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Motivation

Motivation

“Despite the importance of proofs in assuring protocol
implementers about the security properties of key establishment
protocols, many protocol designers fail to provide any proof of
security.” [CBH06]

There is a problem with applied (A)KE protocols today

Many provably secure protocols for key exchange (KE) and
authentication (A) are not used in practice ...

... and many practical protocols have not been proven to be
secure
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Motivation

Motivation II

To solve this problem we have two choices:

Straightforward Solution 1

Enforce the use of secure (AKE) protocols in practice

Straightforward Solution 2

Proof the security of real-world protocols (e.g. TLS)

Our solution

Take a real-world protocol (e.g. TLS) while only requiring
minimum security properties and ...

construct a compiler such that the resulting protocol meets
the (much stronger) standard security notions
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Motivation

Motivation III

So, what would be great?

Ideally we provide a compiler that

takes any two-party key-exchange
protocol and

any authentication protocol

“blends” them into an AKE

in a well-established security model

without knowing the internal
mechanisms and

without modifying the standardized
protocols
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A short excursion to the BR model

The standard model by BR

The model introduced by Bellare and Rogaway (CRYPTO ’93) is
widely adapted.

Execution Environment

Adversaries have the following capabilites (queries):

Send(m,π): Sends a message m to instance π

Reveal(π): Reveals the session key k of instance π

Test(π): Returns a key kb with b εr {0, 1}, k0 being the “real”
session key k and k1 being chosen uniformly at random

Of course, the adversary must not ask a Reveal(π) query before
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A short excursion to the BR model

Security Definitions

An AKE protocol is secure if it holds that

1) Security of the A

No party Pi communicating with party Pj accepts, if the
internal communication transcripts on both sides mismatch

2) Security of the KE

An adversary cannot determine whether the answer to his Test
query was k0 or k1 (except for some negligible probability)
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Our contribution

Our results - Two Compilers

First Compiler

Very efficiently transforms any KE into a provably secure
AKE in the BR model without modifying the KE!

Proof without random oracles

Second Compiler

Merges any two-party KE with any authentication protocol
into an AKE (with only minimal changes in the authentication
part)

... this even works for Zero-Knowledge Authentication

Proof in the random oracle model
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Our contribution

Practical Impact

Example: TLS

Assuming only that TLS is a passively secure KE (and several
results suggest this [MSW08,GMPSS08]) we can construct a
provably secure AKE!

No need to modify the TLS implementation!

An alternative approach would be to provide a proof for full TLS,
which is hard in the standard model
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Related Work

Some related results

What has been done before

CK01 analyzed the security of IPSEC IKE, but as their result
is restricted to only a single protocol it is not comparable to
our modular compiler

BCK98 introduced a modular way to construct authentication
and key exchange protocols

The KY03 compiler adds a signature to every message of a
GKE to construct an AKE, but interferes with the KE protocol
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Structure

AKE compiler
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Structure

A BsskA sskB

KE

rA

rB
T1T1

obtain k,TKE from KE

derive K = PRF(k, “KE“)

derive Kmac = PRF(k, “MAC“)

obtain k,TKE from KE

derive K = PRF(k, “KE“)

derive Kmac = PRF(k, “MAC“)

σA := SIG.Sign(sskA,TKE||T1) σB := SIG.Sign(sskB ,TKE||T1)

σA

σB
T2T2

wA

wB

wA = MAC(Kmac,T2 ‖ ′0′) wB = MAC(Kmac,T2 ‖ ′1′)

accept, if

SIG.Vfy(pkB ,T1, σB ) = 1

and wB = MAC(Kmac,T2 ‖ ′1′)

accept, if

SIG.Vfy(pkA,T1, σA) = 1

and wA = MAC(Kmac,T2 ‖ ′0′)

T3T3
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Key-Exchange

A BsskA sskB
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Key-Exchange

KE

No need to modify the KE protocol

We only need the transcript and the resulting key

The KE key k is not used “directly” to enable a standard BR
proof

We derive two keys K and Kmac for later use, K being the
session key of the resulting AKE
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Signatures
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Signatures

Signatures

For the authentication part we stick to standard signatures

Two nonces guarantee freshness of our AKE session

The long-term secret is used for authentication

The entire transcript so far is signed to thwart active attacks
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Message Authentication
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Message Authentication

MAC

Including a MAC using Kmac at this point serves two purposes

We enable key confirmation (and “disable” unknown key share
attacks)

We preserve indistinguishability of K due to a “forking trick”
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Message Authentication

The forking trick

k

K Kmac

Revealing the session key k and using it afterwards for the
MAC computation enables an adversary to answer the Test
query!

Splitting the session key into two “new” keys enables
countering these attacks:

Reveal(π) outputs K , but for the MAC computation we use
Kmac
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Short summary & reminder

The road so far

So far we presented a compiler with the following properties:

Reminder

No changes to the KE part

We excluded passive and active adversaries and even UKS

... and the proof is in the BR standard model

Coming up next

The next compiler provably combines a given KE and a given
arbitrary authentication protocol in the random oracle model
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Comparison

Standard Challenge-Response protocol

A B

chA

respB = f (skB , chA)respB , chB

respA = f (skA, chB ) respA

verify (respB , chA) verify (respA, chB )

Our compiler

A B
obtain k,TKE from KE obtain k,TKE from KE

KE

chA

ch′A = H(Kmac, chA,TKE)

resp′B = f (skB , ch
′
A)resp′B , chB

ch′B = H(Kmac, chB ,TKE)

resp′A = f (skA, ch
′
B ) resp′A

verify (resp′B ) verify (resp′A)
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Comparison

Structure

The ideas are quite similar as compared to the first compiler:

Again we take the transcript from the KE

Remark: We still need the forking trick to proof security

... but this time we can use (nearly) any authentication
protocol secure against active attacks
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Summary & Future Work

Summary

We presented two compilers with the following properties:

First Compiler

No changes to the KE part

We excluded passive and active adversaries and even UKS

... and the proof is in the BR standard model

Second Compiler

Again no changes to the KE part

We can use any authentication protocol with only minimal
changes

... but our proof makes use of a random oracle
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Summary & Future Work

Future work

Try to find more efficient (specialized) variants of our
compilers

Implement our compiler for real-world protocols

Extend our results to group key exchange protocols

Any questions??
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Proof part 1

Session freshness

We show the session freshness by applying the birthday bound

Matching Conversation I

We exclude active adversaries against TKE, T1 and T2 by the
EUF-CMA security of the digital signature scheme ⇒ the
adversary is restricted to passive attacks against the KE

Key indistinguishability of k

We show key indistinguishability of k by the (passive) security of
the KE
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Proof part 2

Key indistinguishability of K and Kmac

We show key indistinguishability by the security of the PRF

Matching Conversation II

We exclude active adversaries against T3 by the security of the
MAC
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