The MD2 Hash Function is not One-Way

Frédéric Muller D.C.S.S.I. Crypto Lab

A Concrete Situation

Popular Hash Functions

- The SHA family (developed by NIST)
 - SHA-0 (collision found in August 2004)
 - SHA-1
 - SHA-256 and sisters
- The MD Family (developed by RSA Labs)
 - MD2
 - MD4 (collision found in 1996)
 - MD5 (collision found in 2004)
- Other algorithms
 - RIPEMD
 - HAVAL

The MD2 Hash Function

- It was designed by Ron Rivest in 1989 (published in a 1992 RFC)
- Non-classical construction (early design)
- Part of PKCS #1 v1.5 and 2.1 standards
- Few cryptanalysis results:
 - Collision on a simplified version (Rogier-Chauvaud, 1995)

Results in this paper

Important weaknesses of MD2:

- The compression function can be inverted with complexity 2⁷³ basic operations (meet-in-the-middle attack)
- Consequence = Preimage and Second preimage attacks cost 2¹⁰⁴
- ⇒ MD2 is not a secure One-Way Hash

Hash Functions

- Input = a message of arbitrary length
- Output = a hash of fixed size (128 bits for MD2)

$$H: \{0,1\}^* \longrightarrow \{0,1\}^{128}$$

Security of Hash Functions

- Collision resistance
 - It should be difficult to find M and M' such that H(M) = H(M')
- Second preimage resistance
 - For a given M, it should be difficult to find M' such that H(M) = H(M')
- Preimage resistance
 - For a given h, it should be difficult to find M such that H(M) = h

Compression Function

The basic tool is a compression function F

Message blocks have length 128 bits for MD2.

Iterated Hash Functions

Particularities of MD2

- not Merkle-Damgaard
 - → Last message block = non-linear checksum
- not Davies-Meyer
 - → Dedicated compression function
- All operations are byte-oriented

A basic tool

The basic function is

$$\Phi(X,Y) = Z = X \oplus S(Y)$$

where S is a $8\rightarrow 8$ S-box

 Φ is invertible when one input is known

MD2 compression function

Representation

Intermediate values are stored in 3 matrices

Attacks against F

$$H_{i+1} = F(H_i, M_i)$$

- 2 "preimage" attacks against F:
 - H_i and H_{i+1} are given, find M_i
 Complexity 2⁹⁵
 - H_{i+1} is given, find M_i and H_i
 Complexity 2⁷³

General Ideas of these Attacks

- 1. Determine portions of the state from known values (like H_{i+1})
 - \Rightarrow indeed Φ is "invertible"
- 2. Guess separately the two halves of the unknown.
- 3. "meet-in-the-middle": find a match (≈ solution)

When H_i and H_{i+1} are given

General Idea

- Guess the left half of M_i
- Guess the right half of M_i
- Match intermediate values «in the middle»

"Meet-in-the-middle" attack

Determine 64 bits

Summary

- This attack costs roughly 2⁹⁶ x 2⁸ = 2¹⁰⁴
- Works when H_i and H_{i+1} are given, it retrieves ALL acceptable solutions M_i
- When only H_{i+1} is given, a similar attack finds an acceptable (H_i, M_i) costs 2^{73}

Application to the whole hash

- Merkle-Damgaard: attacks against F turn into attacks against the whole hash
- Here: last block of message must match the non-linear checksum
- Idea: multi-collisions for hash functions (Joux-04)

Chaining Attack

- Goal = find a preimage of some target x
- Pick a sequence of intermediate hashes

$$H_0 \dots H_{128}$$
 such that

$$- H_0 = IV \text{ of } MD2 = 0$$

$$- H_{128} = x$$

Two possible message blocks
 M_i and M'_i at each step

Chaining Attack

- Apply only 128 times the previous attack against F
- All messages map to x
 - \Rightarrow we get "almost for free" 2^{128} preimages instead of just 1

Chaining Attack

- 2¹²⁸ different preimages of x
- One should verify the checksum constraint
- Costs 2⁶⁴ to identify
- Overall Complexity
 - = 128 attacks against F
 - $\approx 2^{104}$

Conclusion

- Preimage and second preimage Attacks for MD2 faster then 2¹²⁸ (not practical yet)
- MD2 is not a secure one-way hash function
- General results (Kelsey/Schneier) do not apply well because MD2 is not Merkle-Damgaard