A Modular Framework for Building Variable-Input-Length Tweakable Ciphers

Thomas Shrimpton and Seth Terashima

Portland State University

- Disks encrypted sector-by-sector
 - Plaintexts are sectors
 - No "file" abstraction

- Disks encrypted sector-by-sector
 - Plaintexts are sectors
 - No "file" abstraction
- Accessing a plaintext shouldn't result in accessing multiple HW sectors

- Disks encrypted sector-by-sector
 - Plaintexts are sectors
 - No "file" abstraction
- Accessing a plaintext shouldn't result in accessing multiple HW sectors

Therefore plaintext length = ciphertext length

- No room for IV bits
- No room for MAC bits

Problem: This looks uncomfortably like ECB (albeit with 4kB blocks)...

Problem: This looks uncomfortably like ECB (albeit with 4kB blocks)...

Solution (?): Use Sector IDs as IVs.

• What if an attacker images the disk at two different times?

• What if an attacker images the disk at two different times?

Should only leak equality of plaintexts

 $\mathcal{E}_K(n,\cdot)$ should look like a random permutation

• What if an attacker images the disk at two different times?

Should only leak equality of plaintexts

 $\mathcal{E}_K(n,\cdot)$ should look like a random permutation

• What if an attacker tampers with a ciphertext?

• What if an attacker images the disk at two different times?

Should only leak equality of plaintexts

 $\mathcal{E}_K(n,\cdot)$ should look like a random permutation

• What if an attacker tampers with a ciphertext?

Entire plaintext sector should be corrupted $\mathcal{E}_{K}^{-1}(n,\cdot) \text{ should look like a random permutation}$

• A good *tweakable* blockcipher "looks like" a *family* of independent, random permutations

• A good *tweakable* blockcipher "looks like" a *family* of independent, random permutations

 $\widetilde{E}: \mathcal{K} \times \mathcal{T} \times \{0, 1\}^n \to \{0, 1\}^n$

• A good *tweakable* blockcipher "looks like" a *family* of independent, random permutations

$$\widetilde{E}: \mathcal{K} \times \mathcal{T} \times \{0,1\}^n \to \{0,1\}^n$$
Tweak

• A good tweakable blockcipher "looks like" a family of independent, random permutations

$$\widetilde{E}: \mathcal{K} \times \mathcal{T} \times \{0, 1\}^{n} \to \{0, 1\}^{n}$$

$$\operatorname{Tweak}$$

$$\operatorname{Adv}_{\widetilde{E}}^{\widetilde{\operatorname{sprp}}}(A) = \Pr\left[A^{\widetilde{E}_{K}, \widetilde{E}_{K}^{-1}} \Rightarrow 1\right] - \Pr\left[A_{\blacktriangle}^{\Pi, \Pi^{-1}} \Rightarrow 1\right]$$

$$\operatorname{Eamily of independent} \operatorname{random permutations} -$$

ranniy of independent, random permutations

• A good *tweakable* blockcipher "looks like" a *family* of independent, random permutations

$$\widetilde{E}: \mathcal{K} \times \mathcal{T} \times \{0, 1\}^{n} \to \{0, 1\}^{n}$$

$$\operatorname{Tweak}$$

$$\operatorname{Adv}_{\widetilde{E}}^{\widetilde{\operatorname{sprp}}}(A) = \Pr\left[A^{\widetilde{E}_{K}, \widetilde{E}_{K}^{-1}} \Rightarrow 1\right] - \Pr\left[A_{\bullet}^{\Pi, \Pi^{-1}} \Rightarrow 1\right]$$

$$\operatorname{Family of independent, random permutations}$$

• FDE demands a "wideblock" STPRP (512 or 4096 byte blocks)

VIL Tweakable Ciphers

- VIL = Variable input length
 - Still preserves length of input
 - Random permutation for each length and tweak

VIL Tweakable Ciphers

- VIL = Variable input length
 - Still preserves length of input
 - Random permutation for each length and tweak
- Existing constructions
 - CMC, EME*, PEP, TET, HEH, HCTR, ...
 - Security reduction to underlying *n*-bit blockcipher
 - Birthday-bound security (wrt *n*)
 - Either:

2 blockcipher calls or

1 blockcipher call, 1 GF multiply

per *n* bits of input

PIV: A new approach to VIL TCs

PIV: A new approach to VIL TCs

PIV: A new approach to VIL TCs

• TCT2: First to break the birthday bound

PIV: A new approach to VIL TCs

- TCT2: First to break the birthday bound
- TCT1: First to require a single blockcipher call (and no finite field multiplications) for each *n* bits of input

PIV: A new approach to VIL TCs

- TCT2: First to break the birthday bound
- TCT1: First to require a single blockcipher call (and no finite field multiplications) for each *n* bits of input
- Simple, easily verified security proof

$$|X_L| = N$$
 $|X_R| \in \{m, m+1, \ldots\}$

$$|X_L| = N$$
 $|X_R| \in \{m, m+1, \ldots\}$

 Y_L

- Optimized for sector-sized messages (arbitrary length messages require incrementing the protected IV)
- Setting \widetilde{G} = CLRW2 [LST '12] gives beyond b'day security
 - Makes two blockcipher calls per invocation

 Build an N = 2n-bit TBC out of an n-bit TBC [CDMS '10]

- Build an N = 2n-bit TBC out of an n-bit TBC [CDMS '10]
- Implement the *n*-bit TBC using CLRW2 [LST '12] over, e.g., AES

- Build an *N* = 2*n*-bit TBC out of an *n*-bit TBC [CDMS '10]
- Implement the *n*-bit TBC using CLRW2 [LST '12] over, e.g., AES
- Use NH [BHKKR '99] to extend the tweak length

- Build an *N* = 2*n*-bit TBC out of an *n*-bit TBC [CDMS '10]
- Implement the *n*-bit TBC using CLRW2 [LST '12] over, e.g., AES
- Use NH [BHKKR '99] to extend the tweak length
- Secure to O(2^{2n/3}) queries

- Build an *N* = 2*n*-bit TBC out of an *n*-bit TBC [CDMS '10]
- Implement the *n*-bit TBC using CLRW2 [LST '12] over, e.g., AES
- Use NH [BHKKR '99] to extend the tweak length
- Secure to O(2^{2n/3}) queries
- The two F calls make a total:
 - 28 multiplies in GF_n
 - 12 *n*-bit blockcipher calls

- Build an N = 2n-bit TBC out of an n-bit TBC [CDMS '10]
- Implement the *n*-bit TBC using CLRW2 [LST '12] over, e.g., AES
- Use NH [BHKKR '99] to extend the tweak length
- Secure to O(2^{2n/3}) queries
- The two F calls make a total:
 - 28 multiplies in GF_n
 - 12 *n*-bit blockcipher calls
- Potentially expensive for short inputs, fine for long ones

Comparison with other modes

Computational cost on sn-bit inputs

Mode	BC Calls	GF Multiplies	Ring Ops	Queries	Reference
EME*	2s + 3			2 ^{n/2}	Halevi '04; Halevi, Rogaway '03
HEH	s + 1	s + 2		2 ^{n/2}	Sarkar '07, '09
TCT1	s + 1	5	16s	2 ^{n/2}	
TCT2	2s + 8	32	32s	2 ^{2n/3}	

Typical: s = 256 (4KB sectors, AES)

PIV: A new approach to VIL TCs

cf. "Encode then Encrypt" [Bellare and Rogaway '00]

cf. "Encode then Encrypt" [Bellare and Rogaway '00]

If Payload
$$\in \mathcal{L} \subseteq \{0,1\}^*$$
 and for all n ,
$$\frac{|\mathcal{L} \cap \{0,1\}^n|}{2^n} \leq 2^{-b}$$
, then we get b bits of authenticity.

- Payload may be mapped into ${\cal L}$ during an explicit encoding step (e.g., pad with 0x00..00)

If Payload
$$\in \mathcal{L} \subseteq \{0,1\}^*$$
 and for all n ,
$$\frac{|\mathcal{L} \cap \{0,1\}^n|}{2^n} \leq 2^{-b}$$
, then we get b bits of authenticity.

- Payload may be mapped into \mathcal{L} during an explicit encoding step (e.g., pad with 0x00..00)
- Payload may already be in some "sparse" language (e.g., a protocol with human-readable fields, checksums)
 - No ciphertext stretch!

If Payload
$$\in \mathcal{L} \subseteq \{0,1\}^*$$
 and for all n ,
$$\frac{|\mathcal{L} \cap \{0,1\}^n|}{2^n} \leq 2^{-b}$$
, then we get b bits of authenticity.

- Payload may be mapped into \mathcal{L} during an explicit encoding step (e.g., pad with 0x00..00)
- Payload may already be in some "sparse" language (e.g., a protocol with human-readable fields, checksums)
 - No ciphertext stretch!
- Remains secure even with multiple error messages
 - Errors can depend on encoded payload

If Payload
$$\in \mathcal{L} \subseteq \{0,1\}^*$$
 and for all n ,
$$\frac{|\mathcal{L} \cap \{0,1\}^n|}{2^n} \leq 2^{-b}$$
, then we get b bits of authenticity.

- Payload may be mapped into \mathcal{L} during an explicit encoding step (e.g., pad with 0x00..00)
- Payload may already be in some "sparse" language (e.g., a protocol with human-readable fields, checksums)
 - No ciphertext stretch!
- Remains secure even with multiple error messages
 - Errors can depend on encoded payload
- Nonce-misuse resistance

If Payload
$$\in \mathcal{L} \subseteq \{0,1\}^*$$
 and for all n ,
$$\frac{|\mathcal{L} \cap \{0,1\}^n|}{2^n} \leq 2^{-b}$$
, then we get b bits of authenticity.

- Payload may be mapped into \mathcal{L} during an explicit encoding step (e.g., pad with 0x00..00)
- Payload may already be in some "sparse" language (e.g., a protocol with human-readable fields, checksums)
 - No ciphertext stretch!
- Remains secure even with multiple error messages
 - Errors can depend on encoded payload
- Nonce-misuse resistance
- NM-CPA/IND-CCA not enough [AnBellare01]

Wrapping up

- PIV: New VIL TC
 - Can beat b'day bound at little cost
- AEAD from a VIL TC
 - Privacy & authenticity from broad classes of encodings
 - Possibility of zero ciphertext stretch
 - Robust against multiple error messages

Questions?