Generic Compilers for Authenticated Key Exchange
ASIACRYPT ‘10

Tibor Jager, Florian Kohlar, Sven Schige, Jorg Schwenk
Horst Gortz Institute for IT-Security
Ruhr-Universitat Bochum, Germany

12/07/2010

Introduction
°

What am | going to show?

Overview

@ Motivation & Introduction
@ Compiler 1: KE 4+ DSIG — AKE
© Compiler 2: KE + A — AKE

@ Conclusion

2/26

Introduction
@00

Motivation

Motivation

“Despite the importance of proofs in assuring protocol
implementers about the security properties of key establishment
protocols, many protocol designers fail to provide any proof of
security.” [CBHO6]

3/26

Introduction
@00

Motivation

Motivation

“Despite the importance of proofs in assuring protocol
implementers about the security properties of key establishment
protocols, many protocol designers fail to provide any proof of
security.” [CBHO6]

There is a problem with applied (A)KE protocols today

e Many provably secure protocols for key exchange (KE) and
authentication (A) are not used in practice ...

3/26

Introduction
@00

Motivation

Motivation

“Despite the importance of proofs in assuring protocol
implementers about the security properties of key establishment
protocols, many protocol designers fail to provide any proof of
security.” [CBHO6]

There is a problem with applied (A)KE protocols today

e Many provably secure protocols for key exchange (KE) and
authentication (A) are not used in practice ...

@ ... and many practical protocols have not been proven to be

secure

3/26

Introduction
o] o]

Motivation

Motivation |l

To solve this problem we have two choices:

Straightforward Solution 1

@ Enforce the use of secure (AKE) protocols in practice

26

Introduction
o] o]

Motivation

Motivation |l

To solve this problem we have two choices:

Straightforward Solution 1

@ Enforce the use of secure (AKE) protocols in practice

Straightforward Solution 2

@ Proof the security of real-world protocols (e.g. TLS)

26

Introduction
o] o]

Motivation

Motivation |l

To solve this problem we have two choices:

Straightforward Solution 1

@ Enforce the use of secure (AKE) protocols in practice

Straightforward Solution 2

@ Proof the security of real-world protocols (e.g. TLS)

Our solution

@ Take a real-world protocol (e.g. TLS) while only requiring
minimum security properties and ...

4/26

Introduction
o] o]

Motivation

Motivation |l

To solve this problem we have two choices:

Straightforward Solution 1

@ Enforce the use of secure (AKE) protocols in practice

Straightforward Solution 2

@ Proof the security of real-world protocols (e.g. TLS)

@ Take a real-world protocol (e.g. TLS) while only requiring
minimum security properties and ...

@ construct a compiler such that the resulting protocol meets
the (much stronger) standard security notions

4/26

Introduction
ooe

Motivation

Motivation Il

So, what would be great?

Ideally we provide a compiler that

o takes any two-party key-exchange
protocol and

@ any authentication protocol
@ “blends” them into an AKE

@ in a well-established security model

@ without knowing the internal
mechanisms and

@ without modifying the standardized
protocols

MY CRYPIDSYSTEM 15 LIKE
INTHE S-BOXES WE SimPLY
TAKE THE BITSTRING DpWN,
FLIP IT, ANDREVERSE IT.

ANY FEISTEL CIPHER | EXCEPT &

DECRYFTION
01101010

OOI))OIOI

11001010

olo1 0011

NDAN

A ANA, AN ANAANNNN A

ALY YA

PARNATER NN LA
I'VE_BEEN BARRED FROM SPEAKING AT ANY MAJOR

CRYPTDGRAPHY CONFERENCES EVER SINCE. IT BECAME.

CLEAR THAT ALL MY ALGORITHMS WERE JUST
THINLY DISGOISED MIsSY ELLSTT SONGS.

5/26

Introduction
L Ie]

A short excursion to the BR model

The standard model by BR

The model introduced by Bellare and Rogaway (CRYPTO '93) is
widely adapted.

6 /26

Introduction
L Ie]

A short excursion to the BR model

The standard model by BR

The model introduced by Bellare and Rogaway (CRYPTO '93) is
widely adapted.

Execution Environment

Adversaries have the following capabilites (queries):

@ Send(m,7): Sends a message m to instance 7

6

26

Introduction
L Ie]

A short excursion to the BR model

The standard model by BR

The model introduced by Bellare and Rogaway (CRYPTO '93) is
widely adapted.

Execution Environment
Adversaries have the following capabilites (queries):
@ Send(m,7): Sends a message m to instance 7

@ Reveal(m): Reveals the session key k of instance 7

6

26

Introduction
L Ie]

A short excursion to the BR model

The standard model by BR

The model introduced by Bellare and Rogaway (CRYPTO '93) is
widely adapted.

Execution Environment
Adversaries have the following capabilites (queries):
@ Send(m,7): Sends a message m to instance 7
@ Reveal(7): Reveals the session key k of instance 7

@ Test(m): Returns a key kp, with b €, {0,1}, ko being the “real”
session key k and ki being chosen uniformly at random
o Of course, the adversary must not ask a Reveal(7) query before

6 /26

Introduction
oe

A short excursion to the BR model

Security Definitions

An AKE protocol is secure if it holds that

1) Security of the A

@ No party P; communicating with party P; accepts, if the
internal communication transcripts on both sides mismatch

26

Introduction
oe

A short excursion to the BR model

Security Definitions

An AKE protocol is secure if it holds that

1) Security of the A

@ No party P; communicating with party P; accepts, if the
internal communication transcripts on both sides mismatch

v

2) Security of the KE

@ An adversary cannot determine whether the answer to his Test
query was kg or ki (except for some negligible probability)

26

Introduction
L Ie]

Our contribution

Our results - Two Compilers

First Compiler

@ Very efficiently transforms any KE into a provably secure
AKE in the BR model without modifying the KE!

@ Proof without random oracles

8/26

Introduction
L Ie]

Our contribution

Our results - Two Compilers

First Compiler
@ Very efficiently transforms any KE into a provably secure
AKE in the BR model without modifying the KE!

@ Proof without random oracles)

Second Compiler

@ Merges any two-party KE with any authentication protocol
into an AKE (with only minimal changes in the authentication

part)

8

8/26

Introduction
L Ie]

Our contribution

Our results - Two Compilers

First Compiler

@ Very efficiently transforms any KE into a provably secure
AKE in the BR model without modifying the KE!

@ Proof without random oracles

o

Second Compiler

@ Merges any two-party KE with any authentication protocol
into an AKE (with only minimal changes in the authentication

part)
@ ... this even works for Zero-Knowledge Authentication

@ Proof in the random oracle model

A\

8/26

Introduction
oe

Our contribution

Practical Impact

Example: TLS

@ Assuming only that TLS is a passively secure KE (and several
results suggest this [MSW08,GMPSS08]) we can construct a
provably secure AKE!

26

Introduction
oe

Our contribution

Practical Impact

@ Assuming only that TLS is a passively secure KE (and several
results suggest this [MSW08,GMPSS08]) we can construct a
provably secure AKE!

@ No need to modify the TLS implementation!

Introduction
oe

Our contribution

Practical Impact

@ Assuming only that TLS is a passively secure KE (and several
results suggest this [MSW08,GMPSS08]) we can construct a
provably secure AKE!

@ No need to modify the TLS implementation!

An alternative approach would be to provide a proof for full TLS,
which is hard in the standard model

9/26

Introduction
°

Related Work

Some related results

What has been done before

e CKO01 analyzed the security of IPSEC IKE, but as their result
is restricted to only a single protocol it is not comparable to
our modular compiler

10/26

Introduction
°

Related Work

Some related results

What has been done before

o CKO1 analyzed the security of IPSEC IKE, but as their result
is restricted to only a single protocol it is not comparable to
our modular compiler

o BCKO98 introduced a modular way to construct authentication
and key exchange protocols

10/26

Introduction
°

Related Work

Some related results

What has been done before

o CKO1 analyzed the security of IPSEC IKE, but as their result
is restricted to only a single protocol it is not comparable to
our modular compiler

o BCKO98 introduced a modular way to construct authentication
and key exchange protocols

@ The KYO03 compiler adds a signature to every message of a
GKE to construct an AKE, but interferes with the KE protocol

10/26

KE + DSIG — AKE
[I¢]

Structure

AKE compiler

11/26

KE 4 DSIG — AKE

oe

Structure

sskp

obtain k, Tkg from KE

derive K = PRF(k, “KE")
derive Kmac = PRF(k, “MAC*")

o

o4 = SIG.Sign(sska, Tkell T1)

wp = MAC(Kmac, T2 || /0)
T3
accept, if

SIG.Vfy(pkg, T1, o) = 1
and wg = MAC(Kmac, T2 || '1")

(a)

KE

A

A

N
>

B

TA

oB

WA

wB

}n

T

T3

sskg

obtain k, Tkg from KE

derive K = PRF(k, "KE")
derive Kmac = PRF(k, "MAC")

op = SIG.Sign(sskg, Tkel| T1)

wg = MAC(Kmac, T2 || 1)

accept, if
SIG.Vfy(pka, Ty, 04) = 1
and wp = MAC(Kmac, T2 || /0")

12/26

KE + DSIG — AKE

o0

Key-Exchange

sskp

(a)

obtain k, Tkg from KE

KE

derive K = PRF(k, “KE*“)
derive Kmac = PRF(k, “MAC*")

sskg

obtain k, Tkg from KE

derive K = PRF(k, “KE")
derive Kmac = PRF(k, "MAC")

13 /26

KE 4 DSIG — AKE
oe

Key-Exchange

KE

@ No need to modify the KE protocol

14 /26

KE + DSIG — AKE
oe

Key-Exchange

KE

@ No need to modify the KE protocol
@ We only need the transcript and the resulting key

14 /26

KE + DSIG — AKE
oe

Key-Exchange

KE

@ No need to modify the KE protocol

@ We only need the transcript and the resulting key

@ The KE key k is not used “directly” to enable a standard BR
proof

14 /26

KE + DSIG — AKE
oe

Key-Exchange

KE

No need to modify the KE protocol

We only need the transcript and the resulting key

The KE key k is not used “directly” to enable a standard BR
proof

@ We derive two keys K and K, for later use, K being the
session key of the resulting AKE

14 /26

Introduction
000000000
Signatures

KE + DSIG — AKE
0000800000

ssk A

()

obtain k, Tkg from KE

derive K = PRF(k, “KE")

KE

A + KE — AKE
0o

Conclusion
oo

ssk; B

derive Kmac = PRF(k, “MAC")
op = SIG.Sign(sska, Tkel| T1

TA

9B

obtain k, Tk from KE

derive K = PRF(k, “"KE")
derive Kmac = PRF(k, “MAC")

op = SIG.Sign(sskg, Tkel| T1)
Uz

Q>
15/26

KE 4 DSIG — AKE
oe

Signatures

Signatures

For the authentication part we stick to standard signatures

16 /26

KE + DSIG — AKE
oe

Signatures

Signatures

For the authentication part we stick to standard signatures

@ Two nonces guarantee freshness of our AKE session

16 /26

KE + DSIG — AKE
oe

Signatures

Signatures

For the authentication part we stick to standard signatures
@ Two nonces guarantee freshness of our AKE session

@ The long-term secret is used for authentication

16 /26

KE + DSIG — AKE
oe

Signatures

Signatures

For the authentication part we stick to standard signatures
@ Two nonces guarantee freshness of our AKE session
@ The long-term secret is used for authentication

@ The entire transcript so far is signed to thwart active attacks

16

26

KE + DSIG — AKE
®00

“ ®

Message Authentication

sskg

KE

obtain k, Tk from KE < > obtain k, Tk from KE

derive K = PRF(k, "KE") derive K = PRF(k, “KE*)

derive Kmac = PRF(k, “MAC*) A derive Kmac = PRF(k, “MAC")
Tl{ rg }T1

o = SIG.Sign(sska, Tkel| T1) opg = SIG.Sign(sskg, Tkel|| T1)

oA

T, o T,

wa = MAC(Kmac, T2 || '0") wa wg = MAC(Kmac; T2 || '1")
T3 wg T3

accept, if accept, if

SIG.Vfy(pkg, T1,08) =1 SIG.Vfy(pka, T1,04) =1

and wg = MAC(Kmac, T2 || '1’) and wy = MAC(Kmac, T2 || /0)

17 /26

KE + DSIG — AKE
] 1o}

Message Authentication

MAC

Including a MAC using Knac at this point serves two purposes

18 /26

KE + DSIG — AKE
] 1o}

Message Authentication

MAC

Including a MAC using Knac at this point serves two purposes

@ We enable key confirmation (and “disable” unknown key share
attacks)

18 /26

KE + DSIG — AKE
] 1o}

Message Authentication

MAC

Including a MAC using Knac at this point serves two purposes

@ We enable key confirmation (and “disable” unknown key share
attacks)

@ We preserve indistinguishability of K due to a “forking trick”

26

KE + DSIG — AKE
ocoe

Message Authentication

The forking trick

k

/N

K Kmac

@ Revealing the session key k and using it afterwards for the
MAC computation enables an adversary to answer the Test

query!

19/26

KE + DSIG — AKE
ocoe

Message Authentication

The forking trick

k

/N

K Kmac

@ Revealing the session key k and using it afterwards for the
MAC computation enables an adversary to answer the Test
query!

@ Splitting the session key into two “new” keys enables
countering these attacks:

19/26

KE + DSIG — AKE
ocoe

Message Authentication

The forking trick

k

/N

K Kmac

@ Revealing the session key k and using it afterwards for the
MAC computation enables an adversary to answer the Test
query!

@ Splitting the session key into two “new” keys enables
countering these attacks:

o Reveal(7) outputs K, but for the MAC computation we use
Kmac

19/26

KE + DSIG — AKE
°

Short summary & reminder

The road so far

So far we presented a compiler with the following properties:

20 /26

KE 4 DSIG — AKE
°

Short summary & reminder

The road so far

So far we presented a compiler with the following properties:

@ No changes to the KE part

20 /26

KE 4 DSIG — AKE
°

Short summary & reminder

The road so far

So far we presented a compiler with the following properties:

@ No changes to the KE part

@ We excluded passive and active adversaries and even UKS

20/26

KE 4 DSIG — AKE
°

Short summary & reminder

The road so far

So far we presented a compiler with the following properties:

Reminder

@ No changes to the KE part
@ We excluded passive and active adversaries and even UKS

@ ... and the proof is in the BR standard model

20/26

KE 4 DSIG — AKE
°

Short summary & reminder

The road so far

So far we presented a compiler with the following properties:

Reminder

@ No changes to the KE part
@ We excluded passive and active adversaries and even UKS

@ ... and the proof is in the BR standard model

Coming up next

@ The next compiler provably combines a given KE and a given
arbitrary authentication protocol in the random oracle model

20/26

Comparison

A + KE — AKE

L o]

Standard Challenge-Response protocol

resppy = f(ska, chg)

verify (respg, cha)

(a)

chp

respg, chg

respp

respg = f(skg, chp)

verify (respa, chg)

21/26

A + KE — AKE
°0
Comparison

Standard Challenge-Re e protocol

chp
respg, chg respg = f(skg, cha)
resppy = f(ska, chg) respa
verify (respg, cha) verify (respp, chg)

v

® . ®

obtain k, Tkg from KE S 2 obtain k, Tkg from KE
chp
Ch,IA = H(Kmac, cha, Tke)
resply, chp resp,'3 = f(skg, ch;‘)

Ch;; = H(Kmac, chg, Tkg)

respjy = f(ska, chg) resply

verify (respg)

verify (resp))

21/26

A + KE — AKE
oe

Comparison

Structure

The ideas are quite similar as compared to the first compiler:

22/26

A + KE — AKE
oe

Comparison

Structure

The ideas are quite similar as compared to the first compiler:
@ Again we take the transcript from the KE
o Remark: We still need the forking trick to proof security

22/26

A + KE — AKE
oe

Comparison

Structure

The ideas are quite similar as compared to the first compiler:
@ Again we take the transcript from the KE
o Remark: We still need the forking trick to proof security

@ ... but this time we can use (nearly) any authentication
protocol secure against active attacks

22/26

Conclusion
®0

Summary & Future Work

Summary

We presented two compilers with the following properties:

23 /26

Conclusion
®0

Summary & Future Work

Summary

We presented two compilers with the following properties:

First Compiler

@ No changes to the KE part

23 /26

Conclusion
®0

Summary & Future Work

Summary

We presented two compilers with the following properties:

First Compiler

@ No changes to the KE part

@ We excluded passive and active adversaries and even UKS

23 /26

Conclusion
®0

Summary & Future Work

Summary

We presented two compilers with the following properties:

First Compiler

@ No changes to the KE part
@ We excluded passive and active adversaries and even UKS

@ ... and the proof is in the BR standard model

23 /26

Conclusion
®0

Summary & Future Work

Summary

We presented two compilers with the following properties:

First Compiler

@ No changes to the KE part
@ We excluded passive and active adversaries and even UKS

@ ... and the proof is in the BR standard model

v

Second Compiler

@ Again no changes to the KE part

23 /26

Conclusion
®0

Summary & Future Work

Summary

We presented two compilers with the following properties:

First Compiler

@ No changes to the KE part
@ We excluded passive and active adversaries and even UKS

@ ... and the proof is in the BR standard model

v

Second Compiler

@ Again no changes to the KE part

@ We can use any authentication protocol with only minimal
changes

23 /26

Conclusion
®0

Summary & Future Work

Summary

We presented two compilers with the following properties:

First Compiler

@ No changes to the KE part

@ We excluded passive and active adversaries and even UKS

@ ... and the proof is in the BR standard model

v

Second Compiler

@ Again no changes to the KE part

@ We can use any authentication protocol with only minimal
changes

@ ... but our proof makes use of a random oracle

23 /26

Conclusion
oce

Summary & Future Work

Future work

@ Try to find more efficient (specialized) variants of our
compilers

24 /26

Conclusion
oce
Summary & Future Work

Future work

@ Try to find more efficient (specialized) variants of our
compilers

@ Implement our compiler for real-world protocols

24 /26

Conclusion
oce
Summary & Future Work

Future work

@ Try to find more efficient (specialized) variants of our
compilers

@ Implement our compiler for real-world protocols

@ Extend our results to group key exchange protocols

24 /26

Conclusion
oce
Summary & Future Work

Future work

@ Try to find more efficient (specialized) variants of our
compilers

@ Implement our compiler for real-world protocols

@ Extend our results to group key exchange protocols

Any questions??

24 /26

Proof part 1

Session freshness
We show the session freshness by applying the birthday bound

Matching Conversation |

We exclude active adversaries against Tkg, T1 and T, by the
EUF-CMA security of the digital signature scheme = the
adversary is restricted to passive attacks against the KE

| A\

Key indistinguishability of k
We show key indistinguishability of k by the (passive) security of
the KE

A\

25 /26

Proof part 2

Key indistinguishability of K and Kmac

We show key indistinguishability by the security of the PRF

Matching Conversation |l

We exclude active adversaries against T3 by the security of the
MAC

26 /26

	Introduction
	What am I going to show?
	Motivation
	A short excursion to the BR model
	Our contribution
	Related Work

	KE + DSIG AKE
	Structure
	Key-Exchange
	Signatures
	Message Authentication
	Short summary & reminder

	A + KE AKE
	Comparison

	Conclusion
	Summary & Future Work

	

