

Shuffling Against Side-Channel Attacks:
a Comprehensive Study with Cautionary Note

N. Veyrat-Charvillon, M. Medwed,

S. Kerckhof, F.-X. Standaert

UCL Crypto Group, Belgium

ASIACRYPT 2012, Bejing, China

 Motivation (I) 1

• ASIACRYPT 2010: masking is an effective

countermeasure against side-channel attacks

 Motivation (I) 1

• ASIACRYPT 2010: masking is an effective

countermeasure against side-channel attacks

• If there is sufficient measurement noise !!!

not enough noise

enough noise

 Motivation (II) 2

• Problem: how to generate noise in small devices?

 Motivation (II) 2

• Problem: how to generate noise in small devices?

• Previous works: time randomization can help

 Motivation (II) 2

• Problem: how to generate noise in small devices?

• Previous works: time randomization can help

• But we need to be careful with re-synchronization

• e.g. random insertion of dummy operations is

not enough [Durvaux et al./CARDIS2012]

 Motivation (II) 2

• Problem: how to generate noise in small devices?

• Previous works: time randomization can help

• But we need to be careful with re-synchronization

• e.g. random insertion of dummy operations is

not enough [Durvaux et al./CARDIS2012]

• Best known option so far: shuffling operations

 Intuition (I) 3

• Deterministic execution of the AES S-boxes

 Intuition (I) 3

• Deterministic execution of the AES S-boxes

 Intuition (I) 3

• Deterministic execution of the AES S-boxes

 Intuition (I) 3

• Deterministic execution of the AES S-boxes

 Intuition (II) 4

• Randomized execution of the AES S-boxes

 Intuition (II) 4

• Randomized execution of the AES S-boxes

 Intuition (II) 4

• Randomized execution of the AES S-boxes

 Intuition (II) 4

• Randomized execution of the AES S-boxes

 Expectation 5

• Points of interest spread over t cycles

 Expectation 5

• Points of interest spread over t cycles

• Shuffling aims to amplify physical noise, by forcing

the adversary to combine multiple points

 Expectation 5

 Expectation 5

 Talk outline

1. Implementation: how to shuffle efficiently?

(Permutation generation - see paper)

a. Double indexing

b. (new) Randomized execution path

c. (new) Randomized program memory

2. Security evaluation: “better than integrating”

a. Information theoretic analysis

b. Actual chip measurements

 Talk outline

1. Implementation: how to shuffle efficiently?

(Permutation generation - see paper)

a. Double indexing

b. (new) Randomized execution path

c. (new) Randomized program memory

2. Security evaluation: “better than integrating”

a. Information theoretic analysis

b. Actual chip measurements

 Double indexing (S-box example) 6

 Double indexing (S-box example) 6

 Double indexing (S-box example) 6

 Double indexing (S-box example) 6

 Double indexing (S-box example) 6

 Double indexing (S-box example) 6

 Double indexing (S-box example) 6

• Two RAM accesses per R/W access to operands

 Very large cycle counts

 Talk outline

1. Implementation: how to shuffle efficiently?

(Permutation generation - see paper)

a. Double indexing

b. (new) Randomized execution path

c. (new) Randomized program memory

2. Security evaluation: “better than integrating”

a. Information theoretic analysis

b. Actual chip measurements

 Randomized execution path 7

 Randomized execution path 7

 Randomized execution path 7

HOW?

 Randomized execution path 7

 Randomized execution path 7

 Randomized execution path 7

 Randomized execution path 7

• Better exploitation of registers

 Significantly reduces the cycle count

 Talk outline

1. Implementation: how to shuffle efficiently?

(Permutation generation - see paper)

a. Double indexing

b. (new) Randomized execution path

c. (new) Randomized program memory

2. Security evaluation: “better than integrating”

a. Information theoretic analysis

b. Actual chip measurements

 Randomized execution path 8

 Randomized execution path 8

 Randomized execution path 8

 Randomized execution path 8

 Randomized execution path 8

 Randomized execution path 8

• Large precomputations (technology dependent)
• Somehow similar to a one-time program

• Minimum “online” cycle count (~ unprotected)

 Evaluations on Atmel AtMega644p 9

Implementation Clock Cycles

Unprotected AES 2739 (3546 with KS)

Double Indexing shuffling 30202 (46395 with KS)

Randomized Path shuffling 6934 (14834 with KS)

Randomized Memory shuffling 3299*

* Excludes precomputations (approx. 18 milliseconds)

• Includes shuffling of other AES operations (among

16 for each of them – see paper for the details)

 Talk outline

1. Implementation: how to shuffle efficiently?

(Permutation generation - see paper)

a. Double indexing

b. (new) Randomized execution path

c. (new) Randomized program memory

2. Security evaluation: “better than integrating”

a. Information theoretic analysis

b. Actual chip measurements

 Better than integrating attacks? 10

• Security evaluations of masking schemes usually

exploit the leakage of all the shares

 Better than integrating attacks? 10

• Security evaluations of masking schemes usually

exploit the leakage of all the shares

• Integrating attacks ignore “permutation leakages”

• (Which appear within the double indexing and

randomized execution path methods)

 Better than integrating attacks? 10

• Security evaluations of masking schemes usually

exploit the leakage of all the shares

• Integrating attacks ignore “permutation leakages”

• (Which appear within the double indexing and

randomized execution path methods)

 Natural next step: include them in analysis

 Our model 10

• Standard (sensitive operation) leakages

 Our model 10

• Standard (sensitive operation) leakages

• Let Sc = P(c) be the part of the master key

manipulated at cycle c, with P the shuffling perm.

• We additionally consider permutations leakages

 EC09 information theoretic analysis (I) 11

• Based on the leakage probability distribution

 EC09 information theoretic analysis (I) 11

• Based on the leakage probability distribution

• Different scenarios

• Template attack without permutation leakage (UNI-TA)

 EC09 information theoretic analysis (I) 11

• Based on the leakage probability distribution

• Different scenarios

• Template attack without permutation leakage (UNI-TA)

• Template attack with permutation leakage (DPLEAK-TA)

 EC09 information theoretic analysis (I) 11

• Based on the leakage probability distribution

• Different scenarios

• Template attack without permutation leakage (UNI-TA)

• Template attack with permutation leakage (DPLEAK-TA)

• Random Start Index (RSIENUM-TA)

 EC09 information theoretic analysis (II) 12

 EC09 information theoretic analysis (II) 12

 EC09 information theoretic analysis (II) 12

 EC09 information theoretic analysis (II) 12

 EC09 information theoretic analysis (II) 12

 Talk outline

1. Implementation: how to shuffle efficiently?

(Permutation generation - see paper)

a. Double indexing

b. (new) Randomized execution path

c. (new) Randomized program memory

2. Security evaluation: “better than integrating”

a. Information theoretic analysis

b. Actual chip measurements

 EC09 security analysis (Atmel AVR) 13

 EC09 security analysis (Atmel AVR) 13

 EC09 security analysis (Atmel AVR) 13

 EC09 security analysis (Atmel AVR) 13

 Indirect leakages! 14

• Fact: for similar amounts of noise, actual attacks

more efficient than simulated ones

 Indirect leakages! 14

• Fact: for similar amounts of noise, actual attacks

more efficient than simulated ones
• Surprising since the opposite is usually observed

(because simulated attacks have perfect leakage

models while actual attacks use estimated ones)

 Indirect leakages! 14

• Fact: for similar amounts of noise, actual attacks

more efficient than simulated ones
• Surprising since the opposite is usually observed

(because simulated attacks have perfect leakage

models while actual attacks use estimated ones)

• Why?

 Indirect leakages! 14

• Fact: for similar amounts of noise, actual attacks

more efficient than simulated ones
• Surprising since the opposite is usually observed

(because simulated attacks have perfect leakage

models while actual attacks use estimated ones)

• Why? Recall the processor structure:

 Indirect leakages! 14

• Fact: for similar amounts of noise, actual attacks

more efficient than simulated ones
• Surprising since the opposite is usually observed

(because simulated attacks have perfect leakage

models while actual attacks use estimated ones)

• Why? Recall the processor structure:

• Even if operation order is shuffled,

the state bytes are still manipulated

by the same hardware resources!

 Indirect leakages! 14

• Fact: for similar amounts of noise, actual attacks

more efficient than simulated ones
• Surprising since the opposite is usually observed

(because simulated attacks have perfect leakage

models while actual attacks use estimated ones)

• Why? Recall the processor structure:

• Even if operation order is shuffled,

the state bytes are still manipulated

by the same hardware resources!

• As these resources have slightly

different leakage models, this leads

to additional (indirect) leakage!

 Indirect leakages! 14

• Fact: for similar amounts of noise, actual attacks

more efficient than simulated ones
• Surprising since the opposite is usually observed

(because simulated attacks have perfect leakage

models while actual attacks use estimated ones)

• Why? Recall the processor structure:

• Even if operation order is shuffled,

the state bytes are still manipulated

by the same hardware resources!

• As these resources have slightly

different leakage models, this leads

to additional (indirect) leakage!

• Even for randomized program memory !!

 Conclusions 15

• Shuffling can be implemented in different ways

• Tradeoff between “online” and “offline” cycles

 Conclusions 15

• Shuffling can be implemented in different ways

• Tradeoff between “online” and “offline” cycles

• Cautionary note: shuffling can be used as a noise

amplifier – never as a noise generator!

 Conclusions 15

• Shuffling can be implemented in different ways

• Tradeoff between “online” and “offline” cycles

• Cautionary note: shuffling can be used as a noise

amplifier – never as a noise generator!

• Computation matters: enumerable permutations

lead to easier attacks => RSI should be avoided

• (and all the operations in the block cipher

should be permuted over at least 16!)

 Conclusions 15

• Shuffling can be implemented in different ways

• Tradeoff between “online” and “offline” cycles

• Cautionary note: shuffling can be used as a noise

amplifier – never as a noise generator!

• Computation matters: enumerable permutations

lead to easier attacks => RSI should be avoided

• (and all the operations in the block cipher

should be permuted over at least 16!)

• Indirect leakages can appear!

• Ideally, not only the order of operations should

be shuffled, but also the resources used

THANKS
http://perso.uclouvain.be/fstandae/

http://perso.uclouvain.be/fstandae/

