Efficient General-Adversary Multi-Party Computation

Martin Hirt, Daniel Tschudi

ETH Zurich

Dec 2013

Multi-Party Computation

Ideal world: n players, $\mathcal{P} = \{P_1, \ldots, P_n\}$

Multi-Party Computation

Reality: n players, $\mathcal{P} = \{P_1, \dots, P_n\}$

Multi-Party Computation

The Model: secure channels (with broadcast)

The Adversary

- unbounded central adversary
- corrupts players
- passive/active

Example

Threshold adversary:

e.g. strictly less then $\frac{n}{3}$ corrupted players

Threshold Adversary

General Adversary

adversary structure $\mathcal{Z} = \{Z_1, \dots, Z_{|\mathcal{Z}|}\}$

General Adversary

Conditions on the adversary structure \mathcal{Z} :

- $Q^2(\mathcal{P}, \mathcal{Z}) : \iff \mathcal{P} \neq Z_i \cup Z_j \quad \forall Z_i, Z_j \in \mathcal{Z}$
- $Q^3(\mathcal{P}, \mathcal{Z}) : \iff \mathcal{P} \neq Z_i \cup Z_j \cup Z_k \quad \forall Z_i, Z_j, Z_k \in \mathcal{Z}$

Theorem ([HM97])

 \mathcal{Z} -secure MPC is possible iff

perfect security: \mathcal{Z} satisfies \mathcal{Q}^3 .

unconditional security: Z satisfies Q^2 .

Communication Complexity

- communication is expensive!
- known MPC protocols require $|\mathcal{Z}|^{\mathcal{C}(1)}$ bits of communication.
- near threshold, Q^3 : $|\mathcal{Z}| \approx \binom{n}{n/3}$

Example

$$n = 30 \Rightarrow |\mathcal{Z}| \approx 30'000'000$$
:

Complexity	$ \mathcal{Z} $	$ \mathcal{Z} ^2$	$ \mathcal{Z} ^3$
Runtime	1 second	347 days	30 million years

Efficient protocols have a small exponent!

Communication Complexity

Setting	Cond.	Bits / Mult.	Reference
passive perfect	\mathcal{Q}^2	$ \mathcal{Z} $ · Poly(n)	[Mau02]
active perfect	\mathcal{Q}^3	$ \mathcal{Z} ^3 \cdot Poly(n)$	[Mau02]
active perfect	Q^3	$ \mathcal{Z} ^2 \cdot Poly(n)$	our result
active uncond.	\mathcal{Q}^2	$ \mathcal{Z} ^3 \cdot Poly(n, \kappa)$	[Mau02]/[BFH+08]
active uncond.	\mathcal{Q}^3	$\left \; \mathcal{Z} ^2 \cdot Poly(n,\kappa) \right $	[PSR03]
active uncond.	\mathcal{Q}^2	$\mid \mathcal{Z} \mid \cdot Poly(n,\kappa)$	our result

The Computation

Specified by a circuit over finite field \mathbb{F} :

- Input and output gates
- Addition gates
- Multiplication gates

Verifiable Secret Sharing (VSS)

Verifiable Secret Sharing (VSS)

Linearity!

Verifiable Secret Sharing (VSS)

Let
$$S_i := Z_i^c$$

A value s is shared if

- s split in random summands $s_1, \ldots, s_{|\mathcal{Z}|}$
- $\forall P \in S_i \text{ knows } s_i$.

Denote a shared s by [s].

Protocols: [Mau02]

- Share
- Reconstruct

Both protocols have complexity $|\mathcal{Z}| \cdot Poly(n)$

The Computation

Specified by a circuit over finite field \mathbb{F} :

- Input and output gates: Share / Reconstruct $|\mathcal{Z}| \cdot \mathsf{Poly}(n)$
- Addition gates: linearity of VSS for free!
- Multiplication gates of shared values:

$$a = a_1 + \dots + a_{|\mathcal{Z}|}, \quad b = b_1 + \dots + b_{|\mathcal{Z}|}$$

$$ab = \sum_{i=1}^{|\mathcal{Z}|} a_i \sum_{i=1}^{|\mathcal{Z}|} b_j = \sum_{i=1}^{|\mathcal{Z}|} \sum_{i=1}^{|\mathcal{Z}|} (a_i b_j)$$

Passive Multiplication

Multiplication([a], [b]) [Mau02]

For each (i, j) do

end

Complexity: $|\mathcal{Z}|^3 \cdot \text{Poly}(n)$

• Some $P_k \in S_i \cap S_i$ shares $a_i b_i$ as $[v_{ii}]$

 $|\mathcal{Z}| \cdot \mathsf{Poly}(n)$

 $|\mathcal{Z}|^2$ products

for free

Passive Multiplication

Multiplication([a], [b]) [Mau02]

For each (i, j) do

$$|\mathcal{Z}|^2$$
 products

or each (1, 1) at

• Some
$$P_k \in S_i \cap S_j$$
 shares $a_i b_j$ as $[v_{ij}]$ $|\mathcal{Z}| \cdot \mathsf{Poly}(n)$

end

$$[ab] = \sum^{|\mathcal{Z}|} [v_{ij}]$$

for free

Complexity:
$$|\mathcal{Z}| \cdot \mathsf{Poly}(n)$$

Optimization:
Each
$$P_k$$
 shares $\sum_{(i,j)\in L_k} v_{ij}$

Multiplication

Active Multiplication

Multiplication([a], [b]) [Mau02]

For each (i, j) do

 $[ab] = \sum_{i=1}^{\infty} [v_{ij}^1]$

$$|\mathcal{Z}|^2$$
 products

• Every
$$P_k \in S_i \cap S_j$$
 share $a_i b_j$ as $[v_{ij}^k]$

end

Check:
$$[v_{ii}^1] - [v_{ii}^k] \stackrel{?}{=} 0 \ \forall P_k$$

for free

 $|\mathcal{Z}| \cdot \mathsf{Poly}(n)$

 $|\mathcal{Z}|^3 \cdot \mathsf{Poly}(n)$ Complexity:

Optimistic Active Multiplication

Assume Z_k is the adversary set:

Optimistic Multiplication([a], [b], Z_k)

For each (i, j) do

or each
$$(i, j)$$
 do $|\mathcal{Z}|^2$ products

• Some $P_k \in S_i \cap S_i \setminus Z_k$ shares $a_i b_i$ as $[v_{ij}] = |\mathcal{Z}| \cdot \mathsf{Poly}(n)$

end

$$[ab] = \sum_{i=1}^{|\mathcal{Z}|} [v_{ij}]$$

for free

Complexity: $|\mathcal{Z}|^3 \cdot \text{Poly}(n)$

Protocol secure against $Z_k!$

Optimistic Active Multiplication

Assume Z_k is the adversary set:

Optimistic Multiplication([a], [b], Z_k)

For each (i, j) do

• Some
$$P_k \in S_i \cap S_i \setminus Z_k$$
 shares $a_i b_i$ as $[v_{ij}] = |\mathcal{Z}| \cdot \mathsf{Poly}(n)$

end

$$[ab] = \sum_{i,j=1}^{|\mathcal{Z}|} [v_{ij}]$$

Complexity:
$$|\mathcal{Z}| \cdot Poly(n)$$

for free

 $|\mathcal{Z}|^2$ products

Optimization:

Each P_k shares $\sum_{(i,j)\in L_k} v_{ij}$

Efficient Multiplication

Multiplication([a], [b])

For each $Z_k \in Z$ do

$$|\mathcal{Z}|$$
 sets $|\mathcal{Z}| \cdot \mathsf{Poly}(n)$

end

Check:
$$[c_1] - [c_k] \stackrel{?}{=} 0 \quad \forall k$$

$$|\mathcal{Z}|^2 \cdot \mathsf{Poly}(n)$$

If yes $[ab] := [c_1]$, otherwise eliminate a cheater and repeat!

• $[c_k] := \text{Optimistic Multiplication}([a], [b], Z_k).$

Complexity: $|\mathcal{Z}|^2 \cdot \text{Poly}(n)$

At most *n* times!

The Computation

Specified by a circuit over finite field \mathbb{F} :

```
    Input and output gates: Share / Reconstruct

                                                                            |\mathcal{Z}|\cdot \mathsf{Poly}(n)
```

- Addition gates: linearity of VSS for free!
- $|\mathcal{Z}|^2 \cdot \mathsf{Poly}(n)$ • Multiplication gates: Optimistic Multiplication

Unconditional protocol:

- Sharing with Information Checking (Q²)
- Optimistic Multiplication with probabilistic checks
- Bits per multiplication: $|\mathcal{Z}| \cdot \mathsf{Poly}(n, \kappa)$

Conclusion

Setting	Cond.	Bits / Mult.	Reference
passive perfect	Q^2	$ \mathcal{Z} \cdot Poly(n)$	[Mau02]
active perfect	Q^3	$ \mathcal{Z} ^3 \cdot Poly(n)$	[Mau02]
active perfect	Q^3	$ \mathcal{Z} ^2 \cdot Poly(n)$	our result
active uncond.	\mathcal{Q}^2	$ \mathcal{Z} ^3 \cdot Poly(n, \kappa)$	[Mau02]/[BFH+08]
active uncond.	\mathcal{Q}^3	$ \mathcal{Z} ^2 \cdot Poly(n, \kappa)$	[PSR03]
active uncond.	\mathcal{Q}^2	$ \mathcal{Z} \cdot Poly(\mathit{n},\kappa)$	our result

Precise bounds see paper!