Leaked-State-Forgery Attack against the Authenticated Encryption Algorithm ALE

Shengbao Wu^{1,3}, Hongjun Wu², Tao Huang², Mingsheng Wang⁴, and Wenling Wu¹

¹Institute of Software, Chinese Academy of Sciences, China
 ²Nanyang Technological University, Singapore,
 ³Graduate School of Chinese Academy of Sciences, China
 ⁴Institute of Information Engineering, Chinese Academy of Sciences, China

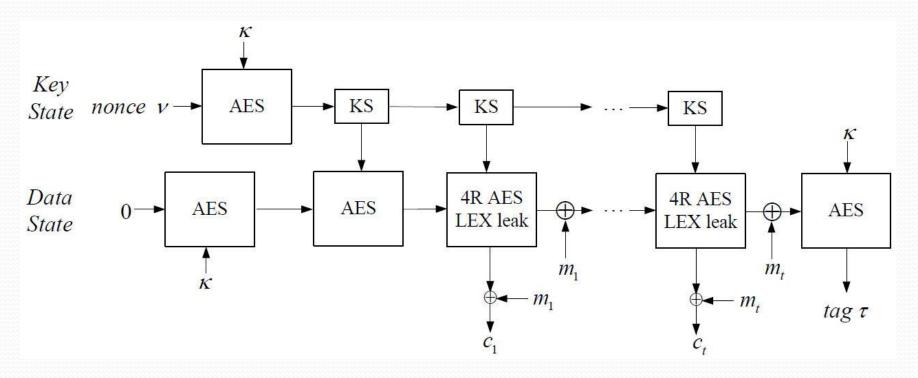
- Introduction
- A Basic Leaked-State-Forgery Attack on ALE
- Optimized Attack
- Effect of Removing the Whitening Key Layer
- Experiments on a Reduced Version of ALE
- Conclusion

Introduction

- A Basic Leaked-State-Forgery Attack on ALE
- Optimized Attack
- Effect of Removing the Whitening Key Layer
- Experiments on a Reduced Version of ALE
- Conclusion

Introduction:

Authenticated Encryption


- Authenticated Encryption: Composition of encryption and message authentication
 - Encrypt-then-MAC (IPsec)
 - MAC-then-Encrypt (TLS)
 - Encrypt-and-MAC
- Examples of authenticated encryption schemes
 - OCB, CCM, GCM, EAX, McOE, ALE,...

Introduction:

Authenticated Encryption Algorithm ALE

- ALE (Authenticated Lightweight Encryption)
 - Designed by Andrey Bogdanov et al. (FSE 2013)
 - Based on AES-128
 - Combine the ideas of LEX and Pelican MAC
 - Lightweight: 2579 GE
 - For low-cost embedded systems
 - Efficient with AES-NI

Introduction: ALE Encryption and Authentication

Processing of associated data and the last partial block are omitted

Introduction: LEX Leak for ALE Encryption

Processing one plaintext block

A whitening key is XORed with the data state

Four-round AES-128 encryption Leaked keystream is XORed with plaintext block

5 round keys are used!

Positions of the leaked bytes

0	4	8	12
1	5	9	13
2	6	10	14
3	7	11	15

0	4	8	12
1	5	9	13
2	6	10	14
3	7	11	15

0	4	8	12
1	5	9	13
2	6	10	14
3	7	11	15

state

odd round

even round

Introduction: ALE Security Claims

- Claim 1. State recovery: State recovery with complexity = t data blocks succeeds with prob. at most t[·]2⁻¹²⁸
- Claim 2. Key recovery: Key recovery with complexity = t data blocks succeeds with prob. at most t[.]2⁻¹²⁸, even if state recovered.
- Claim 3. Forgery w/o state recovery: forgery not involving key/state recovery succeeds with prob. at most 2⁻¹²⁸.

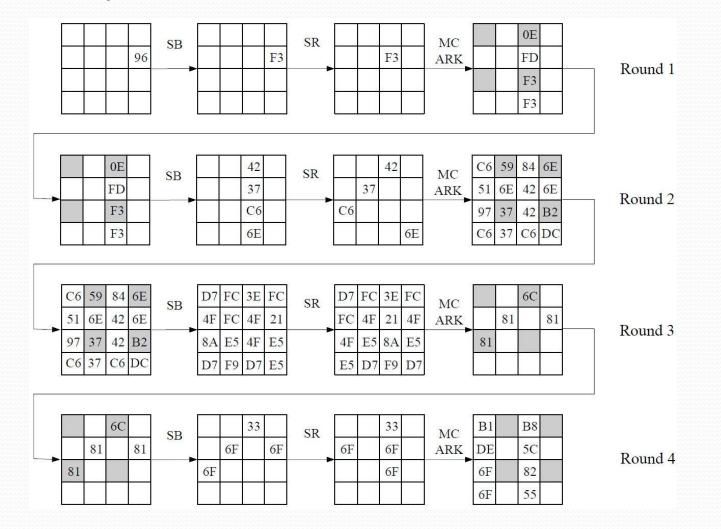
Introduction: Cryptanalysis of ALE

- Khovratovich and Rechberger's attack (SAC 2013)
 - Forgery attack
 - Bytes are leaked after SubByte a variant of ALE. The actual leak in ALE is before SubByte
 - Complexity is from 2¹⁰² to 2¹¹⁹ depending on the amount of data
 - State recovery attack
 - Requires 2¹²⁰ forgery attempts of 48 byte messages

Introduction

- A Basic Leaked-State-Forgery Attack on ALE
 - The main idea of the attack
 - Finding a differential characteristic
 - Launching the forgery attack
- Optimized Attack
- Effect of Removing the Whitening Key Layer
- Experiments on a Reduced Version of ALE
- Conclusion

Basic Attack: The Main Idea of the Attack


Property 1

• For an active S-box, if the values of an input and the input/output difference are known, the output/input difference is known with probability 1.

- In ALE, 4 state bytes are leaked at the end of every round
- It is possible to bypass some active S-boxes with probability 1!

Basic Attack:

An example of 1-4-16-4 differential characteristic

Basic Attack:

An example of 1-4-16-4 differential characteristic

Input difference:

 $\Delta_{in} = (0,0,0,0; 0,0,0,0; 0,0,0,0; 0,96,0,0)$

Output difference:

 $\Delta_{out} = (B1, DE, 6F, 6F; 0, 0, 0, 0; B8, 5C, 82, 55; 0, 0, 0, 0)$

• Keystream difference:

 $\Delta_s = (0,0,E,F3; 59,37,6E,F2; 0,81,6C,0; 0,0,0,0)$

Basic Attack: Launching the Forgery Attack

- Determine possible values of leaked bytes. Store the values in a table T
 - Example: For $\delta_{in} = 0xf3$, $\delta_{out} = 0xc6$, the values are 0xf or 0xfc
- Find a keystream block s_i which falls into one of the possible values of table T
- Modify ciphertext blocks: $c'_{i-1} = c_{i-1} \oplus \Delta_{in}$, $c'_i = c_i \oplus \Delta_{out} \oplus \Delta_s$
- Send the modified ciphertext for decryption/verification

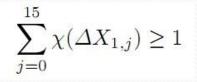
Basic Attack: Launching the Forgery Attack

In decryption/verification:

- $\Delta m_{i-1} = (c_{i-1} \oplus s_{i-1}) \oplus (c'_{i-1} \oplus s'_{i-1}) = \Delta_{in}$, because $\Delta s_{i-1} = 0$
- $\Delta m_i = (c_i \oplus s_i) \oplus (c'_i \oplus s'_i) = \Delta_{out}$, because $c_i \oplus c'_i = \Delta_{out} \oplus \Delta_s$
- when Δm_{i-1} is introduced to the data state, after four rounds, Δm_i will cancel the difference in the state
- Complexity of the Attack
 - Before considering the leaked bytes: $2^{-6\times 16+(-7)\times 9}=2^{-159}$
 - 8 active leaked bytes: 5 with prob. 2⁻⁷, 3 with prob. 2⁻⁶
 - Overall probability: 2⁻¹⁵⁹×2^{7×5}×2^{6×3}=2⁻¹⁰⁶
 - Number of known plaintext blocks: 128/2^{6×8}=2⁻⁴¹

- Introduction
- A Basic Leaked-State-Forgery Attack on ALE
- Optimized Attack
 - Improving the differential probability
 - Reducing the number of known plaintext blocks
- Effect of Removing the Whitening Key Layer
- Experiments on a Reduced Version of ALE
- Conclusion

Lemma 1

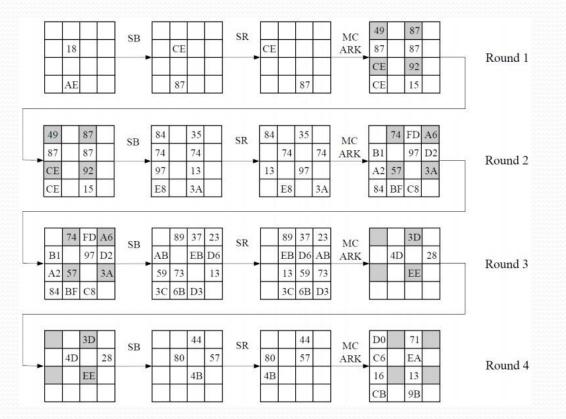

- The number of active S-boxes of any two-round AES differential characteristic is lower bounded by 5N, where N is the number of active columns in the first round.
- Use the Mixed-Integer Linear Programming (MILP) technique [Mouha, Wang, Gu, Preneel '11] to study the smallest number of effective active S-boxes

- Let X_i be the input state of round *i*, $X_{i,j}$ be the *j*-th byte of X_i . We introduce a function $\chi(x)$ such that $\chi(x) = 1$ if $x \neq 0$ and $\chi(x) = 0$ if x = 0.
- The objective function is to minimize:

$$\sum_{i=1}^{4} \sum_{j=0}^{15} \chi(\Delta X_{i,j}) - \sum_{k=0,2,8,10} (\chi(\Delta X_{2,k}) + \chi(\Delta X_{4,k})) - \sum_{l=4,6,12,14} \chi(\Delta X_{3,l})$$

Constraints from Property 1: $5d_{i,1} \le \sum (\chi(\Delta X_{i,5j \mod 16}) + \chi(\Delta X_{i+1,j})) \le 8d_{i,1},$ i=0 $5d_{i,2} \le \sum (\chi(\Delta X_{i,5j \mod 16}) + \chi(\Delta X_{i+1,j})) \le 8d_{i,2},$ 11 $5d_{i,3} \le \sum (\chi(\varDelta X_{i,5j \mod 16}) + \chi(\varDelta X_{i+1,j})) \le 8d_{i,3},$ i=8 $5d_{i,4} \leq \sum (\chi(\Delta X_{i,5j \mod 16}) + \chi(\Delta X_{i+1,j})) \leq 8d_{i,4},$ i = 12where $i \in \{1, 2, 3\}$ and $d_{i,j} \in \{0, 1\}$ $(1 \le j \le 4)$

- Additional Constraints
 - Avoid trivial solution:


• when number of active leaked byte is $n \text{ or } \leq n$

$$\sum_{k=0,2,8,10} (\chi(\Delta X_{2,k}) + \chi(\Delta X_{4,k})) + \sum_{l=4,6,12,14} \chi(\Delta X_{3,l}) = n \text{ (or } \leq n)$$

 Use Maple to solve 11 MILP problems when n ≤ 2, 3,..., 8 and n = 9, 10, 11, 12. Minimum number of effective active S-boxes is:

- At least 16 effective active S-boxes in a differential char.
- Four possible types, "2-3-12-8", "2-8-12-4", "2-8-12-3" and "4-6-9-6", can reach this lower bound.

 The differential characteristic with best probability is of the type "2-8-12-4".

- Complexity of the attack
 - 16 effective active S-boxes, 15 with prob. 2⁻⁶, 1 with prob. 2⁻⁷.
 Hence, prob. of the differential characteristic is 2⁻⁹⁷.
 - The prob. of random keystream block satisfying the requirement is 2⁻⁵⁶. If each key is restricted to protect 2⁴⁸ message bits (2⁴¹ message blocks), we need to observe 2¹⁵ keys to launch the attack.

Reducing the number of known plaintext blocks

- Relaxing conditions on effective active S-boxes
 - Relax the prob. of some effective active S-boxes from 2⁻⁶ to 2⁻⁷ – more choices for differential characteristics.
- Reducing the number of active leaked bytes in the first two rounds
 - Only the active leaked bytes in the first two rounds are considered to satisfy the conditions.
 - The differential characteristic "6-4-9-6" needs 2^{8.4} blocks to find one vulnerable keystream block and the success rate is 2⁻¹⁰²

- Introduction
- A Basic Leaked-State-Forgery Attack on ALE
- Optimized Attack
- Effect of Removing the Whitening Key Layer
- Experiments on a Reduced Version of ALE
- Conclusion

Effect of Removing the Whitening Key Layer

- When the whitening key layer is removed, additional four bytes before the first S-box layer are known.
- Objective function is changed to:

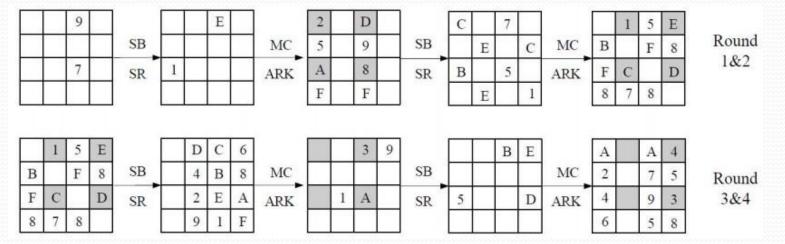
$$\sum_{i=1}^{4} \sum_{j=0}^{15} \chi(\Delta X_{i,j}) - \sum_{k=4,6,12,14} (\chi(\Delta X_{1,k}) + \chi(\Delta X_{3,k})) - \sum_{l=0,2,8,10} (\chi(\Delta X_{2,l}) + \chi(\Delta X_{4,l}))$$

Constraint on number of active leaked byte is changed to:

$$\sum_{k=4,6,12,14} (\chi(\varDelta X_{1,k}) + \chi(\varDelta X_{3,k})) + \sum_{l=0,2,8,10} (\chi(\varDelta X_{2,l}) + \chi(\varDelta Y_{4,l})) = n$$

Effect of Removing the Whitening Key Layer

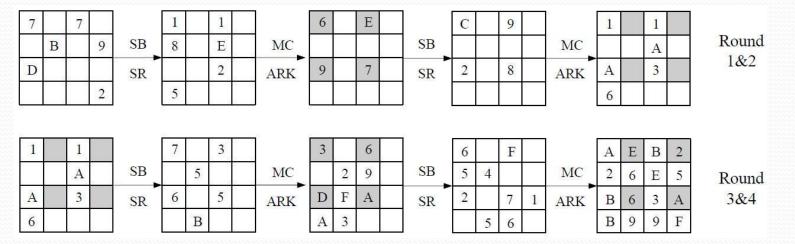
- Minimum number of effective active is reduced to 15.
- 12 cases of differential characteristics.
 - For case #1 to #4, with average prob. of 2^{-94.1}, a class of 1020 differential characteristics always can be constructed.
 - For case #5 to #12, with average prob. of 2^{-93.1}, two plaintext blocks are enough to launch a forgery attack


Introduction

- A Basic Leaked-State-Forgery Attack on ALE
- Optimized Attack
- Effect of Removing the Whitening Key Layer
- Experiments on a Reduced Version of ALE
- Conclusion

- Attack a reduced ALE construction based on an AES-like light-weight block cipher LED [Guo, Peyrin'11].
- The settings:
 - Four ordered operations in the round function
 - SubCells, ShiftRows, MixColumns, AddRoundKeys
 - LED S-box is used in SubCells, and random round keys are used instead of deriving them from the key schedule
 - Only consider two-block input message without considering the initialization, padding and the associated data
 - The initial state is randomly generate

- Experimental results for the "2-8-12-4" differential char.
 - Average number of blocks to find a vulnerable keystream is 2^{20.1} (2²⁰ for estimation)
 - Average probability for one successful forgery is 2^{-33.04} (2⁻³³ for estimation)
- Experimental results for the "6-4-6-9" differential char.
 - Average number of blocks to find a vulnerable keystream is 2^{1.9} (2^{1.7} for estimation)
 - Average probability for one successful forgery is 2^{-34.4} (2⁻³⁴ for estimation)


The "2-8-12-4" differential characteristic

• An example of the forgery attack

	Plaintext	Ciphertext	Forged Ciphertext	Colliding State
Block 1	0x37dc069161450099	0x6c2b36071e45d85d	0x6cbb36071e35d85d	0xb23d4f8eeb91a13e
Block 2	0xb1469433d739a810	0x39d7ac987dd694a8	0x53ba102c0d1b4435	

The "6-4-6-9" differential characteristic

An example of the forgery attack

	Plaintext	Ciphertext	Forged Ciphertext	Colliding State
Block 1	0x182841a869f5e890	0x7bb0dce1e61d0d43	0x0bc0d7e8361d0d41	0xf134343fa5b20472
Block 2	0x35bdb2a519a0818f	0xa3398abfcd7fcd1d	0x646 cac 5a462 f92a8	

Introduction

- A Basic Leaked-State-Forgery Attack on ALE
- Optimized Attack
- Effect of Removing the Whitening Key Layer
- Experiments on a Reduced Version of ALE

Conclusion

Conclusion

- We proposed the leaked-state-forgery (LSFA) attack against ALE.
 - The authentication security of ALE is only 97-bit rather than 128bit.
 - If the whitening key layer is removed, the security can be reduced to around 93-bit.
- We experimentally verified our attack against a small version of ALE.
- Our attack confirms again that "it is very easy to accidentally combine secure encryption schemes with secure MACs and still get insecure authenticated encryption schemes". [Kohno, Viega, Whiting'03]

Thank you!