

A Modular Framework for Building Variable-Input-
Length Tweakable Ciphers

Thomas Shrimpton and Seth Terashima

Portland State University

Motivation:
Full Disk Encryption

File System

Virtual Disk
(Exposes plaintexts)

FDE

Physical Disk
(Stores ciphertexts)

Motivation:
Full Disk Encryption

● Disks encrypted sector-by-sector

– Plaintexts are sectors

– No “file” abstraction

File System

Virtual Disk
(Exposes plaintexts)

FDE

Physical Disk
(Stores ciphertexts)

Motivation:
Full Disk Encryption

● Disks encrypted sector-by-sector

– Plaintexts are sectors

– No “file” abstraction
● Accessing a plaintext shouldn't

result in accessing multiple HW
sectors

File System

Virtual Disk
(Exposes plaintexts)

FDE

Physical Disk
(Stores ciphertexts)

Motivation:
Full Disk Encryption

● Disks encrypted sector-by-sector

– Plaintexts are sectors

– No “file” abstraction
● Accessing a plaintext shouldn't

result in accessing multiple HW
sectors

File System

Virtual Disk
(Exposes plaintexts)

FDE

● No room for IV bits

● No room for MAC bits

Therefore plaintext length =
ciphertext length

Physical Disk
(Stores ciphertexts)

C1 C2 Cn

File System

Sector 1 Sector 2 Sector nVirtual disk

Physical disk

FDE
layer

C1 C2 Cn

File System

Sector 1 Sector 2 Sector n

Problem: This looks
uncomfortably like ECB
(albeit with 4kB blocks)...

Virtual disk

Physical disk

FDE
layer

C1 C2 Cn

File System

Sector 1 Sector 2 Sector n

Problem: This looks
uncomfortably like ECB
(albeit with 4kB blocks)...

1 2 n

Solution (?): Use Sector
IDs as IVs.

Virtual disk

Physical disk

FDE
layer

Nonce-based encryption isn't enough.

● What if an attacker images the disk at two
different times?

Nonce-based encryption isn't enough.

● What if an attacker images the disk at two
different times?

should look like a random permutation

Should only leak equality of plaintexts

Nonce-based encryption isn't enough.

● What if an attacker images the disk at two
different times?

● What if an attacker tampers with a ciphertext?

should look like a random permutation

Should only leak equality of plaintexts

Nonce-based encryption isn't enough.

● What if an attacker images the disk at two
different times?

● What if an attacker tampers with a ciphertext?

should look like a random permutation

Should only leak equality of plaintexts

should look like a random permutation

Entire plaintext sector should be corrupted

C1 C2 Cn

File System

Sector 1 Sector 2 Sector n

1 2 n

Virtual disk

Physical disk

FDE
layer

C1 C2 Cn

File System

Sector 1 Sector 2 Sector nVirtual disk

Physical disk

FDE
layer

Tweakable (block)ciphers

● A good tweakable blockcipher “looks like” a family of
independent, random permutations

Tweakable (block)ciphers

● A good tweakable blockcipher “looks like” a family of
independent, random permutations

Tweakable (block)ciphers

● A good tweakable blockcipher “looks like” a family of
independent, random permutations

Tweak

Family of independent, random permutations

Tweakable (block)ciphers

● A good tweakable blockcipher “looks like” a family of
independent, random permutations

Tweak

Family of independent, random permutations

Tweakable (block)ciphers

● A good tweakable blockcipher “looks like” a family of
independent, random permutations

● FDE demands a “wideblock” STPRP (512 or 4096 byte blocks)

Tweak

VIL Tweakable Ciphers

● VIL = Variable input length

– Still preserves length of input

– Random permutation for each length and tweak

VIL Tweakable Ciphers

● VIL = Variable input length

– Still preserves length of input

– Random permutation for each length and tweak
● Existing constructions

– CMC, EME*, PEP, TET, HEH, HCTR, …

– Security reduction to underlying n-bit blockcipher

– Birthday-bound security (wrt n)

– Either:
2 blockcipher calls or

1 blockcipher call, 1 GF multiply

per n bits of input

PIV: A new approach to VIL TCs

AEAD from VIL TCs

Results

PIV: A new approach to VIL TCs

AEAD from VIL TCs

Results

PIV: A new approach to VIL TCs
● TCT2: First to break the birthday bound

AEAD from VIL TCs

Results

PIV: A new approach to VIL TCs
● TCT2: First to break the birthday bound

● TCT1: First to require a single blockcipher call (and no finite
field multiplications) for each n bits of input

AEAD from VIL TCs

Results

PIV: A new approach to VIL TCs
● TCT2: First to break the birthday bound

● TCT1: First to require a single blockcipher call (and no finite
field multiplications) for each n bits of input

● Simple, easily verified security proof

AEAD from VIL TCs

Results

Protected IV Mode

Protected IV Mode

N-bit TBC

Protected IV Mode

N-bit TBC

VIL Tweakable
Cipher

Protected IV Mode

N-bit TBC

VIL Tweakable
Cipher

Only needs to be secure
against adversaries that never
repeat tweaks.

Doesn't repeat a tweakDoesn't repeat a tweak

Doesn't repeat a tweakDoesn't repeat a tweak

Does a “protected”
IV repeat?

Does YL look
random?

If we start with an n-bit blockcipher, we
beat the b'day bound if N > n.

If we start with an n-bit blockcipher, we
beat the b'day bound if N > n.

Okay if is slow as long as N ≪ m and is efficient

If we start with an n-bit blockcipher, we
beat the b'day bound if N > n.

Standard 4KB disc sector, to scale (N = 256 bits)

Okay if is slow as long as N ≪ m and is efficient

TCT2: Constructing

● Optimized for sector-sized messages (arbitrary length
messages require incrementing the protected IV)

● Setting = CLRW2 [LST '12] gives beyond b'day security

– Makes two blockcipher calls per invocation

● Build an N = 2n-bit TBC out
of an n-bit TBC [CDMS '10]

TCT2: Constructing

● Build an N = 2n-bit TBC out
of an n-bit TBC [CDMS '10]

● Implement the n-bit TBC
using CLRW2 [LST '12]
over, e.g., AES

TCT2: Constructing

● Build an N = 2n-bit TBC out
of an n-bit TBC [CDMS '10]

● Implement the n-bit TBC
using CLRW2 [LST '12]
over, e.g., AES

● Use NH [BHKKR '99] to
extend the tweak length

TCT2: Constructing

● Build an N = 2n-bit TBC out
of an n-bit TBC [CDMS '10]

● Implement the n-bit TBC
using CLRW2 [LST '12]
over, e.g., AES

● Use NH [BHKKR '99] to
extend the tweak length

● Secure to O(22n/3) queries

TCT2: Constructing

● Build an N = 2n-bit TBC out
of an n-bit TBC [CDMS '10]

● Implement the n-bit TBC
using CLRW2 [LST '12]
over, e.g., AES

● Use NH [BHKKR '99] to
extend the tweak length

● Secure to O(22n/3) queries

● The two F calls make a total:

– 28 multiplies in GFn

– 12 n-bit blockcipher calls

TCT2: Constructing

● Build an N = 2n-bit TBC out of
an n-bit TBC [CDMS '10]

● Implement the n-bit TBC using
CLRW2 [LST '12] over, e.g.,
AES

● Use NH [BHKKR '99] to
extend the tweak length

● Secure to O(22n/3) queries

● The two F calls make a total:

– 28 multiplies in GFn

– 12 n-bit blockcipher calls
● Potentially expensive for short

inputs, fine for long ones

TCT2: Constructing

Comparison with other modes

Mode BC Calls GF Multiplies Ring Ops Queries Reference

EME* 2s + 3 --- --- 2n/2 Halevi '04;
Halevi, Rogaway '03

HEH s + 1 s + 2 --- 2n/2 Sarkar '07, '09

TCT1 s + 1 5 16s 2n/2

TCT2 2s + 8 32 32s 22n/3

Typical: s = 256 (4KB sectors, AES)

Computational cost on sn-bit inputs

S
ec

ur
ity

 B
ou

nd

PIV: A new approach to VIL TCs

AEAD from VIL TCs

Results

VIL Tweakable Cipher

Ciphertext

PayloadHeader Seq. No.

Unique sequence numbers
can provide privacy

VIL Tweakable Cipher

Ciphertext

PayloadHeader Seq. No.

Unique sequence numbers
can provide privacy

Security largely agnostic to the nature,
location of uniqueness

VIL Tweakable Cipher

Ciphertext

PayloadHeader Seq. No. 0x000000

Simple padding can ensure
authenticity (language of
padded strings is “sparse”).

VIL Tweakable Cipher

Ciphertext

PayloadHeader

Seq. No. Encoder

Encoded PayloadEncoded Header

Encoded Header

cf. “Encode then Encrypt” [Bellare and Rogaway '00]

VIL Tweakable Cipher

Ciphertext

PayloadHeader

Seq. No. Encoder

Encoded PayloadEncoded Header

Encoded Header

Decryption checks
membership in this
language to ensure
authenticity

cf. “Encode then Encrypt” [Bellare and Rogaway '00]

, then we get b bits of authenticity.

If and for all n,

● Payload may be mapped into during an explicit encoding
step (e.g., pad with 0x00..00)

, then we get b bits of authenticity.

If and for all n,

● Payload may be mapped into during an explicit encoding
step (e.g., pad with 0x00..00)

● Payload may already be in some “sparse” language (e.g., a
protocol with human-readable fields, checksums)

– No ciphertext stretch!

, then we get b bits of authenticity.

If and for all n,

● Payload may be mapped into during an explicit encoding
step (e.g., pad with 0x00..00)

● Payload may already be in some “sparse” language (e.g., a
protocol with human-readable fields, checksums)

– No ciphertext stretch!
● Remains secure even with multiple error messages

– Errors can depend on encoded payload

, then we get b bits of authenticity.

If and for all n,

● Payload may be mapped into during an explicit encoding
step (e.g., pad with 0x00..00)

● Payload may already be in some “sparse” language (e.g., a
protocol with human-readable fields, checksums)

– No ciphertext stretch!
● Remains secure even with multiple error messages

– Errors can depend on encoded payload
● Nonce-misuse resistance

, then we get b bits of authenticity.

If and for all n,

● Payload may be mapped into during an explicit encoding
step (e.g., pad with 0x00..00)

● Payload may already be in some “sparse” language (e.g., a
protocol with human-readable fields, checksums)

– No ciphertext stretch!
● Remains secure even with multiple error messages

– Errors can depend on encoded payload
● Nonce-misuse resistance

● NM-CPA/IND-CCA not enough [AnBellare01]

VIL Tweakable Cipher

Ciphertext

PayloadHeader Seq. No. Checksum

● Checksum, sequence no.
produced/verified in existing
protocol

● Encode-Encipher allows
length-preserving AEAD

● Checksum becomes a MAC
● “Bad Checksum” error won't

leak info about original
payload

● Possible use-case: low-
power wireless networks

Wrapping up

● PIV: New VIL TC
– Can beat b'day bound

at little cost

● AEAD from a VIL TC
– Privacy & authenticity

from broad classes of
encodings

– Possibility of zero
ciphertext stretch

– Robust against
multiple error
messages

Questions?

	Slide 1
	page2 (1)
	page2 (2)
	page2 (3)
	page2 (4)
	page3 (1)
	page3 (2)
	page3 (3)
	page4 (1)
	page4 (2)
	page4 (3)
	page4 (4)
	page5 (1)
	page5 (2)
	page6 (4)
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	page7 (2)
	page7 (3)
	Slide 22
	page9 (1)
	page9 (2)
	page9 (3)
	page9 (4)
	page10 (1)
	page10 (2)
	page10 (3)
	page10 (4)
	page12 (1)
	page12 (2)
	page12 (3)
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)
	Slide 41
	page15 (2)
	page15 (3)
	page15 (4)
	page15 (5)
	page15 (6)
	page15 (7)
	Slide 48
	Slide 49
	Slide 53
	Slide 54
	Slide 55
	page22 (1)
	page22 (2)
	page23 (4)
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

