Leakage Resilient ElGamal Encryption

Eike Kiltz and Krzysztof Pietrzak

Asiacrypt 2010, December 9th, Singapore

Outline

- 4 Hybrid Encryption, the KEM/DEM framework
- ElGamal KEM
- Leakage Resilient Crypto
 - Why?
 - How?
 - Other models?
- Leakage Resilient ElGamal

$$\Pr[\mathsf{Dec}(sk,C) = K : (pk,sk) \stackrel{\$}{\leftarrow} \mathsf{KG} ; (K,C) \stackrel{\$}{\leftarrow} \mathsf{Enc}(pk)] = 1$$

$$\Pr[\mathsf{Dec}(sk,C) = K : (pk,sk) \stackrel{\$}{\leftarrow} \mathsf{KG} ; (K,C) \stackrel{\$}{\leftarrow} \mathsf{Enc}(pk)] = 1$$

$$\Pr[\mathsf{Dec}(sk,C) = K : (pk,sk) \stackrel{\$}{\leftarrow} \mathsf{KG} ; (K,C) \stackrel{\$}{\leftarrow} \mathsf{Enc}(pk)] = 1$$

$$\Pr[\mathsf{Dec}(\textcolor{red}{\mathsf{sk}}, \textcolor{blue}{C}) = K : (pk, \textcolor{red}{\mathsf{sk}}) \overset{\$}{\leftarrow} \mathsf{KG} ; (K, \textcolor{blue}{C}) \overset{\$}{\leftarrow} \mathsf{Enc}(pk)] = 1$$

$$KEM = \{KG, Enc, Dec\} \approx PKE \text{ for random messages.}$$

 $KEM + DEM \Rightarrow PKE$

$$\Pr[\mathsf{Dec}(\mathsf{sk},C) = \mathsf{K} : (pk,\mathsf{sk}) \overset{\$}{\leftarrow} \mathsf{KG} ; (\mathsf{K},C) \overset{\$}{\leftarrow} \mathsf{Enc}(pk)] = 1$$

$$KEM = \{KG, Enc, Dec\} \approx PKE \text{ for random messages.}$$

 $KEM + DEM \Rightarrow PKE$

$$\Pr[\mathsf{Dec}(sk,C) = K : (pk,sk) \stackrel{\$}{\leftarrow} \mathsf{KG} ; (K,C) \stackrel{\$}{\leftarrow} \mathsf{Enc}(pk)] = 1$$

$$KEM = \{KG, Enc, Dec\} \approx PKE \text{ for random messages.}$$

 $KEM + DEM \Rightarrow PKE$

$$\Pr[\mathsf{Dec}(\textcolor{red}{\mathsf{sk}}, \textcolor{blue}{C}) = \mathcal{K} : (pk, \textcolor{red}{\mathsf{sk}}) \overset{\$}{\leftarrow} \mathsf{KG} ; (\mathcal{K}, \textcolor{blue}{C}) \overset{\$}{\leftarrow} \mathsf{Enc}(pk)] = 1$$

public parameter: Cyclic group $\mathbb G$ of prime order p, $g=\langle \mathbb G \rangle$

public parameter: Cyclic group
$$\mathbb G$$
 of prime order $p,\,g=\langle\mathbb G\rangle$ KG: $sk=x$, $pk=g^{\mathsf x}$ where $x\stackrel{\$}{\leftarrow}\mathbb Z_p$

```
public parameter: Cyclic group \mathbb G of prime order p, g = \langle \mathbb G \rangle
\mathsf{KG} \colon sk = \mathsf{x} \ , \ pk = g^\mathsf{x} \quad \text{ where } \quad \mathsf{x} \xleftarrow{\$} \mathbb Z_p
\mathsf{Enc}(pk) \colon \mathsf{output} \ (C := g^r, K := g^{r\mathsf{x}}) \quad \text{where } \quad r \xleftarrow{\$} \mathbb Z_p
\mathsf{Dec}(sk, C) \colon \mathsf{output} \ C^\mathsf{x}
```

```
public parameter: Cyclic group \mathbb G of prime order p, g = \langle \mathbb G \rangle
\mathsf{KG} \colon sk = \mathsf{x} \ , \ pk = g^\mathsf{x} \quad \text{ where } \quad \mathsf{x} \xleftarrow{\$} \mathbb Z_p
\mathsf{Enc}(pk) \colon \mathsf{output} \ (C := g^r, K := g^{r\mathsf{x}}) \quad \mathsf{where} \quad r \xleftarrow{\$} \mathbb Z_p
\mathsf{Dec}(sk, C) \colon \mathsf{output} \ C^\mathsf{x} = g^{r\mathsf{x}} = K
```


ullet Can e.g. measure time it takes to compute C^{\times}

• Can e.g. measure time it takes to compute C^{\times}

Side-Channel Attack: Cryptanalytic attack exploring information leaked from a physical implementation of a cryptosystem.

More side-channel attacks

power analysis

probing attacks

cold-boot attacks

cache attacks

More side-channel attacks

- power analysis
 [Eisenbarth et al. CRYPTO'08]
 break wireless car keys
- radiation, sound, heat,...

- cold-boot attacks [Halderman et al. USENIX'08] break disc-encryption schemes
- cache attacks
 [Ristenpart et al. CCS'09]
 break cloud computing

Usually Ad-hoc

Implement countermeasures to prevent known attacks.

Usually Ad-hoc

Implement countermeasures to prevent known attacks.

Timing Make computation time independent of inputs.

Usually Ad-hoc

Implement countermeasures to prevent known attacks.

Timing Make computation time independent of inputs. Radiation Shield the chip.

Usually Ad-hoc

Implement countermeasures to prevent known attacks.

Timing Make computation time independent of inputs. Radiation Shield the chip.

- Computation is split in steps.
- Adversary has black-box access + get bounded amount of arbitrary, adaptively chosen leakage of every step.

- Computation is split in steps.
- Adversary has black-box access + get bounded amount of arbitrary, adaptively chosen leakage of every step. (only computation leaks "axiom" [MR04].)

• LR primitives must be stateful.

- LR primitives must be stateful.
- Key evolution:
 LR stream-cipher [DP'08,P09,YSPY'10]
 LR (tree-based) signatures [FKPR'10]
 Evolving PKE sk difficult: must decrypt for fixed pk.

- LR primitives must be stateful.
- Key evolution:
 LR stream-cipher [DP'08,P09,YSPY'10]
 LR (tree-based) signatures [FKPR'10]
 Evolving PKE sk difficult: must decrypt for fixed pk.
- We secret-share key (aka blinding.) Frequently re-share.

- LR primitives must be stateful.
- Key evolution:
 LR stream-cipher [DP'08,P09,YSPY'10]
 LR (tree-based) signatures [FKPR'10]
 Evolving PKE sk difficult: must decrypt for fixed pk.
- We secret-share key (aka blinding.) Frequently re-share.
- Scheme is very efficient (\approx 2x basic ElGamal)
- Security proofs are very limited (generic group.)

Some Related Work

- General Compilers [Goldwasser-Rothblum, Juma-Vahlis Crypto'10]
 General but not practical (One Encryption get gate / Fully homomorphic encryption)
- Non-Continuous leakage (BRM/memory-attacks, auxiliary input), next talk.
- Continuous memory attacks [DHLW,BKKV FOCS'10], [LLW eprint 2010/562].

ElGamal KEM with shared key

$$\mathbf{x} \in \mathbb{Z}_p$$

ElGamal KEM with shared key

Not Leakage-Resilient (learn x bit by bit.)

$$\mathbf{x} \in \mathbb{Z}_p$$

Not Leakage-Resilient (learn x bit by bit.)

$$\mathbf{x}_0'$$

- Not Leakage-Resilient (learn x bit by bit.)
- Multiplicatively Secret-Share $\mathbf{x} = \mathbf{x}_0 \cdot \mathbf{x}'_0$.

- \mathbf{x}_0'
- Not Leakage-Resilient (learn x bit by bit.)
- Multiplicatively Secret-Share $\mathbf{x} = \mathbf{x}_0 \cdot \mathbf{x}'_0$.

- Not Leakage-Resilient (learn x bit by bit.)
- Multiplicatively Secret-Share $\mathbf{x} = \mathbf{x}_0 \cdot \mathbf{x}'_0$.

- Not Leakage-Resilient (learn x bit by bit.)
- Multiplicatively Secret-Share $\mathbf{x} = \mathbf{x}_0 \cdot \mathbf{x}'_0$.

- Not Leakage-Resilient (learn x bit by bit.)
- Multiplicatively Secret-Share $\mathbf{x} = \mathbf{x}_0 \cdot \mathbf{x}'_0$.
- Re-Sharing: $\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i \cdot r$, $\mathbf{x}'_{i+1} \leftarrow \mathbf{x}'_i/r$.

- Not Leakage-Resilient (learn x bit by bit.)
- Multiplicatively Secret-Share $\mathbf{x} = \mathbf{x}_0 \cdot \mathbf{x}'_0$.
- Re-Sharing: $\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i \cdot r$, $\mathbf{x}'_{i+1} \leftarrow \mathbf{x}'_i/r$.
- *i*'th query: An adaptively chooses $f_i(.), f'_i(.)$. Gets leakage $f_i(x_i, r), f'_i(x'_i, r, C^{x_i})$.

Conjecture: ElGamal KEM (as on previous slide) is leakage-resilient if

- the group order p is not smooth (i.e. p-1 has large prime factor.)
- Range of leakage functions is bounded to, say $\lambda = 0.25 \cdot \log(p)$ bits.

¹Howgrave-Graham, Nguyen, Shparlinski. *Hidden number problem* with hidden multipliers, timed-release crypto, and noisy exponentiation. *Math. Comput.* 72(243): 1473-1485 (2003)

Conjecture: ElGamal KEM (as on previous slide) is leakage-resilient if

- the group order p is not smooth (i.e. p-1 has large prime factor.)
- Range of leakage functions is bounded to, say $\lambda = 0.25 \cdot \log(p)$ bits.
- Attack exits if we use additive secret sharing, i.e. $\mathbf{x} = \mathbf{x}_i + \mathbf{x}_i' \mod p$ instead $\mathbf{x} = \mathbf{x}_i \cdot \mathbf{x}_i' \mod p$.

¹Howgrave-Graham, Nguyen, Shparlinski. *Hidden number problem* with hidden multipliers, timed-release crypto, and noisy exponentiation. Math. Comput. 72(243): 1473-1485 (2003)

Conjecture: ElGamal KEM (as on previous slide) is leakage-resilient if

- the group order p is not smooth (i.e. p-1 has large prime factor.)
- Range of leakage functions is bounded to, say $\lambda = 0.25 \cdot \log(p)$ bits.
- Attack exits if we use additive secret sharing,
 i.e. x = x_i + x'_i mod p instead x = x_i · x'_i mod p.
- Attack exists if p-1 is smooth.

¹Howgrave-Graham, Nguyen, Shparlinski. *Hidden number problem* with hidden multipliers, timed-release crypto, and noisy exponentiation. Math. Comput. 72(243): 1473-1485 (2003)

Conjecture: ElGamal KEM (as on previous slide) is leakage-resilient if

- the group order p is not smooth (i.e. p-1 has large prime factor.)
- Range of leakage functions is bounded to, say $\lambda = 0.25 \cdot \log(p)$ bits.
- Attack exits if we use additive secret sharing,
 i.e. x = x_i + x'_i mod p instead x = x_i · x'_i mod p.
- Attack exists if p-1 is smooth.
- Attack exists if $\lambda = 0.4 \cdot \log(p)$.

¹Howgrave-Graham, Nguyen, Shparlinski. *Hidden number problem with hidden multipliers, timed-release crypto, and noisy exponentiation. Math. Comput.* 72(243): 1473-1485 (2003)

Conjecture: ElGamal KEM (as on previous slide) is leakage-resilient if

- the group order p is not smooth (i.e. p-1 has large prime factor.)
- Range of leakage functions is bounded to, say $\lambda = 0.25 \cdot \log(p)$ bits.
- Attack exits if we use additive secret sharing, i.e. $\mathbf{x} = \mathbf{x}_i + \mathbf{x}_i' \mod p$ instead $\mathbf{x} = \mathbf{x}_i \cdot \mathbf{x}_i' \mod p$.
- Attack exists if p-1 is smooth.
- Attack exists if $\lambda = 0.4 \cdot \log(p)$.
- Scheme if "lifted" to bilinear groups is secure in generic group model (next slides.)

¹Howgrave-Graham, Nguyen, Shparlinski. *Hidden number problem* with hidden multipliers, timed-release crypto, and noisy exponentiation. Math. Comput. 72(243): 1473-1485 (2003)

Bilinear Groups

- \bullet \bullet is a (multiplicative) cyclic group of prime order p.
- \bigcirc g is a generator of \bigcirc .
- $lackbox{0}$ e is a bilinear map $e: \mathbb{G} imes \mathbb{G} o \mathbb{G}_T$

 - $e(g,g) \stackrel{\mathsf{def}}{=} g_T \neq 1.$

public parameter: \mathbb{G} , \mathbb{G}_T of prime order p, $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$, $g = \langle \mathbb{G} \rangle$, $g_T \stackrel{\text{def}}{=} e(g,g)$

public parameter: \mathbb{G} , \mathbb{G}_T of prime order p, $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$, $g = \langle \mathbb{G} \rangle$, $g_T \stackrel{\text{def}}{=} e(g,g)$ $\mathsf{KG}: \ sk = g^{\mathsf{x}} \ , \ pk = g_T^{\mathsf{x}} \quad \text{where} \quad \ \ \, \underset{\leftarrow}{\mathsf{x}} \not \subset \mathbb{Z}_p$

```
public parameter: \mathbb{G}, \mathbb{G}_T of prime order p, e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T, g = \langle \mathbb{G} \rangle, g_T \stackrel{\text{def}}{=} e(g,g)
\mathsf{KG}: \ sk = g^{\mathsf{x}} \ , \ pk = g_T^{\mathsf{x}} \quad \text{where} \quad \  \  \, \mathbf{x} \stackrel{\$}{\leftarrow} \mathbb{Z}_p
\mathsf{Enc}(pk): \ \mathsf{output} \ (C:=g^r, K:=g_T^{r\mathsf{x}}) \quad \text{where} \quad r \stackrel{\$}{\leftarrow} \mathbb{Z}_p
\mathsf{Dec}(sk,C): \ \mathsf{output} \ e(C,g^{\mathsf{x}})
```

```
public parameter: \mathbb{G}, \mathbb{G}_T of prime order p, e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T, g = \langle \mathbb{G} \rangle, g_T \stackrel{\text{def}}{=} e(g,g)
\mathsf{KG}: \ sk = g^{\mathsf{x}} \ , \ pk = g_T^{\mathsf{x}} \quad \text{where} \quad \  \  \, \mathbf{x} \stackrel{\$}{\leftarrow} \mathbb{Z}_p
\mathsf{Enc}(pk): \ \mathsf{output} \ (C:=g^r, K:=g_T^{r\mathsf{x}}) \quad \text{where} \quad r \stackrel{\$}{\leftarrow} \mathbb{Z}_p
\mathsf{Dec}(sk,C): \ \mathsf{output} \ e(C,g^{\mathsf{x}}) = g_T^{r\mathsf{x}} = K
```

```
public parameter: \mathbb{G}, \mathbb{G}_T of prime order p, e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T, g = \langle \mathbb{G} \rangle, g_T \stackrel{\text{def}}{=} e(g,g)

KG: \mathbf{sk} = \mathbf{g^x}, pk = g_T^{\mathbf{x}} where \mathbf{x} \stackrel{\$}{\leftarrow} \mathbb{Z}_p

Enc(pk): output (C:=g^r, K:=g_T^{rx}) where r \stackrel{\$}{\leftarrow} \mathbb{Z}_p

Dec(\mathbf{sk}, C): output e(C, g^x) = g_T^{rx} = K
```

public parameter:
$$\mathbb{G}$$
, \mathbb{G}_T of prime order p , $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$, $g = \langle \mathbb{G} \rangle$, $g_T \stackrel{\text{def}}{=} e(g,g)$

KG: $\mathbf{sk} = \mathbf{g^x}$, $pk = g_T^x$ where $\mathbf{x} \stackrel{\$}{\leftarrow} \mathbb{Z}_p$

Enc (pk) : output $(C:=g^r, K:=g_T^{rx})$ where $r \stackrel{\$}{\leftarrow} \mathbb{Z}_p$

Dec (\mathbf{sk}, C) : output $e(C, g^x) = g_T^{rx} = K$

Like for standard ElGamal, can define shared-key version $g^x = g^{x-r} \circ g^r$.

public parameter:
$$\mathbb{G}$$
, \mathbb{G}_T of prime order p , $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$, $g = \langle \mathbb{G} \rangle$, $g_T \stackrel{\text{def}}{=} e(g,g)$

KG: $\mathbf{sk} = \mathbf{g^x}$, $pk = g_T^x$ where $\mathbf{x} \stackrel{\$}{\leftarrow} \mathbb{Z}_p$

Enc(pk): output $(C:=g^r, K:=g_T^{rx})$ where $r \stackrel{\$}{\leftarrow} \mathbb{Z}_p$

Dec(\mathbf{sk} , C): output $e(C, g^x) = g_T^{rx} = K$

Like for standard ElGamal, can define shared-key version $g^x = g^{x-r} \circ g^r$.

Theorem

In the bilinear generic group model the lifted, shared-key ElGamal KEM is Leakage-Resilient (CCA1). The leakage per invocation can be < .49 | log(p)| bits.

ICITS 2011, Amsterdam, The Netherlands, May 21 - 24, 2011 5th International Conference on Information Theoretic Security Submission deadline: Dec 10, 2010

Invited Speakers:

Benny Applebaum, Alexander Barg, Imre Csiszar, Ivan Damgaard, Yuval Ishai, Renato Renner, Leonid Reyzin, Ronald de Wolf