protocol:

o Sharing with Information Checking (Q?)
e Optimistic Multiplication with probabilistic checks
e Bits per multiplication: |Z] - Poly(n, k)



Conclusion

Overview

Setting Cond. | Bits / Mult. Reference
passive perfect | Q% | |Z] - Poly(n) [Mau02]

active perfect Q3 | |Z)° - Poly(n) | [Mau02]

active perfect Q3 | |Z[>-Poly(n) | our result
activeuncond. | Q2 | |Z|® Poly(n, k) | [MauO2]/[BFH*08]
active uncond. | Q* | |Z]*-Poly(n, k) | [PSR03]

active uncond. Q2 | |Z|-Poly(n, k) | ourresult

Precise bounds
see paper!
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