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Diffie-Hellman Key Agreement

Let G be a cyclic group of prime order r with generator g.

Alice chooses x R←− Zr , computes gx and sends to Bob

Bob chooses y R←− Zr , computes gy and sends to Alice
Alice computes (gy )x , Bob computes (gx)y to give shared
secret gxy

A fundamental security requirement of DH Key Agreement is
that the Computational Diffie-Hellman problem should be hard:

Definition
(CDH): Given g and random gx and gy , find gxy
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The Static Diffie-Hellman Problem (Static DHP)

Suppose to minimise her exponentiation cost in multiple DH key
agreements Alice repeatedly reuses x = d .

This set of problem instances is a tiny subset of all CDH
problem instances
Not a priori clear that these instances should be hard, even
if CDH is hard

Definition

(Static DHPd ): Given fixed g and gd , and random gy , find gdy
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The Static DHP - inception and first result

Introduced by Brown and Gallant in 2004, who gave a reduction
from the DLP for d to the Static DHPd

Hence if the DLP for d is hard, then so is the Static DHPd

Equivalently, given access to a Static DHPd oracle, one
can find the associated DLP d

Definition
(Static DHPd oracle): Let G be a cyclic group of prime order r ,
written additively. For a fixed base element P ∈ G and a fixed
element Q ∈ G let d ∈ Zr be such that Q = dP. Then a
Static DHPd oracle (w.r.t. (G,P,Q)) computes the function
δ : G→ G where

δ(X ) = dX
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Oracle-assisted Static DHPd algorithm

A Static DHPd algorithm is said to be oracle-assisted if during
an initial learning phase, it can make a number of Static DHPd
queries, after which, given a previously unseen challenge
element X , it outputs dX .

Theorem
Let r = uv + 1. Then d can be found with u calls to a
Static DHPd oracle, and off-line computational work of
O(
√

u +
√

v) group operations.
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DLP to Static DHPd reduction

The complexity of the attack is minimised when u ≈ r1/3

Depending on the factorisation of r − 1, can lead to a real
attack which is quicker than solving the DLP

Brown and Gallant showed that a system entity acts as a
Static DHPd oracle, transforming their reduction into a DLP
solver, for the following protocols:

textbook El Gamal encryption
Ford-Kaliski key retrieval
Chaum-Van Antwerpen’s undeniable signatures
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Results of Koblitz and Menezes

In ‘Another look at non-standard discrete log and Diffie-Hellman
problems’ [07], Koblitz and Menezes studied a set of problems
in the Jacobian of small genus hyperelliptic curves

Delayed Target DLP/DHP, One-More DLP/DHP, and
DLP1/DHP1
Using ‘Index Calculus’ or Brown-Gallant show that some
are easier than DLP - hardness separation
Argue that problems which are either interactive or have
complicated inputs can produce weaknesses
Conclude that security assurances provided by such
assumptions should be reassessed/are difficult to assess
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An oracle-assisted Static DHP algorithm

Assuming index calculus methodology applies, KM implied the
following algorithm (cf. Joux-Naccache-Thomé [07]):

Construct a factor base F over which a non-negligible
proportion of group elements factor
Call the Static DHPd oracle δ on all Pi ∈ F
For a target element X attempt to write random multiples
aX as a sum of elements of F , i.e., aX = Pi1 + · · ·+ Pin

Then dX = (a−1 mod r)(δ(Pi1) + · · ·+ δ(Pin))

Applied algorithm to finite fields and small genus hyperelliptic
curves — resulting in a hardness separation from DLP
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Example (KM): Hyperelliptic Curves

For the DLP, there are four basic variants:
Gaudry (2000): basic index calculus — O(q2)

Harley (2000): reduce factor base — O(q2−2/(g+1))

Thériault (2003): large-prime variation — O(q2−2/(g+1/2))

GTTD (2007): double large-prime variation — O(q2−2/g)

The oracle-assisted Static DHP algorithm is O(q1−1/(g+1)) —
the square root of Harley’s algorithm:

No linear algebra
Only one relation needed so no large-prime elimination

Question: For g = 1 have O(q1/2), so can one do better?

R. Granger On the Static DHP on Elliptic Curves over Extension Fields



Background and Motivation
Main Algorithm and Results

The Static Diffie-Hellman Problem
An oracle-assisted Static DHP algorithm

Example (KM): Hyperelliptic Curves

For the DLP, there are four basic variants:
Gaudry (2000): basic index calculus — O(q2)

Harley (2000): reduce factor base — O(q2−2/(g+1))

Thériault (2003): large-prime variation — O(q2−2/(g+1/2))

GTTD (2007): double large-prime variation — O(q2−2/g)

The oracle-assisted Static DHP algorithm is O(q1−1/(g+1)) —
the square root of Harley’s algorithm:

No linear algebra
Only one relation needed so no large-prime elimination

Question: For g = 1 have O(q1/2), so can one do better?

R. Granger On the Static DHP on Elliptic Curves over Extension Fields



Background and Motivation
Main Algorithm and Results

The Static Diffie-Hellman Problem
An oracle-assisted Static DHP algorithm

Example (KM): Hyperelliptic Curves

For the DLP, there are four basic variants:
Gaudry (2000): basic index calculus — O(q2)

Harley (2000): reduce factor base — O(q2−2/(g+1))

Thériault (2003): large-prime variation — O(q2−2/(g+1/2))

GTTD (2007): double large-prime variation — O(q2−2/g)

The oracle-assisted Static DHP algorithm is O(q1−1/(g+1)) —
the square root of Harley’s algorithm:

No linear algebra

Only one relation needed so no large-prime elimination

Question: For g = 1 have O(q1/2), so can one do better?

R. Granger On the Static DHP on Elliptic Curves over Extension Fields



Background and Motivation
Main Algorithm and Results

The Static Diffie-Hellman Problem
An oracle-assisted Static DHP algorithm

Example (KM): Hyperelliptic Curves

For the DLP, there are four basic variants:
Gaudry (2000): basic index calculus — O(q2)

Harley (2000): reduce factor base — O(q2−2/(g+1))

Thériault (2003): large-prime variation — O(q2−2/(g+1/2))

GTTD (2007): double large-prime variation — O(q2−2/g)

The oracle-assisted Static DHP algorithm is O(q1−1/(g+1)) —
the square root of Harley’s algorithm:

No linear algebra
Only one relation needed so no large-prime elimination

Question: For g = 1 have O(q1/2), so can one do better?

R. Granger On the Static DHP on Elliptic Curves over Extension Fields



Background and Motivation
Main Algorithm and Results

The Static Diffie-Hellman Problem
An oracle-assisted Static DHP algorithm

Example (KM): Hyperelliptic Curves

For the DLP, there are four basic variants:
Gaudry (2000): basic index calculus — O(q2)

Harley (2000): reduce factor base — O(q2−2/(g+1))

Thériault (2003): large-prime variation — O(q2−2/(g+1/2))

GTTD (2007): double large-prime variation — O(q2−2/g)

The oracle-assisted Static DHP algorithm is O(q1−1/(g+1)) —
the square root of Harley’s algorithm:

No linear algebra
Only one relation needed so no large-prime elimination

Question: For g = 1 have O(q1/2), so can one do better?

R. Granger On the Static DHP on Elliptic Curves over Extension Fields



Background and Motivation
Main Algorithm and Results

Algorithm Overview
Potentially Vulnerable Curves
Simulation Results

Oracle-assisted Static DHP for elliptic curves?

Problem is that one needs a factor base to beat the
Brown-Gallant complexity

For ECs over Fp, currently no known useful factor base
Basic insight is that for ECs over extension fields, one
already has a native factorisation via Gaudry-Semaev
ECDLP algorithm =⇒ can use the KM methodology
Basic observation made independently by Joux-Vitse [10]
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Semaev’s summation polynomials

Let E : Y 2 = X 3 + aX + b, over a field Fq with char(Fq) > 3.

For m ≥ 2 define fm = fm(X1, . . . ,Xm) ∈ Fq[X1, . . . ,Xm] by the
following property:

For x1, . . . , xm ∈ Fq, fm(x1, . . . , xm) = 0 is equivalent to
∃y1, . . . , ym ∈ Fq such that (xi , yi) ∈ E(Fq) and

(x1, y1) + · · ·+ (xm, ym) = O ∈ E(Fq)

This means that in order to write R = Pi1 + · · ·+ Pim over
some F one needs only solve

fm+1(x1, . . . , xm, xR) = 0 ∈ Fq

R. Granger On the Static DHP on Elliptic Curves over Extension Fields
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Gaudry’s insight

Assume that E is defined over a degree n extension Fqn .
Fix a poly basis {tn−1, . . . , t ,1} for Fqn/Fq

Define F = {P = (x , y) ∈ E(Fqn) s.t . x ∈ Fq}
Note |F| ≈ q
Observe that fn+1(x1, . . . , xn, xR) = 0 has n components
via Weil restriction to Fq:

fn+1,0 + fn+1,1t + · · ·+ fn+1,n−1tn−1 = 0 ∈ Fqn

System of n equations over Fq in n variables in Fq

Solved via resultants or a Grobner basis computation

R. Granger On the Static DHP on Elliptic Curves over Extension Fields
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ECDLP complexity with Gaudry-Semaev

Decomposition complexity Õ(Poly(2n(n−1)))

Decomposition probability is 1/n!

For fixed n, q →∞, complexity is Õ(q2), rho is Õ(qn/2)

Using double large-prime variation reduces to Õ(q2−2/n)

Computationally far more intensive than the
Gaudry-Hess-Smart attack
Works for all curves defined over any extension field
Subexponential attack for a large class of fields (Diem)

eO((log qn)2/3)
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Algorithm complexity

Heuristic Result 1. For any elliptic curve E(Fqn), by making
O(q) queries to a Static DHPd oracle during an initial learning
phase, for fixed n > 1 and q →∞, an adversary can solve any
further instance of the Static DHPd in time Poly(log q).

Can reduce the factor base à la Harley:

Heuristic Result 2. For any elliptic curve E(Fqn), by making
O(q1− 1

n+1 ) queries to a Static DHPd oracle during an initial
learning phase, for fixed n > 1 and q →∞, an adversary can
solve any further instance of the Static DHPd in time Õ(q1− 1

n+1 ).

Can also obtain subexponential algorithm à la Diem
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n+1 ).

Can also obtain subexponential algorithm à la Diem

R. Granger On the Static DHP on Elliptic Curves over Extension Fields



Background and Motivation
Main Algorithm and Results

Algorithm Overview
Potentially Vulnerable Curves
Simulation Results

Algorithm complexity

Heuristic Result 1. For any elliptic curve E(Fqn), by making
O(q) queries to a Static DHPd oracle during an initial learning
phase, for fixed n > 1 and q →∞, an adversary can solve any
further instance of the Static DHPd in time Poly(log q).

Can reduce the factor base à la Harley:

Heuristic Result 2. For any elliptic curve E(Fqn), by making
O(q1− 1

n+1 ) queries to a Static DHPd oracle during an initial
learning phase, for fixed n > 1 and q →∞, an adversary can
solve any further instance of the Static DHPd in time Õ(q1− 1
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The Galbraith-Lin-Scott Curves

At EUROCRYPT 2009 the use of curves defined over extension
fields with degree a power of 2 were proposed.

GLS curves possess an efficiently computable
endomorphism =⇒ GLV fast point multiplication method
Over Fp2 method takes between 0.70 and 0.83 the time of
the previous best methods
Performance over Fp4 currently uninvestigated, but subject
to Gaudry’s ECDLP attack
GLS technique investigated for binary curves by
Hankerson-Karabina-Menezes [08]
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The Oakley key determination protocol curves
‘Well-Known Group’ 3

Group 3 is defined over the field F2155 = F2[ω]/(ω
155 + ω62 + 1),

by the equation
Y 2 + XY = X 3 + β,

where

β = ω18 +ω17 +ω16 +ω13 +ω12 +ω9 +ω8 +ω7 +ω3 +ω2 +ω+1.

#E(F2155) = 12 · r , with r =

3805993847215893016155463826195386266397436443

Several unsuccessful DLP attacks via Weil descent:
Jacobson-Menezes-Stein [01], Gaudry-Hess-Smart [00],
Galbraith-Hess-Smart [02], Hess [03]

R. Granger On the Static DHP on Elliptic Curves over Extension Fields
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The Oakley key determination protocol curves
‘Well-Known Group’ 4

Group 4 is defined over the field F2185 = F2[ω]/(ω
185 + ω69 + 1),

by the equation
Y 2 + XY = X 3 + β,

where

β = ω12 + ω11 + ω10 + ω9 + ω7 + ω6 + ω5 + ω3 + 1.
#E(F2185) = 4 · r , with r =

12259964326927110866866776214413170562013096\
250261263279

DLP studied by Maurer-Menezes-Teske [01] and
Menezes-Teske-Weng [04], the latter concluding that the
fields F25l for l > 37 are ‘weak’ while the security of ECs
over F2185 is questionable
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Large prime characteristic

For each of n = 2,3,4 and 5 we used curves of the form

E(Fpn) : y2 = x3 + ax + b,

for a and b randomly chosen elements of Fpn , such that
#E(Fpn) was a prime of bitlength 256.

Implemented in MAGMA (V2.16-5) run on a 3.16 GHz Intel
Xeon with 32G RAM

Data for testing and decomposing points for elliptic curves over
extension fields (times in s):

n log p #fn+1 # symfn+1 T (GB) T (roots)
2 128 13 5 0.001 0.009
3 85.3 439 43 0.029 0.027
4 64 54777 1100 5363 3.68

R. Granger On the Static DHP on Elliptic Curves over Extension Fields
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Large prime characteristic
Upper bounds on attack time

Given data, compute α such that:

pn(1−α) · n! · (T (GB) + T (roots)) = pα · T (scalar)

Attack time estimates for our implementation (times in s):

n α Attack time Pollard rho
2 0.6701 (2/3) 279.8 2111.3

3 0.7645 (3/4) 259.7 2111.4

4 0.8730 (4/5) 250.5 2111.4
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Characteristic two

For each of n = 2,3,4 and 5 we used curves of the form

E(F2ln) : y2 + xy = x3 + b,

for b a randomly chosen element of F2ln , such that #E(F2ln)
was a four times a prime of bitlength 256.

Data for testing and decomposing points for elliptic curves over
binary extension fields and attack time estimates (times in s):

n #fn+1 # symfn+1 Time GB α Attack time
2 5 3 0.000 0.6672 280.9

3 24 6 0.005 0.7572 260.0

4 729 39 247 0.8575 250.6

5 148300 638 N/A N/A N/A
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All is not lost however...

Joux-Vitse variant =⇒ n = 5 systems are solvable, but with
much smaller probability.

See "New timings for oracle-assisted SDHP on the IPSEC
Oakley ’Well Known Group’ 3 curve" on NTL, July 2010
[G.,Joux,Vitse]
Can solve oracle-assisted Static DHP (excluding ≈ 230

oracle queries) in ≈ 37.5 years
Estimated time for ‘Well-Known Group’ 4 (excluding ≈ 236

oracle queries) is ≈ 3.4× 103 years

New Result [G.] - in preparation:
For curves over F2ln can solve the oracle-assisted Static
DHP without using a native factorisation method
Better complexity than the above and faster for n = 5 as
soon as q > 235
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Conclusions

Elliptic curves defined over extension fields may be
unsuitable in some cryptographic scenarios

Practical attack(s) on Oakley ‘Well-Known Groups’ 3 and 4
Some problems occurring in security proofs are easier
than the DLP - up to nearly square-root faster when index
calculus applies
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