
1

Truncation in Cryptographic 
Hash Functions

Zulfikar Ramzan
DoCoMo USA Labs

15-Apr-06 2Zulfikar Ramzan© 2005 DoCoMo Communications Laboratories USA, Inc.  All Rights Reserved. Confidential.

Hash Truncation Dilemma

Some standards organizations are urgently trying to find a 
suitable replacement for SHA-1 because the confidence in it has 
been shaken due to the recent collision results.  
One suggestion that has been made in standards proposals is to 
truncate the output of other hash functions:
o e.g., Truncate-160(SHA-256(M)).

However, this might be a bad idea if the first 160 bits of SHA-256 
have any weaknesses or bias.
o Of course, a hash function that is collision resistant should “in 

theory” not have weak bits.
o In particular, weak bits imply a bias in the output distribution which 

would in-turn reduce the complexity of a birthday attack.  

One possible avenue for a solution:  randomness extractors… 



2

15-Apr-06 3Zulfikar Ramzan© 2005 DoCoMo Communications Laboratories USA, Inc.  All Rights Reserved. Confidential.

Randomness Extractors

Complexity-theorists have done much work on randomness 
extractors which can “extract” a short uniformly random string
from a longer string that has high-min entropy (but which is not 
uniformly random).
Such extractors can be implemented efficiently
o Two-universal hash functions are provably good extractors [IZ89].
o Definition:  For all x != y, Prk[Hk(x) = Hk(y)] < ε.
o Example:  over a finite field like GF(2n) : Hk(x) = kx

Potential approach:  (Extractork(SHA-256(m)), k)
Issue:  randomness extractors require some random seed to start 
with, but it can be public (no secret key required)!  
o Might be OK for randomized hash functions [HK05].
o Perhaps there is a good possible source of randomness elsewhere.
o Randomness can be specific to a protocol implementation.
o Perhaps can use cryptographic hash function to generate randomness 

(though you may sacrifice provable security: chicken and egg problem).


