Key Recovery Attacks on 3-round Even-Mansour, 8-step LED-128, and Full AES

Itai Dinur1, Orr Dunkelman2,4, Nathan Keller3 and Adi Shamir4

1École normale supérieure, France
2University of Haifa, Israel
3Bar-Ilan University, Israel
4The Weizmann Institute, Israel
Summary

• The **Even-Mansour** scheme is simple construction of a block cipher proposed in **1991**

• The scheme has been generalized to **iterated Even-Mansour** schemes
 • Extensively studied in the last few years

• We study the security of **iterated Even-Mansour** schemes
 • Attack schemes that were previous assumed to be secure
 • Present applications to **concrete** designs
The Even-Mansour Scheme (1991)

- A simple construction of a block cipher using 2 keys of n bits and a public permutation F
- **Information-theoretic** security lower bound:
 - Assume that F is randomly chosen
 - Assume that we obtain D plaintext-ciphertext pairs (P_i, C_i)
 - Then, any successful key-recovery attack that evaluates F on T inputs X must satisfy $TD \geq 2^n$
The SlideX Attack [DKS ‘12]

- Security: $TD=2^n$ using the SlideX attack (DKS, Eurocrypt ‘12)

- Given $D=2^{n/2}$ the scheme can be broken in $T=2^{n/2}$
SlideX on EM with 1 Key [DKS ‘12]

- $P_i + K = X_i$ and $C_i + K = Y_i \implies P_i + C_i = X_i + Y_i$
- For each (P_i, C_i):
 - Calculate $P_i + C_i$ and store it in a sorted table next to P_i
- For arbitrary values X_j:
 - Calculate $Y_j = F(X_j)$ and search $X_j + Y_j$ in the table
 - For each match, test the suggestion for $K = P_i + X_j$
In order to obtain \textit{w.h.p} a pair \((P_i, X_j)\) such that \(K = P_i + X_j\) we need about \(2^n\) such pairs, i.e. \(TD = 2^n\).
The Iterated EM Scheme

- EM-based schemes are a very hot research area
 - Over 10 papers in major crypto conferences since 2011
- There are many possible key schedules
2-Round Iterated EM with 1 Key

- Does not provide n-bit security as shown at FSE 2013 [NWW ‘13]
A Variant of the Previous Attack

[NWW ‘13] : Main Idea

- \(P_i + V_i = X_i + Y_i \rightarrow X_1 + Y_1 = X_2 + Y_2 = \ldots = X_t + Y_t = \Delta \) then \(P_1 + V_1 = P_2 + V_2 = \ldots = P_t + V_t = \Delta \)

- A \(t \)-way collision on the public \(F'_1(X) = X + F_1(X) \) gives a \(t \)-way collision on \(P_i + V_i \) with the same value \(\Delta \)

- Given \(\Delta \) and a random \(P_i \), then \(V_i = P_i + \Delta \) with probability \(t/2^n > 1/2^n \)

![Diagram](image)
A Variant of the Previous Attack
[NWW ‘13]

- **Preprocessing**: Evaluate F_1 on arbitrary inputs X, find a t-way collision on $F'_1(X)=X+F_1(X)$ and denote the colliding value by Δ

- **Online**: For each (P_i, C_i):
 - Assume that $V_i=P_i+\Delta$ and compute $W_i=F_2(V_i)$
 - Compute a suggestion for $K=W_i+C_i$ and test it
A Variant of the Previous Attack
[NWW '13] : Analysis

- The data complexity is \(D = 2^n/t \)
 - in order to find a \(P_i \) such that \(V_i = P_i + \Delta \) and recover \(K \)
- The **online** time complexity is also \(2^n/t \)
- What is the complexity of the preprocessing?
A Variant of the Previous Attack
[NWW ‘13] : Analysis

- If we evaluate F'_1 on all 2^n inputs, the attack will not be faster than exhaustive search.
- We evaluate F'_1 on a $\lambda < 1$ fraction of the inputs.
- The **preprocessing** time complexity is $\lambda 2^n$.
 - in which we find a t-way collision.

![Diagram](image-url)
A Variant of the Previous Attack

[NWW ‘13] : Analysis

- The **total** time complexity is $\lambda 2^n + 2^n/t$
- To calculate the **optimal** time complexity, we need to understand the **tradeoff** between λ and t
- What is the largest t-way collision we expect when evaluating a λ fraction of inputs for $F’_1$?
A Variant of the Previous Attack
[NWW ‘13] : Analysis

- $F'_1(X) = X + F_1(X)$ is a function from n bits to n bits
- If we evaluate $F'_1(X)$ on a λ fraction of the inputs the expected number of t-way collisions is $(2^n \lambda t e^{-\lambda}) / t!$
 - Assuming standard randomness assumptions on F_1
A Variant of the Previous Attack
[NWW ‘13] : Analysis

• The tradeoff between \(\lambda \) and \(t \) is enforced by
\[(2^n \lambda^t e^{-\lambda})/t! \geq 1 \]

• Taking \(\lambda \approx 1/n \) gives \(t \approx 1/\lambda \approx n \) and minimizes \(T \approx 2^n/n \)
 • This is faster than exhaustive search by a factor of about \(n \), which grows to infinity with \(n \)

• For \(n=64 \) \(\rightarrow T \approx 2^{64}/64 \approx 2^{60} \) and also \(D \approx 2^{60}, M \approx 2^{60} \)
Our First Optimization: Reducing the Data Complexity - Main Idea

• Once we take \(\lambda \) and \(t \) for which \(\frac{(2^n \lambda^t e^{-\lambda})}{t!} \geq 1 \), and **slightly** reduce \(t \), the number of \(t \)-way collisions grows **rapidly**
Our First Optimization: Reducing the Data Complexity - Analysis

- For $n=64$ and 2^{60} inputs we expect:
 - 4 10-way collisions
 - 95 9-way collisions
 - Over 100,000 8-way collisions

- We can exploit all these in the attack

- For $n=64$ we **greatly reduce** the data complexity from 2^{60} to 2^{45}
 - by taking all collisions with $t \geq 8$ rather than $t \geq 10$
 - The time and memory complexities slightly increase but remain about 2^{60}
3-Round Iterated EM with 1 Key

- The attack on 2-round EM was already somewhat marginal
- We show that 3-round EM does not provide n-bit security as well!
The Main Idea of our New Attack

- We know how to predict W_i with a higher probability than a random guess.
- Given W_i and C_i we remain with a 1-round EM with 1 key and can apply the SlideX attack.

- The time complexity increases to $T \approx 2^n/\sqrt{n}$.
 - Faster than exhaustive search only by a factor of \sqrt{n}.

![Diagram](image.png)
Optimizing our 3-Round Attack

- Apply the same optimization as in the 2-round attack to reduce the **data complexity**
- Use the **freedom** to choose the inputs on which we evaluate F_1 and F_3 in order to **immediately filter** most uninteresting (P_i, C_i)
- The optimization gives us $T \approx 2^n/n$
- This is about the **same** time complexity as the 2-round attack!
Application to (Original) Zorro

- **Zorro** is a 128-bit lightweight block cipher presented at CHES 2013 by Gérard et al.
- The **original** cipher was a 3-round EM scheme with 1 key
- The authors **changed** the design due to our results

\[\begin{align*}
 P_i & \xrightarrow{K} F_1 \xrightarrow{K} F_2 \xrightarrow{K} F_3 \xrightarrow{K} C_i \\
\end{align*} \]
Application to LED-64

- LED is a 64-bit lightweight block cipher presented at CHES 2011 by Guo et al.
- Two main versions: LED-64 and LED-128
- LED-64 is an 8-round EM scheme with 1 key
- Previous attacks on LED-64 could only attack 2 rounds

We can directly apply our attack to 3-round LED-64 with $T \approx 2^{60}$, $M \approx 2^{60}$ and $D = 2^{49}$
Application to LED-128

- LED-128 uses 2 alternating keys and has 12 rounds.
- The best previous attack [NWW ‘13] could attack 6 rounds.
- We use the new techniques to attack 8 rounds!
Application to LED-128

• As several previous attacks we guess K_1 in an outer loop
• We remain with a 3-round EM scheme with 1 key
• We obtain $T\approx 2^{124}$, $M\approx 2^{60}$ and $D=2^{49}$
• About the same time and memory complexities as the previous 6-round attack, and the data is reduced by a factor of about 1000!
2-Round EM with Independent Keys

- A simple meet-in-the-middle attack has time and memory complexity of 2^n

- t-way collisions on $X_i + Y_i$ do not seem to help
Our Attack on 2-Round EM with Independent Keys: The Main Idea

- Use the **differential** algorithm of Mendel et al. from ASIACRYPT 2012
- However, we apply attack even when F_1 and F_2 do not have any **statistical weakness**!
- The attack uses **additional** techniques...

![Diagram of encryption process]

- P_i → X_i → F_1 → Y_i → F_2 → V_i → W_i → C_i
Application to AES2

- AES2 is 128-bit block cipher presented at EUROCRYPT 2012 by Bogdanov et al.

- A 2-round EM with independent 128-bit keys
Application to AES2

- Each public permutations is a complete AES-128 fixed-key encryption and is thus very strong
- The designers conjecture that the most efficient attack on AES2 is a basic meet-in-the-middle

- Our attack is about 7 times faster
 - uses 7 times less memory (but requires much more data)
Conclusions

• We presented **improved** attacks on several schemes based on iterated Even-Mansour
• We described the **first** attack on full AES^2
• We **increased** the number of steps that can be attacked for LED-128 from 6 to 8
• The attacks are **unlikely** to be practically significant
• They show that a 1-key EM scheme needs to have **at least** 4 rounds to provide n-bit security
Thank you for your attention!