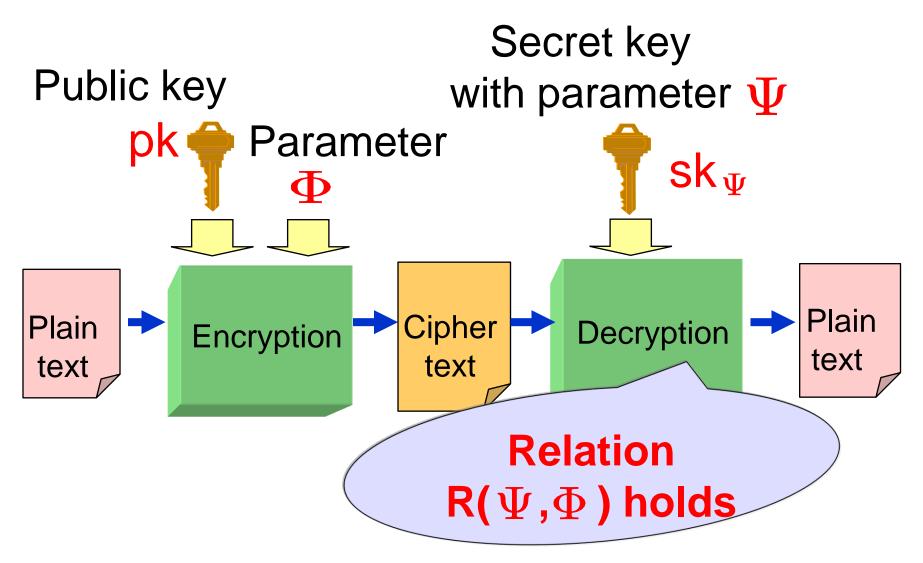
Fully Secure Unbounded Inner-Product and Attribute-Based Encryption

2012 / 12 / 4

Tatsuaki Okamoto (NTT) Katsuyuki Takashima (Mitsubishi Electric)

Functional Encryption



• This type is called Predicate Encryption in [BSW11].

Previously Proposed Special Cases of FE

	Φ	Ψ	R	
ID-based enc. (IBE)	ID	ID'	ID = ID'	
Attribute- based enc. (ABE)	Attributes \varGamma	Access structure S	S accepts	Key-policy (KP)-ABE Ciphertext- policy (CP)-ABE
	Access structure S	Attributes Γ	Γ	
Inner- product enc. (IPE)	Vector \overrightarrow{x}	Vector \overrightarrow{v}	$\overrightarrow{x}\cdot\overrightarrow{v}=0$	

In ABE, access structures are usually given by span programs.

In IPE, the anonymity of vector \vec{x} (attribute-hiding security) is usually required. Any CNF or DNF formula can be realized by inner-product predicates.

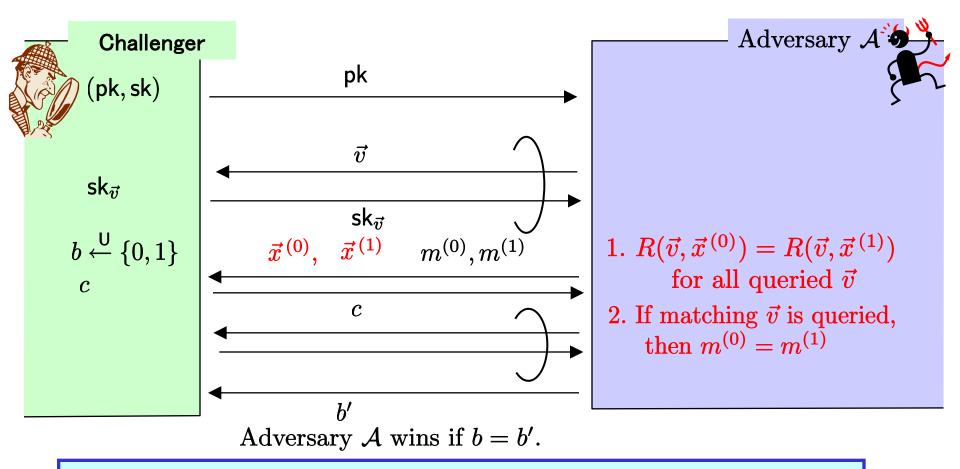
Inner-Product Predicates [KSW 08]

$$\ \ \, \mathbf{R}(\vec{v},\vec{x})=1 \quad \Longleftrightarrow \quad \vec{x}\cdot\vec{v}=0$$

• (Example 1) Equality (ID-based encryption etc.) $\overrightarrow{x} := \delta(x, 1), \quad \overrightarrow{v} := \sigma(1, -a):$ 2-dimensional vectors $\Longrightarrow \quad x = a \iff \overrightarrow{x} \cdot \overrightarrow{v} = 0$ for any random δ and σ (Example 2) $(x = a) \land (y = b) \Leftrightarrow \forall (\delta, \sigma, \delta', \sigma') \ [\delta\delta'(x - a) + \sigma\sigma'(y - b) = 0]$ $\Longrightarrow \quad \overrightarrow{x} := (\delta(x, 1), \sigma(y, 1)), \quad \overrightarrow{v} := (\delta'(1, -a), \sigma'(1, -b)):$ 4-dimensional vectors

(Example 3) $(x = a) \lor (x = b) \Leftrightarrow (x - a)(x - b) = x^2 - (a + b)x + ab = 0$ $\implies \overrightarrow{x} := \delta(x^2, x, 1), \quad \overrightarrow{v} := \sigma(1, -(a + b), ab):$ 3-dimensional vectors Any CNF, DNF formula can be realized by inner-product predicate.

Adaptively Secure & Fully Attribute-Hiding (AH) IPE



No additional information on \vec{x} is revealed even to any person with a matching key $sk_{\vec{v}}$, i.e., $R(\vec{v}, \vec{x}) = 1$.

Unbounded FE

• All previous constructions of IPE and ABE except Lewko-Waters unbounded ABE are bounded, in the sense that the public parameters (pk) impose additional limitations on the parameters ($\Phi, \ \Psi$) for encryption and decryption keys,

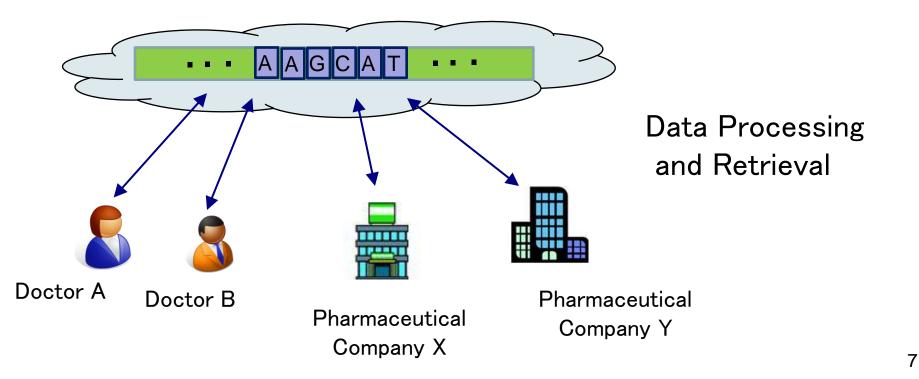
e.g., available dimension n in existing IPE is bounded by pk.

- In practice, it is highly desirable that the parameters (Φ , Ψ) should be flexible or unbounded by pk fixed at setup, since if we set pk for a possible maximum size, the size of pk should be huge.
- Existing IPE schemes have another restriction on the parameters (vectors), i.e., <u>dimensions of attributes and predicates should be equivalent</u>.

Why is it a restriction ?

Genetic Profile Data Predicate Search(I)

- A large amount of sensitive genetic profile data of an individual are stored in a remote server
- Only a part of the profile is examined in many applications (for various purposes)



Genetic Profile Data Predicate Search (II)

- Genetic property variables X_1, \ldots, X_{100} ; Alice's values x_1, \ldots, x_{100}
- Evaluate if $f(x_1, \ldots, x_{100}) = 0$ for an examination of a degree-3 polynomial f

 $\implies \vec{x} := (1, x_1, \dots, x_{100}, x_1 x_2, \dots, x_{100}^2, x_1^3, x_1^2 x_2, \dots, x_{100}^3)$ whose dimension is around 10⁶

• Predicate for \vec{v} , $((X_5 = a) \lor (X_{16} = b)) \land (X_{57} = c)$

$$\Leftrightarrow \text{Polynomial } f := r_1(X_5 - a)(X_{16} - b) + r_2(X_{57} - c)$$

= $(r_1ab - r_2c) - r_1bX_5 - r_1aX_{16} + r_2X_{57} + r_1X_5X_{16}$
 $(r_1, r_2 \xleftarrow{\cup} \mathbb{F}_q)$
 $\Leftrightarrow \vec{v} := ((r_1ab - r_2c), 0, \dots, 0, -r_1b, 0, \dots, 0, -r_1a, 0, \dots, 0, r_2, 0, \dots, 0, r_1, 0, \dots, 0)$

Effective dimension of \vec{v} is 5, instead of 10⁶ !!

Generalized Inner-Product

Generalized (attribute and predicate) vectors

x̄ := {(*t*, *x_t*) | *t* ∈ *I_{x̄}*, *x_t* ∈ 𝔽_{*q*}} \ { $\vec{0}$ } with finite index set *I_{x̄}* ⊂ ℕ *v̄* := {(*t*, *v_t*) | *t* ∈ *I_{v̄}*, *v_t* ∈ 𝔽_{*q*}} \ { $\vec{0}$ } with finite index set *I_{v̄}* ⊂ ℕ
If *I_{x̄}* = {1,...,n}, *x̄* = (*x*₁,...,*x_n*) i.e., conventional vector

- Three types of generalized IPE
 with respect to the decryption condition
 - ▶ For Type 1, $R(\vec{v}, \vec{x}) = 1 \Leftrightarrow I_{\vec{v}} \subseteq I_{\vec{x}}$ and $\sum_{t \in I_{\vec{v}}} v_t x_t = 0$.
 - ▶ For Type 2, $R(\vec{v}, \vec{x}) = 1 \Leftrightarrow I_{\vec{v}} \supseteq I_{\vec{x}}$ and $\sum_{t \in I_{\vec{x}}} v_t x_t = 0$.
 - For Type 0, for $\vec{v} := (v_1, \dots, v_n)$ and $\vec{x} := (x_1, \dots, x_{n'})$, $R(\vec{v}, \vec{x}) = 1 \Leftrightarrow n = n'$ and $\sum_{t=1}^n v_t x_t = 0$.

Previous Work on Unbounded FE [LW11]

- Unbounded HIBE that is fully secure in the standard model
- Unbounded KP-ABE that is selectively secure

Our Results

- We introduce a new concept of IPE, generalized IPE
 ➤ Type 0, Type 1, Type 2
- present the first unbounded IPE schemes
 - adaptively secure and fully attribute-hiding under DLIN (in the standard model)
- present the first unbounded KP- and CP-ABE schemes that are fully secure (adaptively payload-hiding) under DLIN

Dual Pairing Vector Space Approach (I)

- Vector space V := G^N using symmetric pairing groups (q, G, G_T, G, e), where G is a generator of G
 (Canonical) pairing operation:
 - For $\boldsymbol{x} := (x_1 G, \dots, x_N G) \in \mathbb{V}$ and $\boldsymbol{y} := (y_1 G, \dots, y_N G) \in \mathbb{V}$, $e(\boldsymbol{x}, \boldsymbol{y}) := \prod_{i=1}^N e(x_i G, y_i G) \in \mathbb{G}_T.$ $\overrightarrow{\boldsymbol{y}} e(\boldsymbol{x}, \boldsymbol{y}) = e(G, G)^{\vec{\boldsymbol{x}} \cdot \vec{\boldsymbol{y}}}$, where $\vec{\boldsymbol{x}} := (x_1, \dots, x_N), \ \vec{\boldsymbol{y}} := (y_1, \dots, y_N).$
 - Dual bases :
 - $\mathbb{B} := (\boldsymbol{b}_1, \dots, \boldsymbol{b}_N) : \text{basis of } \mathbb{V} \text{ s.t. } \boldsymbol{X} := (\chi_{i,j}) \xleftarrow{\mathsf{U}} GL(N, \mathbb{F}_q),$

$$\begin{split} \boldsymbol{b}_i &:= (\chi_{i,1}G, \dots, \chi_{i,N}G) \text{ for } i = 1, \dots, N.\\ \mathbb{B}^* &:= (\boldsymbol{b}_1^*, \dots, \boldsymbol{b}_N^*) \text{ s.t. } \boldsymbol{\psi} \xleftarrow{\mathsf{U}} \mathbb{F}_q, (\vartheta_{i,j}) &:= \boldsymbol{\psi}(X^{\mathrm{T}})^{-1},\\ \boldsymbol{b}_i^* &= (\vartheta_{i,1}G, \dots, \vartheta_{i,N}G) \text{ for } i = 1, \dots, N. \end{split}$$

DPVS Approach (II)

Dual Pairing Vector Space (DPVS) approach :

Cryptographic Construction using \mathbb{V} with (the canonical pairing and) random dual bases as a master key pair

DLIN-based security (from [OT10] machinery)

Notation :

For
$$\vec{x} := (x_1, \dots, x_N)$$
 and $\vec{y} := (y_1, \dots, y_N)$, we denote
 $\boldsymbol{x} := (\vec{x})_{\mathbb{B}} := (x_1, \dots, x_N)_{\mathbb{B}} := x_1 \boldsymbol{b}_1 + \dots + x_N \boldsymbol{b}_N \in \mathbb{V},$
 $\boldsymbol{y} := (\vec{y})_{\mathbb{B}^*} := (y_1, \dots, y_N)_{\mathbb{B}^*} := y_1 \boldsymbol{b}_1^* + \dots + y_N \boldsymbol{b}_N^* \in \mathbb{V}.$
 $\Longrightarrow \quad e(\boldsymbol{x}, \boldsymbol{y}) = g_T^{\vec{x} \cdot \vec{y}} \in \mathbb{G}_T \quad \text{where} \quad g_T = e(G, G)^{\psi}$

Basic Idea for Constructing IPE using DPVS

▶ Setup : (param, B, B*) : (n + 1)-dim. param. with dual bases pk := (param, B), sk := B*

$$\mathsf{KeyGen}(\mathsf{sk}, \vec{v} := (v_1, \dots, v_n)) : \\ \mathbf{k}^* := \mathbf{b}_0^* + \sigma(v_1 \mathbf{b}_1^* + \dots + v_n \mathbf{b}_n^*) \\ = (1, \ \sigma \vec{v} \)_{\mathbb{B}^*}$$

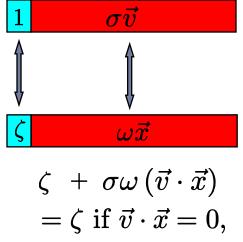
$$\mathsf{Enc}(\mathsf{pk}, \vec{x} := (x_1, \dots, x_n), m) :$$

$$\mathbf{c}_1 := \zeta \mathbf{b}_0 + \omega(x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n)$$

$$= (\zeta, \omega \vec{x})_{\mathbb{B}}$$

$$c_2 := g_T^{\zeta} \cdot m, ext{ where } g_T := e(oldsymbol{b}_i, oldsymbol{b}_i^*)$$

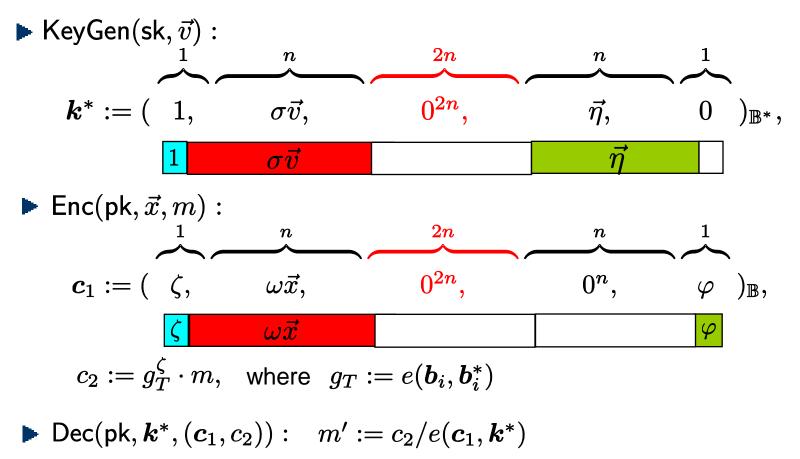
▶ $\mathsf{Dec}(\mathsf{pk}, \mathbf{k}^*, (\mathbf{c}_1, c_2)): m' := c_2/e(\mathbf{c}_1, \mathbf{k}^*)$



random
if
$$\vec{v} \cdot \vec{x} \neq 0$$
.

Adaptively Fully-Attribute-Hiding IPE [OT12a]

$$\begin{array}{ll} \blacktriangleright \quad \mathsf{Setup}: & (\mathsf{param}, \mathbb{B}, \mathbb{B}^*) \xleftarrow{\mathsf{R}} \mathcal{G}_{\mathsf{ob}}(1^{\lambda}, 4n+2) \\ & \widehat{\mathbb{B}}:=(\pmb{b}_0, \dots, \pmb{b}_n, \pmb{b}_{4n+1}), \quad \widehat{\mathbb{B}}^*:=(\pmb{b}_0^*, \dots, \pmb{b}_n^*, \pmb{b}_{3n+1}^*, \dots, \pmb{b}_{4n}^*), \\ & \mathsf{pk}:=(\mathsf{param}, \widehat{\mathbb{B}}), \quad \mathsf{sk}:=\widehat{\mathbb{B}}^* \end{array}$$

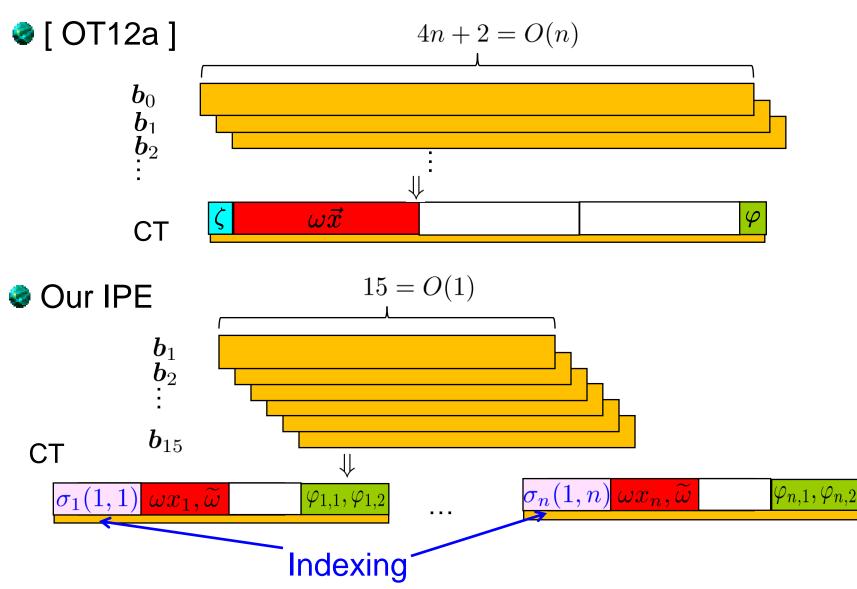


Key Techniques for Fully Secure Unbounded FE

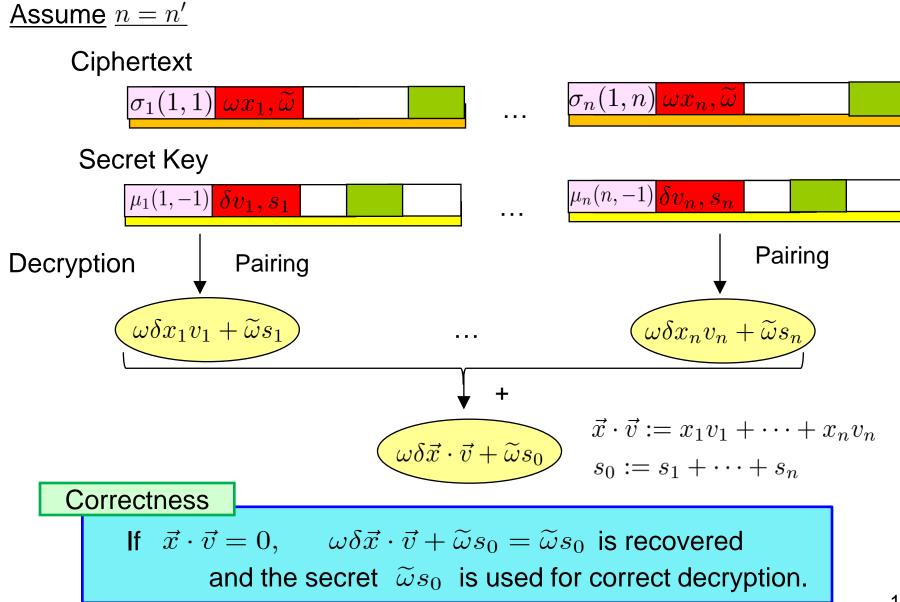
- The difficulty of realizing fully secure unbounded IPE (or ABE) arises from the hardness of supplying an unbounded amount of randomness consistent with the complicated key-query condition under a "constant size" pk
- We develop novel techniques, indexing and consistent randomness amplification technique
 - indexing: supply a source of unbounded amount of randomness
 - consistent randomness amplification: amplify the randomness of the source and adjust the distribution consistently with the condition

Indexing for Type 1 IPE (I)

For simplicity, $I_{\vec{x}} := \{1, \ldots, n\}$

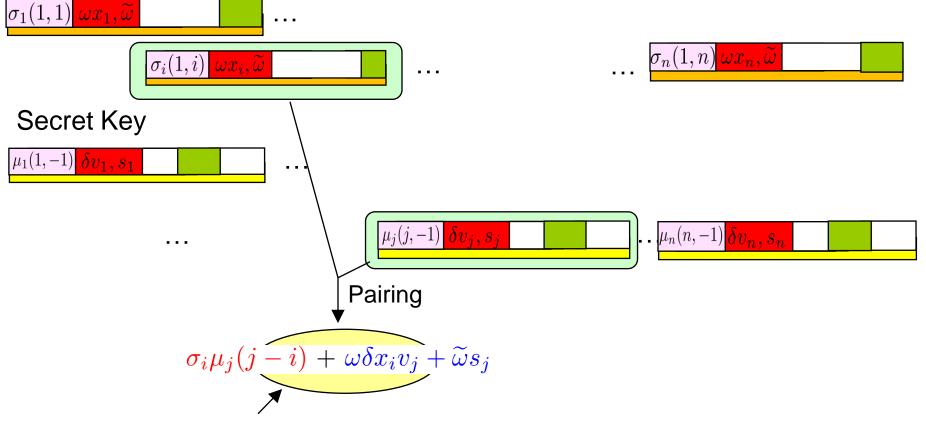


Indexing for Type 1 IPE (II)



Indexing for Type 1 IPE (III)

• Pairing elements for $i \neq j$ Ciphertext



• Correlation from index part, $\sigma_i \mu_j (j-i)$, randomizes $\omega \delta x_i v_j + \tilde{\omega} s_j$ (prevention of collusion attack)

Adaptively Fully-AH Unbounded Type 1 IPE

 $\mathsf{Setup}(1^{\lambda}): \quad (\mathsf{param}, (\mathbb{B}_0, \mathbb{B}_0^*), (\mathbb{B}, \mathbb{B}^*)) \xleftarrow{\mathsf{R}} \mathcal{G}_{\mathsf{ob}}(1^{\lambda}, (N_0 := 5, N := 15)),$ $\mathsf{pk} := (1^{\lambda}, \text{ param}, \ \widehat{\mathbb{B}}_0 := (\boldsymbol{b}_{0,1}, \boldsymbol{b}_{0,3}, \boldsymbol{b}_{0,5}), \ \widehat{\mathbb{B}} := (\boldsymbol{b}_1, .., \boldsymbol{b}_4, \boldsymbol{b}_{14}, \boldsymbol{b}_{15})),$ $\mathsf{sk} := (\widehat{\mathbb{B}}_0^* := (\boldsymbol{b}_{0,1}^*, \boldsymbol{b}_{0,3}^*, \boldsymbol{b}_{0,4}^*), \ \widehat{\mathbb{B}}^* := (\boldsymbol{b}_1^*, .., \boldsymbol{b}_4^*, \boldsymbol{b}_{12}^*, \boldsymbol{b}_{13}^*)).$ KeyGen(pk, sk, $\vec{v} := \{(t, v_t) \mid t \in I_{\vec{v}}\}\}$: $s_t \leftarrow \mathbb{F}_q$ for $t \in I_{\vec{v}}, s_0 := \sum_{t \in I_{\vec{v}}} s_t$, $k_0^* := (-s_0, 0, 1, \eta_0, 0)_{\mathbb{B}_0^*},$ $(0^2)_{\mathbb{B}^*}$ for $t \in I_{\vec{v}}$ $k_t^* := (\mu_t(t, -1), \delta v_t, s_t, 0^7, \eta_{t,1}, \eta_{t,2}, \delta v_t)$ $\mu_t(t,-1) \delta v_t, s_t$ $\mathsf{Enc}(\mathsf{pk}, m, \vec{x} := \{(t, x_t) \mid t \in I_{\vec{x}}\}): \quad \widetilde{\omega} \xleftarrow{\mathsf{U}} \mathbb{F}_q,$ $\boldsymbol{c}_0 := (\widetilde{\boldsymbol{\omega}}, 0, \zeta, 0, \varphi_0)_{\mathbb{B}_0}, \quad \boldsymbol{c}_T := g_T^{\zeta} \boldsymbol{m},$ $c_t := (\sigma_t(1, t), \omega x_t, \widetilde{\omega} \quad 0^7, \quad 0^2, \quad \varphi_{t,1}, \varphi_{t,2} \quad)_{\mathbb{B}} \text{ for } t \in I_{\vec{x}}$ $\sigma_t(1,t) \ \omega x_t, \widetilde{\omega}$ $\mathsf{Dec}(\mathsf{pk}, \mathsf{sk}_{\vec{v}} := (I_{\vec{v}}, \boldsymbol{k}_0^*, \{\boldsymbol{k}_t^*\}_{t \in I_{\vec{v}}}), \mathsf{ct}_{\vec{x}} := (I_{\vec{x}}, \boldsymbol{c}_0, \{\boldsymbol{c}_t\}_{t \in I_{\vec{x}}}, c_T)):$ if $I_{\vec{v}} \subseteq I_{\vec{x}}$, $K := e(c_0, k_0^*) \cdot \prod_{t \in I_{\vec{v}}} e(c_t, k_t^*)$, return c_T/K , else, return \perp .

Consistent Randomness Amplification

normal
secret key:

$$k_{t}^{*} := (\mu_{t}(t, -1), \delta v_{t}, s_{t}, \boxed{0^{7}}, \ldots)_{\mathbb{B}^{*}}$$
normal
ciphertext:

$$c_{t} := (\sigma_{t}(1, t), \omega x_{t}, \widetilde{\omega}, \boxed{0^{7}}, \ldots)_{\mathbb{B}}$$

$$c_{t} := (\sigma_{t}(1, t), \omega x_{t}, \widetilde{\omega}, \boxed{0^{7}}, \ldots)_{\mathbb{B}}$$

$$c_{t}(1, t) \omega x_{t}, \widetilde{\omega}$$

$$k_{t}^{*} := (\mu_{t}(t, -1), \delta v_{t}, s_{t}, \boxed{0^{4}, (\pi v_{t}, a_{t}) \cdot U_{t}, 0}, \ldots)_{\mathbb{B}^{*}}$$
Computational

$$k_{t}^{*} := (\mu_{t}(t, -1), \delta v_{t}, s_{t}, \underbrace{(\pi v_{t}, a_{t}) \cdot U_{t}, 0}, \ldots)_{\mathbb{B}^{*}}$$
Computational

$$k_{t}^{*} := (\sigma_{t}(1, t), \omega x_{t}, \widetilde{\omega}, \underbrace{(\pi v_{t}, a_{t}) \cdot U_{t}}, 0, \ldots)_{\mathbb{B}^{*}}$$
Computational

$$c_{t} := (\sigma_{t}(1, t), \omega x_{t}, \widetilde{\omega}, \underbrace{(\pi v_{t}, \widetilde{\tau}) \cdot Z_{t}, 0}, \ldots)_{\mathbb{B}}$$
Changes

$$\sigma_{t}(1, t) \omega x_{t}, \widetilde{\omega} \dots (\tau x_{t}, \widetilde{\tau}) \cdot Z_{t} \dots \cdot \mathbb{B}$$
Amplified consistently with the key condition
where $Z_{t} \leftarrow GL(2, \mathbb{F}_{q})$ and $U_{t} := (Z_{t}^{T})^{-1}$

20

Comparison of IPE Schemes

	KSW08	OT10	OT12a		OT12b	
			(basic)	(variant)	(type 1 or 2)	(type 0)
Bounded or Unbounded	bounded	bounded	bounded		unbounded	
Restriction on IP relation	$restricted^*$	restricted	restricted		relaxed	restricted
Security	selective & fully-AH	adaptive & weakly-AH	adaptive & fully-AH		adaptive & fully-AH	
$\begin{array}{c} \text{Order} \\ \text{of } \mathbb{G} \end{array}$	composite	prime	prime		prime	
Assump.	2 variants of GSD	DLIN	DLIN		DLIN	
PK size	$O(n) \mathbb{G} $	$O(n^2) \mathbb{G} $	$O(n^2) \mathbb{G} $	$O(n) \mathbb{G} $	$O(1) \mathbb{G} $	$O(1) \mathbb{G} $
SK size	$(2n+1) \mathbb{G} $	$(3n+2) \mathbb{G} $	$(4n+2) \mathbb{G} $	$11 \mathbb{G} $	$(15n+5) \mathbb{G} $	$(21n+9) \mathbb{G} $
CT size	$ \begin{array}{ c } (2n+1) \mathbb{G} \\ + \mathbb{G}_T \end{array} $	$\frac{(3n+2) \mathbb{G} }{+ \mathbb{G}_T }$	$\frac{(4n+2) \mathbb{G} }{+ \mathbb{G}_T }$	$(5n+1) \mathbb{G} + \mathbb{G}_T $	$ (15n'+5) \mathbb{G} + \mathbb{G}_T $	$\frac{(21n'+9) \mathbb{G} }{+ \mathbb{G}_T }$

* It can be easily relaxed.

 $n := \sharp I_{\vec{v}}, n' := \sharp I_{\vec{x}}$: dimensions of predicate vector and attribute vector $|\mathbb{G}|, |\mathbb{G}_T|$: size of an element of \mathbb{G}, \mathbb{G}_T

AH, IP, GSD : attribute-hiding, inner product, general subgroup decision PK, SK, CT : public key, secret key, ciphertext