Computational Fuzzy Extractors

Benjamin Fuller, Xianrui Meng, and Leonid Reyzin

BOSTON
UNIVERSITY

December 2, 2013

Key Derivation from Noisy Sources

High-entropy sources Physically Unclonable Functions (PUFs)
[PappuRechtTaylorGershenfeld02]

are often noisy
— Source value changes over time,
WoF W
— Assume a bound on distance:
d(Wo, W) < diay
— Consider Hamming distance today
Want to derive a stable key
from a noisy source
— Want w,, w, to map to same key

Want the key to be cryptographically
strong
— Appear uniform to the adversary

laser

[Goal of this talk: provide meaningful security for more sources J

Fuzzy Extractors Source
Assume source has min-entropy & . Key
(no wis likelier than 274 B public

Lots of work on reliable keys from noisy data [BennettBrassardRobert85] ...
Our formalism: Fuzzy Extractors [DodisOstrovskyReyzinSmith04] ...

Correctness: Gen, Rep give same key if d(w,, w,) <d_...
Security: (key , p) = (U, p)

Gen

Fuzzy Extractors Source
e Assume source has min-entropy & . Key
(no wis likelier than 274 B public

* Lots of work on reliable keys from noisy data [BennettBrassardRobert85] ...
Our formalism: Fuzzy Extractors [DodisOstrovskyReyzinSmith04] ...

* Correctness: Gen, Rep give same key if d(w,, w,) <d_..
* Security: (key ,p)= (U, p)
* Typical Construction: - derive key using a randomness extractor

[Converts high entropy sources to uniform: H (W,)> k= Ext (W,)= U }
Gen

key

*

W, —» Ext

>

wy Ext

Fuzzy Extractors

Assume source has min-entropy &
(no wis likelier than 274

Source

. Key
B public

Lots of work on reliable keys from noisy data [BennettBrassardRobert85] ...
Our formalism: Fuzzy Extractors [DodisOstrovskyReyzinSmith04] ...

Correctness: Gen, Rep give same key if d(w,, w,) <d_...

Security: (key , p) = (U, p)

Typical Construction: - derive key using a randomness extractor
- correct errors using a secure sketch

Gen
W, —» Ext
— » /
—> Sketch—

Rec

Ext

Secure Sketches

Gen
>
[
—ISketch— wi | |Rec 0, B
—p—
Code Offset c = Gy
Sketch

G generates =c ® Wy
a code that

corrects
d .. errors

/Guarantee a bound
on entropy reduction:
< redundancy of G

Sketches

Extract from
distributions of

reduced entropy
/

W, Rep
-/ /X
|| > w
| Sketch w, | |[Rec—» Ext
—p—
/
Code Offset c’=Dec(p ®w|) = .= Gy If w and w,
are close
Sketch P®w, o
c’=c
G generates =c @ Wy @
a code that Wy=¢" ®p
corrects <
d .. errors

[reveals information about

Wy

Entropy Loss From Fuzzy Extractors

Entropy is at a premium for physical sources
— lIris =249 [Daugman1996]
— Fingerprint =82 [RathaConnellBolle2001]
— Passwords =31 [ShayKomanduri+2010]
Above construction of fuzzy extractors, with standard analysis:

— Secure sketch loss = redundancy of code > error correcting capability
Loss necessary for information-theoretic sketch: [Smith07, DORS08]

— Randomness extractor loss > 2log (1/¢)
Can we improve on this?

One approach: define secure sketches/fuzzy extractors
computationally

— Give up on security against all-powerful adversaries,
consider computational ones

Can we do better in computational setting?

Our Results:

 For secure sketches: NO

— We show that defining a secure sketch in computational
setting does not improve entropy loss

* For fuzzy extractors: YES

— We construct a lossless computational Fuzzy Extractor
based on the Learning with Errors (LWE) problem

— Caveat: this result shows only feasibility of a different
construction and analysis; we do not claim to have a
specific set of parameters for beating the traditional
construction

Computational Secure Sketches
Gen

key
\ —»>
> Ext
w
0 P Rep
—ISketch— W1$_Rec 0, Exg

Information-theoretic goal:
Hoo(WO |p)

 Can we improve on this computationally?

Computational Secure Sketches

Gen
¢
\ <) —»
>
W, E}f Rep
4>_
—Sketch— Wi Rec| Ext
—__>_

/

Computational goal:
Heme(W, | p)

 Can we improve on this computationally?
* What does H*™P(¥, | p) mean?

* Most natural requirement:
(W, | p) is indistinguishable from (Y | p)and H (Y | p) > k

e Known as HILL entropy [HastadlmpagliazzoLevinLuby99]

Computational Secure Sketches

Gen
k
~_ €Y I
> Ext
W, Rep
ke
2 |
— ¥ Sketch— W Rec& Ext
/]
Computational goal: Good News:
HHLLC W, | p) Extractors yield

pseudorandom keys
* Can we improve on this computatic_ from HILL entropy

What does H*™P(¥, | p) mean?

Most natural requirement:
(W, | p) is indistinguishable from (Y | p)and H (Y | p) > k

Known as HILL entrOpy [HastadImpagliazzoLevinLuby99]

HILL Secure Sketches = Secure Sketches

Our Theorem:
If HALL(W, | p) > k, then

there exists an error-correcting code C with 22 points
and

Rec corrects d,, .. random errors on C

We can fix a p value where Rec functions as a good decoder for W,,.
Rec must also decode on indistinguishable distribution Y, and Y is large.

Corollary: (Using secure sketch of [smitho7])
If there exists a sketch with HILL entropy £,
then there exists a sketch with true entropy A—2.

Can we do better in computational setting?

 For secure sketches: NO

— A sketch that retains HILL entropy implies
an information theoretic sketch

* For fuzzy extractors: YES
— Can’t just make the sketch “computational”
— Other approaches?

Building a Computational Fuzzy Extractor

Gen ~_ key Can’t just
o T > work with sketch
W, A Re
= -
4>_
HSketChq Wl _Recﬂ» Ext

Building a Computational Fuzzy Extractor

Gen 1 What about an extractor
T 4 » | that outputs
—— pseudorandom bits?
Wy > Cext [Repp
/ 4’
] > w
| Sketch w, | |[Rec|—2»| Cext

Computational extractors convert high-entropy sources to
pseudorandom bits [Krawczyk10]

Natural construction: Cext(w,) = PRG(£xt(w,))

Extensions [DachmanSoIedGennaroKrawczykMaIkin12DodisYu13DodisPietrzakWichsl3]

All require enough residual entropy after Sketch to run crypto!
— See [DachmanSoledGennaroKrawczykMalkin12] for conditions

Building a Computational Fuzzy Extractor

Gen
\

W, » Lxt
—

|| > w
_>SketCh Wl Reci» Ext

We’'ll try to combine a
sketch and an extractor

- mxn
We’ll base our construction A Fq
on the code offset sketch ec = Ax

Instantiate with p=ec ®w,
random linear code

ec = Gx

Base security on Learning
with Errors (LWE)

Learning with Erg/lors

A

I |

A - men

q
/ec/=A‘x X

PO m | 4 A +w, 7|

- ’
* Recovering x is known as learning with errors

* [Regev05] shows solving LWE implies approximating lattice problems

* LWE Error Distribution = Source Distribution 7,
— Need error distribution where LWE is hard
— Start from result of [Dottling&Miuller-Quade13] and make some progress

Learning with Erg/lors

A

I |

A - men

q
L/eé:\x X

PO m | 4 A +w, 7|

- ’
* Recovering x is known as learning with errors
* [Regev05] shows solving LWE implies approximating lattice problems

* LWE Error Distribution = Source Distribution 7,

* [AkaviaGoldwasserVaiku...09] show if LWE is secure on n/2 variables,
any additional variables are hardcore

Learning with Errors

n/2nn/2
===
AqumXI’l B x
L/eé:\x —1
° x2
p=Ax ® w, | _

- ’
* Recovering x is known as learning with errors
* [Regev05] shows solving LWE implies approximating lattice problems

* LWE Error Distribution = Source Distribution 7,

* [AkaviaGoldwasserVaiku...09] show if LWE is secure on n/2 variables,
any additional variables are hardcore x, | 4, b is pseudorandom

. S
Our Construction = Kzsrce
",/2 ”,/2 B rublic
AqumXI’l B
/eé:\x
p=Ax ® w, - A 4

’

* Recovering x is known as learning with errors
* [Regev05] shows solving LWE implies approximating lattice problems
* LWE Error Distribution = Source Distribution 7,

* [AkaviaGoldwasserVaiku...09] show if LWE is secure on n/2 variables,
any additional variables are hardcore x,| 4, b is pseudorandom

Source

Our Construction B

Gen _
ey = v J} B Public

—

W)
—

* Q: How are we avoiding our negative results?
e A We don’t extract from Wy(we are not aware of any notion

where w,([#Z8¥2)8 has high entropy)
* Instead, we use secret randomness, and hide it using w;,

Source

Our Construction B

Gen —
N B Public

—>»
Wi ?

_ > P

Rep has A and somethmg close to Ax

This is a decoding problem (same as in the traditional construction)
Decoding random codes is hard, but possible for small distances.
(We can’t use LWE trapdoor, because there is no secret storage)

—

) 4
Example algorithm for log many errors:

—

’

Example algorithm for log many errors:

Select n random samples (hopefully, they have no errors)
Solve linear system for x on these samples
Verify correctness of x using other samples

Repeat until successful

Source

Our Construction B

Gen _
ey = v J} B Public

Rep _
o= (4, b ey =

W)
—

AR A

W

5

e (Can correct as many errors as can be efficiently decoded
for random linear code (our algorithm: logarithmically many)

* Each dimension of W, can be sampled with a fraction of the bits
needed for each dimension of x
(i.e., we can protect x using fewer than |x| bits)

* So we can get as many bits in|{Z@as in w, —- lossless!
* Key length doesn’t depend on how many errors are being corrected
. Intuition is encrypted by Wy and decryption tolerates noise

Conclusion

Fuzzy Extractors and Secure Sketches suffer from entropy
losses in information theoretic setting

— May keep the resulting key from being useful

What about the Computational Setting?
Negative Result: Entropy loss inherent for Secure Sketches
(Additional results about unpredictability of (W, |p))

Positive Result:
Construct lossless Computational Fuzzy Extractor using the
Learning with Errors problem

— For Hamming distance, with log errors and restricted
class of sources (secure LWE error distributions)

Open Problems

Improve error-tolerance

Handle additional source distributions

Beat information-theoretic constructions on
practical parameter sizes

Other computational assumptions?

Questions?

