Leaked-State-Forgery Attack against the Authenticated Encryption Algorithm ALE

Shengbao Wu1,3, Hongjun Wu2, Tao Huang2, Mingsheng Wang4, and Wenling Wu1

1Institute of Software, Chinese Academy of Sciences, China
2Nanyang Technological University, Singapore,
3Graduate School of Chinese Academy of Sciences, China
4Institute of Information Engineering, Chinese Academy of Sciences, China
Outline

- Introduction
- A Basic Leaked-State-Forgery Attack on ALE
- Optimized Attack
- Effect of Removing the Whitening Key Layer
- Experiments on a Reduced Version of ALE
- Conclusion
Outline

- Introduction
- A Basic Leaked-State-Forgery Attack on ALE
- Optimized Attack
- Effect of Removing the Whitening Key Layer
- Experiments on a Reduced Version of ALE
- Conclusion
Authenticated Encryption: Composition of encryption and message authentication

- Encrypt-then-MAC (IPsec)
- MAC-then-Encrypt (TLS)
- Encrypt-and-MAC

Examples of authenticated encryption schemes
- OCB, CCM, GCM, EAX, McOE, ALE,...
Introduction:
Authenticated Encryption Algorithm ALE

- ALE (Authenticated Lightweight Encryption)
 - Designed by Andrey Bogdanov et al. (FSE 2013)
 - Based on AES-128
 - Combine the ideas of LEX and Pelican MAC
 - Lightweight: 2579 GE
 - For low-cost embedded systems
 - Efficient with AES-NI
Introduction:
ALE Encryption and Authentication

Processing of associated data and the last partial block are omitted
Introduction:
LEX Leak for ALE Encryption

- Processing one plaintext block

 A whitening key is XORed with the data state → Four-round AES-128 encryption → Leaked keystream is XORed with plaintext block

5 round keys are used!

- Positions of the leaked bytes

<table>
<thead>
<tr>
<th>state</th>
<th>odd round</th>
<th>even round</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 4 8 12</td>
<td>0 4 8 12</td>
<td>0 4 8 12</td>
</tr>
<tr>
<td>1 5 9 13</td>
<td>1 5 9 13</td>
<td>1 5 9 13</td>
</tr>
<tr>
<td>2 6 10 14</td>
<td>2 6 10 14</td>
<td>2 6 10 14</td>
</tr>
<tr>
<td>3 7 11 15</td>
<td>3 7 11 15</td>
<td>3 7 11 15</td>
</tr>
</tbody>
</table>
Claim 1. State recovery: State recovery with complexity = t data blocks succeeds with prob. at most $t \cdot 2^{-128}$.

Claim 2. Key recovery: Key recovery with complexity = t data blocks succeeds with prob. at most $t \cdot 2^{-128}$, even if state recovered.

Claim 3. Forgery w/o state recovery: Forgery not involving key/state recovery succeeds with prob. at most 2^{-128}.
Introduction:
Cryptanalysis of ALE

- Khovratovich and Rechberger’s attack (SAC 2013)
 - Forgery attack
 - Bytes are leaked after SubByte – a variant of ALE. The actual leak in ALE is before SubByte
 - Complexity is from 2^{102} to 2^{119} depending on the amount of data
 - State recovery attack
 - Requires 2^{120} forgery attempts of 48 byte messages
Outline

- Introduction
- A Basic Leaked-State-Forgery Attack on ALE
 - The main idea of the attack
 - Finding a differential characteristic
 - Launching the forgery attack
- Optimized Attack
- Effect of Removing the Whitening Key Layer
- Experiments on a Reduced Version of ALE
- Conclusion
Basic Attack: The Main Idea of the Attack

Property 1

- For an active S-box, if the values of an input and the input/output difference are known, the output/input difference is known with probability 1.

- In ALE, 4 state bytes are leaked at the end of every round
- It is possible to bypass some active S-boxes with probability 1!
Basic Attack:
An example of 1-4-16-4 differential characteristic

Round 1
SB 96 → F3 → F3 → 0E
FD F3 F3

Round 2
SB 0E 42 37 C6 6E
FD F3

Round 3
SB C6 59 84 6E 51 6E 42 6E
97 37 42 B2 C6 37 C6 DC
SB D7 FC 3E FC 4F FC 4F 21 8A E5 4F E5 D7 F9 D7 E5
SR D7 FC 3E FC 4F FC 4F 21 4F E5 E5 8A E5 D7 F9 D7
MC ARK C6 59 84 6E 51 6E 42 6E 97 37 42 B2 C6 37 C6 DC
Round 4
SB 6C 81 81
81
SB 33 6F 6F
6F
SR 33 6F 6F
6F
MC ARK B1 B8 DE 5C 6F 82 6F 55
Basic Attack:
An example of 1-4-16-4 differential characteristic

- **Input difference:**
 \[
 \Delta_{\text{in}} = (0,0,0,0; 0,0,0,0; 0,0,0,0; 0,96,0,0)
 \]

- **Output difference:**
 \[
 \Delta_{\text{out}} = (B1,DE,6F,6F; 0,0,0,0; B8,5C,82,55; 0,0,0,0)
 \]

- **Keystream difference:**
 \[
 \Delta_{s} = (0,0,E,F3; 59,37,6E,F2; 0,81,6C,0; 0,0,0,0)
 \]
Basic Attack: Launching the Forgery Attack

- Determine possible values of leaked bytes. Store the values in a table T
 - Example: For $\delta_{in} = 0xf3$, $\delta_{out} = 0xc6$, the values are 0xf or 0xfc
- Find a keystream block s_i which falls into one of the possible values of table T
- Modify ciphertext blocks: $c'_{i-1} = c_{i-1} \oplus \Delta_{in}$, $c'_i = c_i \oplus \Delta_{out} \oplus \Delta_s$
- Send the modified ciphertext for decryption/verification
Basic Attack: Launching the Forgery Attack

- In decryption/verification:
 - $\Delta m_{i-1} = (c_{i-1} \oplus s_{i-1}) \oplus (c'_{i-1} \oplus s'_{i-1}) = \Delta_{in}$, because $\Delta s_{i-1} = 0$
 - $\Delta m_i = (c_i \oplus s_i) \oplus (c'_i \oplus s'_i) = \Delta_{out}$, because $c_i \oplus c'_i = \Delta_{out} \oplus \Delta_s$
 - when Δm_{i-1} is introduced to the data state, after four rounds, Δm_i will cancel the difference in the state

- Complexity of the Attack
 - Before considering the leaked bytes: $2^{-6 \times 16 + (-7) \times 9} = 2^{-159}$
 - 8 active leaked bytes: 5 with prob. 2^{-7}, 3 with prob. 2^{-6}
 - Overall probability: $2^{-159} \times 2^{7 \times 5} \times 2^{6 \times 3} = 2^{-106}$
 - Number of known plaintext blocks: $128/2^{6 \times 8} = 2^{-41}$
Outline

- Introduction
- A Basic Leaked-State-Forgery Attack on ALE
- Optimized Attack
 - Improving the differential probability
 - Reducing the number of known plaintext blocks
- Effect of Removing the Whitening Key Layer
- Experiments on a Reduced Version of ALE
- Conclusion
Improving the Differential Probability

Lemma 1

- The number of active S-boxes of any two-round AES differential characteristic is lower bounded by $5N$, where N is the number of active columns in the first round.

- Use the Mixed-Integer Linear Programming (MILP) technique [Mouha, Wang, Gu, Preneel ’11] to study the smallest number of effective active S-boxes.
Improving the Differential Probability

Let X_i be the input state of round i, $X_{i,j}$ be the j-th byte of X_i. We introduce a function $\chi(x)$ such that $\chi(x) = 1$ if $x \neq 0$ and $\chi(x) = 0$ if $x = 0$.

The objective function is to minimize:

$$\sum_{i=1}^{4} \sum_{j=0}^{15} \chi(\Delta X_{i,j}) - \sum_{k=0,2,8,10} \left(\chi(\Delta X_{2,k}) + \chi(\Delta X_{4,k}) \right) - \sum_{l=4,6,12,14} \chi(\Delta X_{3,l})$$
Improving the Differential Probability

- Constraints from Property 1:

\[5d_{i,1} \leq \sum_{j=0}^{3} (\chi(\Delta X_{i,5j \mod 16}) + \chi(\Delta X_{i+1,j})) \leq 8d_{i,1}, \]

\[5d_{i,2} \leq \sum_{j=4}^{7} (\chi(\Delta X_{i,5j \mod 16}) + \chi(\Delta X_{i+1,j})) \leq 8d_{i,2}, \]

\[5d_{i,3} \leq \sum_{j=8}^{11} (\chi(\Delta X_{i,5j \mod 16}) + \chi(\Delta X_{i+1,j})) \leq 8d_{i,3}, \]

\[5d_{i,4} \leq \sum_{j=12}^{15} (\chi(\Delta X_{i,5j \mod 16}) + \chi(\Delta X_{i+1,j})) \leq 8d_{i,4}, \]

where \(i \in \{1, 2, 3\} \) and \(d_{i,j} \in \{0, 1\} \) (1 \leq j \leq 4)
Improving the Differential Probability

- Additional Constraints
 - Avoid trivial solution:
 \[\sum_{j=0}^{15} \chi(\Delta X_{1,j}) \geq 1 \]
 - when number of active leaked byte is \(n \) or \(\leq n \)

\[\sum_{k=0,2,8,10} (\chi(\Delta X_{2,k}) + \chi(\Delta X_{4,k})) + \sum_{l=4,6,12,14} \chi(\Delta X_{3,l}) = n \text{ (or } \leq n) \]
Improving the Differential Probability

- Use Maple to solve 11 MILP problems when $n \leq 2, 3, \ldots, 8$ and $n = 9, 10, 11, 12$. Minimum number of effective active S-boxes is:

<table>
<thead>
<tr>
<th>n</th>
<th>≤ 2</th>
<th>≤ 3</th>
<th>≤ 4</th>
<th>≤ 5</th>
<th>≤ 6</th>
<th>≤ 7</th>
<th>≤ 8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>16</td>
<td>19</td>
<td>18</td>
</tr>
</tbody>
</table>

- At least 16 effective active S-boxes in a differential char.
- Four possible types, “2-3-12-8”, “2-8-12-4”, “2-8-12-3” and “4-6-9-6”, can reach this lower bound.
Improving the Differential Probability

- The differential characteristic with best probability is of the type “2-8-12-4”.
Improving the Differential Probability

- Complexity of the attack
 - 16 effective active S-boxes, 15 with prob. 2^{-6}, 1 with prob. 2^{-7}. Hence, prob. of the differential characteristic is 2^{-97}.
 - The prob. of random keystream block satisfying the requirement is 2^{-56}. If each key is restricted to protect 2^{48} message bits (2^{41} message blocks), we need to observe 2^{15} keys to launch the attack.
Reducing the number of known plaintext blocks

- Relaxing conditions on effective active S-boxes
 - Relax the prob. of some effective active S-boxes from 2^{-6} to 2^{-7} – more choices for differential characteristics.
- Reducing the number of active leaked bytes in the first two rounds
 - Only the active leaked bytes in the first two rounds are considered to satisfy the conditions.
 - The differential characteristic “6-4-9-6” needs $2^{8.4}$ blocks to find one vulnerable keystream block and the success rate is 2^{-102}
Outline

- Introduction
- A Basic Leaked-State-Forgery Attack on ALE
- Optimized Attack
- Effect of Removing the Whitening Key Layer
- Experiments on a Reduced Version of ALE
- Conclusion
Effect of Removing the Whitening Key Layer

- When the whitening key layer is removed, additional four bytes before the first S-box layer are known.
- Objective function is changed to:

\[
\sum_{i=1}^{4} \sum_{j=0}^{15} \chi(\Delta X_{i,j}) - \sum_{k=4,6,12,14} (\chi(\Delta X_{1,k}) + \chi(\Delta X_{3,k})) - \sum_{l=0,2,8,10} (\chi(\Delta X_{2,l}) + \chi(\Delta X_{4,l}))
\]

- Constraint on number of active leaked byte is changed to:

\[
\sum_{k=4,6,12,14} (\chi(\Delta X_{1,k}) + \chi(\Delta X_{3,k})) + \sum_{l=0,2,8,10} (\chi(\Delta X_{2,l}) + \chi(\Delta Y_{4,l})) = n
\]
Effect of Removing the Whitening Key Layer

- Minimum number of effective active is reduced to 15.

- 12 cases of differential characteristics.
 - For case #1 to #4, with average prob. of $2^{-94.1}$, a class of 1020 differential characteristics always can be constructed.
 - For case #5 to #12, with average prob. of $2^{-93.1}$, two plaintext blocks are enough to launch a forgery attack.
Outline

- Introduction
- A Basic Leaked-State-Forgery Attack on ALE
- Optimized Attack
- Effect of Removing the Whitening Key Layer
- Experiments on a Reduced Version of ALE
- Conclusion
Experiments on a Reduced Version of ALE

- Attack a reduced ALE construction based on an AES-like light-weight block cipher LED [Guo, Peyrin’11].

- The settings:
 - Four ordered operations in the round function
 - SubCells, ShiftRows, MixColumns, AddRoundKeys
 - LED S-box is used in SubCells, and random round keys are used instead of deriving them from the key schedule
 - Only consider two-block input message without considering the initialization, padding and the associated data
 - The initial state is randomly generate
Experiments on a Reduced Version of ALE

- Experimental results for the “2-8-12-4” differential char.
 - Average number of blocks to find a vulnerable keystream is $2^{20.1}$ (2^{20} for estimation)
 - Average probability for one successful forgery is $2^{-33.04}$ (2^{-33} for estimation)

- Experimental results for the “6-4-6-9” differential char.
 - Average number of blocks to find a vulnerable keystream is $2^{1.9}$ ($2^{1.7}$ for estimation)
 - Average probability for one successful forgery is $2^{-34.4}$ (2^{-34} for estimation)
Experiments on a Reduced Version of ALE

- The “2-8-12-4” differential characteristic

- An example of the forgery attack

<table>
<thead>
<tr>
<th>Plaintext</th>
<th>Ciphertext</th>
<th>Forged Ciphertext</th>
<th>Colliding State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1</td>
<td>0x37dc069161450099</td>
<td>0x6c2b36071e45d85d</td>
<td>0x6cbb36071e35d85d</td>
</tr>
<tr>
<td>Block 2</td>
<td>0xb1469433d739a810</td>
<td>0x39d7ac987dd694a8</td>
<td>0x53ba102c0d1b4435</td>
</tr>
</tbody>
</table>
Experiments on a Reduced Version of ALE

- The “6-4-6-9” differential characteristic

- An example of the forgery attack

<table>
<thead>
<tr>
<th>Plaintext</th>
<th>Ciphertext</th>
<th>Forged Ciphertext</th>
<th>Colliding State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1, $0x\text{182841a869f5e890}$</td>
<td>$0x\text{7bb0dce1e61d0d43}$</td>
<td>$0x\text{0bc0d7e8361d0d41}$</td>
<td>$0x\text{f134343fa5b20472}$</td>
</tr>
<tr>
<td>Block 2, $0x\text{35bdb2a519a0818f}$</td>
<td>$0x\text{a3398abfcd7fcd1d}$</td>
<td>$0x\text{646cac5a462f92a8}$</td>
<td></td>
</tr>
</tbody>
</table>
Outline

- Introduction
- A Basic Leaked-State-Forgery Attack on ALE
- Optimized Attack
- Effect of Removing the Whitening Key Layer
- Experiments on a Reduced Version of ALE
- Conclusion
Conclusion

- We proposed the leaked-state-forgery (LSFA) attack against ALE.
 - The authentication security of ALE is only 97-bit rather than 128-bit.
 - If the whitening key layer is removed, the security can be reduced to around 93-bit.
- We experimentally verified our attack against a small version of ALE.
- Our attack confirms again that “it is very easy to accidentally combine secure encryption schemes with secure MACs and still get insecure authenticated encryption schemes”. [Kohno, Viega, Whiting’03]
Thank you!