
Hash Functions: Past, Present and Future

Bart Preneel

Katholieke Universiteit Leuven

bartDOTpreneel(AT)esatDOTkuleuvenDOTbe

http://homes.esat.kuleuven.be/∼preneel

5 December 2005

Outline

• Definitions

• Applications

• General Attacks

• Constructions

• Custom Designed Hash Functions

• Hash Functions Based on Block Ciphers

• Hash Functions Based on Algebraic Operations

• Pseudo-randomness

• Conclusions

2

Hash functions (1)

-

are secure; they can be reduced to
2 classes based on linear transfor-
mations of variables. The properties
of these 12 schemes with respect to
weaknesses of the underlying block
cipher are studied. The same ap-
proach can be extended to study
keyed hash functions (MACs) based
on block ciphers and hash functions
based on modular arithmetic. Fi-
nally a new attack is presented on
a scheme suggested by R. Merkle.
This slide is now shown at the Asi-
acrypt 2005 in the beautiful city of
Chennai during a presentation on
the state of hash functions.

@
@

@
@

@
@

@
@@

�
�

�
�

�
�

�
��

h -63102392168

3

Hash functions (2)

cryptographic hash function

MAC MDC

OWHF CRHF

UOWHF

�
�

�
�

�
�

��=

Z
Z

Z
Z

Z
Z

ZZ~

?

�
�

�
�

��	

@
@

@
@

@@R

This talk: only MDCs (Manipulation Detection Codes), which are

often called ‘hash functions’

4

Informal definitions (1)

5

Informal definitions (2)

• no secret parameters

• x arbitrary length ⇒ fixed length n

• computation “easy”

One Way Hash Function (OWHF):

• preimage resistant: ! h(x) 6⇒ x′ with h(x) = h(x′)

• 2nd preimage resistant:

! x, h(x) 6⇒ x′(6= x) with h(x′) = h(x)

Collision Resistant Hash Function (CRHF) = OWHF +

• collision resistant:

6⇒ x, x′(x′ 6= x) with h(x) = h(x′).

6

Informal definitions (3)

preimage resistant 6⇒ 2nd preimage resistant

• take a preimage resistant hash function; add an input bit b and

replace one input bit by the sum modulo 2 of this input bit and b

2nd preimage resistant 6⇒ preimage resistant

• if h is OWHF, h is 2nd preimage resistant but not preimage

resistant

h(X) =

{

0‖X if |X| ≤ n
1‖h(X) otherwise.

collision resistant ⇒ 2nd preimage resistant

[Simon 98] one cannot derive collision resistance from ‘general’

preimage resistance

7

Formal definitions: (2nd) preimage resistance

Notation: Σ = {0,1}, l(n) > n

A one-way hash function H is a function with domain D = Σl(n)

and range R = Σn that satisfies the following conditions:

• preimage resistance: let x be selected uniformly in D and let M

be an adversary that on input h(x) uses time ≤ t and outputs

M(h(x)) ∈ D. For each adversary M ,

Pr
x∈D

{h(M(h(x))) = h(x)} < ε .

Here the probability is also taken over the random choices of M .

• 2nd preimage resistance: let x be selected uniformly in Σl(n) and

let M ′ be an adversary that on input x uses time ≤ t and outputs

x′ ∈ D with x′ 6= x. For each adversary M ′,

Pr
x∈D

{

M ′(x) = h(x)
}

< ε .

Here the probability is taken over the random choices of M ′.

8

Formal definitions: collision resistance

A collision-resistant hash function H is a function family with do-

main D = Σl(n) and range R = Σn that satisfies the following

conditions:

• (the functions hS are preimage resistant and second preimage

resistant)

• collision resistance: let F be a collision string finder that on

input S ∈ Σs uses time ≤ t and outputs either “?” or a pair

x, x′ ∈ Σl(n) with x′ 6= x such that hS(x′) = hS(x). For each F ,

Pr
S

{F (H) 6= “?”} < ε .

Here the probability is also taken over the random choices of F .

9

Further generalization:
Rogaway-Shrimpton, FSE 2004

Consider a family of hash functions.

For (2nd) preimage resistance, one can choose the challenge (x)

and/or the key that selects the function.

This gives three flavours:

• random challenge, random key (Pre and Sec)

• random key, fixed challenge (ePre and eSec – everywhere)

• fixed key, random challenge (aPre and aSec – always)

Complex relationship (see figure on next slide).

10

Relation between definitions: Rogaway-Shrimpton

11

Applications

• digital signatures: OWHF/CRHF, ‘destroy algebraic structure’

• information authentication: protect authenticity of hash result

• (redundancy: hash result appended to data before encryption)

• protection of passwords: preimage resistant

• confirmation of knowledge/commitment: OWHF/CRHF

• pseudo-random string generation/key derivation

• micropayments (e.g., micromint)

• construction of MACs, stream ciphers, block ciphers

collision resistance is not always necessary

but other properties may be needed: pseudo-randomness if keyed,

near-collision resistance, partial preimage resistance,. . .

; how to formalize?

12

Related definitions: UOWH

UOWH or Universal One-Way Hash Function

(TCR: target collision resistant hash functions or eSec)

• generate message x (+ some state)

• choose a random key K

• target collision finder algorithm:

given x, K, h() (+state), find x′ 6= x such that hK(x′) = hK(x)

corresponds to eSec

only suitable if signer is trusted not to cheat!

13

Generic Attacks (1)

depend only on size of hash result; not on details of the algorithm

guess (2nd) preimage: Pr. success =
(#trials) · (#targets)

2n

; n ≥ 80 . . .128

avoid simultaneous attack on all targets:

parameterize (‘tweak’/‘salt’/’spice’) hash function

collision: birthday attack (or square root attack) [Yuval’79]

• r variations on genuine message

• r variations on fraudulent message

• probability of a match: 63% for r =
√

2n = 2n/2

; n ≥ 160 . . .256

14

Generic Attacks (2): time-memory trade-off

the average effort to find a (second) preimage for one out of 2t

targets equals 2n−t (and for t = n/2 this is 2n/2);

but if t is large, storage and search costs will be dominant

if one has to find (second) preimages for many targets, one can use

a time-memory trade-off [Hellman80]:

• O(2n) precomputation, O(22n/3) storage

• inversion of one message in time O(22n/3)

[Wiener02] If Θ(23n/5) targets are attacked, the full cost per (2nd)

preimage decreases from Θ(2n) to Θ(22n/5).

Full cost: product of number of components with the duration

of their use (motivation: hardware = ALUs, memory chips, wires,

switching elements)

15

Generic Attacks (3): the birthday attack

Efficient implementations of the birthday attack

• very little memory: cycle finding algorithms

• full parallelism

Distinguished point: l = c = (π/8) · 2n/2

Θ(e2n/2 + e2d+1) steps

Θ(n2n/2−d) memory

with e the cost of evaluating the function f

Full cost [Wiener02]: Θ
(

en2n/2
)

In practice [van Oorschot-Wiener]

• n = 128: 100 K$ for 1 month

• n = 160: 500 M$ for 1 year

16

Generic Attacks (4)

hash result
attacker invest- tool 2nd preimage collision

ment 2006 2015 2006 2015

Pedestrian Hacker $400 FPGA 74 80 115 127
Small Business $10,000 FPGA 79 85 125 137
Corporate Department $300K ASIC 90 96 147 159
Big Company $10M ASIC 95 101 158 169
Intelligence Agency $300M ASIC 100 106 162 174

Size of hash result to withstand a brute force 2nd preimage and collision attack

during 1 year. For the 2nd preimage attack, it is assumed that 65,536 messages

are attacked in parallel. Inspired by Blaze et al., 1996.

FPGA = Field Programmable Gate Array;

ASIC = Application Specific Integrated Circuit

17

Construction (1): iterated hash function

@
@

@@ �
�

��
? ?

H0 = IV x1

f
@

@
@@ �

�
��

? ?

H1 x2

f
@

@
@@ �

�
��

? ?

H2 x3

f

H3
?

g

?

H

f compression function/compress

g output transformation

unambiguous padding of input to multiple of block length

divide input into blocks x1, x2,, . . . , xt

18

Construction (2): relation between security f-h

iterating a compression function can make it less secure:

• trivial 2nd preimage/collision:

replace IV by H1 and delete the first message block x1

• 2nd preimage attack for a message with t blocks:

increases success probability with a factor of t

• fixed points: f(Hi−1, xi) = Hi−1 can lead to trivial 2nd preimages

or collisions

one possible solution: Merkle-Damg̊ard strengthening

• fix IV and append input length in padding

cf. [Merkle, Crypto 89] and [Damg̊ard, Crypto 89]

19

Construction (3): relation between security f-h

[Damg̊ard-Merkle 89]

Let f be a collision resistant function mapping l to n bits (with

l > n).

• If the padding contains the length of the input string, and if f is

preimage resistant, the iterated hash function h based on f will

be a CRHF.

• If an unambiguous padding rule is used, the following construc-

tion will yield a CRHF (l − n > 1):

H1 = f(H0 ‖ 0 ‖ x1) and Hi = f(Hi−1 ‖ 1 ‖ xi) i = 2,3, . . . t.

20

Construction (4): relation between security f-h

[Lai-Massey 92]

Assume that the padding contains the length of the input string, and

that the message X (without padding) contains at least two blocks.

Then finding a second preimage for h with a fixed IV requires 2n

operations iff finding a second preimage for f with arbitrarily chosen

Hi−1 requires 2n operations.

BUT:

• this theorem is not quite right (see below)

• very few hash functions have a strong compression function

• very few hash functions are designed based on a strong com-

pression function in the sense that they treat xi and Hi−1 in the

same way.

21

Construction (5)

Advantage of strong compression function f : tree construction.

f
�

�
�

�A
A

A
A

f
�

�
�

�A
A

A
A

f
�

�
�

�A
A

A
A

f
�

�
�

�A
A

A
A

f
�

�
�

�A
A

A
A

f
�

�
�

�A
A

A
A�

�
�

�A
A

A
A

f
�

�
�

�A
A

A
A

f
�

�
�

�A
A

A
A

f

�
�

�
�A

A
A

A

f
�

�
�

�A
A

A
A

f

�
�

�
�A

A
A

A

f

22

Defeating Merkle-Damg̊ard for (2nd) preimages

[Dean-Felten-Hu’99] and [Kelsey-Schneier, Eurocrypt05]

Known since Merkle: if one hashes 2t messages, the average effort

to find a second preimage for one of them is 2n−t.

New: if one hashes 2t message blocks with an iterated hash func-

tion, the effort to find a second preimage is only

t2n/2+1 + 2n−t+1

Idea: use fixed points to match the correct length

Finding fixed points can be easy (e.g., Davies-Meyer).

But still very long messages

Conclusion: appending the length does not work for 2nd preimage

attacks.

23

Defeating Merkle-Damg̊ard for (2nd) preimages

24

How (not) to strengthen a hash function?

Answer concatenation:

Consider h1 (n1-bit result) and h2 (n2-bit result), with n1 ≥ n2.

@
@

@@ �
�

��
?

x

h1

?

@
@

@@ �
�

��
?

x

h2

?

g(x) = h1(x)||h2(x)

Intuition: the strength of g(x) is the product of the strength of the

two hash functions (if both are “independent”).

But . . .

25

Multicollisions [Joux, Crypto 2004]

Consider h1 (n1-bit result) and h2 (n2-bit result), with n1 ≥ n2.

The concatenation of two iterated hash functions (g(x) = h1(x)||h2(x))

is only as strong as the strongest of the two hash functions (even

if both are independent).

• Cost of collision attack against g

≤ n1 · 2n2/2 + 2n1/2 � 2(n1+n2)/2

• Cost of (2nd) preimage attack against g

≤ n1 · 2n2/2 + 2n1 + 2n2 � 2n1+n2

If either of the functions is weak, the attacks may work better

Main observation: finding multiple collisions for an iterated hash

function is not much harder than finding a single collision.

26

Multicollisions by Joux

for H0, collision for block 1: x1, x′1
for H1, collision for block 2: x2, x′2
for H2, collision for block 3: x3, x′3
for H3, collision for block 4: x4, x′4

now we have a 16-fold multicollision for h

h(x1||x2||x3||x4)

= h(x′1||x2||x3||x4)

= . . .

= h(x′1||x′2||x′3||x4)

= h(x′1||x′2||x′3||x′4)

@
@

@@ �
�

��
? ?

H0 = IV x1, x′1

f

@
@

@@ �
�

��
? ?

H1 x2, x′2

f

@
@

@@ �
�

��
? ?

H2 x3, x′3

f

@
@

@@ �
�

��
? ?

H3 x4, x′4

f

?

27

Defeating commitment protocol: herding

protocol: publish h(x), reveal x at later date

herding attack [Kelsey,Kohno05]

find second preimage x′ = z||y||x with z and y selected in 2020

approach: generate collision tree of 2t values Hj−1 and xj hashing

to the same value (cost (2 · 2t/2 · 2n/2))

z = result of all India cricket games between 2010 and 2020

try random strings y until h(z||y) = Hj−1 for some j (cost 2n−t)

then h(z||y||xj) = h(x)

Example: n = 128, t = 42:

precomputation 286, inversion 286, storage about 100 Terabyte

28

Defeating commitment protocol: herding (2)

29

Improving Merkle-Damg̊ard

• including salting (family of functions, randomization)

• add a strong output transformation g (which includes total length

and salt)

• preclude fix points: counter f ; fi (Biham) or dithering (Rivest)

• multi-collisions, herding: avoid breakdown at 2n/2 with larger

internal memory (e.g., RIPEMD, [Lucks05])

• rely on principles of block cipher design, but with larger security

margins

• probably not by combining smaller building blocks (à la MDC-

2/MDC-4)

• can we build in parallelism and incrementality in an elegant way?

30

H1 Ht-1

length(x)

H0
f1

x1

f2

x2

ft

xt g

length(x)

H0
f1

x1

f’1H’0

m

f2

x2

f’2H’1

m

H1
ft

xt

f’tH’t-1

m

Ht-1

g

31

Construction (7): UOWH

[Naor-Yung 89]

Composition lemma for UOWH

[Bellare-Rogaway 97]

• XOR linear scheme

• basic tree hash

• exor tree hash

efficiency improvements

[Shoup 00], [Sarkar04], [Lee, Chang, Lee, Sung, Nandi 04]

easier to design

32

Custom Designed Hash Functions (1)

shortlist:

• MD4-family: MD4, extended MD4, MD5, SHA, SHA-1, RIPEMD-

160, SHA-xxx

• MD2 (8 to 8-bit table)

• Snefru (8 to 32-bit tables, 8 passes)

• N-hash (FEAL-based)

• FFT-hash III (FFT transform)

• Subhash (hardware)

• Tiger (64-bit architecture)

• Panama (VLIW processor) – broken [2001]

• Whirlpool

• FORK-256

• DHA-256

• . . . and many broken proposals . . .

33

MD4

designed by Rivest in 1990

3 rounds

• collisions for 2 rounds [Merkle90, denBoerBosselaers91]

• near collision [Vaudenay94]

• collisions for full MD4 in 220 steps [Dobbertin96]

• (second) preimage for 2 rounds [Dobbertin97]

• collisions for full MD4 by hand [Wang+04]

• practical preimage attack for 1 in 256 messages [Wang+05]

abandoned since 1993

34

MD5

designed by Rivest in 1991

4 rounds

• collisions for compression function f [denBoer-Bosselaers93] –

∆ IV

• real collisions for compression function f [Dobbertin96]

- wrong IV

• real collisions in 239 steps [Wang+04] 15 minutes!!

35

Collisions for MD5

• Advice (RIPE since 1992,

RSA since 1996):

stop using MD5

• largely ignored by industry

(click on any cert . . .)

• collisions for MD5 are within

range of a brute force attack

anyway (264)

• attack is being improved

36

SHA-1

SHA designed by NIST (NSA) in 1993

5 ‘rounds’

redesign after 2 years (95) to SHA-1

• Collisions for SHA(-0) in 251 [Joux+04]

• Collisions for SHA(-0) in 239 [Wang+05]

• Collisions for SHA-1 in 263 [Wang+05]

37

The MDx-family: pedigree

Haval

�
�

�
�

�
�

�
�=

��
��

��
���

MD4
?

-

Z
Z

Z
Z

Z
Z

Z
Z~

MD5

?

SHA
?

SHA-1

?

SHA-256
SHA-384
SHA-512

extended-MD4

?

RIPEMD

?

RIPEMD-160

’90

’91

’92

’93

’94

’02

38

Step for MD4

→ updates one word

of chaining variable

→ based on

– Boolean function fr

– message word Xj

– additive constant Ks

– rotation amounts ss

→ operations on 32-bit words

– addition mod 232

– fixed rotations (� 11,� 7)

– bitwise AND, XOR (fr)

A B C D

?

s s s

? ? ?
@

@@
�

��
fr

�

?
Xj -

?
Ks -

?

&%
'$
� ss

hhhhhhhhhhhhhhhhhhhhhh

������������������

�
�

�
��

�
�

�
��

? ? ? ?

B C D A

39

MDx-family: properties

Algorithm n rounds steps word block endianness

MD4 128 3 48 32 512 Little
ext-MD4 256 2 × 3 96 32 512 Little
MD5 128 4 64 32 512 Little
SHA-1 (SHA) 160 4 80 + 64 32 512 Big
RIPEMD 128 2 × 3 96 32 512 Little
RIPEMD-128 128 2 × 4 128 32 512 Little
RIPEMD-160 160 2 × 5 160 32 512 Little
SHA-256 256 – 64 + 64 32 512 Big
SHA-384 384 – 80 + 64 64 1024 Big
SHA-512 512 – 80 + 64 64 1024 Big
HAVAL 128- 3,4,5 96,128, 32 1024 Little

-256 160

40

MDx-family: history of attacks

• collisions MD412 [Merkle ’90]

• collisions MD423 [den Boer-Bosselaers ’91]

• pseudo-collisions MD5 [den Boer-Bosselaers ’93]

• collisions MD412, near collisions MD4 [Vaudenay ’94]

• unidentified problem with SHA [NSA ’94]

• [Dobbertin ’95-’97]:

– collisions RIPEMD23, RIPEMD12

– collisions MD4 (even with structure)

– collisions for ext-MD4 compress with random IV
– collisions for MD5 compress with random IV
– preimage for MD412

• collisions for SHA in 261 [Chabaud-Joux ’98]

• collisions for 2 rounds of RIPEMD [Debaert-Gilbert ’01]

41

MD4-family: history of attacks (2)

• Collision attacks on reduced 2-round versions of HAVAL [Kasselman-

Penzhorn 00] [Park-Sung-Chee-Lim 02] [Her-Sakurai-Kim 03]

• Saarinen 2003: slide attacks on SHA and MD5

• simplified SHA-xxx (+ → ⊕, symmetric constants) has symmetry

properties [Gilbert-Handschuh 03]

• Collisions for Haval [Biryukov, Van Rompay, Preneel 02]

• Collisions for SHA(-0) in 250 [Joux+ 04]

• Collisions for MD4 (by hand), MD5, and RIPEMD [Wang-Feng-

Lai-Yu 04]

• Attack on 53 out of 80 rounds of SHA-1 [Biham-Chen 04]

• Attack on 53 out of 80 rounds of SHA-1 [Rijmen-Oswald 04]

• 239 attack on SHA(-0) [Wang-Yu-Yin 05]

• 263 attack on SHA-1 [Wang-Yin-Yu 05]

• variant of second preimage attack on MD4

42

MD4-family: SHA-1 & RIPEMD-160

common features:

• 160-bit result

• extra rotate on one of the message words (‘MSB problem’)

• both in ISO/IEC 10118-3:1998 (also RIPEMD-128)

RIPEMD-160:

• two independent parallel halves, which are made as different as

possible (order of message words, Boolean functions, constants,

rotations)

• 5 rounds

43

MD4-family: SHA-1 & RIPEMD-160

SHA-1: (FIPS 180)

• no repetition of message words, but encoding (j ≥ 16):

X[j] := (X[j − 3] ⊕ X[j − 8] ⊕ X[j − 14] ⊕ X[j − 16]) <<< 1;

= systematic linear code [n = 2560, k = 512, d < 86]

compared to SHA:

• bitwise shortened cyclic code [n = 80, k = 16, d = 23]

X[j] := X[j − 2] ⊕ X[j − 3] ⊕ X[j − 7] ⊕ X[j − 16];

44

MD4-family: SHA-xxx

SHA-224, SHA-256, SHA-384, SHA-512

• message processing:

X[j] := σ1(X[j − 2]) ⊕ X[j − 7] ⊕ σ0(X[j − 15]) ⊕ X[j − 16];

with σi = sum of 2 rotated and 1 shifted value of the same

variable

• more complex round functions: each step has multiplexer, ma-

jority, Σ-function (sum of 3 rotated versions of input)

• 64 different constants

• SHA-384, SHA-512: 64-bit words

• SHA-384 is obtained by truncating result of SHA-512

45

Whirlpool [Rijmen-Barreto00]

• based on a Rijndael-like block cipher with a 512-bit block and a

512-bit key (state: 8 × 8 matrix)

EK(X) ⊕ X ⊕ K

• key schedule (message input): same rounds as block cipher with

constant key

• S-box is not inverse, but built of four 4-bit S-boxes

• best known attack: 6 rounds out of 10

46

Attack ideas by Wang et al.

Very clever combination of new and known techniques:

• differential attack but modular differences (mod 232) rather than ⊕
[Berson’92]

• find new differentials with control of carry bits

• message modification: characteristic satisfied in first steps

[Biham92,Rijmen-Preneel93]

• advanced message modification: characteristic satisfied further

below

• multi-block technique [Preneel92]

47

Impact of recent attacks

collisions for MD5, SHA(-0), SHA-1

• two messages differ in a few bits in 1 to 3 512-bit input blocks

• limited control over message bits in these blocks

• but arbitrary choice of bits before and after them

? ? ?

freely chosen text freely chosen text

what is achievable today?

• 2 colliding executables

• 2 colliding postscript documents [Lucks-Daum 05] or pictures

• 2 colliding RSA public keys thus with colliding X.509 certificates

[Lenstra-Wang-de Weger 04]

• 2 arbitrary colliding files (no constraints) for 100 K$

48

Impact of recent attacks

collisions:

• none for signatures computed before attacks were public (1 Au-

gust 2004)

• none for certificates if public keys are generated at random in a

controlled environment

• substantial for signatures after 1 August 2004 (cf. traffic tickets

in Australia)

second preimages:

• security degrades with number of applications

• general attacks based on fixed points [Kelsey, Schneier 05]

• specific attacks exist for MD2/MD4

• for MD5/SHA-1: not a threat for current applications

49

Practical solutions

• RIPEMD-160 seems more secure than SHA-1 ;-)

• message precoding [Szydlo-Yin 05]

• small patches to SHA-1 [Jutla-Patthak 05]

• use more recent standards (but 40-80 cycles/byte)

• use older schemes: Tiger, Snefru with more rounds

• start from scratch: new NIST competition

50

Outline

• Definitions

• Applications

• General Attacks

• Constructions

• Custom Designed Hash Functions

• Hash Functions Based on Block Ciphers

• Hash Functions Based on Algebraic Operations

• Pseudo-randomness

• Conclusions

51

Based on Block Ciphers (1)

Why:

• trust

• reduce design, evaluation, and implementation effort

• compact implementation

Why not:

• slow (key schedule)

• export restrictions

• weaknesses which are not relevant to encryption

rate = # blocks hashed per encryption

52

Based on Block Ciphers (2)

single block length hash functions:

• 12 ‘secure’ schemes of rate 1; one in ISO/IEC 10118-1

• collision 2n/2, (2nd) preimage 2n

E
��

?�
��
+

?

?

s

�

-

-

E
�
�

?

�

��
+

?

?

s

�

-Hi−1

xi

Hi

security proof: [Winternitz ’82] [Black, Rogaway, Shrimpton ’02]

53

Based on Block Ciphers (3)

double block length hash functions with rate 1:

H1
i = EA1

i
(B1

i) ⊕ C1
i

H2
i = EA2

i
(B2

i) ⊕ C2
i

• A1
i , B1

i , C1
i binary linear combinations of H1

i−1, H2
i−1, x1

i , and x2
i

• A2
i , B2

i , C2
i are binary linear combinations of H1

i−1, H2
i−1, x1

i , x2
i ,

and H1
i .

goal: collision 2m, (2nd) preimage 22m

BUT:

• [Hohl et al. 94]: compression function has at most security level

of single length hash function

• [Knudsen-Preneel-Lai 96]: collisions in time 23m/4 or 2m/2

54

Based on Block Ciphers (4)

rate < 1:

• [Brachtl et al. (IBM) 89] MDC-2: rate 1/2

ISO/IEC 10118-2

• [Brachtl et al. (IBM) 89] MDC-4: rate 1/4

security for DES:

rate collision preimage coll (f) preimage (f)

MDC-2 1/2 255 283 228 254

MDC-4 1/4 256 2109 241 290

problem: proof of security?

55

Based on Block Ciphers (5): MDC-2

E⊕
K(X) = EK(X) ⊕ X

-H1i−1
� H2i−1

?

E⊕
1

��
?

E⊕
2

��

?

xi

?

? ?

?

??

? ?

H1i H2i

56

Based on Block Ciphers (6): MDC-4

H1i−1 H2i−1xi

r

-r � r
?

E⊕
1

��
?

E⊕
2

��

?

? ?

?

??

- �

?

E⊕
1

��
?

E⊕
2

��

?

? ?

?

??

?

H1i

?

H2i

57

Based on Block Ciphers (7)

double block length hash functions:

(with collision resistant compression function)

• [Merkle ’89]
– rate between 1/18. . . 1/4, inconvenient block sizes
– security proof (256) based on black box model of DES

• [Knudsen-Preneel ’96-’97]:
– rate 1/3 with 9 parallel encryptions
– security proof (272) based on black box model of DES
– assumption in security proof needs small correction

• [Nandi-Lee-Sakurai-Lee ’05]
– security proof collisions 22n/3 for rate 1/3
– but near-preimages and near-collisions [Knudsen-Muller ’05]

• [Aiello-Haber-Venkatesan ’98]:
– very fast because of modified key schedule
– security proof for several assumptions on DES

• research topic – also double key length [Lai-Massey 92] . . .

58

Based on Block Ciphers (8): Merkle

E⊕
K(X) = EK(X) ⊕ X

-0‖H1i−1
� 1‖H1i−1

?

E⊕
1

��
?

E⊕
2

��

?

H2i−1‖xi

? ?

H1i H2i

? ?
|H1i|= 55

|H2i|= 57

|xi|= 7

59

Based on Algebraic Structures (1)

Why:

• sometimes one can prove security reductions

• compact implementation

• fast (knapsack-type problems)

Why not:

• mathematical structure can be exploited

• slow (modular exponentiation)

• vulnerable to trapdoors

60

Algebraic Structures (2): modular arithmetic

how to generate the RSA modulus?

answer: secure multi-party computation

[Boneh-Franklin 97], [Frankel-MacKenzie-Yung 98]

schemes with security reduction:

• [Damg̊ard 87]: equivalent to factoring

• [Gibson 91]: discrete logarithm modulo a composite

• [Chaum et al. 91], [Brands], [Bellare et al. 94]

discrete logarithm in a group of prime order Gp

– prime p and t random elements αi from Gp (αi 6= 1).

Ht+1 =
t
∏

i=1

α
x̃i
i with x̃i = 1‖xi

61

Algebraic Structures (3): modular arithmetic

schemes with security reduction (continue):

• [Contini-Lenstra-Steinfeld 05]: VSH (Very Smooth Hash)

– based on factoring

– equivalent to finding modular square roots of smooth num-

bers

– needs about 1/ log2 n modular multiplications (mod n) per bit

– 110/180 cycles/byte (1024/20480-bit modulus) or about 25

times slower than SHA-1

– reduction not very tight

• [Charles-Boren-Lauter 05]: expander graphs

– elliptic curve based construction

62

Algebraic Structures (4): modular arithmetic

schemes without security reduction:

• many broken proposals, including CCITT X.509 Annex D

• most promising: ISO/IEC 10118-4:1998

MASH-1 (Modular Arithmetic Secure Hash)

Hi =
((

xi ⊕ Hi−1
) ∨ A

)2 (mod N) ⊕ Hi−1

A = 0xF00...00

xi: 4 most significant bits in every byte equal to 1111

output transformation that reduces output size to at most n/2

MASH-2: replace exponent 2 by 28 + 1

security for n-bit RSA modulus:

– best known attacks: preimage in 2n/2, collision in 2n/4

– feedforward of Hi−1 essential

63

Algebraic Structures (5): knapsacks and lattices

additive knapsacks:

knapsack problem of dimensions n and `(n):

given a set of n l-bit integers {a1, a2, . . . , an}, and an l-bit integer S

find a vector X with components xi equal to 0 or 1 such that

n
∑

i=1

ai · xi = S mod 2`(n) .

for hashing, one needs n > `(n).

the good news:

• [Impagliazzo-Naor 96]: UOWH as secure as knapsack

• [Ajtai 96], [Goldreich+ 96]: one-way and collision-resistant func-

tion if approximating the shortest vector in a lattice to polyno-

mial factors is hard

• [Sendrier et al.]: random matrix + structured input: syndrome

decoding is hard problem

64

Algebraic Structures (6): knapsacks and lattices

the bad news:

• the knapsack problem seems to be ‘too easy’ for realistic pa-

rameters (1000 vectors of 500 bits).

• LLL for `(n) > 1.0629n

• [Camion-Patarin 91] and [Patarin 93] for n � `(n)

• [Wagner-02] generalized birthday attack

65

Algebraic Structures (7): knapsacks and lattices

multiplicative knapsacks: [Tillich-Zémor 94]

matrix product in group SL2(F2n)

A =

(

X 1
1 0

)

B =

(

X X + 1
1 1

)

π{0,1} → {A, B}; 0 7→ A, 1 7→ B

h(x1x2 . . . xn) = π(x1) · π(x2) . . . π(xn)

evaluation:

+ proof that two colliding messages have ‘large’ Hamming distance

+ parallelism

– new attacks using algebraic structure

66

Incremental hashing

incrementality [Bellare et al. 94]

Given x and h(x), if a small modification is made to x, resulting

in x′, one can update h(x) in time proportional to the amount of

modification between x and x′, rather than having to recompute

h(x′) from scratch.

[Bellare-Micciancio 97]

• hash individual blocks of message

• combine hash values with a group operation, e.g., multiplication

in a group of prime order in which the discrete logarithm problem

is hard

proof based on ‘random oracle’ assumption

67

Pseudo-random functions?

joint work with Jongsung Kim and Alex Biryukov

Key question: where to put the key?

If keyed through message input: block ciphers

best known attack: related-key boomerang distinguisher

hash function rounds data complexity

Haval-4 (128) 96 (full) 211.6 RK-CP + 26 RK-ACC

MD4 (48) 48 (full) 26 RK-CP + 26 RK-ACC

MD5 (64) 64 (full) 213.6 RK-CP + 211.6 RK-ACC

SHA-1 (80) 59 (red.) 270.3 RK-CP + 268.3 RK-ACC

68

Distinguishers for HMAC

keyed through IV:

HMAC h((K ⊕ p2) ‖ h((K ⊕ p1) ‖ x))

For short messages with compression function fK:

HMAC fK2
(fK1

(x))

hash function fK2
fK1

data complexity

Haval-3 (96) 96 (full) 96 (full) 2228.6 CP

Haval-4 (128) 128 (full) 102 (red.) 2253.9 CP

MD4 (48) 48 (full) 48 (full) 274 CP

MD5 (64) 64 (full) 33 (red.) 2126.1 CP

SHA(-0) (80) 80 (full) 80 (full) 2109 CP

SHA-1 (80) 80 (full) 43 (red.) 2159.9 CP

69

Concluding Remarks

• we understand very little about the security of hash functions

• designers have been too optimistic (over and over again. . .)

• block ciphers, MAC algorithms, stream ciphers get faster, but

hash functions now 4-5 times slower

• do we need a ‘small’ collision resistant compression function?

• how do we design a collision resistant compression function?

• more work should be done on other security properties:

(2nd) preimage resistance, partial preimage resistance,

pseudo-randomness, security with iterated applications,. . .

70

Read more?

• ECRYPT hash function workshop http://www.ecrypt.eu.org

and http://www.impan.gov.pl/BC/05Hash.html

• NIST hash function workshop

http://www.csrc.nist.gov/pki/HashWorkshop/index.html

• My 1993 PhD thesis http://homes.esat.kuleuven.be/∼preneel

• Overview paper from 1998 (LNCS 1528)

http://www.cosic.esat.kuleuven.be/publications/article-346.pdf

71

