ASIACRYPT 2013 (12/2/2013)

Function-Private Subspace Membership Enc. and Its Applications

Dan Boneh Ananth Raghunathan Gil Segev

Stanford

Stanford

Hebrew University

Predicate Encryption [BW07, KSW08]

Applications: spam filtering encrypted email routing encrypted bank transactions

Function Privacy [Boneh-R.-Segev13]

Question: must sk_p reveal p?

Can we build schemes where **sk**_p reveals no information about **p**

In previous works, \mathbf{sk}_{p} may leak \mathbf{p} . In several schemes, \mathbf{p} is leaked explicitly

Function Privacy [Boneh-R.-Segev13]

Motivated by the question of **keyword privacy** in Public Key Encryption with Keyword Search (PEKS) [BCOP04]

Does the proxy learn information about keywords?

Enc(pp, from, m)

From/subj:

bills doctor crypto-chair

Function Privacy [Boneh-R.-Segev13]

(In a nutshell)

- Define function privacy of Identity-Based Encryption (IBE implies encrypted keyword search [BCOP04])
- Observe that given \mathbf{sk}_{id} , semantic security for id is not possible (due to the public-key nature of encryption)
- Construct IBE schemes where the secret key reveals no information about the identity
 - identity must have some min-entropy
 - constructions in RO and STD model
 - constructions from pairings and lattices

Subspace-Membership Enc.

$$p_{W}(x) = \begin{cases} 1 \text{ if } (W \cdot x = 0 \text{ in } F_{q}) \\ 0 \text{ otherwise} \end{cases}$$

- Predicate p corresponds to matrix W over F_q
- Ciphertext attribute x is a vector over F_q
 sk_p can decrypt if W·x = 0
- k=1 is inner-product encryption [KSW08, Fre10, AFV11]
- Subspace membership with delegation [OT09,OT12]
- Security requirement: given secret keys for predicates p_1 , ..., p_Q , semantic security for ciphertexts with attribute x where $p_i(x)=0$ (for all i)

SME – Applications

- Predicates that are roots of polynomials
 - ciphertexts encrypted to an attribute x in F_q
 - secret keys derived for polynomial predicates p(x) = 1 iff $(p_0 + p_1 x + p_2 x^2 + ... + p_d x^d = 0)$
 - *Basic idea:* encrypt to vector (1 \times \times ² ... \times ^d) subspace is orthogonal to (p_0 p_1 p_2 ... p_d)

Vandermonde vector

- Hidden Vector Encryption [BW07]
 - predicates for comparison and set membership queries
- Subsumes Identity-Based Encryption
 - attribute x = (1, id), subspace is W = (-id, 1)
- Predicates with conjunction and disjunctions

This Paper

- Extend the framework and techniques of [BRS13] to subspace membership encryption (SME)
- Define function-private SME: schemes where the secret key reveals no information about the subspace
 - identify minimal necessary restrictions
- Black-box constructions of function-private SME from non-function-private inner-product encryption schemes
 - First black-box constructions of function-private schemes
- Applications with function privacy (discussed later)

- What information does skw leak about W?
- Given sk_W and a guess for W, due to the public-key nature of Enc, guess can be verified (up to constant factors)

(assume W is a vector)

If decryption recovers m then w_1 guessed correctly!

- What information does sk_W leak about W?
- Given sk_W and a guess for W, due to the public-key nature of Enc, guess can be verified (up to constant factors)

(assume W is a vector)

If decryption recovers **m** then **w**₂ guessed correctly!

- What information does sk_W leak about W?
- Given sk_W and a guess for W, due to the public-key nature of Enc, guess can be verified (up to constant factors)

(assume W is a vector)

Can verify guess only given **sk**_W!

- Is unpredictability of W sufficient (like in IBE)?
- No!

Following test works even if w_1 and w_2 are unpredictable so long as $w_1/w_2 = a$

Can *still* verify guess only given **sk**_W!

Minimal necessary restriction:

 \mathbf{sk}_{W} reveals no information *if* columns of \mathbf{W} come from a distribution with *conditional min-entropy, i.e.,* \mathbf{j}^{th} column still unpredictable given $\mathbf{w}_1, ..., \mathbf{w}_{\mathsf{j-1}}$

Adversary cannot guess b with probability better than 1/2

Construction from Inner Prod Enc.

Inner Product Predicate Encryption

$$p_v(x) = \begin{cases} 1 \text{ if } (v^T \cdot x = 0 \text{ in } F_q) \\ 0 \text{ otherwise} \end{cases}$$

- Predicate \mathbf{p} corresponds to a vector \mathbf{v} over \mathbf{F}_q
- Ciphertext attribute x is a vector over F_q sk_p can decrypt if $v^T \cdot x = 0$

We construct function-private SME from any underlying (non-function-private) inner prod. scheme

- black-box manner
- modify the KeyGen algorithm by pre-processing subspace
 W to derive an inner-prod sk vector v

Construction from Inner Prod. Enc.

Key idea: apply extractor on *columns* of **W** run (underlying) inner prod **KeyGen** on extracted vector

seed

Ext

Construction from IPE

Key idea: apply extractor on *columns* of **W** run (underlying) inner prod **KeyGen** on extracted vector

seed

Ext

Construction from IPE

Construction from IPE

- V extracts entropy from W
- Therefore, \mathbf{sk}_V reveals no information about \mathbf{W} so long as columns of \mathbf{W} have conditional min-entropy

Function Privacy!

 Correctness and attribute-hiding security follows from the structure of the extractor:

$$Ext((w_1, ..., w_k), (s_1, ..., s_k)) = w_1s_1 + ... + w_ks_k \pmod{q}$$

$$\mathbf{V} \cdot \mathbf{x} = \mathbf{0}$$
 iff $\mathbf{s}^{\mathsf{T}} \cdot \mathbf{W} \cdot \mathbf{x} = \mathbf{0}$ iff $(w.h.p.)$ $\mathbf{W} \cdot \mathbf{x} = \mathbf{0}$

• (In the paper) Additional work to consider the case when **q** is "small" (poly in security param.)

Applications

- Function privacy when encrypting to roots of polynomials
 - minimal requirement: coefficients of polynomials (p_0 p_1 p_2 ... p_d) must come from a distribution with *joint* min-entropy
 - no conditional min-entropy (public-key attacks can only use "Vandermonde vectors")

"Randomizing polynomials"

 - key idea: construct appropriate subspace during key generation with conditional min-entropy property

coefficients of
$$p(x) \cdot r_1(x) \cdot s_1(x)$$

$$coefficients of $p(x) \cdot r_2(x) \cdot s_2(x)$

$$coefficients of $p(x) \cdot r_2(x) \cdot s_2(x)$

$$coefficients of $p(x) \cdot r_3(x) \cdot s_3(x)$

$$s_i(x) = s_{0, i} + s_{1, i} x$$$$$$$$

Applications

- Function privacy when encrypting to roots of polynomials
 - *minimal requirement:* coefficients of polynomials (p_0 p_1 p_2 ... p_d) must come from a distribution with *joint* min-entropy
 - no conditional min-entropy (public-key attacks can only use "Vandermonde vectors")
 - key idea: construct appropriate subspace during key generation with conditional min-entropy property

coefficients of
$$p(x) \cdot r_1(x) \cdot s_1(x)$$

$$coefficients of $p(x) \cdot r_2(x) \cdot s_2(x)$

$$coefficients of $p(x) \cdot r_2(x) \cdot s_2(x)$

$$coefficients of $p(x) \cdot r_3(x) \cdot s_3(x)$

$$s_i(x) = s_{0,i} + s_{1,i} x$$$$$$$$

Applications

Function-Private IBE with minimal unpredictability

Basic idea:

attribute x = (1, id), subspace is W = (-id, 1)Can "boost" entropy by considering $W = (-r \cdot id, r)$ for uniformly sampled r from F_q

Minimal unpredictability required from ID, as compared to [BRS13]

Tradeoffs: Better function privacy, but stronger assumptions [KSW08] for IBE security

Conjunctions and Disjunctions

Conclusions

- Extend the work of function privacy [BRS13] to the larger class of subspace-membership predicates
- Construct schemes from any underlying nonfunction-private inner-product scheme
- Function-private applications of SME
 - Roots of Polynomials
 - Function-Private IBE with minimal unpredictability
 - Conjunctions and Disjunctions

Open Problems

- Function privacy from computational assumptions
 - Recent work by Agrawal et al. [AABKPS13]
- Function privacy for Hidden-Vector Encryption
- Function privacy for larger classes of predicates
- Enhanced function privacy
 - preserve function privacy against an adversary that is given ciphertexts on which the challenge predicate evaluates to true

Thank You! Any Questions?

ananthr@cs.stanford.edu

eprint.iacr.org/2013/403