
1

Stretch before you compress

Gideon Yuval
Ramarathnam Venkatesan

Microsoft Research

Secure Hash Constructions

• Secure Hash functions, after a lull of security,
are under attack.
– Differential
– Renewed interest for new functions

• Some applications do not need so much speed
• All need security
• Can we look at the attacks and thwart them in a

simple principled manner?
– Slower hash functions may be inevitable

2

Idea

`̀

input

I

N

T

E

R
M

E

D

I

A

T

E

y

OUTPUT

x

Some compression
function

–say some secure
hash, such as sha

Use ciphers or other
simpler constructions

Already stretch happens

• MD4, MD5
– Simple copying of bits

• Sha,Sha1
– More randomization of bits
– For two distinct inputs x,x’ , Intermediate

stage results y,y’ appear to have some
minimum distance between them

• Studied [AHV], [Jutla]

3

Stretching

• We only look at the compression function
• Let the input be A,B,C,D
• Let EK(x) be a block cipher so that 2.|x|=|k|
• Example parameters

– A,B,C,D are 128 bits
– K=256

• E.g. AES/Rijndael cipher

E E E

K

E

K

ABAB CD

D

CD

C BA

Input

A,B,C,D

SQ RP

Output

P,Q,A,B,C,D,R,S
Tag=P,Q,R,S

PQ=front

RS=tail

Stretch function computes a tag; prepends the front, appends the tail tag

4

Stretch function

A,B,C,D R,S,A,B,C, D, P,Q

1. This mapping is invertible

• NO collision in this stage

2. We only count on the pseudo-randomness of the tags: P,Q,R,S.

• need not be perfectly random

3. The format may not be important

• Chosen with the structure of the recent attacks in mind

Attacks to bias the tags
• Attacks that can use the fact that keys of the

cipher are now at attackers choice
– Can bias the distribution of the tag P,Q,R,S

• Attacks become feasible if one can perform
some inversion tasks

Invert F: F(AB,C)=EAB(C)+C= P. That is, given P find some AB
and C.

Invert G: Fix AB: G(D)=EAB(D)+D= Q. That is, given Q find
some AB and C.

– We need that the inversions of F and G are
infeasible

– But we need to know exactly what is the effort to
cause a given bias in some quantitative way

5

Biassing the tags: Making the front
tag PQ arbitrary

• The obvious but expensive attack to make PQ
arbitrary
1. Set P to be arbitrary, find AB and C by inverting F

F(AB,C)=EAB(C)+C= P

2. But then one loses control of the key AB in
– Q=F(AB,D)=EAB(D)+D
– To make Q arbitrary invert G(D)= EAB(D)+D =Qfor a fixed AB

– Now A,B,C,D are all fixed.
– Thus one can expect the tail tag R,S to be “random”.

Biassing the tags
• A more complicated

attack can try to do bias
the tail RS to fall in some
set:

• simultaneous birthday
attacks to find
– Many 4 tuples A,B,C,D

yielding same P,Q
– And then compute R,S,

hope that they fall in some
set

• Bias P,Q,

Space of all R,S

Bias the tail
RS to fall in

this set

6

Unbiassability

• We need the tags to be unbiassable
– formalization

• One would expect the entropy in the output using
arbitrary (e.g., not-inverting F or G) attacks that run in
time t

constant small very some
 invert torequired time

invert torequired time where

)rLengthBlockCiphe).(2(|)log(| |)log(|

=
=
=

−++≈

ε

ε

GT
FT

T
t

T
t

G

F

GF

Other waysto stretch

• We can add one more round
– Use RSAB as input
– compute a new front tag UV

• No need to compute the tail tag
– Output UV ABCD RS.
– Slower

• Alternate designs to mimic the properties
of the above tags.

7

Expander graph based tags

• Take a suitable expander graph
• Take a walk

– Start at a node based on ABCD
– Perform a walk based on a fixed random

string
• Compute a simple function of the

intermediate nodes values z1, z2, z3 …. ztz1 z3 z4
zt

zi

z2

Parameters

• Tag length: We showed a simple scheme
for length doubling
– Smaller than double.
– increasing by 50% may suffice for some

applications
• Performance: (somewhat less than) half

the speed of the cipher.

