

Memoryless Near-Collisions via Coding Theory

Mario Lamberger Florian Mendel Vincent Rijmen Koen Simoens

Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology Inffeldgasse 16a, A-8010 Graz, Austria

mario.lamberger@iaik.tugraz.at

A D b 4 A b

Memoryless Collision

- I guess we heard about the birthday paradox
 - For an *n*-bit hash function, we need 2^{n/2} hash calls and a list of the same size
- Using a lot of memory sucks, so we
- implement it using a cycle finding method
 - Floyd
 - Brent
 - • •

A D b 4 A b

Now what about near-collisions

Near-Collision Resistance - HAC

It should be hard to find any two inputs m, m^* such that H(m) and $H(m^*)$ differ in only a small number of bits:

 $d(H(m), H(m^*)) \leq \epsilon.$

- This includes collisions ⇒ easier!
- What should a "near"-cycle be?

• π : Linear projection map that sets ϵ bits to 0

15 A

< 口 > < 同 >

- π : Linear projection map that sets ϵ bits to 0
- Then, a collision for $\pi \circ H$ results in a near-collision for H

4 D b 4 A b

- π : Linear projection map that sets ϵ bits to 0
- Then, a collision for $\pi \circ H$ results in a near-collision for H
- Improves the performance by $2^{\epsilon/2}$
- Drawback: finds only a fraction of all e-near-collisions

$$\frac{2^{\epsilon}}{\sum_{i=0}^{\epsilon} \binom{n}{i}}$$

- π : Linear projection map that sets ϵ bits to 0
- Then, a collision for $\pi \circ H$ results in a near-collision for H
- Improves the performance by $2^{\epsilon/2}$
- Drawback: finds only a fraction of all ϵ -near-collisions

 Ideally, we would like to have a map g which gives a one-to-one correspondence between ε-near-collisions (ε ≥ 1) for H and collisions for g ∘ H

• Let *H* be a hash function of output size *n*.

- Let *H* be a hash function of output size *n*.
- Let C ⊆ Z₂ⁿ be a code of the same length *n*, size K and covering radius ρ(C) and assume there exists an efficiently computable map g that maps every x ∈ Z₂ⁿ to a codeword at distance ρ(C) or less

- Let *H* be a hash function of output size *n*.
- Let C ⊆ Z₂ⁿ be a code of the same length *n*, size K and covering radius ρ(C) and assume there exists an efficiently computable map g that maps every x ∈ Z₂ⁿ to a codeword at distance ρ(C) or less
- Then, we can find 2ρ(C)-near-collisions for H with a complexity of about √K and with virtually no memory requirements

- Let *H* be a hash function of output size *n*.
- Let C ⊆ Z₂ⁿ be a code of the same length *n*, size K and covering radius ρ(C) and assume there exists an efficiently computable map g that maps every x ∈ Z₂ⁿ to a codeword at distance ρ(C) or less
- Then, we can find 2ρ(C)-near-collisions for H with a complexity of about √K and with virtually no memory requirements
- If decoding is efficient, use this as g

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

- Let *H* be a hash function of output size *n*.
- Let C ⊆ Z₂ⁿ be a code of the same length *n*, size K and covering radius ρ(C) and assume there exists an efficiently computable map g that maps every x ∈ Z₂ⁿ to a codeword at distance ρ(C) or less
- Then, we can find 2ρ(C)-near-collisions for H with a complexity of about √K and with virtually no memory requirements
- If decoding is efficient, use this as g
- Size $K \rightarrow$ sphere covering bound

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

 For given *n* and *ρ* we considered direct sums of Hamming codes and trivial codes

$$\mathcal{C} = \bigoplus_{i \geq 1} d_i \mathcal{H}_i \oplus \mathbb{Z}_2^{r(n,\rho)}$$

 For given *n* and *ρ* we considered direct sums of Hamming codes and trivial codes

$$\mathcal{C} = \bigoplus_{i \geq 1} d_i \mathcal{H}_i \oplus \mathbb{Z}_2^{r(n,\rho)}$$

Easy to decode

 For given *n* and *ρ* we considered direct sums of Hamming codes and trivial codes

$$\mathcal{C} = \bigoplus_{i \ge 1} d_i \mathcal{H}_i \oplus \mathbb{Z}_2^{r(n,\rho)}$$

- Easy to decode
- Gives rise to an interesting digit problem

•
$$\sum_{i\geq 1} d_i N_i \leq n$$
, $N_i = 2^i - 1$, $d_i \in \{0, \dots, \rho\}$
• $\sum_{i\geq 1} d_i = \rho$
• $\sum_{i>1} d_i \cdot i$ should be maximal

 For given *n* and *ρ* we considered direct sums of Hamming codes and trivial codes

$$\mathcal{C} = \bigoplus_{i \ge 1} d_i \mathcal{H}_i \oplus \mathbb{Z}_2^{r(n,\rho)}$$

- Easy to decode
- Gives rise to an interesting digit problem

•
$$\sum_{i\geq 1} d_i N_i \leq n$$
, $N_i = 2^i - 1$, $d_i \in \{0, \dots, \rho\}$
• $\sum_{i\geq 1} d_i = \rho$
• $\sum_{i\geq 1} d_i \cdot i$ should be maximal

Demonstrated the approach on the SHA-3 candidate TIB-3

Thank you for your attention!