Computational Fuzzy Extractors

Benjamin Fuller, Xianrui Meng, and Leonid Reyzin

December 2, 2013

Key Derivation from Noisy Sources

High-entropy sources are often noisy

- Source value *changes* over time, $w_0 \neq w_1$
- Assume a bound on distance: $d(w_0, w_1) \le d_{\text{max}}$
- Consider Hamming distance today
- Want to derive a stable key from a noisy source
 - Want w_0 , w_1 to map to same key
- Want the key to be *cryptographically* strong
 - Appear uniform to the adversary

Physically Unclonable Functions (PUFs)

[PappuRechtTaylorGershenfeld02]

 W_0

Biometric Data

 W_0

Goal of this talk: provide meaningful security for more sources

Fuzzy Extractors

• Assume source has min-entropy k (no w is likelier than 2^{-k})

- Source Key Public
- Lots of work on reliable keys from noisy data [BennettBrassardRobert85] ...
 Our formalism: Fuzzy Extractors [DodisOstrovskyReyzinSmith04] ...
- Correctness: Gen, Rep give same key if $d(w_0, w_1) < d_{max}$
- Security: $(key, p) \approx (U, p)$

Fuzzy Extractors

• Assume source has min-entropy k (no w is likelier than 2^{-k})

- Source Key Public
- Lots of work on reliable keys from noisy data [BennettBrassardRobert85] ...
 Our formalism: Fuzzy Extractors [DodisOstrovskyReyzinSmith04] ...
- Correctness: Gen, Rep give same key if $d(w_0, w_1) \le d_{max}$
- Security: $(key, p) \approx (U, p)$
- Typical Construction: derive *key* using a randomness extractor

Converts high entropy sources to uniform: $H_{\infty}(W_0) \ge k \Rightarrow \operatorname{Ext}(W_0) \approx U$

Fuzzy Extractors

• Assume source has min-entropy k (no w is likelier than 2^{-k})

- Source Key Public
- Lots of work on reliable keys from noisy data [BennettBrassardRobert85] ...
 Our formalism: Fuzzy Extractors [DodisOstrovskyReyzinSmith04] ...
- Correctness: Gen, Rep give same key if $d(w_0, w_1) \le d_{max}$
- Security: $(key, p) \approx (U, p)$
- Typical Construction: derive key using a randomness extractor
 - correct errors using a secure sketch

Secure Sketches

Code Offset Sketch

G generates a code that corrects d_{max} errors

Code Offset Sketch

G generates a code that corrects d_{\max} errors

If w_0 and w_1 are close c'=c $\bigvee_{w_0=c'\oplus p}$

p reveals information about w_0

Entropy Loss From Fuzzy Extractors

- Entropy is at a premium for physical sources
 - Iris ≈249 [Daugman1996]
 - Fingerprint ≈82 [RathaConnellBolle2001]
 - Passwords ≈31 [ShayKomanduri+2010]
- Above construction of fuzzy extractors, with standard analysis:
 - Secure sketch loss = redundancy of code ≥ error correcting capability
 Loss necessary for information-theoretic sketch: [Smith07, DORS08]
 - Randomness extractor loss $\geq 2\log(1/\varepsilon)$
- Can we improve on this?
- One approach: define secure sketches/fuzzy extractors computationally
 - Give up on security against all-powerful adversaries, consider computational ones

Can we do better in computational setting?

Our Results:

- For secure sketches: NO
 - We show that defining a secure sketch in computational setting does not improve entropy loss
- For fuzzy extractors: YES
 - We construct a *lossless* computational Fuzzy Extractor based on the Learning with Errors (LWE) problem
 - Caveat: this result shows only feasibility of a different construction and analysis; we do not claim to have a specific set of parameters for beating the traditional construction

Computational Secure Sketches

Can we improve on this computationally?

Computational Secure Sketches

- Can we improve on this computationally?
- What does $H^{comp}(|W_0||p)$ mean?
- Most natural requirement: $(W_0 \mid p)$ is indistinguishable from $(Y \mid p)$ and $H_{\infty}(Y \mid p) \ge k$
- Known as HILL entropy [HåstadImpagliazzoLevinLuby99]

Computational Secure Sketches

- What does $H^{comp}(|W_0||p)$ mean?
- Most natural requirement: $(W_0 \mid p)$ is indistinguishable from $(Y \mid p)$ and $H_{\infty}(Y \mid p) \ge k$
- Known as HILL entropy [HåstadImpagliazzoLevinLuby99]

HILL Secure Sketches \Rightarrow Secure Sketches

Our Theorem:

If $H^{\text{HILL}}(W_0 \mid p) \ge k$, then

there exists an error-correcting code C with 2^{k-2} points and

Rec corrects d_{max} random errors on C

We can fix a p value where Rec functions as a good decoder for W_0 . Rec must also decode on indistinguishable distribution Y, and Y is large.

Corollary: (Using secure sketch of [Smith 07]) If there exists a sketch with HILL entropy k, then there exists a sketch with true entropy k-2.

Can we do better in computational setting?

- For secure sketches: NO
 - A sketch that retains HILL entropy implies an information theoretic sketch

- For fuzzy extractors: YES
 - Can't just make the sketch "computational"
 - Other approaches?

Building a Computational Fuzzy Extractor

Building a Computational Fuzzy Extractor

- Computational extractors convert high-entropy sources to pseudorandom bits [Krawczyk10]
- Natural construction: $Cext(w_0) = PRG(Ext(w_0))$
- Extensions [DachmanSoledGennaroKrawczykMalkin12DodisYu13DodisPietrzakWichs13]
- All require enough residual entropy after Sketch to run crypto!
 - See [DachmanSoledGennaroKrawczykMalkin12] for conditions

Building a Computational Fuzzy Extractor

- We'll try to combine a sketch and an extractor
- We'll base our construction on the code offset sketch
- Instantiate with random linear code
- Base security on Learning with Errors (LWE)

Learning with Errors

- Recovering x is known as learning with errors
- [Regev05] shows solving LWE implies approximating lattice problems
- LWE Error Distribution = Source Distribution W_0
 - Need error distribution where LWE is hard
 - Start from result of [Döttling&Müller-Quade13] and make some progress

Learning with Errors

- Recovering x is known as learning with errors
- [Regev05] shows solving LWE implies approximating lattice problems
- LWE Error Distribution = Source Distribution W_0
- [AkaviaGoldwasserVaiku...09] show if LWE is secure on n/2 variables, any additional variables are hardcore

Learning with Errors

- Recovering x is known as learning with errors
- [Regev05] shows solving LWE implies approximating lattice problems
- LWE Error Distribution = Source Distribution W_0
- [AkaviaGoldwasserVaiku...09] show if LWE is secure on n/2 variables, any additional variables are hardcore $x_2 \mid A, b$ is pseudorandom

- Recovering x is known as learning with errors
- [Regev05] shows solving LWE implies approximating lattice problems
- LWE Error Distribution = Source Distribution W_0
- [AkaviaGoldwasserVaiku...09] show if LWE is secure on n/2 variables, any additional variables are hardcore $x_2 \mid A, b$ is pseudorandom

- Q: How are we avoiding our negative results?
- A We don't extract $\frac{key}{}$ from $\frac{w_0}{}$ (we are not aware of any notion where $\frac{w_0}{}$ (A, b) has high entropy)
- Instead, we use secret randomness, and hide it using w_0

- Rep has A and something close to Ax
- This is a decoding problem (same as in the traditional construction)
- Decoding random codes is hard, but possible for small distances.
- (We can't use LWE trapdoor, because there is no secret storage)

Example algorithm for log many errors:

Rep

Example algorithm for log many errors:

- Select n random samples (hopefully, they have no errors)
- Solve linear system for x on these samples
- Verify correctness of x using other samples
- Repeat until successful

- Can correct as many errors as can be efficiently decoded for random linear code (our algorithm: logarithmically many)
- Each dimension of w_0 can be sampled with a fraction of the bits needed for each dimension of x (i.e., we can protect x using fewer than |x| bits)
- So we can get as many bits in $\frac{key}{}$ as in $\frac{w_0}{}$ -- lossless!
- Key length doesn't depend on how many errors are being corrected
- Intuition: \underline{key} is encrypted by $\underline{w_0}$ and decryption tolerates noise

Conclusion

- Fuzzy Extractors and Secure Sketches suffer from entropy losses in information theoretic setting
 - May keep the resulting key from being useful
- What about the Computational Setting?
- Negative Result: Entropy loss inherent for Secure Sketches (Additional results about unpredictability of $(W_0 \mid p)$)
- Positive Result: Construct lossless Computational Fuzzy Extractor using the Learning with Errors problem
 - For Hamming distance, with log errors and restricted class of sources (secure LWE error distributions)

Open Problems

Improve error-tolerance

Handle additional source distributions

 Beat information-theoretic constructions on practical parameter sizes

Other computational assumptions?

Questions?