Eliminating Random Permutation Oracles in the Even-Mansour Ciphe

Zulfikar Ramzan

Joint work w/ Craig Gentry DoCoMo Labs USA

ASIACRYPT 2004

Outline

- Even-Mansour work and open problems.
- Main contributions (resolving open problems)
- Related work
- Formal security theorem & proof sketch
- Extensions & Negative results

Even-Mansour Construction

- Goal: block cipher based on single (public) random permutation.
- 4 C = k2 xor P(M xor k1)
- Security Model Adversary:
 - o makes chosen plaintext / ciphertext queries
 - o has separate oracle access to P, P^{-1} .
- [EM91] proved: hard to invert (or compute forward direction of) cipher for un-queried plaintext/ciphertext pair.

© 2004 DoCoMo Communications Laboratories USA, Inc. All Rights Reserved.

Issues and Open Problems

- Security is proved in "Random Permutation Oracle Model."
 - o How to instantiate Random Permutation Oracle?
- Security proved w.r.t. hardness of inversion / forgery.
 - o But, there are stronger adversarial models.
- Q1: Can we prove security outside random permutation oracle model?
- Q2: Can we prove security w.r.t. to stronger adversarial model?

© 2004 DoCoMo Communications Laboratories USA, Inc. All Rights Reserved.

Our Contributions

Q1: Can we prove security outside the random *permutation* oracle model?

A1: Yes. We build the publicly-computable permutation using (publicly computable) functions. These functions are modeled as random *function* oracles; i.e., they're not necessarily *bijective*.

Q2: Can we prove security w.r.t. to stronger adversarial model?

A2: Yes. We prove super pseudorandomness (i.e., cipher is indistinguishable from a random permutation under chosen message/ciphertext attack).

Super Pseudorandom Permutations

Block Cipher is super-pseudorandom if all Probabilistic Poly-time Turing Machines (PPTM) fail Turing Style Test of Block Cipher vs. Truly Random Permutation.

PPTM adaptively chooses plaintexts (resp. ciphertexts); is provided corresponding ciphertexts (resp. plaintexts).

Should be unable to distinguish cipher from truly random permutation on same domain

Luby-Rackoff: constructed secure block cipher based on existence of one-way functions.

© 2004 DoCoMo Communications Laboratories USA, Inc. All Rights Reserved.

Health Warnings...

- Security in the random oracle model does not guarantee security in the real world [CGH97; MRH04; GTK03; BBP04]
- There are more efficient block cipher constructions in the random oracle model [Ramzan-Reyzin-2000].
- Our security analysis indicates that we need 2^{n/2} to be large where block size is 2n.

Main contribution: solve fundamental theoretical open problems of Even-Mansour work; we don't recommend this as a practical approach for building block ciphers.

Our Construction

- Replace Random Permutation Oracle with Four Round Feistel.
- Round functions modeled as lengthpreserving random *function* oracles (note: may be non-injective).

 Our Results:

- o Instantiate (public) *permutation* using (publicly computable) random *function* oracles.
- o Prove *super-pseudorandomness*.
- o Therefore: *eliminated random permutation oracles* in Even-Mansour.
- Note: adversary has separate black-box access to ALL round functions.

Related Work: Luby-Rackoff

- LR88: 4-Round Feistel w/ keyed pseudorandom round functions => super pseudorandom permutation.
 - o BUT: adversary not given separate access to internal round functions.

4 LR88: originally motivated by security of DES.

- Viewed their construction as "idealized" DES.
- But, DES round functions (S-boxes) are keyed in simple way (i.e., XOR key with input before applying S-box)

 LR88 uses pseudorandom round functions (which don't involve simple keying...)

We consider "simple" keying; so, our model is arguably a more apt idealization.

© 2004 DoCoMo Communications Laboratories USA, Inc. All Rights Reserved.

Related Work Continued

Ramzan-Reyzin Round Security Framework:

- o Allows adversaries access to internal rounds.
- o We can phrase security theorems using round security language.
- o There are similarities, but Ramzan-Reyzin constructs still had some keyed functions not accessible to adversary.
- o In this work: (essentially) no keyed functions. All funcs are separately accessible to adversary.
- o The respective proof strategies have some subtle differences (e.g., we need an extra hybrid).

Two Worlds - Adversarial Model

World 1: black-box oracles for

- forward + reverse direction of cipher.
- round functions inside cipher (both modeled as random function oracles)

World 2: black-box oracles for

forward + reverse direction of truly random permutation.

11

4 two random oracles

© 2004 DoCoMo Communications Laboratories USA, Inc. All Rights Reserved. 2004-12-16 Zulfikar Ramzan

Theorem: A successfully distinguishes world one from world two with advantage at most:

 $O(q^2 * 2^{-n}),$

where block size is 2n.

© 2004 DoCoMo Communications Laboratories USA, Inc. All Rights Reserved. 2004-12-16 Zulfikar Ramzan 12

Proof Ideas... 1 - General Scheme

- Identify "BAD" conditions (as function of keys)
- Show: If for specific pair of keys, BAD conditions don't happen, then
 - o Adversary's transcript view of interacting with World 1 (our construction) is distributed identically to...
 - o Adversary's transcript view of interacting with World 2 (truly random permutation)...

+ Show: Bad conditions happen with probability $O(q^2 * 2^{-n})$,

For technical reasons, we must compose the above paradigm with itself, considering two classes of bad conditions, and we need an additional hybrid in between.

Finally, we apply "probability argument" to above

© 2004 DoCoMo Communications Laboratories USA, Inc. All Rights Reserved. 2004-12-16

Proof Ideas... 2 - "Probability Argument"

- First, express adversary's (in)ability to distinguish between worlds in terms of statistical distance between transcripts (Apply Triangle Inequality several times...)
- Re-express probabilities to be conditioned on whether BAD events occur. (Apply Triangle inequality several more times...)
- Manipulate formulas to show that adversary's advantage is bounded by probability of BAD conditions occurring.

Proof Ideas... 3 - Actual BAD conditions

BAD conditions depend on possible transcript and probability of BAD occurring is taken over choice of key.

- Inputs to f (resp. g) during query to block cipher black box matches input to f (resp. g) during query to random oracle.
- Inputs to f (resp g) during different block cipher queries match.

If BAD doesn't happen:

1) external oracles don't see same inputs as internal oracles, so they are useless.

2) All outputs from cipher are uniformly distributed.

Intuition: BAD conditions unlikely since randomly chosen key directly or indirectly masks function inputs => collisions unlikely

© 2004 DoCoMo Communications Laboratories USA, Inc. All Rights Reserved.

Proof only requires key to be XOR'ed into left half of input and right half of output.

- o Immediate 2x reduction in key material.
- Q: Can we go further? i.e., use same key at beginning and end??
 - o XOR is symmetric;
 - o same key used at beginning and end is even more symmetric!
 - o The construction would behaves like an involution (not very random)!

But, using observation from [PRS02]: if we use group operations other than XOR (i.e., where a+a ≠ 0), then we can recycle keys.

Negative Results...

- Can recover entire 4n bit key with 2^{n+0.5} known plaintexts and 2^{n+0.5} work.
 - o Basic application of the "Sliding with a Twist" attack [BW00].
 - o The attack doesn't really exploit Feistel structure.
- Can attack 3 Feistel round version of our scheme
 - o Straightforward adaptation of attack on 3-round Luby-Rackoff ciphers

Open Area: There's a gap between lower bounds from best known attacks and upper bounds from security analysis.

Conclusions

- Resolved fundamental open questions Mansour work.
 - Demonstrated that underlying random permutation oracle could be instantiated with construction involving random function oracles.
- We also better model idealized DES-like ciphers, which was a motivating goal for the Luby-Rackoff work.
- Open problem: decrease the gap between best known attacks and security analysis.

