A Simple Public-Key Cryptosystem with a Double Trapdoor Decryption Mechanism and its Applications

Emmanuel Bresson (CELAR), Dario Catalano (ENS), David Pointcheval (ENS)

Asiacrypt '03 - Taipei, TW, November 30-December 4, 2003

Contents

- Introduction, related work
- A PKC with double trapdoor
 - Descrition of our scheme
 - Security of the new scheme
- An efficient trapdoor commitment
 - Properties of the scheme
- Variants
- Conclusion

-

Prior Work

- El Gamal's cryptosystem (1984)
 - Based on the Diffie-Hellman problem modulo a prime number p.
- Paillier's cryptosystem (1999)
 - ◆ Based on Composite Residuosity problem modulo N=pq.
- Cramer-Shoup scheme (2002)
 - Cryptosystem allowing two trapdoors

3

Asiacrypt '03 - Taipei, TW, November 30-December 4, 2003

Our Results

- A new variant of Cramer-Shoup '02 PKC
 - Additively homomorphic
 - Allows for a double trapdoor mechanism
 - Based on <u>Diffie-Hellman</u> modulo an RSA number
 - Can be turned IND-CCA2 secure easily
- A perfectly hiding commitment
 - Trapdoor based on factoring
 - Efficient online/offline trade-off
- A new Gap group (not based on EC)
- New Diffie-Hellman variant assumptions

Asiacrypt '03 - Taipei, TW, November 30-December 4, 2003

Preliminaries

- Work in G=QR(N^2), with N=pq=(2p'+1)(2q'+1)
 - $|G| = \lambda(N^2)/2 = pp'qq' = N \lambda(N)/2$
 - G is cyclic, we denote by g a generator
 - If $x \in G$ has order N, there exists k, s.t. x = (1+kN)
 - If $x \in Z_{N^2}$ has order N, then $x \in G$ since $x = (1 + tkN)^2$ with t the inverse of 2 mod N

Asiacrypt '03 - Taipei, TW, November 30-December 4, 2003

Asiacrypt 05 - Taiper, 100, November 00-December 4, 2000

Assumptions

- The Partial Discrete Logarithm Problem
 - Given $g^a \mod N^2$, find $a \mod N$
 - Can be solved efficiently given the factorization of N
 - Assumed to be hard otherwise
- The Diffie-Hellman Problem modulo a composite
 - Given g^x, g^y mod N², distinguish g^{xy} mod N² from a random in G
 - Can be solved efficiently given the factorization of N
 - Assumed to be hard otherwise

Asiacrypt '03 - Taipei, TW, November 30-December 4, 2003

6

A Gap-problem

- An algorithmic problem whose computational version is hard, while decisional version is easy
- The Diffie-Hellman problem modulo N²
 - DDH is easy when given the factorization
 - It does not help computing the value of $g^{xy} \mod N^2$
- Not based on elliptic curves

Asiacrypt '03 - Taipei, TW, November 30-December 4, 2003

Our cryptosystem

- Key generation
 - N=pq, safe-prime, $G=\langle g \rangle$ and $h=g^a \mod N^2$.
- Encryption of $m \in Z_N$
 - Pick $r \in \mathbb{Z}_{N^2}$, set $A = g^r \mod N^2$, $B = h^r (1 + mN) \mod N^2$
- Decryption using a
 - Compute B/A^a -1 mod N^2 , and divide by N (in Z)
- Decryption using the factorization
 - Compute $a \mod N$ and $r \mod N$, set $\gamma = ar \mod N$
 - Compute $D = (B/g^{\gamma})^{\lambda} = 1 + mN\lambda \mod N^2$
 - Denoting $\pi = \lambda^{-1} \mod N$, recover $m = (D-1)\pi / N$

Asiacrypt '03 - Taipei, TW, November 30-December 4, 2003

Ω

Remarks on the scheme

- Comparison of the two trapdoors:
 - The discrete logarithm a can be used only to decrypt ciphertexts generated using the corresponding public key (that is, $h=g^a$)
 - The master key (factorization) can be used to decrypt a ciphertext generated w.r.t. arbitrary public keys.
- Drawback:
 - When trying to decrypt an incorrectly generated ciphertext, the first method detects the fault, while the master key outputs a "invalid" plaintext

Asiacrypt '03 - Taipei, TW, November 30-December 4, 2003

One-wayness of the scheme

- The Lift Diffie-Hellman Problem:
 - Given $X=g^x \mod N^2$, $Y=g^y \mod N^2$, $Z=g^{xy} \mod N$, find $Z \mod N^2$
 - This problem is not easier than the Partial DL Problem
- Theorem:
 - The one-wayness of the cryptosystem is equivalent to the Lift Diffie-Hellman problem

10

Semantic Security

- Decisional Diffie-Hellman Problem modulo N²:
 - Given $X=g^x \mod N^2$, $Y=g^y \mod N^2$, $Z=g^z \mod N^2$, decide if $z=xy \mod \operatorname{ord}(G)$ or not
 - This problem is not harder than factoring
- Theorem:
 - If the DDH assumption holds in Z_{N^2} , the scheme is semantically secure in the standard model

Asiacrypt '03 - Taipei, TW, November 30-December 4, 2003

11

A new trapdoor commitment scheme

- Trapdoor commitments
 - Given a public key pk, and a randomness r, commit to a message m
 - Trapdoor property: given a commitment on m using random r, together with a trapdoor sk, find for any message m', a random string r' that leads to the same commitment
- On-line / off-line commitments
 - A preprocessing stage is done <u>before</u> knowing m
 - The length of the commitment should not increase

Asiacrypt '03 - Taipei, TW, November 30-December 4, 2003

The scheme

- Key generation
 - Same as for the cryptosystem
- Committing a message m∈Z_N
 - Pick $r \in \mathbb{Z}_{N \times N \times 2}$, and set $C = h^r (1 + mN) \mod N^2$
- Preprocessing
 - h^r can be precomputed; this is only one exponentiation
 - The on-line cost is only two multiplications

Asiacrypt '03 - Taipei, TW, November 30-December 4, 2003

Properties and security

- Trapdoor:
 - Let $h^{\lambda} = (1+kN) \mod N^2$, and $d=k^1 \mod N$
 - Given m, m' and r, the following value $r' = r + (m-m')d\lambda \mod N\lambda/2$

leads to the same value of the commitment

- Perfectly hiding, computationally binding
 - If r is uniformly distributed over $Z_{N\lambda/2}$, h^r is uniformly distributed over G, and so is the commitment
- Security of the scheme
 - One shows that if (m,r) and (m',r') commit identically, then r-r' should be a multiple of $\lambda(N)/2$

Asiacrypt '03 - Taipei, TW, November 30-December 4, 2003

14

Variants and applications

- On-line/off-line signatures based on factoring
 - Off-line: commit-and-sign a random message (m', r')
 - On-line: when given the message to sign m, use the trapdoor to find a random r for a collision (m,r)
- A "lite" cryptosystem:
 - Choose r in Z_N rather than in Z_N
 - Security is based on a so-called Small Diffie-Hellman problem
 - The decryption using factorization is simplified

15 Asiacrypt '03 - Taipei, TW, November 30-December 4, 2003

Conclusion

- Summary
 - two new schemes:cryptosystem, commitment
 - new problems: variants of Diffie-Hellman, "gap"problem
- Further research in progress
 - improvments
 - other applications