The MD2 Hash Function is not One-Way Frédéric Muller D.C.S.S.I. Crypto Lab ### **A Concrete Situation** # **Popular Hash Functions** - The SHA family (developed by NIST) - SHA-0 (collision found in August 2004) - SHA-1 - SHA-256 and sisters - The MD Family (developed by RSA Labs) - MD2 - MD4 (collision found in 1996) - MD5 (collision found in 2004) - Other algorithms - RIPEMD - HAVAL #### The MD2 Hash Function - It was designed by Ron Rivest in 1989 (published in a 1992 RFC) - Non-classical construction (early design) - Part of PKCS #1 v1.5 and 2.1 standards - Few cryptanalysis results: - Collision on a simplified version (Rogier-Chauvaud, 1995) # Results in this paper ### Important weaknesses of MD2: - The compression function can be inverted with complexity 2⁷³ basic operations (meet-in-the-middle attack) - Consequence = Preimage and Second preimage attacks cost 2¹⁰⁴ - ⇒ MD2 is not a secure One-Way Hash ## **Hash Functions** - Input = a message of arbitrary length - Output = a hash of fixed size (128 bits for MD2) $$H: \{0,1\}^* \longrightarrow \{0,1\}^{128}$$ # **Security of Hash Functions** - Collision resistance - It should be difficult to find M and M' such that H(M) = H(M') - Second preimage resistance - For a given M, it should be difficult to find M' such that H(M) = H(M') - Preimage resistance - For a given h, it should be difficult to find M such that H(M) = h # **Compression Function** The basic tool is a compression function F Message blocks have length 128 bits for MD2. ## **Iterated Hash Functions** ### **Particularities of MD2** - not Merkle-Damgaard - → Last message block = non-linear checksum - not Davies-Meyer - → Dedicated compression function - All operations are byte-oriented ### A basic tool The basic function is $$\Phi(X,Y) = Z = X \oplus S(Y)$$ where S is a $8\rightarrow 8$ S-box Φ is invertible when one input is known # **MD2** compression function ## Representation Intermediate values are stored in 3 matrices # Attacks against F $$H_{i+1} = F(H_i, M_i)$$ - 2 "preimage" attacks against F: - H_i and H_{i+1} are given, find M_i Complexity 2⁹⁵ - H_{i+1} is given, find M_i and H_i Complexity 2⁷³ ## **General Ideas of these Attacks** - 1. Determine portions of the state from known values (like H_{i+1}) - \Rightarrow indeed Φ is "invertible" - 2. Guess separately the two halves of the unknown. - 3. "meet-in-the-middle": find a match (≈ solution) # When H_i and H_{i+1} are given ### **General Idea** - Guess the left half of M_i - Guess the right half of M_i - Match intermediate values «in the middle» ## "Meet-in-the-middle" attack **Determine 64 bits** ## **Summary** - This attack costs roughly 2⁹⁶ x 2⁸ = 2¹⁰⁴ - Works when H_i and H_{i+1} are given, it retrieves ALL acceptable solutions M_i - When only H_{i+1} is given, a similar attack finds an acceptable (H_i, M_i) costs 2^{73} # Application to the whole hash - Merkle-Damgaard: attacks against F turn into attacks against the whole hash - Here: last block of message must match the non-linear checksum - Idea: multi-collisions for hash functions (Joux-04) # **Chaining Attack** - Goal = find a preimage of some target x - Pick a sequence of intermediate hashes $$H_0 \dots H_{128}$$ such that $$- H_0 = IV \text{ of } MD2 = 0$$ $$- H_{128} = x$$ Two possible message blocks M_i and M'_i at each step # **Chaining Attack** - Apply only 128 times the previous attack against F - All messages map to x - \Rightarrow we get "almost for free" 2^{128} preimages instead of just 1 # **Chaining Attack** - 2¹²⁸ different preimages of x - One should verify the checksum constraint - Costs 2⁶⁴ to identify - Overall Complexity - = 128 attacks against F - $\approx 2^{104}$ ## Conclusion - Preimage and second preimage Attacks for MD2 faster then 2¹²⁸ (not practical yet) - MD2 is not a secure one-way hash function - General results (Kelsey/Schneier) do not apply well because MD2 is not Merkle-Damgaard