The Degree of Regularity of HFE Systems

Vivien Dubois 1 and $\underline{\text{Nicolas Gama}}^2$

(1) DGA Rennes et (2) Université de Versailles

・ロト ・ 同ト ・ ヨト ・ ヨト

HFE is a public key encryption/signature scheme [Pat96].

Public key : A system of multivariate polynomials eg : 128 polynoms of degree 2 in 128 variables over \mathbb{F}_2 .

In general, one **cannot** efficiently solve such system.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

HFE is a public key encryption/signature scheme [Pat96].

Public key : A system of multivariate polynomials eg : 128 polynoms of degree 2 in 128 variables over \mathbb{F}_2 .

In general, one **cannot** efficently solve such system.

This system has a **hidden structure** by some secret ismorphism Φ , allows to solve it efficiently.

HFE is a public key encryption/signature scheme [Pat96].

Public key : A system of multivariate polynomials eg : 128 polynoms of degree 2 in 128 variables over \mathbb{F}_2 .

In general, one **cannot** efficently solve such system.

This system has a **hidden structure** by some secret ismorphism $\Phi,$ allows to solve it efficiently.

 $\begin{array}{l} \mbox{Hidden structure} = \mbox{large monovariate polynomial} \\ \mbox{(Hidden Field Equation)} \end{array}$

$$\begin{cases} p_1(x_1,\ldots,x_n) \\ \vdots \\ p_n(x_1,\ldots,x_n) \end{cases} = \Phi(F)$$

イロト 不得 トイヨト イヨト

3

Degree of regularity

A property of systems of polynomials [BFS03]. It controls the **complexity of generic algebraic attacks** on the system.

Degree of regularity

A property of systems of polynomials [BFS03]. It controls the **complexity of generic algebraic attacks** on the system.

Generic attack = combination of increasing degree of input polynomials. eg : Gröbner bases, variants of XL.

(日) (四) (日) (日) (日)

Degree of regularity

A property of systems of polynomials [BFS03]. It controls the **complexity of generic algebraic attacks** on the system.

Generic attack = combination of increasing degree of input polynomials. eg : Gröbner bases, variants of XL.

A race between possible combinations and the monomial basis of expression.

Degree of regularity

A property of systems of polynomials [BFS03]. It controls the **complexity of generic algebraic attacks** on the system.

Generic attack = combination of increasing degree of input polynomials. eg : Gröbner bases, variants of XL.

A race between possible combinations and the monomial basis of expression.

Whenever a combination in **degree** d falls in degree d - 1, one obtains a new information on the ideal^{*}.

Degree of regularity

A property of systems of polynomials [BFS03]. It controls the complexity of generic algebraic attacks on the system.

Generic attack = combination of increasing degree of input polynomials. eg : Gröbner bases, variants of XL.

A race between possible combinations and the monomial basis of expression.

Whenever a combination in **degree** d falls in degree d - 1, one obtains a new information on the ideal^{*}.

When such falls occur by saturation of deg d layer, many independent falls follow.

Degree of regularity

A property of systems of polynomials [BFS03]. It controls the complexity of generic algebraic attacks on the system.

Generic attack = combination of increasing degree of input polynomials. eg : Gröbner bases, variants of XL.

A race between possible combinations and the monomial basis of expression.

Whenever a combination in **degree** d falls in degree d - 1, one obtains a new information on the ideal^{*}.

When such falls occur by saturation of deg d layer, many independent falls follow.

We call degree of regularity the degree of first fall.

Introduction

Combinations of HFE polynomials

Upper-bounding the degree of regularity

(日) (四) (日) (日) (日)

New polynomials will in turn saturate the degree d-1 layer, etc...

In the end, the last polynomials characterize the solutions.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

The case of HFE

Experimental Fact

The degree of regularity of HFE is lower than on random quadratic systems. [Fau02,Cou01]

HFE systems **are easier to solve** using generic tools than random systems.

The case of HFE

Experimental Fact

The degree of regularity of HFE is lower than on random quadratic systems. [Fau02,Cou01]

HFE systems **are easier to solve** using generic tools than random systems.

Why on earth???

The hidden structure doesn't seem to have a multivariate meaning...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The case of HFE

Experimental Fact

The degree of regularity of HFE is lower than on random quadratic systems. [Fau02,Cou01]

HFE systems **are easier to solve** using generic tools than random systems.

Why on earth???

The hidden structure doesn't seem to have a multivariate meaning...

First answers [FJ03]

 Relationship between combinations of the public polynomials and combinations on the secret univariate polynomial and *derivatives*.

The case of HFE

How bad is it?

What is the degree of regularity of HFE?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The case of HFE

How bad is it?

What is the degree of regularity of HFE?

First answers [GJS06]

- An upper bound on the degree of regularity over \mathbb{F}_2 .
- Uses results on generic quadratic systems [BFS03].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The case of HFE

How bad is it?

What is the degree of regularity of HFE?

First answers [GJS06]

- An upper bound on the degree of regularity over \mathbb{F}_2 .
- Uses results on generic quadratic systems [BFS03].

What about larger fields ??? Better or Worse ??

Introduction

Upper-bounding the degree of regularity

イロト 不得 トイヨト イヨト

э

Precisely describe the **connection between degree of regularity** of the public system **and** the one of the **secret polynomial and derivatives**.

How to **bound the degree of regularity** of HFE systems **over any field**.

Introduction

Degree of regularity of a quadratic system

Quadratic systems

- A system p_1, \ldots, p_k of degree 2 polynomials in n variables over \mathbb{F}_q .
- These polynomials are seen as functions from $(\mathbb{F}_q)^n$ to \mathbb{F}_q .
- Variables are constrained by field equations

$$x_i^q - x_i = 0, \text{ (or } x_i^q \to x_i) \quad i = 1, \dots, n$$

• We work in the reduced ring

$$R_q = \mathbb{F}_q[x_1, \dots, x_n] / \{x_1^q - x_1, \dots, x_n^q - x_n\}$$

• Elements of R_q are vectors on the reduced monomial basis (*i.e* without powers of q).

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Combinations of quadratic polynomials

• We call **combinations in degree** d :

 $\{m_1 p_1 + \dots + m_k p_k, \quad \deg(m_i) = d - 2, \ i = 1, \dots, n\}$

• It is the image by the linear application :

$$\sigma_d(p_1,\ldots,p_k) \quad : \quad ((R_q)_{\leq d-2})^k \longrightarrow (R_q)_{\leq d} \\ (m_1,\ldots,m_k) \longmapsto m_1 p_1 + \cdots + m_k p_k.$$

Combinations of quadratic polynomials

• We call **combinations in degree** d :

 $\{m_1 p_1 + \dots + m_k p_k, \quad \deg(m_i) = d - 2, \ i = 1, \dots, n\}$

• It is the image by the linear application :

$$\sigma_d(p_1,\ldots,p_k) \quad : \quad \left((R_q)_{\leq d-2}\right)^k \quad \longrightarrow \quad (R_q)_{\leq d} \\ (m_1,\ldots,m_k) \quad \longmapsto \quad m_1p_1 + \cdots + m_kp_k.$$

• Its kernel is in general non zero ! Examples :

•
$$(p_2, -p_1, 0, \dots, 0) \longrightarrow (p_2)p_1 + (-p_1)p_2 = 0$$

• $(p_1^{q-1} - 1, 0, 0, \dots, 0) \longrightarrow (p_1^{q-1} - 1)p_1 = p_1^q - p_1 = 0$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Combinations of quadratic polynomials

• We call **combinations in degree** d :

 $\{m_1 p_1 + \dots + m_k p_k, \quad \deg(m_i) = d - 2, \ i = 1, \dots, n\}$

• It is the image by the linear application :

$$\sigma_d(p_1,\ldots,p_k) \quad : \quad ((R_q)_{\leq d-2})^k \longrightarrow (R_q)_{\leq d} \\ (m_1,\ldots,m_k) \longmapsto m_1 p_1 + \cdots + m_k p_k.$$

• Its kernel is in general non zero ! Examples :

•
$$(p_2, -p_1, 0, \dots, 0) \longrightarrow (p_2)p_1 + (-p_1)p_2 = 0$$

• $(p_1^{q-1} - 1, 0, 0, \dots, 0) \longrightarrow (p_1^{q-1} - 1)p_1 = p_1^q - p_1 = 0$

• These (m_1, \ldots, m_k) are trivial : they exist for any p_1, \ldots, p_n !

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• We call **trivial syzygies** the elements of the kernel which exist even when the p_1, \ldots, p_n are indeterminates.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• We call **trivial syzygies** the elements of the kernel which exist even when the p_1, \ldots, p_n are indeterminates.

Formal definition

• We extend R_q with new variables y_1, \ldots, y_k .

$$\bar{R}_q = R_q[y_1, \dots, y_k] / \{y_1^q - y_1, \dots, y_k^q - y_k\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• We call **trivial syzygies** the elements of the kernel which exist even when the p_1, \ldots, p_n are indeterminates.

Formal definition

• We extend R_q with new variables y_1, \ldots, y_k .

$$\bar{R}_q = R_q[y_1, \dots, y_k] / \{y_1^q - y_1, \dots, y_k^q - y_k\}$$

• Generic Trivial Syzygies : the (m_1, \ldots, m_k) of \overline{R}_q such that

$$m_1 y_1 + \dots + m_k y_k = 0$$

• We call **trivial syzygies** the elements of the kernel which exist even when the p_1, \ldots, p_n are indeterminates.

Formal definition

• We extend R_q with new variables y_1, \ldots, y_k .

$$\bar{R}_q = R_q[y_1, \dots, y_k] / \{y_1^q - y_1, \dots, y_k^q - y_k\}$$

• Generic Trivial Syzygies : the (m_1, \ldots, m_k) of \overline{R}_q such that

$$m_1 y_1 + \dots + m_k y_k = 0$$

• Trivial Syzygies of (p_1, \ldots, p_k) : the evaluations on (p_1, \ldots, p_k) of the generic trivials.

Degree falls and degree of regularity

- We call degree fall an Homogeneous (m_1, \ldots, m_k) of degree d-2 such that $[m_1p_1 + \cdots + m_kp_k]_d = 0$.
- It is the kernel of $\begin{array}{cccc}
 \sigma^h_d(p) &: & ((R_q)_{d-2})^k & \longrightarrow & (R_q)_d \\
 & & (m_0, \dots, m_{k-1}) & \longmapsto & [m_0 p_0 + \dots + m_{k-1} p_{k-1}]_d.
 \end{array}$

Degree falls and degree of regularity

- We call degree fall an Homogeneous (m_1, \ldots, m_k) of degree d-2 such that $[m_1p_1 + \cdots + m_kp_k]_d = 0$.
- (Unfortunately) Homogeneous parts of degree d-2 of trivial Syzygies in degree d-2 are solutions !

... We call them **trivial degree falls**.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Degree falls and degree of regularity

- We call degree fall an Homogeneous (m_1, \ldots, m_k) of degree d-2 such that $[m_1p_1 + \cdots + m_kp_k]_d = 0$.
- It is the kernel of $\begin{array}{rcl} \sigma^h_d(p) & : & ((R_q)_{d-2})^k & \longrightarrow & (R_q)_d \\ & & (m_0, \dots, m_{k-1}) & \longmapsto & [m_0 p_0 + \dots + m_{k-1} p_{k-1}]_d. \end{array}$
- (Unfortunately) Homogeneous parts of degree d-2 of trivial Syzygies in degree d-2 are solutions !

... We call them **trivial degree falls**.

• We call **degree of regularity** the smallest degree at which there exists *non-trivial* degree falls.

э

Degree falls and degree of regularity

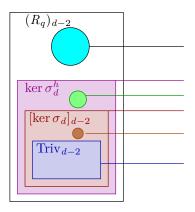
- We call degree fall an Homogeneous (m_1, \ldots, m_k) of degree d-2 such that $[m_1p_1 + \cdots + m_kp_k]_d = 0$.
- (Unfortunately) Homogeneous parts of degree d 2 of trivial Syzygies in degree d - 2 are solutions !
 ... We call them trivial degree falls.
- We call **degree of regularity** the smallest degree at which there exists *non-trivial* degree falls.

Remarks on the definition of degree of regularity

- Defined in [BFS03] by a set theoretic property.
- Here : it is an *algebraic* relying on trivial degree falls.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Degree of regularity vs Degree of computation



Degree d

Degree falls

New leading term Useless terms Degenerated system

Generic Stuff

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Degree of regularity vs Degree of computation

One always has

$$\ker(\sigma_d^h) \supseteq [\ker(\sigma_d)]_{d-2} \supseteq [\operatorname{Triv}]_{d-2}$$

- Degree of first useful fall : Smallest d such that $\ker(\sigma_d^h) \neq [\ker(\sigma_d)]_{d-2}$
- Degree of regularity : Smallest d such that $ker(\sigma_d^h) \neq [Triv]_{d-2}$
 - implies : Up to the degree of regularity, there are only trivials in $\ker(\sigma^h_d).$
 - (Hopefully) on most systems, the first equality will fail first.
 - Example of a very bad system : {P, P, ...}.

Introduction

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Construction of HFE Systems

From the small field to the (secret) large one

- \mathbb{F}_{q^n} : extension of degree n of \mathbb{F}_q , it is a vector space over \mathbb{F}_q .
- Choose an arbitrary basis $S = (s_1, \ldots, s_n)$ of \mathbb{F}_{q^n} over \mathbb{F}_q .
- S is viewed as a bijection : $(\mathbb{F}_q)^n \to \mathbb{F}_{q^n}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

From the small field to the (secret) large one

- \mathbb{F}_{q^n} : extension of degree n of \mathbb{F}_q , it is a vector space over \mathbb{F}_q .
- Choose an arbitrary basis $S = (s_1, \ldots, s_n)$ of \mathbb{F}_{q^n} over \mathbb{F}_q .
- S is viewed as a bijection : $(\mathbb{F}_q)^n \to \mathbb{F}_{q^n}$
- S induces a linear bijection : $\{\mathbb{F}_{q^n} \to \mathbb{F}_{q^n}\} \longrightarrow \{(\mathbb{F}_q)^n \to (\mathbb{F}_q)^n\}$

$$\Psi_S \ : P \quad \longmapsto \quad S^{-1} \circ P \circ S$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

From the small field to the (secret) large one

- \mathbb{F}_{q^n} : extension of degree n of \mathbb{F}_q , it is a vector space over \mathbb{F}_q .
- Choose an arbitrary basis $S = (s_1, \ldots, s_n)$ of \mathbb{F}_{q^n} over \mathbb{F}_q .
- S is viewed as a bijection : $(\mathbb{F}_q)^n \to \mathbb{F}_{q^n}$
- S induces a linear bijection : $\{\mathbb{F}_{q^n} \to \mathbb{F}_{q^n}\} \longrightarrow \{(\mathbb{F}_q)^n \to (\mathbb{F}_q)^n\}$

$$\Psi_S \ : P \quad \longmapsto \quad S^{-1} \circ P \circ S$$

• Remark : $\{\mathbb{F}_{q^n} \to \mathbb{F}_{q^n}\}$ is an algebra but not $\{(\mathbb{F}_q)^n \to (\mathbb{F}_q)^n\}$.

Introduction

Upper-bounding the degree of regularity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

• $C(X) = aX^{3q^2}$ • set $X = x_1s_1 + \dots + x_ns_n$ • then $X^{q^2} = x_1s_1^{q^2} + \dots + x_ns_n^{q^2}$

•
$$C(X) = \sum_{i,j,k} x_i x_j x_k \cdot a s_i^{q^2} s_j^{q^2} s_k^{q^2}$$

•
$$S^{-1}(C(X)) = \sum_{i,j,k} x_i x_j x_k \cdot S^{-1}(a s_i^{q^2} s_j^{q^2} s_k^{q^2}) = \begin{cases} c_1(x_1, \dots, x_n) \\ c_2(x_1, \dots, x_n) \\ c_3(x_1, \dots, x_n) \end{cases}$$

• $\psi_S(C) = (c_1, c_2, c_3)$ are homogeneous of degree 3.

Transfering the multivariate degree

- More generally : X^a , with $a = (a_0, \ldots, a_{n-1})$ in basis q.
- X^a is the product of $a_0 + \cdots + a_{n-1}$ Frobenius with multiplicity.
- It is mapped by ψ_S to a (homogeneous) system of degree $a_0 + \cdots + a_{n-1}$ over \mathbb{F}_q .

Transfering the multivariate degree

- More generally : X^a , with $a = (a_0, \ldots, a_{n-1})$ in basis q.
- X^a is the product of $a_0 + \cdots + a_{n-1}$ Frobenius with multiplicity.
- It is mapped by ψ_S to a (homogeneous) system of degree $a_0 + \cdots + a_{n-1}$ over \mathbb{F}_q .
- We call q-degree the value : q-deg $(X^a) = a_0 + \cdots + a_{n-1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Transfering the multivariate degree

- More generally : X^a , with $a = (a_0, \ldots, a_{n-1})$ in basis q.
- X^a is the product of $a_0 + \cdots + a_{n-1}$ Frobenius with multiplicity.
- It is mapped by ψ_S to a (homogeneous) system of degree $a_0 + \cdots + a_{n-1}$ over \mathbb{F}_q .
- We call q-degree the value : q-deg $(X^a) = a_0 + \cdots + a_{n-1}$

Property

 ψ_S is a bijection from $(\mathcal{R}_{q^n})_{q:d}$ to $((R_q)_d)^n$.

$$\label{eq:proof} \begin{split} \text{Proof}: \ q\text{-deg}d \ \text{implies degree} \leq d \ \text{of the vector}. \\ \text{Then cardinality arguments}. \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

HFE Functions

- One chooses P(X) of q-deg 2,
- and one bounds powers of q by a parameter D:

$$P(X) = \sum_{i,j \le \mathbf{D}} a_{ij} X^{q^i + q^j} + \sum_{k \le \mathbf{D}} b_k X^{q^k} + c$$

HFE Functions

- One chooses P(X) of q-deg 2,
- and one bounds powers of q by a parameter D:

$$P(X) = \sum_{i,j \le \mathbf{D}} a_{ij} X^{q^i + q^j} + \sum_{k \le \mathbf{D}} b_k X^{q^k} + c$$

- HFE functions are functions of q-deg 2 and degree $\leq 2q^{D}$.
- Small degree : For all a, finding the roots of P(X) a is efficient.
- The degree is a property in \mathcal{R}_{q^n} viewed as an algebra.
- Its interpretation in $\mathcal{R}_{q^n} \simeq (R_q)^n$ is not clear.

HFE Functions

- One chooses P(X) of q-deg 2,
- and one bounds powers of q by a parameter D:

$$P(X) = \sum_{i,j \le \mathbf{D}} a_{ij} X^{q^i + q^j} + \sum_{k \le \mathbf{D}} b_k X^{q^k} + c$$

- HFE functions are functions of q-deg 2 and degree $\leq 2q^{D}$.
- Small degree : For all a, finding the roots of P(X) a is efficient.
- The degree is a property in \mathcal{R}_{q^n} viewed as an algebra.
- Its interpretation in $\mathcal{R}_{q^n} \simeq (R_q)^n$ is not clear.

The cryptosystem

- The link with the field structure is secret : $S \rightarrow S$.
- The polynomial itself is secret : $P \rightarrow P$.
- + a linear permutation T on the p_1, \ldots, p_n (transparent for us).

Introduction

Combinations of HFE polynomials

Transfering combinations of \mathcal{R}_{q^n}

- p_1, \ldots, p_n the elements of R_q obtained from $(p_1, \ldots, p_n) = \psi_S(P)$.
- One considers combinations $m_1p_1 + \cdots + m_np_n$ de p_1, \ldots, p_n .
- These are linear combinations with coefficients over R_q .

We already know			
Secret		Public	
Р	$\stackrel{\psi_S}{\rightarrow}$	(p_0,\ldots,p_{n-1})	
q-deg	\rightarrow	\deg	
q-Homogeneous	\rightarrow	Homogeneous	
Combinations	\rightarrow	??	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Transfering combinations of \mathcal{R}_{q^n}

Secret		Public		
Р	$\stackrel{\psi_S}{\rightarrow}$	(p_0,\ldots,p_{n-1})		
$\sum_{i=0}^{n-1} M_i P^{q^i}$	$\stackrel{\psi_S}{\longrightarrow}$	$\underbrace{\psi_S^*(M_0,\ldots,M_{n-1})}_{p_{n-1}} \cdot \begin{pmatrix} p_0 \\ \vdots \\ p_{n-1} \end{pmatrix}$		
(M_0,\ldots,M_{n-1})	$\stackrel{\psi_s^*}{\longrightarrow}$	$\begin{pmatrix} m_{0,0} & \cdots & m_{0,n-1} \\ \vdots & \ddots & \vdots \\ m_{n-1,0} & \cdots & m_{n-1,n-1} \end{pmatrix}$		
q -deg (M_i)	$\stackrel{\psi_s^*}{\rightarrow}$	$\deg(m_{i,j})$		
???	$\xrightarrow{??}$	deg falls		
???	$\xrightarrow{??}$	trivials		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Transfering degree falls

• Degree falls on p_1, \ldots, p_n are the kernel of the map

$$\sigma_d^h(p_1,\ldots,p_n) \qquad : \qquad \left((R_q^h)_{d-2} \right)^n \quad \longrightarrow \quad (R_q^h)_d \\ (m_1,\ldots,m_n) \quad \longmapsto \quad [m_1p_1+\cdots+m_np_n]_d.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Transfering degree falls

 $\bullet\,$ Degree falls on p_1,\ldots,p_n are the kernel of the map

$$\sigma_d^h(p_1,\ldots,p_n) \quad : \quad \left((R_q^h)_{d-2} \right)^n \quad \longrightarrow \quad (R_q^h)_d \\ (m_1,\ldots,m_n) \quad \longmapsto \quad [m_1p_1+\cdots+m_np_n]_d.$$

• Similarly, one has the map

$$\Sigma^h_d(P) : ((\mathcal{R}^h_{q^n})_{d-2})^n \longrightarrow (\mathcal{R}^h_{q^n})_d (M_0, \dots, M_{n-1}) \longmapsto [M_0P + M_1P^q + \dots + M_{n-1}P^{q^{n-1}}]_d.$$

Transfering degree falls

• Degree falls on p_1, \ldots, p_n are the kernel of the map

$$\sigma_d^h(p_1,\ldots,p_n) \quad : \quad \left((R_q^h)_{d-2} \right)^n \quad \longrightarrow \quad (R_q^h)_d \\ (m_1,\ldots,m_n) \quad \longmapsto \quad [m_1p_1+\cdots+m_np_n]_d.$$

• Similarly, one has the map

$$\begin{split} \Sigma^h_d(P) &: \left((\mathcal{R}^h_{q^n})_{d-2} \right)^n &\longrightarrow (\mathcal{R}^h_{q^n})_d \\ & (M_0, \dots, M_{n-1}) &\longmapsto [M_0P + M_1P^q + \dots + M_{n-1}P^{q^{n-1}}]_d. \end{split}$$

 $\bullet~$ We prove that $\ker \Sigma^h_d$ is in bijection by ψ^*_S with $\ker \sigma^h_d$

Transfering degree falls

• Degree falls on p_1, \ldots, p_n are the kernel of the map

$$\sigma_d^h(p_1,\ldots,p_n) \quad : \quad \left((R_q^h)_{d-2} \right)^n \quad \longrightarrow \quad (R_q^h)_d \\ (m_1,\ldots,m_n) \quad \longmapsto \quad [m_1p_1+\cdots+m_np_n]_d.$$

• Similarly, one has the map

$$\begin{split} \Sigma^h_d(P) &: \begin{pmatrix} \left((\mathcal{R}^h_{q^n})_{d-2}\right)^n & \longrightarrow & (\mathcal{R}^h_{q^n})_d \\ & \left(M_0, \dots, M_{n-1}\right) & \longmapsto & \left[M_0P + M_1P^q + \dots + M_{n-1}P^{q^{n-1}}\right]_d. \end{split}$$

- We prove that $\ker \Sigma^h_d$ is in bijection by ψ^*_S with $\ker \sigma^h_d$
- \Rightarrow kernels have the same dimension! (over their respective fields)

(日) (四) (日) (日) (日)

Transfering generic trivial syzygies

Trivial syzygies of the small field

• One extends R_q with indeterminates y_1, \ldots, y_n :

$$\bar{R}_q = R_q[y_1, \dots, y_n] / \{y_1^q - y_1, \dots, y_k^q - y_n\}$$

• Trivial Syzygies : (m_1,\ldots,m_n) over $ar{R}_q$ su that

$$m_1 y_1 + \dots + m_n y_n = 0$$

• Notion of degree on the elements of \bar{R}_q : (1,2)-degree : $d_x + 2d_y$

Transfering generic trivial syzygies

Trivial syzygies of the small field

• One extends R_q with indeterminates y_1, \ldots, y_n :

$$\bar{R}_q = R_q[y_1, \dots, y_n] / \{y_1^q - y_1, \dots, y_k^q - y_n\}$$

• Trivial Syzygies : (m_1,\ldots,m_n) over $ar{R}_q$ su that

$$m_1 y_1 + \dots + m_n y_n = 0$$

• Notion of degree on the elements of \bar{R}_q : (1,2)-degree : d_x+2d_y

Similarly, on the large field

- Extend \mathcal{R}_{q^n} with indeterminate $Y : \overline{\mathcal{R}}_{q^n} = \mathcal{R}_{q^n}[Y] / \{Y^q Y\}$
- Trivial Syzygies : the (M_0,\ldots,M_{n-1}) over $ar{\mathcal{R}}_{q^n}$ such that

$$M_0 Y + \dots + m_n Y^{q^{n-1}} = 0$$

• Notion of degree on $\overline{\mathcal{R}}_{q^n}$: (1,2)-q-degree.

(日) (四) (日) (日) (日)

Transfering generic trivial syzygies

Like before,

- We extend the bijection $\bar{\psi}_S^*$ which maps combinations of $\bar{\mathcal{R}}_{q^n}$ and $(\bar{R}_q)^n$ and preserves the (1,2)-degree.
- Thus : Generic trivials are in bijection.

Transfering generic trivial syzygies

Like before,

- We extend the bijection $\bar{\psi}_S^*$ which maps combinations of $\bar{\mathcal{R}}_{q^n}$ and $(\bar{R}_q)^n$ and preserves the (1,2)-degree.
- Thus : Generic trivials are in bijection.

Transfering trivial syzygies

- Trivial syzygies in degree d of (p_1, \ldots, p_n) are the evaluations in (p_1, \ldots, p_n) of the generic trivial syzygies of (1, 2)-degree d.
- They are associated to the trivial syzygies of *P* in *q*-degree *d*.
- Similarly : Their highest degree homogeneous part are associated.

Transfering the degree of regularity

$$\Sigma^h_d(P) : ((\mathcal{R}^h_{q^n})_{d-2})^n \longrightarrow (\mathcal{R}^h_{q^n})_d (M_0, \dots, M_{n-1}) \longmapsto [M_0P + M_1P^q + \dots + M_{n-1}P^{q^{n-1}}]_d.$$

The **degree of regularity** of $(p_1, \ldots, p_n) = \psi_S(P)$ is the smallest d such that the kernel of $\Sigma_d^h(P)$ contains non-trivial elements.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Multivariate rewriting of \mathcal{R}_{q^n}

$$\mathcal{R}_{q^n} = \mathbb{F}_{q^n}[X] / (X^{q^n} - X)$$

 One rewrites Frobenius as multivariate variables [GJS06] : X₀,..., X_{n-1} with X_i = X^{qⁱ}.

Multivariate rewriting of \mathcal{R}_{q^n}

$$\mathcal{R}_{q^n} = \mathbb{F}_{q^n}[X] / (X^{q^n} - X)$$

- One rewrites Frobenius as multivariate variables [GJS06] : X_0, \ldots, X_{n-1} with $X_i = X^{q^i}$.
- One then has the rewriting rules $X_i^q \to X_{i+1}$.
- \mathcal{R}_{q^n} is identified with the multivariate ring $\mathbb{F}_{q^n}[X_0, \dots, X_{n-1}]/\{X_0^q - X_1, \dots, X_{n-1}^q - X_0\}.$
- The *q*-degree becomes degree in multivariate notation.

A D N A 目 N A E N A E N A B N A C N

Multivariate rewriting of \mathcal{R}_{q^n}

$$\mathcal{R}_{q^n} = \mathbb{F}_{q^n}[X] / (X^{q^n} - X)$$

- One rewrites Frobenius as multivariate variables [GJS06] : X_0, \ldots, X_{n-1} with $X_i = X^{q^i}$.
- One then has the rewriting rules $X_i^q \to X_{i+1}$.
- \mathcal{R}_{q^n} is identified with the multivariate ring $\mathbb{F}_{q^n}[X_0, \dots, X_{n-1}]/\{X_0^q - X_1, \dots, X_{n-1}^q - X_0\}.$
- The *q*-degree becomes degree in multivariate notation.
- Similarly, on writes P_0, \ldots, P_{n-1} the Frobenius of P.
- The definition of trivial Syzygies rewrites easily.

Multivariate rewriting of \mathcal{R}_{q^n}

$$\mathcal{R}_{q^n} = \mathbb{F}_{q^n}[X] / (X^{q^n} - X)$$

- One rewrites Frobenius as multivariate variables [GJS06] : X_0, \ldots, X_{n-1} with $X_i = X^{q^i}$.
- One then has the rewriting rules $X_i^q \to X_{i+1}$.
- \mathcal{R}_{q^n} is identified with the multivariate ring $\mathbb{F}_{q^n}[X_0, \dots, X_{n-1}]/\{X_0^q - X_1, \dots, X_{n-1}^q - X_0\}.$
- The *q*-degree becomes degree in multivariate notation.
- Similarly, on writes P_0, \ldots, P_{n-1} the Frobenius of P.
- The definition of trivial Syzygies rewrites easily.

Degree of regularity of $(p_1, \ldots, p_n) = \psi_S(P)$ in R_q

degree of regularity of P_0, \ldots, P_{n-1} in \mathcal{R}_{q^n} multivariate.

Final Characterization of the degree of regularity

Finally, since one only cares about the highest degree homogeneous layer (degree falls and trivials), we can equivalently work with $X_i^q \to X_{i+1}$ or $X_i^q \to 0$.

The degree of regularity of $(p_1, \ldots, p_n) = \psi_S(P)$ in R_q

the degree of regularity of $\hat{P}_0, \ldots, \hat{P}_{n-1}$ in \mathcal{R}_{q^n} where $\mathcal{R}_{q^n} = \mathbb{F}_{q^n}[X_0, \ldots, X_{n-1}]/\{X_0^q, \ldots, X_{n-1}^q\}$ Introduction

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Bounding the degree of regularity of HFE systems

Bounding the degree of regularity in general

general idea

- One assumes $\operatorname{Triv}(P_{0..k-1})_{d-2} = \ker \Sigma^h_d(P_{0..k-1})$ for $d \uparrow$
- Until contradiction, (like dim $\operatorname{Triv}(P_{0..k-1})_{d-2} > \dim \ker \Sigma_d^h(P_{0..k-1})$)

Bounding the degree of regularity in general

general idea

- One assumes $\operatorname{Triv}(P_{0..k-1})_{d-2} = \ker \Sigma^h_d(P_{0..k-1})$ for $d \uparrow$
- Until contradiction, (like dim $\operatorname{Triv}(P_{0..k-1})_{d-2} > \dim \ker \Sigma_d^h(P_{0..k-1})$)
- Then : we are already above the degree of regularity ! MQ Bound

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The case of HFE Systems

• Since :
$$P(X) = \sum_{i,j \leq D} a_{ij} X^{q^i+q^j} + \sum_{k \leq D} b_k X^{q^k} + c$$

The case of HFE Systems

• Since :
$$P(X) = \sum_{i,j \leq D} a_{ij} X^{q^i+q^j} + \sum_{k \leq D} b_k X^{q^k} + c$$

• where $D \ll n$ is a parameter, our system has the shape :

$$\begin{cases} P_0(X_0, \dots, X_D) \\ P_1(X_1, \dots, X_{D+1}) \\ \vdots \\ P_{n-1}(X_{n-1}, \dots, X_{D-1}). \end{cases}$$

• Each polynomial is expressed over a small subset of variables.

n.

<ロト <回ト < 注ト < 注ト

The case of HFE Systems

• Since :
$$P(X) = \sum_{i,j \leq D} a_{ij} X^{q^i+q^j} + \sum_{k \leq D} b_k X^{q^k} + c$$

 $\bullet\,$ where $D\ll n$ is a parameter, our system has the shape :

$$\begin{cases} P_0(X_0, \dots, X_D) \\ P_1(X_1, \dots, X_{D+1}) \\ \vdots \\ P_{n-1}(X_{n-1}, \dots, X_{D-1}) \end{cases}$$

• Each polynomial is expressed over a small subset of variables.

Property [GJS06]

• Contains small subsystems.

•
$$S_k = \{P_0, \dots, P_{k-1}\}$$
 is expressed on the m_k first variables,
 $m_k = \min\{D + k\}$

イロト 不得 トイヨト イヨト

3

The case of HFE Systems

However

The case of HFE Systems

However

- With the set theoretic definition of BFS04 : OK
- \Rightarrow degree of regularity of subsystem > of the full system.

The case of HFE Systems

However

- With the set theoretic definition of BFS04 : OK
- \Rightarrow degree of regularity of subsystem > of the full system.
 - With our definition :
 - $\bullet\,$ Deg. fall of a subsystem $\Rightarrow\,$ deg. fall on the full system OK

The case of HFE Systems

However

- With the set theoretic definition of BFS04 : OK
- \Rightarrow degree of regularity of subsystem > of the full system.
 - With our definition :
 - $\bullet\,$ Deg. fall of a subsystem $\Rightarrow\,$ deg. fall on the full system OK
 - Non-trivial for a subsystem \Rightarrow Non-trivial for the full system ??

The case of HFE Systems

However

- With the set theoretic definition of BFS04 : OK
- \Rightarrow degree of regularity of subsystem > of the full system.
 - With our definition :
 - $\bullet\,$ Deg. fall of a subsystem $\Rightarrow\,$ deg. fall on the full system OK
 - Non-trivial for a subsystem \Rightarrow Non-trivial for the full system ??
 - Lemma : True up to the degree of regularity \rightarrow OK.

(日) (四) (日) (日) (日)

The case of HFE systems

GJS Bound

- One notes d_k the degree of regularity of S_k .
- The degree of regularity of HFE system is bounded by $\min_k \{d_k\}$
- The value of d_k is computed via MQ-bound.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The case of HFE systems

GJS Bound

- One notes d_k the degree of regularity of S_k .
- The degree of regularity of HFE system is bounded by $\min_k \{d_k\}$
- The value of d_k is computed via MQ-bound.

Other property of HFE systems

- The P_i are written on monomials of the form $X_i X_{i+\ell}$, $\ell \leq D$.
- Their combinations are written on multiples of $X_i X_{i+\ell}$, $\ell \leq D$.
- They are contained in a proper subspace of the full image space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The case of HFE systems

GJS Bound

- One notes d_k the degree of regularity of S_k .
- The degree of regularity of HFE system is bounded by $\min_k \{d_k\}$
- The value of d_k is computed via MQ-bound.

Other property of HFE systems

- The P_i are written on monomials of the form $X_i X_{i+\ell}$, $\ell \leq D$.
- Their combinations are written on multiples of $X_i X_{i+\ell}$, $\ell \leq D$.
- They are contained in a proper subspace of the full image space.
- One deduces a better bound : the HFE-bound

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Computation of MQ, GJS, or HFE bound :

• Dimension of $(\mathcal{R}_{q^n})_d^h$: enumerate the size of the monomial basis : Standard, Easy

Computation of MQ, GJS, or HFE bound :

- Dimension of $(\mathcal{R}_{q^n})_d^h$: enumerate the size of the monomial basis : Standard, Easy
- Size of the HFE monomial basis : \approx Easy

Enumerations

Computation of MQ, GJS, or HFE bound :

- Dimension of $(\mathcal{R}_{q^n})_d^h$: enumerate the size of the monomial basis : Standard, Easy
- Size of the HFE monomial basis : \approx Easy

• Dimension of
$$\operatorname{Triv}(P_0, \dots, P_k)_d$$
: Technical...
We find :
 $\tau_{k+1,d} = \tau_{k,d} + \sum_{i=1}^{q-1} \left(k \dim(\mathcal{R}_m)_{d-2i}^h - \tau_{k+1,d-2i} \right) + \dim(\mathcal{R}_m)_{d-2(q-1)}^h.$
With $\mathcal{R}_m = \mathbb{F}_{q^n}[X_0, \dots, X_{m-1}] / \{X_0^{q^n}, \dots, X_{m-1}^{q^n}\}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

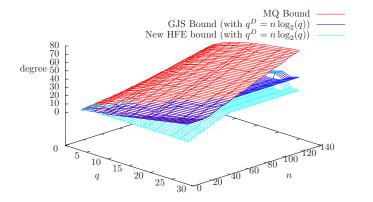
Computation of MQ, GJS and HFE bounds

- We are now ready to compute the bounds!
- *D* is indexed on the blocksize to ensure polynomial decryption.

(日)

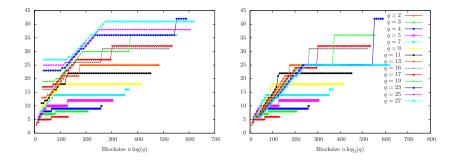
Computation of MQ, GJS and HFE bounds

- We are now ready to compute the bounds!
- *D* is indexed on the blocksize to ensure polynomial decryption.



Upper-bounding the degree of regularity

Comparison of GJS and HFE bounds



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - 釣A(?)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Generic Attacks on the public key

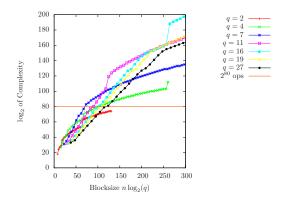
- Complexity : cost of the linear algebra at the degree of regularity.
- On obtains an upper bound on the estimated complexity.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Generic Attacks on the public key

- Complexity : cost of the linear algebra at the degree of regularity.
- On obtains an upper bound on the estimated complexity.



Introduction

Degree of regularit

Combinations of HFE polynomials

Upper-bounding the degree of regularity

THANK YOU!

▲□▶ ▲圖▶ ▲ 畫▶ ▲ 畫 ● ○ Q Q