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Abstract. We construct the first four-round non-malleable commitment
scheme based solely on the black-box use of one-to-one one-way functions.
Prior to our work, all non-malleable commitment schemes based on black-
box use of polynomial-time cryptographic primitives require more than
16 rounds of interaction.
A key tool for our construction is a proof system that satisfies a new def-
inition of security that we call non-malleable zero-knowledge with respect
to commitments. In a nutshell, such a proof system can be safely run in
parallel with any (potentially interactive) commitment scheme. We pro-
vide an instantiation of this tool using the MPC-in-the-Head approach
in combination with BMR.

1 Introduction

Starting from the pioneering work of Dolev et al. [15], a long line of works
has focused on constructing new non-malleable commitment schemes with im-
proved characteristics, both in terms of efficiency and assumptions. Given the
strong connection of non-malleable commitments with secure multi-party com-
putation [44, 3], improvements in the area of non-malleable commitments have
a big impact on the multi-party computation (MPC) landscape. In particular,
recent developments on the round complexity of non-malleable commitments led
to the first round-optimal MPC protocols in the plain model [10, 26, 1, 7].

The round complexity of commitment schemes based on polynomial-time
hardness assumptions in the stand-alone setting is nowadays well understood.
Non-interactive commitments can be constructed assuming the existence of 1-
to-1 one-way functions (OWFs) [19] and 2-round commitments can be con-
structed assuming the existence of OWFs only. Moreover, non-interactive com-
mitments do not exist if one relies on the black-box use of OWFs only [34].
Recently many progress have been made also for the case of non-malleable
(NM) commitments5. Indeed, the long sequence of very exciting positive re-

5 In this paper we will consider only NM commitments w.r.t. commitments. For the
case of NM w.r.t. decommitments see [39, 41, 35, 4, 14, 21].
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sults [2, 37, 39, 38, 41, 40, 33, 42, 43, 31, 32, 20, 22, 24, 9, 8] led to the work
of Khurana [29] in which the authors showed how to obtain a 3-round (which is
optimal for the case of polynomial-time assumptions [36]) non-malleable commit-
ment scheme based on specific number-theoretic assumptions, and to [23] where
the authors proposed a round optimal scheme based on one-to-one OWFs.

Black-box (BB) constructions. While these recent results show round-optimal
constructions, they make non-black-box use of cryptography. Constant round
BB schemes are known [43, 31, 20, 22], but their round complexity is far to be
optimal. More specifically, Goyal et al. [22] give a black-box NM commitment
protocol only based on the existence of one-way functions, but this construction
requires more than 16 rounds. In another work, Goyal et al. [24] mention that
combining their protocol with ideas from [22] would could to a 6-round protocol
but no explicit construction was given. Therefore the following question remained
open.

Does it exist a non-malleable commitment scheme that makes black-
box use of standard polynomial-time cryptographic primitives where the
commitment phase consists of less than 16 rounds?

In this work, we provide a positive answer, by proposing a 4-round non-
malleable commitment scheme that only makes black-box use of one-to-one one-
way functions. Whether it is possible to achieve the same result in three rounds
remains a fascinating open question.

1.1 Our Contributions

The state-of-the-art in constructing non-malleable commitments based on min-
imal assumptions shows a significant gap in the round complexity of black-box
and non-black-box protocols. In this work, we almost close this gap by describing
the first 4-round non-malleable commitment that makes black-box use of the un-
derlying primitives and is based on the almost minimal assumption of injective
one-way functions.6 In particular, we prove the following theorem.

Theorem (Informal). Assuming one-to-one OWFs, there exists a 4-round
non-malleable commitment scheme that makes black-box use of the OWFs.

Our 4-round non-malleable commitment crucially relies on a novel 3-round
public-coin proof system that is zero-knowledge against honest verifiers (HVZK),
and such that the statement to be proven can be specified in the last round
(delayed-input property). In particular, our protocol enjoys adaptive-soundness
and adaptive-HVZK [27, 12, 11]. These properties guarantee that HVZK and
soundness hold even against an adversary that decides the statement to be

6 Our BB 4-round non-malleable commitment scheme satisfies the notion of stan-
dalone (or one-one) non-malleability. Obtaining a concurrent (or many-many) BB
non-malleable commitment scheme in just 4 rounds, or less, still remains an open
question.
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proven (and the witness for the HVZK case) adaptively on the first two rounds of
the protocol. A protocol that satisfies such properties and that also makes black-
box use of the underlying cryptographic primitives is proposed in [27]. What
makes our scheme different is that it also enjoys a special form of non-malleability
that we call non-malleable HVZK with respect to commitment (NMZKC).

In a nutshell, this notion allows us to safely compose the proof system in
parallel with any type of commitment scheme. In more detail, we consider the
following setting. There is a man-in-the-middle (MiM) adversary that interacts
(acting as the verifier) with an honest prover of a proof system ΠAI (where
AI stands for adaptive-input). In the right session instead, the MiM acts as
the sender for a (potentially interactive) commitment scheme Πcom, with an
honest receiver. The notion of NMZKC guarantees that the distribution of the
messages committed by the MiM in the right session is independent of whether
the messages of ΠAI are generated honestly (i.e., using the witness for some NP
statement x), or are computed using the simulator.

We believe that this tool and notion can be of independent interest. Indeed,
NMZKC proof systems might be used in place of rewind secure schemes. A
rewind secure proof system guarantees that the zero-knowledge property holds
even if an adversarial verifier is allowed to rewind the prover a bounded number
of times (this can be seen as a mild form of resettability). The reason why the
notion of rewind security has gained a lot of attention recently is exactly that it
simplifies the composition of proof systems with other primitives. For example,
it simplifies the composition of a proof system with extractable commitments.
The high-level idea is that in the security proof it is possible to extract from the
commitment without harming the zero-knowledge property of the proof system.
Hence, it is possible to check whether the distribution of the committed messages
changes depending on whether the messages of the proof system are simulated
or are generated honestly. This proof technique has been exploited in many
recent works [7, 23, 13]. And, more interestingly, it was used also to construct
the first one-one non-malleable commitment [24]7. As we will discuss in the
technical overview, we will replace the rewind secure proof system proposed
in [24] (that inherently makes non-black-box use of the underlying primitives)
with our NMZKC proof system.

We believe that NMZKC in some scenarios can replace the use of rewind
secure primitives, and this might be particularly helpful given that our protocol
is completely black-box in the use of the underlying cryptographic primitives.
To the best of our knowledge, no black-box rewind secure three-round HVZK
protocol is currently available. In summary, we prove the following theorem.

Theorem (Informal). Assuming one-to-one OWFs, then there exists a 3-
round delayed-input public-coin adaptive-input proof system that also is NMZKC
and it makes black-box use of the OWFs.

7 In Section 8 we propose a comparison between the approach based on rewind-secure
primitives of [24] and the one we propose in this work. In particular, we explain
why and how we can rely on a simpler underlying weak-non-malleable commitment
scheme compared to the one used in [24].
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2 Overview of Techniques

We first describe how to construct the main tool required for our construction,
which is a commit-and-prove proof system that satisfies the definition of non-
malleable HVZK with respect to commitment. Then we show how to use this
tool to construct our four-round non-malleable commitment protocol.

2.1 Our NMZKC Protocol and New Commitment Schemes

We start this section by recalling how to turn an MPC protocol into a proof sys-
tem for any NP-relation Rel following the MPC-in-the-head approach of [28].
Let ΠMPC be an n-party MPC protocol that is secure against up to t semi-
honest corruptions. First, the prover secret-shares the witness w using an addi-
tive secret-sharing, while f will be a verification function that outputs 1 iff w is
a valid witness, i.e., f(x,w1, . . . , wn) = 1⇐⇒ (x,w1 ⊕ · · · ⊕ wn) ∈ Rel. Then, it
simulates all n parties running the protocol locally and sends the verifier com-
mitments to each parties’ views. Later, the verifier randomly chooses t of the
parties’ commitments to be opened, and checks that the committed messages
are consistent with an honest execution of the MPC protocol according to the
opened views. Since only t parties are opened, the verifier learns nothing about
the secret input w, while the random choice of the opened parties ensures that
enough views have been computed honestly, ensuring soundness.8

Unfortunately, this scheme is inherently non-delayed input since the prover
needs both statement and witness to generate the views that must be committed
in the first round. To overcome this limitation, we consider a specific class of
two-phase MPC protocols. In particular, we require protocols with an input-
independent offline phase, where the parties only produce correlated randomness
that will be used to speed up the second phase. In the second phase (the online
phase) the input is required and used to compute the output of the function.
We denote such protocols by ΠMPC := (Πoff

MPC, Π
on
MPC), where the two algorithms

Πoff
MPC and Πon

MPC denote respectively the offline and the online phase of ΠMPC.
Equipped with such an MPC protocol, we can modify the approach of [28] as

follows. The prover only simulates Πoff
MPC, and commits to the individual views.

Then the verifier, as described before, selects a random subset of parties to
be opened. After receiving the challenge, the prover opens the requested com-
mitments and additionally runs Πon

MPC to obtain the entire views of the parties
requested by the verifier. At the end of this process, the verifier holds complete
views for all the parties it requested and can check their consistency as previously
described.

Intuitively, (non-adaptive input) HVZK comes again from the hiding of the
commitments and the (semi-honest) security of the MPC protocol. However, it
is clear that this approach fails completely against malicious provers. Indeed,
they might easily generate online messages in a malicious way for all the parties

8 This sketch protocol gives a noticeable probability of cheating to the prover, typically
the soundness of the protocol can be easily amplified via parallel repetition.
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the verifier did not ask to open. Note that in this case, ΠMPC is secure against t
corrupted parties, but the adversary might generate ill-formed online messages
for the remaining n− t. To work around this problem, we require ΠMPC to enjoy
a stronger notion of security that we call robustness. In a nutshell, this notion
requires that, when the offline phase of ΠMPC has been honestly computed, then
it is always possible to check if a message received during the online phase has
been honestly generated or not. In this way, robustness allows to prove soundness
also w.r.t. a malicious prover that specifies the inputs in the last round (i.e.
adaptive-input soundness).

The above approach guarantees that the protocol enjoys delayed-input com-
pleteness and adaptive-input soundness. However, it is not clear how to argue
that the protocol is adaptive-input HVZK given that ΠMPC is only semi-honest
secure. The reason is that we would like to rely on the security of the underlying
MPC protocol thus committing to simulated views in the first round. However,
to simulate these views the MPC simulator needs to know the input of the
corrupted parties. We recall that such input consists of a share of the witness
(which is easy to simulate) and the theorem to be proven. This is problem-
atic since the adaptive-input HVZK simulator needs to generate the first round
without knowing the theorem, hence, we cannot run the MPC simulator of the
underlying protocol.

To circumvent this issue, we make use of a special type of commitment scheme,
that we call ambiguous commitment9. Compared to a standard commitment
scheme, they can be opened in two modes: binding and equivocal. If the com-
mitment is computed using the binding mode then the commitment is binding,
otherwise, it can be equivocated to any message the sender wants.

Using ambiguous commitments, we modify our protocol as follows. The prover
generates the views of ΠMPC as before, but it creates a 2-out-of-2 secret sharing
of each of these views and commits to them using the ambiguous commitment
scheme in biding mode (i.e., two commitments per view are generated). Then, the
verifier challenges the prover asking to open a random subset of views as before.
In addition, for each of the opened views, the verifier asks to see the randomness
used to generate one of the two commitments and rejects if it notices that a
commitment has not been computed using the binding procedure. The rest of
the protocol proceeds as before.

The adaptive-input HVZK simulator, which we recall needs to generate the
first round without knowing the theorem, works as follows. On input the chal-
lenge it can compute one commitment in equivocal mode (the one for which the
simulator will not need to disclose its randomness), and one in binding mode. The
binding commitments simply contain a random string. The set of commitments
computed in the described way constitutes the first round.

Upon receiving the theorem, the adaptive-input HVZK simulator runs the
MPC simulator of ΠMPC. At this point, the simulator computes the xor of the
i-th view with the random string committed in the i-th binding commitment
and opens the equivocal commitment to the obtained value.

9 Such commitments are sometimes called equivocal or trapdoor commitments
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The soundness still holds because, intuitively, the verifier performs a cut-and-
choose to make sure that the commitments are all computed in binding mode.
Clearly, an adversary has still a non-negligible probability of cheating, but by
repeating the protocol we obtain a sound protocol.

Non-Malleable HVZK with respect to Commitment. So far we have only argued
that our protocol, that we denote with ΠAI, is adaptive HVZK and adaptive
sound. We also want to argue that our protocol is non-malleable HVZK with
respect to commitment. We recall that in this security notion, there is a MiM
adversary that on the left session acts as the adversary for the adaptive HVZK
security game, and in the right session it acts as the sender for a commitment
scheme. In more detail, the adversary picks a challenge and sends it to the left
session (that acts as a challenger for the experiment). The challenger tosses a
coin b, and if b = 0 then it computes the first round of ΠAI using the honest
prover procedure, otherwise it computes it using the adaptive HVZK simulator.
The adversary now picks a statement x and a witness w and sends those to
the challenger. If b = 0, the challenger runs the honest prover of ΠAI on input
(x,w) to compute a third-round message, if b = 1 instead the challenger runs
the HVZK on input x (and the previous state of the simulator), thus obtaining
the third message. The challenger then sends this third message to the MiM in
the left session and stops.

While the MiM is acting as described in the left session, it concurrently sends
a commitment in the right session. We say that ΠAI is non-malleable HVZK
with respect to commitment, if the distribution of the messages committed on
the right session by the MiM does not depend on b.

We prove that ΠAI is non-malleable HVZK with respect to any extractable
commitment Πcom. The idea is to use an adversary to the NMZKC property
to construct an adversary for the adaptive-HVZK property. That is, we let the
MiM to interact with the adaptive HVZK challenger while at the same time we
run the extractor of the commitment scheme to check how the distribution of
the committed messages changes. Unfortunately, this simple idea has a major
flaw. The rewinds made by the extractor of the commitment might also rewind
the challenger of the HVZK security game. Indeed in each rewind made by the
extractor, the MiM could send a new theorem-witness pair, and ask for a new
third round of ΠAI.

To prove that ΠAI can cope with such an adversarial behavior, we exploit how
our HVZK simulator works. We note that once the challenge is known, then
the simulator knows what commitments will be opened to honestly and what
commitments will be equivocated. If an adversary during the rewinds samples
new theorem-witness, we simply need to run multiple times the simulator of the
underlying MPC protocol and equivocate the commitments accordingly. Hence,
we can reduce the adversary that wins in the non-malleable HVZK with respect
to commitment experiment to an adversary that either breaks the security of
our commitment or the security of the underlying MPC protocol.
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Σ-Commitment. In this work, we also consider a class of three-round public
commitment schemes that we call Σ-commitment. A Σ-commitment is hiding
against honest receiver (HRH), and in addition, it is extractable. To realize a
Σ-commitment Σ = (SΣ ,RΣ), we use the approach of Goyal et al. [22], which
makes use of an information-theoretic verifiable secret sharing protocol Πvss. The
protocol works as follows. To commit to a message w, the sender SΣ runs “in
its head” the sharing phase of Πvss, with input a message m. Then the sender
commits to the views (obtained by the execution of sharing phase of Πvss) of
each player separately using a statistical binding commitment scheme Πcom. The
receiver, upon receiving these commitments, samples a random set I ⊂ [n], with
|I| ≤ t, and sends it to the sender. Finally, the sender replies by decommitting
the views corresponding to the challenge I.

The property of HRH comes from the fact that, if the challenge I is known in
advance, then we can commit to a random message and simulate the openings of
the commitment. We can prove that a simulated transcript is indistinguishable
from the transcript generated by an honest committed with input m via a simple
reduction to the security of the statistically binding commitments.

Putting together Σ and ΠAI to realize a commit-and-prove protocol Π. We use
Σ and ΠAI to realize a black-box commit-and-prove protocol, which will be the
main building block we use to construct our non-malleable commitment scheme.
Our commit-and-prove protocol Π works as follows. The prover commits λ-times
to the witness w running Σ and proving, using ΠAI, that each committed message
w satisfies some relation Rel10. The statement to be proven can be postponed to
the last round since ΠAI is delayed-input complete.

To make sure that the same message is committed in all these executions, we
use a technique proposed by Khurana et al. in [30]. Namely, in each execution
of Σ, instead of committing to w, we commit to w||r, for some random value r.
Then, we use the protocol ΠAI to prove that a = w + rα, where α is chosen as
part of the challenge, and a is sent in the third round from the prover.

As argued in [30], since r is global across all the executions, if w 6= w′ then
w + rα 6= w′ + rα with overwhelming probability due to the Schwartz-Zippel
lemma. Therefore, if the committed messages are different across the (multiple)
executions, then the statement proven by ΠAI must be false, and the soundness
of ΠAI guarantees that the verifier rejects. The adaptive-input SHVZK follows
from the adaptive-input SHVZK of ΠAI and the HRH property of Σ.

Concrete instantiation for robust MPC. As we mentioned, one of the main tool
we rely on is a robust MPC protocol. We recall that a robust MPC protocol
allows the prover to initially commit only to the offline views, which are input-
independent, and only in the last round to “complete the proof” with the online

10 ΠAI works for any type of secret sharing scheme, and in our case ΠAI is parametrized
by the reconstruction algorithm of the verifiable secret sharing Πvss (i.e., the prover
of ΠAI expects to receive n views generated using the sharing algorithm of Πvss). We
note that given that Πvss is information-theoretic, then ΠAI still makes black-box
use of the underlying cryptographic primitives.
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views. The robustness property guarantees that the commitments generated in
the first round univocally specify the actual MPC evaluation so that the online
steps only consist of an input-distribution phase and deterministic computations.
In this way, even if the prover already knows which views are going to be opened,
it cannot force the evaluation to output 1 unless Rel(x,w) = 1, except with
negligible probability.

Although robustness seems a very strong requirement, we show that a minor
modification of the standard BMR protocols leads to an efficient robust MPC
scheme. We recall that BMR [3] is a two-phase protocol consisting of an input-
independent phase, also called garbling , and an online evaluation. In the garbling
step, all parties P1, . . . , Pn involved in the protocol generate a sharing of the
garbled circuit according to some fixed secret sharing scheme 〈·〉 with t-privacy.
As in any other garbled-circuit based scheme, to garble a Boolean circuit each
wire is assigned two random keys kw,0,kw,1 encoding, respectively, the 0-value
and 1-value. The goal of the process is to generate four ciphertexts for each
gate according to the gate function, such that each output-wire key is encrypted
according to all combinations of input-wire keys which evaluate that output wire
key. During the online evaluation, these encrypted truth tables, are revealed
to all parties so to allow local evaluation of the circuit. Intuitively, it is clear
that upon collecting all the input keys, parties can start evaluating the circuit.
At this point, this evaluation is completely deterministic and does not require
any interaction. For this reason, assuming that the garbling phase is correctly
generated and the input-keys corresponding to the input-wires of the circuit are
correct, namely, they correspond to the keys generated in the offline phase, the
online views generated by each party correspond to a correct evaluation of the
garbled circuit and cannot lead to an incorrect result. In the full version, we
recall the basics of BMR-style protocols and explain the robustness property in
more detail.

2.2 4-Round Non-Malleable Commitment Πnmc

We are finally ready to describe how our non-malleable commitment scheme
works. Our starting point is the 3-round public-coin commitment scheme of
Goyal et al. [24]. This commitment scheme, which we denote with Πwnmc, is non-
malleable against adversaries that never commit to ⊥ (i.e., the adversary always
generates well-formed commitments). To lift the security of such a commitment
and build a fully non-malleable commitment scheme, [24] run, in parallel to
Πwnmc, a zero-knowledge proof.

As noted in [24, 9], a standard ZK proof does not suffice since the commitment
and the zero-knowledge proof might not be composed in parallel. As such, and as
we have already anticipated, in [24] the authors rely on a ZK proof that is rewind-
secure. We also note that the statement to be proven by the ZK is fully-formed
only in the last round (since Πwnmc consists of 3 rounds.) This inherently requires
the ZK protocol to be delayed-input. To the best of our knowledge, the only
protocols that satisfy all these properties are that proposed in [23, 24], which,
unfortunately, make non-black-box use of the underlying primitives. In [9], the
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authors propose a ZK proof that can be composed in parallel with the weak-non-
malleable commitment of Goyal et al., but this approach requires non-black-box
access to the commitment scheme.

The idea is to use our commit-and-prove protocol Π, and argue that it can
be safely composed in parallel with Πwnmc due to the property of NMZKC.
Unfortunately, Π is only honest-verifier zero-knowledge, and here we need a
zero-knowledge proof that is secure against any type of adversaries.

To lift the security of our protocol, we rely on the FLS-trick [16] (with some
modifications). More concretely, we construct a 4-round zero-knowledge protocol
as follows. The verifier generates two commitments of two random strings, ŝ0
and ŝ1 in the first round and sends two openings in the third round. In paral-
lel, the verifier provides a witness indistinguishable (WI) proof, ΠcomWI, which
guarantees that at least one of the two commitments is binding. In [30], the au-
thors show how to obtain this protocol in a black-box-way. The prover instead
uses a 3-round public-coin WI to prove that either the commitment Πwnmc is
well-formed or that it committed to ŝb, for some b ∈ {0, 1}. Since the receiver
discloses ŝ0, ŝ1 only in the last round, the sender has no way to commit (already
in the second round), to either of these two values. As such, the (potentially
corrupted) sender, can complete an accepting WI proof only by proving that
the non-malleable commitment is well-formed. For more detail, we refer to the
technical part of the paper.

3 Preliminaries

Notation. Here we recall some preliminaries that will be useful in the rest of
the paper. Let λ denote the security parameter and negl(λ) any function which
tends to zero faster than λ−c, for any constant c. We write [n] to denote the set
{1, . . . , n}. We use the abbreviation ppt to denote probabilistic polynomial-time.

Let S and R two interactive algorithms, we denote by 〈S(x),R(y)〉(z) the
distribution of R’s output after an interaction with S on common input z and
private inputs x and y. A transcript of 〈S(x),R(y)〉(z) consists of all the mes-
sages exchanged during an interaction between R and S.

3.1 Commitment Schemes

A commitment scheme Πcom = (S,R) is a two-phase protocol between two ppt
interactive algorithms, a sender S and a receiver R. In the first phase, called
commit phase, S on input a message m interacts with R. Let com be the tran-
script of this interaction. In the second phase, called decommitment phase, the
sender S reveals m′ and R accepts the value committed to be m′ if and only
if S proves that m = m′. Typically, a commitment scheme satisfies two main
properties: informally, the binding property ensures that S cannot open the com-
mitment in two different ways; the hiding property guarantees that the commit
phase does not reveal any information about the message m. We refer the reader
to [18] for more details.
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Ambiguous and extractable commitments. We formally introduce the notion of
ambiguous commitments. Compared to regular commitment schemes, with stan-
dard commitment and opening algorithms (Com,Dec), ambiguous commitments
have two additional algorithms Comeq and Eq, which allow the committer to
equivocate, i.e., Comeq produces an “equivocable commitment” that Eq can open
to any message m ∈ {0, 1}`. This type of commitment schemes are sometimes
called trapdoor or equivocal commitments. We provide a formal definition and
construction in the full version. In this work, we also use the notion of extractable
commitments (we refer to the full version for the formal definition). Informally,
a commitment scheme is said to be extractable if there exists an efficient ex-
tractor that, having black-box access to a malicious committer that successfully
performs the commitment phase, is able to extract the committed message.

3.2 Non-Malleable Commitments

Here we follow the same notation of Goyal et al. [24]. Let Π = (S,R) be a
statistically binding commitment scheme and let λ be the security parameter.
Consider a man-in-the-middle (MiM) adversary A that is participating in two
interactions called the left and the right interaction. In the left interaction A
is the receiver and interacts with an honest committer S, whereas in the right
interaction A is the committer and interacts with an honest receiver R.

We compare between a MiM execution and a simulated execution. In the
MiM execution the adversary A, with auxiliary information z, is simultaneously
participating in a left and right session. In the left sessions, the MiM adversary
A interacts with S receiving commitments to values mi, i ∈ [poly(λ)], using
identities tgi of its choice. In the right session, A interacts with R attempting
to commit to related values m̃i again using identities of its choice t̃gi. If any of
the right commitments is invalid, or undefined, its value is set to ⊥. For any i
such that tgi = tgj , for some j, set m̃i = ⊥ (i.e., any commitment where the
adversary uses the same identity of the honest sender is considered invalid). Let

mimA,mΠ (z) denote a random variable that describes the values m̃i and the view
of A, in the above experiment.

In the simulated execution, an efficient simulator Sim directly interacts withR.
Let simSim

Π (1λ, z) denote the random variable describing the values m̃i committed
by A, and the output view of Sim; whenever the view contains in the right session
the same identity of any of the identities of the left session, then m is set to ⊥.

In all the paper we denote by δ̃ a value associated with the right session (where
the adversary A plays with a receiver) where δ is the corresponding value in the
left session. For example, the sender commits to v in the left session while A
commits to ṽ in the right session.

Definition 1 (Non-Malleable (NM) commitment scheme [24]). A com-
mitment scheme is NM with respect to commitment if, for every ppt MiM
adversary A, there exists a ppt simulator Sim such that for all m ∈ {0, 1}poly(λ)

the following ensembles are computationally indistinguishable:

{mimA,mΠ (z)}z∈{0,1}? ≈ {simS
Π(1λ, z)}z∈{0,1}? .
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In this work, we also consider a weaker class of MiM adversaries called syn-
chronizing adversaries. A synchronizing adversary is one that sends its message
for every round before obtaining the honest party’s message for the next round.

3.3 Σ-Commitments

We introduce the notion of Σ-commitments, which is reminiscent of the notion
of Σ-protocols.

Definition 2. A Σ-commitment ΠΣ = ((SΣ ,RΣ),DecΣ) is a commitment
scheme where: 1) The commitment phase consists of three rounds and it is
public-coin, 2) The decommitment phase is non-interactive, and 3) It satisfies
the following properties.

– Correctness. Let m be the message the sender SΣ uses during the com-
mitment phase. If both SΣ and RΣ follow the protocol, then the receiver
always accepts the commitment as valid. Moreover, if the sender follows the
protocol during the decommitment procedure DecΣ then the receiver accepts
m as the committed message.

– Honest Receiver Hiding (HRH). There exists a polynomial-time sim-
ulator Sim such that for any message m ∈ {0, 1}` and on input a random
c (sampled from the space of all the possible RΣ’s messages), outputs an
accepting commitment transcript of the form (a, c, z) that is computationally
indistinguishable from the transcript generated by the honest sender and re-
ceiver when the receiver uses m as its input (note that Sim needs to generate
the transcript without knowing m).

– t-Special Binding. From any set of t accepting transcripts {a, ci, zi}i∈[t],
with ci 6= cj for all i, j ∈ [t], for the commitment phase it is possible to extract
the message m in polynomial-time, where m is the only possible message that
the (potentially corrupted) sender can decommit to.

3.4 Adaptive-Input SHVZK

Definition 3 (Adaptive-input SHVZK). A delayed-input 3-round protocol
Π = (P,V) for relation Rel satisfies adaptive-input special honest-verifier zero-
knowledge (AI-SHVZK) if there exists a ppt simulator Sim = (Sim0,Sim1) such
that for all ppt adversaries A and for all challenges π2 there is a negligible
function negl for which

∣∣Pr[b′ = b]− 1
2

∣∣ ≤ negl(λ) in the following game.

ExpAISHVZKA,Π(1λ, b, π2) :

1. The challenger sends π1 to A, where:
– If b = 0, (π1, aux)← P(1λ, 1m), with m = |x|
– Else, if b = 1, (π1, aux)← Sim0(1λ, 1m, π2)

2. A sends (x,w) to the challenger.
– If (x,w) ∈ Rel, the challenger sends π3 to A, where:

- If b = 0, π3 ← P(x,w, aux, aux, π2)
- Else, if b = 1, π3 ← Sim1(x, aux)

– Else, the challenger sends π3 = ⊥ to A
3. The adversary A outputs a bit b′.
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3.5 One-of-Two Binding Commitments

We propose a formal definition of the one-of-two binding commitments proposed
by Khurana et al. in [30]. A one-of-two binding commitment is a three-round
interactive protocol ΠcomWI executed between a prover PcomWI and a verifier
VcomWI. Informally, in this, the prover generates two commitments in the first
round, and sends their opening third round. In parallel, the prover performs a
WI proof that guarantees that at least one of the two commitments is binding.
Moreover, the prover can equivocate the non-binding commitment to any value
he likes. In [30] the authors propose a one-of-two binding commitment scheme
that makes black-box use of one-to-one OWFs. We propose a formal definition
of the properties held by a one-of-two binding commitment scheme. We assume
the prover and verifier algorithms are stateful in the following definitions.

Definition 4 (One-of-Two Binding Commitments). A commitment is
one-of-two binding if the following properties hold.
Correctness:

– The prover PcomWI on input 1λ, the message mb ∈ {0, 1}λ, and a bit b returns
πcomWI
1

– The verifier on input 1λ and πcomWI
1 samples a random πcomWI

2
$←− {0, 1}λ

and returns it.
– The prover on input πcomWI

2 and a message m1−b ∈ {0, 1}λ computes πcomWI
3

and returns (πcomWI
3 ,m0,m1)

– The verifier on input (πcomWI
1 , πcomWI

2 , πcomWI
3 ,m0,m1) returns d ∈ {0, 1},

where d = 1 denotes that the verifier accepts, and 0 that he rejects.

Binding: For any ppt adversary A, we have that the following holds. Let
τ = (πcomWI

1 , πcomWI
2 ) be the first two rounds generated during the execution of

ΠcomWI by an honest receiver VcomWI and the stateful adversarial prover A(1λ).
We have that

Pr[(πcomWI
3 ,m0,m1, π

comWI
3 ,m0,m1)← A(1λ)| VcomWI(τ, π

comWI
3 ,m0,m1) = 1 ∧

VcomWI(τ, π
comWI
3 ,m0,m1) = 1 ∧ m0 6= m0 ∧ m1 6= m1] ≤ negl(λ)

Equivocability: For any adversary A and any m0,m1 ∈ {0, 1}λ we have that∣∣Pr[b′ = b]− 1
2

∣∣ ≤ negl(λ) in the following game.
ExpEqA,Π(1λ, b,m0,m1) :

1. The challenger sends πcomWI
1 ← PcomWI(1

λ,mb, b) to A.
2. A sends πcomWI

2 to the challenger
3. The challenger sends πcomWI

3 ← PcomWI(π
comWI
2 ,m1−b) to A.

4. The adversary A outputs a bit b′.

3.6 MPC Definitions

In this work, we consider MPC protocols Π = Πoff,on = (P1, . . . , Pn), among n
parties P1, . . . , Pn, that are composed of two sub-protocols Πoff = (P1, . . . , Pn)
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and Πon = (P1, . . . , Pn), where the execution Πoff does not require parties’
private inputs, namely Πoff is input independent. If each party Pi, for i ∈ [n],
runs Π honestly, then the execution of Π is called an honest execution. A view
viewi of a party Pi is composed by its private input wi, randomness ri, and
transcript τi, where τi is given by the set of messages received and sent by party
Pi during the execution of the MPC protocol Π. We denote the view of the offline
and of the online phase for a party Pi with viewoff

i and viewon
i respectively.

In the rest of the paper, we consider MPC protocols where all parties share a
public input x, and each party Pi additionally holds a local private input wi and
random tape ri. We consider protocols Πoff,on which securely realize an n-party
functionality f . The output y = f(x,w1, . . . , wn) can be computed from any
viewi = (viewoff

i , viewon
i ), i.e., y = Πoff,on

f (viewi) = outi, for each i ∈ [n] .

We assume familiarity with the standard definition of MPC (referring the
reader to the full version for a formal discussion), and here we formally introduce
a new special property for an MPC protocol Π = Πoff,on = (P1, . . . , Pn).

Looking ahead, in our delayed-input protocol the prover, while committed to
viewoff

1 , . . . , viewoff
n , is allowed to generate the online views viewon

1 , . . . , viewon
n only

when it received (x,w), and after it is given any eventual random inputs and the
set of k parties/views it will need to open. This means that a malicious prover P
might arbitrarily create inconsistent views viewon

i1 , . . . , viewon
in−k

that will not be
opened, easily making all outputs to be incorrect without being caught. For this
reason we need an underlying MPC protocol with strong security requirements
and introduce the following definition of robustness.

Despite the name, this notion is different from the definition of robustness that
was given in [28] to generalize the definition of correctness in case of malicious
adversaries.

Roughly, an MPC protocol Π = Πoff,on is said to be robust if, given two
subsets A,H ⊂ [n], with |H| = n − |A|, and a correct execution of Πoff, the
output outj of some Pj , with j ∈ A, obtained by running the protocol on input
(x, (wi)i∈A, (wi)i∈H) and using some arbitrary randomness r′j , is not ⊥ then

outj = y, where y = Πoff,on
f (viewi), ∀i ∈ H. Note that our definition specifically

assumes an MPC protocol Πon,off in the pre-processing model with a correctly
executed Πoff and requires that every unbounded adversary A cannot make the
parties in A output a result inconsistent with the views of honest parties. The
formal definition of robustness follows.

Definition 5 (Robustness). Let Πoff,on = (P1, . . . , Pn) be as above. Let A ⊂
[n] and H = [n]−A. Let us denote by view the view {viewi = (viewoff

i , viewon
i )}i∈H , {ṽiewi =

(ṽiew
off

i , ṽiew
on

i )}i∈A, such that:

– ṽiew
off

i and ṽiew
on

i are the views generated by running the code of Pi for
Πoff and Πon on input (x,wi), respectively, with some arbitrary randomness
r′i ∈ {0, 1}λ, for each i ∈ A;

– viewoff
i is the view generated running the code of party Pi for Πoff with some

arbitrary randomness r′i ∈ {0, 1}λ, for each i ∈ H;
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– viewon
i ∈ {0, 1}∗, for each i ∈ H.

We say that Πoff,on realizes a deterministic n-party functionality f(x,w1, . . . , wn)
with robustness if for any A and H, such that H = {i1, . . . , in−t} and A =
{j1, . . . , jt}, the following holds: if, for each jk ∈ A, party Pjk , on input ran-
domness rjk and (x,wjk), outputs outjk = F 6=⊥ with respect to the view view,
then F = fA(x,wi1 , . . . , win−t

), for some wi1 , . . . , win−t
with {i1, . . . , in−t} = H,

where fA is the function evaluated on n inputs where the inputs in positions
A = {j1, . . . , jt} are wj1 , . . . , wjt .

Intuitively, the above definition says that as long as Πoff is correct (concretely
this can be achieved instantiating Πoff with a malicious secure protocol) and
the online phase Πon is a deterministic function of the offline phase, then Π
is robust. Notice the definition of robustness is independent of the number of
corruptions supported by Π and it can be achieved both with an honest and
dishonest majority. In the full-version we show a concrete instantiation of a
robust MPC protocol.

3.7 Verifiable Secret Sharing (VSS)

A verifiable secret sharing (VSS) scheme [6] is a two-phase protocol carried out
among n+1 parties. In the first step, a special party, also referred to as the dealer ,
shares a secret among all the other n parties, referred to as share-holders, at most
t of whom may be corrupt; in the second step, parties reconstruct the secret.
While in standard secret-sharing schemes the dealer is assumed to be honest, in
VSS schemes also the dealer can be corrupt. Loosely speaking, if the dealer is
honest, then no information about the dealer’s secret is revealed to the t corrupt
parties by the end of the sharing phase; moreover, by the end of the sharing
phase even a dishonest dealer is committed to some value that will be recovered
by the honest parties in the reconstruction phase. Furthermore, if the dealer is
honest then this committed value must be identical to the dealer’s initial input.

Definition 6 (Verifiable Secret Sharing [6, 5]). An (n + 1, t)-perfectly
secure Verifiable Secret Sharing (VSS) scheme Πσ consists of a pair of protocols
(Share,Recon) that implement respectively the sharing and reconstruction phases
as follows.

- Sharing Phase (Share). Party Pn+1 (the dealer) runs on input a secret s
and randomness rn+1, while any other party Pi, i ∈ [n], runs on input a
randomness ri. During this phase parties can send (both private and broad-
cast) messages in multiple rounds. We will indicate with viewi the view
that Pi obtains at the end of sharing phase, and with (view1, . . . , viewn) =
Share(s, r1, . . . , rn, rn+1) the process described above.

- Reconstruction Phase (Recon). Each shareholder sends its view viewi, i ∈
[n], of the sharing phase to each other party, and on input the views of all
parties (that might include corrupt or empty views) each party outputs a
reconstruction of the secret s. All computations performed by honest parties
are efficient.



Four-Round Black-Box Non-Malleable Schemes from One-Way Permutations 15

The following security properties hold.

Commitment. If the dealer is dishonest then one of the following two cases
happen: 1) during the sharing phase honest parties disqualify the dealer,
therefore they output a special value ⊥ and will refuse to run the recon-
struction phase; 2) during the sharing phase honest parties do not disqualify
the dealer, therefore such a phase determines a unique value s∗, that be-
longs to the set of possible legal values that does not include ⊥, which will be
reconstructed by the honest parties during the reconstruction phase.
Secrecy. The computationally unbounded adversary can corrupt up to t par-
ties that can deviate from the above procedures. If the dealer is honest, then
the adversary’s view during the sharing phase reveals no information about
s. More formally, the adversary’s view is identically distributed under all
different values of s.
Perfect Correctness. If the dealer is honest throughout the protocols then
each honest party will output the shared secret s at the end of protocol Recon
with probability 1.

Assuming a broadcast channel, perfectly-secure (n+1, bn/4c)-VSS scheme are
implemented in [17].

4 Non-Malleable HVZK with respect to Commitment

In this section, we introduce the new notion of non-malleable HVZK with respect
to commitment (NMZKC). Let Π = (P,V) be a proof system, and Πcom be a
(potentially interactive) commitment scheme. We consider a scenario where a
man-in-the-middle adversary A interacts in the left session with the prover of Π
(hence, A acts as the verifier for Π), and in the right session A acts as the sender
for Πcom against an honest receiver. the formal definition of NMZKC follows, and
we refer to the introductory section of the paper for an informal discussion about
this definition. Let (Sim0,Sim1) be the adaptive-input HVZK simulator for Π,
we define the experiment ExpZKA,Π,Πcom

(1λ, b, c).

ExpZKA,Π,Πcom
(1λ, b, c) : In the right session, interact with A as the receiver of

Πcom. In the left session, act as follows.

1. Set π2 ← c and send π1 to A, where:

– If b = 0, (π1, aux)
$←− P(1λ, 1m), with m = |x|

– If b = 1, (π1, aux)
$←− Sim0(1λ, 1m, π2)

2. Upon receiving (x,w) from A in the left session do the following
– If (x,w) ∈ Rel, the experiment sends π3 to A in the left session where:

- If b = 0, π3 ← P(x,w, aux, π2)

- Else, if b = 1, π3 $←− Sim1(x, aux)
– Else, the experiment sets π3 ← ⊥

3. Set the output of the experiment as the output of A and its view.
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Definition 7 (NMZKC). Let Πcom be a commitment scheme. We say that
an adaptive-input HVZK proof system Π, with challenge space C, is a non-
malleable HVZK with respect to commitment for Πcom if there exists a ppt
simulator Sim = (Sim0,Sim1) such that, for all ppt adversary A, the following
two distributions are indistinghuishable:

{ExpZKA,Π,Πcom
(1λ, 0, c),m0}λ∈N,c∈C , {ExpZKA,Π,Πcom

(1λ, 1, c),m1}λ∈N,c∈C

where ExpZKA,Π,Πcom
(1λ, b, c) is the experiment described above and mb, with b←

{0, 1}, is the message committed in the right session of ExpZKA,Π,Πcom
(1λ, b, c)

by A.

We note that non-malleable HVZK with respect to commitment property
is parallel composable w.r.t. multiple left sessions. The proof would follow via
standard hybrid arguments.

5 Our Delayed-Input MPC-in-the-Head Protocol ΠAI

Let L be an NP-language and Rel be the corresponding NP-relation. Let
f be an (n + 1)-argument function, with n > 2, corresponding to Rel, i.e.,
f(x,w1, . . . , wn) = Rel(x,w1 ⊕ · · · ⊕ wn). Our protocol, ΠAI = (PAI,VAI), for
the NP-relation Rel makes use of the following tools:

- A tp-private MPC protocol Πoff,on = (P1, . . . , Pn) that realizes f with ro-
bustness (Definition 5).

- An ambiguous commitment scheme Πcom = (Com,Dec,Comeq,Eq).

A complete description of ΠAI = (PAI,VAI) for the NP-relation Rel can be
found in Figure 1. At a high level, given an MPC protocol Πoff,on, as specified
above, PAI starts by emulatingΠoff in its head. In particular, it generates n views
viewoff

i , i ∈ [n], corresponding to the n virtual parties and separately commits
to these views using an ambiguous commitment scheme Πcom. This is done by
sampling c random values {viewoff

(i,j)}j∈[c], for each i ∈ [n], such that viewoff
i =⊕

j∈[c] viewoff
i,j , and computing {(com(i,j), dec(i,j)) ← Com(viewoff

(i,j);R(i,j))}j∈[c].
Notice here c ≥ 2 is a small integer. This will allow the verifier to check that the
commitments are correctly generated and Πoff is honestly executed; moreover,
it will be crucial to prove adaptive-input SHVZK, as we will see later.

The prover sends the first message π1, given by the concatenation of all the
commitments, to V which replies with the challenge π2, i.e., a set of random
indices I = {i1, . . . , ik} ⊂ [n] with k ≤ tp, and one index qij ∈ [c] for each i ∈ I.

In the last round, both P and V receive the theorem x, while P also receives
w. in the last round, P first completes the emulation of the MPC protocol,
producing all the online views viewon

i , i ∈ [n]; secondly, it sends viewon
i , i ∈ I,

and opens the corresponding commitments in π1 as follows. The commitments
corresponding to the indices qij in π2 are opened in a “binding way”, by sending

viewoff
ij ,qij

and Rij ,qij , ij ∈ I, and the remaining c−1 commitments, for each ij ∈
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Common inputs: At the beginning of the third round both PAI and VAI gets x, while
the parameters k, c, n (which are small constants) and k < tp are specified when the
protocol starts.
Private input: At the beginning of the third round PAI gets a random n-out-of-n
secret sharing of the witness w = w1 ⊕ · · · ⊕ wn.

Round 1. PAI computes the following steps.
1. Run Πoff “in its head” (by choosing uniform random coins ri for each party)

to generate the transcript of each party Pi. Let viewoff
i denote the view of Pi

in the execution of Πoff.
2. For each i ∈ [n], choose c random values {viewoff

(i,j)}j∈[c] such that viewoff
i =

viewoff
(i,1) ⊕ viewoff

(i,2), . . . ,⊕ viewoff
(i,c).

3. For each i ∈ [n], compute {(com(i,j), dec(i,j))← Com(viewoff
(i,j);R(i,j))}j∈[c].

4. Send {com(1,j), . . . , com(n,j)}j∈[c] to VAI.
Round 2. VAI chooses a random a subset of distinct indices I = {i1, . . . , ik} ⊂ [n],

with |I| = k ≤ tp; and for each index ij it chooses a random value qij ∈ [c].
VAI sends (I, qi1 , . . . , qik ) to PAI.

Round 3. Upon receiving (x, (w1⊕· · ·⊕wn)), where w = w1⊕· · ·⊕wn s.t. Rel(x,w) =
1, PAI computes the following steps:
1. Simulate the behaviour of the party Pi while running Πon on input ri, x, wi.

For each ij ∈ I, let viewij be the view of Pij in the execution of Π which is
composed of viewoff

ij and viewon
ij .

2. Let Cij = {1, . . . , c} \ {qij}. For each ij ∈ I, send to VAI the following:(
{(viewoff

(ij ,l)
, dec(ij ,l))}l∈Cij

, (viewoff
(ij ,qij )

, R(ij ,qij )
), viewon

ij

)
.

Verification step. VAI outputs 1 if and only if all the following checks pass.
1. For ij ∈ I check that

- Dec(com(ij ,l), view
off
(ij ,l)

, dec(ij ,l)) = 1, for all l ∈ Cij
- Com(viewoff

(ij ,qij )
;R(ij ,qij )

) = com(ij ,qij )
.

2. The output of Pij is 6= ⊥, for each ij ∈ I.
3. The views viewi1 , . . . , viewik are consistent, where viewoff

ij =
⊕

l∈[c] view
off
(ij ,l)

Fig. 1: ΠAI = (PAI,VAI)

I, are opened by sending the opening information decij ,q, along with viewoff
ij ,q,

for each q ∈ {1, . . . , c} \ qij .
Finally, the verifier checks all the commitments. It verifies that all the parties

in I output 1 and that their views are consistent with each other. To simplify
the composition of our protocol with other primitives, we design the prover so
that it expects to receive a (random) n-out-of-n secret sharing of the witness
(instead of the witness itself). This is without loss of generality. We finally note
that our protocol can be parameterized to work with any n-out-of-n secret shar-
ing scheme. Moreover, it would remain black-box in the use of the underlying
cryptographic primitives as long the reconstruction phase of the secret sharing
scheme does make any calls to a cryptographic primitive. We prove the following
result.
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Theorem 1. If Πoff,on is an MPC protocol that realizes f (which is described
above) with tp-privacy and robustness, and Πcom is an ambiguous commitment
scheme, then ΠAI = (PAI,VAI) (Figure 1) for the NP-relation Rel is a 3-round
public-coin delayed-input protocol satisfying adaptive-input SHVZK adaptive-
input soundness with constant soundness error.

We establish adaptive correctness, adaptive-input soundness and adaptive-
input SHVZK. Correctness follows by inspection.

Adaptive-input soundness (Intuition). At a high level, we can see that sound-
ness can be proved using the robustness property of the MPC protocol Π and
the security properties of Πcom. If all the offline views are correctly generated,
then robustness ensures that a malicious prover will always get caught. Hence
a malicious prover can succeed either if incorrect offline views are generated, or
if some of the commitments are not computed in binding mode. We can argue
that the probability of the adversary being caught in either of the two cases is
noticeable.

Adaptive-input special honest-verifier zero-knowledge (Intuition). At
a high level, the simulator Sim = (Sim0

AI,Sim1
AI) works as follows. Let the chal-

lenge be (I, qi1 , . . . , qik), and let Cij = {1, . . . , c} \ {qij}. For each ij ∈ I, and

each l ∈ Cij , Sim0
AI computes a random value view(ij ,l). Then Sim0

AI generates
the following commitments. For each ij 6∈ I and q ∈ [c] set com(ij ,q) as a com-
mitment of the the all-zero string; for each ij ∈ I compute the commitment
com(ij ,qij ) in binding mode, and for each l ∈ Cij compute com(ij ,l) in equiv-

ocal mode. These commitments constitute the simulated message π1. In the
second phase, when x is available, Sim1

AI uses the MPC simulator to obtain
(viewoff

i , viewon
i ), i ∈ [n]. For each ij ∈ I and for each l ∈ Cij compute viewoff

ij ,l,

such that viewoff
ij ,qij

= viewoff
ij

⊕
l∈Cij

viewoff
ij ,l. Finally, for each ij ∈ I, l ∈ Cij

equivocate the commitment comij ,l to viewoff
ij ,l, and sends the openings of all the

commitments to complete the third round.

Lemma 1. Let ΠComExt be a 3-round extractable commitment scheme with a
polynomial time extractor Ext, that extracts with non-negligible probability, then
ΠAI is non-malleable HVZK with respect to commitment ΠComExt against syn-
chronizing adversaries.

The proof of the lemma can be found in the full version.
We recall that the commitment scheme Πcom used in ΠAI can be instantiated

with any NI statistically binding scheme, which can be constructed from any
one-to-one OWF. In addition, following [28], when we say that our protocols
make black-box use of Πoff,on, it simply means that they are invoking the “next-
message function” of each party. Therefore, when Πcom is implemented using a
black-box reduction to one-way functions, the protocol ΠAI only makes black-box
use of one-way functions. More formally,

Corollary 1. Assuming the existence of one-to-one one-way functions, there ex-
ists a 3-round public-coin delayed-input protocol satisfying adaptive-input sound-
ness (with constant soundness error), and adaptive-input SHVZK, which makes
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black-box use of 1-1 OWFs. Moreover, let ΠComExt be a 3-round extractable
commitment scheme with a polynomial time extractor, that extracts with non-
negligible probability, then there exists a 3-round public-coin delayed-input proto-
col that is non-malleable HVZK with respect to commitment for ΠComExt against
synchronizing adversaries that makes black-box use of the 1-1 OWFs.

6 The Building Blocks of the 4-Round Black-Box
Non-Malleable Commitment Scheme

In this section, we define the main building blocks necessary to define our 4-round
non-malleable commitment scheme.

6.1 Commitment from Verifiable Secret Sharing

We start by recalling some of the techniques introduced by Goyal et al. [22]. We
show that these techniques can be used to build a Σ-commitment (Definition 2)
that we denote by Π = ((SΣ ,RΣ),DecΣ) and formally describe it in Figure 2.
The protocol makes use of the following primitives:

- An (n+ 1, t)-VSS protocol Πvss = (ΠShare, ΠRecon) as defined in Definition 6.
Concretely, the protocol uses a VSS scheme with a deterministic reconstruc-
tion procedure, like the (n+ 1, bn/4c)-VSS scheme described by Gennaro et
al. [17]

- A statistically binding commitment scheme Πcom = (Com,Dec).

The protocol works as follows. To commit to a message w, the sender SΣ
runs “in its head” the protocol ΠShare, which implements the sharing phase of
Πvss, with input w. Then the sender commits to the views viewj (obtained by the
execution of ΠShare) of each Pj separately using a statistical binding commitment
schemeΠcom. The receiver, upon receiving these commitments, samples a random
set I ⊂ [n], with |I| ≤ t, and sends it to the sender. Finally, the sender replies
by decommitting the views corresponding to the challenge I. This concludes the
commit phase.

In the full version, we prove the following theorem that we shall use in the
next sections.

Theorem 2. Let Πvss be a (n+ 1, t)-VSS protocol satisfying Definition 6, with
t = k, t < 1

4n, and let Πcom be a statistically binding commitment scheme, then

Π = ((SΣ ,RΣ),DecΣ) (see Figure 2) is a Σ-commitment.

6.2 Commit-and-Prove

In this section we construct a 3-round public-coin commit-and-prove protocol
ΠCP = (PCP,VCP) that allows proving the knowledge of a committed value w
such that Rel(x,w) = 1, for some statement x. Our protocol makes black-box
use of the underlying primitives.

The protocol ΠCP = (PCP,VCP) is fully described in Figure 3. It makes use of
the following tools:
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Common inputs: Both SΣ andRΣ get parameters t, n, k, where t, n are the parameters
corresponding to the VSS Πvss = (ΠShare, ΠRecon), and k ≤ t.
Private input: At the beginning SΣ gets a private message w.

Commitment procedure: (SΣ ,RΣ)

Round 1. SΣ proceeds as follows.

1. Run the sharing phase of Πvss “in its head” on input w to generate the
views viewσj , for each j ∈ [n].

2. Compute (comσj , dec
σ
j )← Com(viewσj ) for j ∈ [n].

3. Set
– decσ = {decσj , viewσj }j∈[n]

– πσ1 = (comσ1 , . . . , com
σ
n)

4. Send πσ1 to RΣ .

Round 2. RΣ executes the following steps.
1. Choose a random subset I = {i1, . . . , ik} ⊂ [n].
2. Define and send πσ2 = (ii, . . . , ik) to SΣ .

Round 3. SΣ computes the following steps:
1. Define and send πσ3 = {viewσj , decσj }j∈I to RΣ .
2. Set comσ = (πσ1 , π

σ
2 , π

σ
3 )

Verification step. RΣ accepts the commitment if and only if:

1. Dec(comσj , view
σ
j , dec

σ
j ) = 1 and the output of Pj in Πvss is not ⊥, for each

j ∈ I.
2. The views viewσi1 , . . . , view

σ
ik

are consistent.

Decommitment procedure: DecΣ(comσ, w, decσ)
1. Parse decσ as {decσj , viewσj , wj}j∈I .
2. Use {viewσj }j∈[n] as the inputs of ΠRecon thus obtaining w.
3. Check that for all j ∈ [n] it holds that Dec(comσj , view

σ
j , dec

σ
j ) = 1.

If the above conditions hold, RΣ outputs w, else it returns ⊥.

Fig. 2: Π = ((SΣ ,RΣ),DecΣ)

- The Σ-commitment Σ = ((SΣ ,RΣ),DecΣ) defined in Figure 2, Section 6.1.
- The adaptive-input SHVZK ΠAI = (PAI,VAI) with adaptive-input soundness

for the NP-relation

RelAI = {(x, a, α, {viewij}j∈[k]), (r, {viewi}j∈[n]) : 1 ≤ i1 < · · · < ik < n ∧
w = Recon({viewi}j∈[n]) ∧ Rel(x,w) = 1 ∧ a = w + rα}.

where Recon is the reconstruction phase of an information-theoretic (n+1, t)-
VSS protocol Πvss, with k ≤ t. We recall that to run ΠAI the prover needs the
statement and the witness only in the third round. Moreover, the prover ex-
pects to receive the witness in a secret shared form. We recall that ΠAI works
for any type of secret sharing scheme, and in our case ΠAI is parametrized
by the reconstruction algorithm of the verifiable secret sharing Πvss (i.e., the
prover expects to receive n views generated using the sharing algorithm of
Πvss). We note that given that Πvss is information-theoretic, then ΠAI still
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makes black-box use of the underlying cryptographic primitives. We also
need ΠAI with the same parameters n, k, t as Σ.

At a high-level PCP commits λ2-times to the witness w running Σ (as described
in Figure 2) and proving, using PAI, that each committed message w satisfies the
relation Rel, and moreover that the views opened in the third round of Σ contain
shares of the witness w. To make sure that the same message is committed in
all the executions of Σ, we use a technique proposed by Khurana et al. in [30].
Namely, in each execution of Σ, instead of committing to w, we commit to w||r,
for some random value r, and use the protocol ΠAI to additionally prove that
a = w + rα, where α is chosen as part of the second round, and a is sent in
the third round from the prover. As argued in [30], since r is global across all
the executions, if w 6= w′ then w+ rα 6= w′ + rα with overwhelming probability
due to the Schwartz-Zippel lemma. Therefore, if the committed messages are
different across the (multiple) executions, then the statement proven by ΠAI

must be false, and the soundness of ΠAI guarantees that the verifier rejects.
More formally, we prove the following result.

Theorem 3. Let ΠAI = (PAI,VAI) be a 3-round public-coin, delayed-input com-
plete, adaptive-input SHVZK with adaptive-input soundness for the NP-relation
RelAI, and Σ = ((SΣ ,RΣ),DecΣ) (as defined in Figure 2) be a Σ-commitment,
then ΠCP = (PCP,VCP) is a 3-round public-coin adaptive-input SHVZK commit-
and-prove protocol for the NP-relation Rel.

We first give an intuition for the adaptive-SHVZK proof by describing how
the simulator (Sim0

CP,Sim1
CP) works. For ease of exposition let us focus on the

i-th transcript (out of λ2) w.r.t. challenge (α, π2,i), where π2,i is composed by
two sets of indices I, C. The simulator Sim0

CP on input challenge π2,i runs the
HRH simulator of Σ on input I obtaining πσ1 , π

σ
3 and, consequently, the shares

{viewσij}ij∈I which will be opened in the third round (denoted by πσ3 ). Sim0
CP

then runs Sim0
AI on input π2,i thus obtaining (π1,i, aux). The simulator Sim1

CP on
input theorem x samples a at random, sets X = {(x, a, α, {viewσij}ij∈I) and runs

Sim1
AI on input theorem (X, aux) thus obtaining π3,i.

The full proof of Theorem 3 can be found in the full version. Similarly to
previous protocols, we have the following result.

Corollary 2. Assuming the existence of one-to-one one-way functions, there
exists a 3-round public-coin adaptive-input SHVZK commit-and-prove ΠCP for
the NP-relation Rel that makes black-box use of the 1-1 OWFs.

Remark 1. To simplify the exposition of our non-malleable commitment scheme
that internally uses the commit-and-prove protocol we have just described, we
will consider the messages of ΠCP as divided into two parts: the messages related
to the proof phase, and the messages related to the commitment phase. Hence,
each round of ΠCP consists of two distinct components (e.g., the i-th round of
ΠCP will be denoted by {πi, πσi }).
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Public input and parameters: Parameters k, n, t of Σ, with k = t. PCP and VCP

gets x in the third round.
Private input: At the beginning PCP gets w.

Round 1 PCP executes the following steps:
1. Sample r ← F.
2. For i ∈ [λ2], do the following:

2.1. Execute SΣ on input (1λ, w||r), obtaining πσi,1 = {comσi,j}j∈[n],
{decσi,j}j∈[n] and {viewσi,j}j∈[n].

2.2. Run PAI on input 1λ, obtaining πi,1.
3. Define and send π1 = {πi,1, πσi,1}i∈[λ2] to VCP.

Round 2 VCP computes the following steps:
1. For i ∈ [λ2], run VAI to choose challenge πi,2.
2. Sample α← F.
3. Set π2 = {πi,2}i∈[λ2] and send (α, π2) to PCP.

Round 3 PCP performs the following steps:
1. Compute a = w + rα and, for each i ∈ [λ2], do as follows.

1.1. Parse πi,2 as (I, qi1 , . . . , qik ).
1.2. Compute the 3rd message πσi,3 of Σ executing SΣ on input I (note that

πσi,3 = {decσi,j , viewσi,j}j∈I).
1.3. Run PAI on input the pair statement-witnessa

((x, a, α, {viewσi,j}j∈I), {viewσi,j}j∈[n]) and πi,2, thus obtaining the
third round πi,3.

1.4. Set π3 = {πσi,3, πi,3, a}i∈[λ2] and send π3 to VCP.

Verification step. On input x outputs 1 if and only if, for each i ∈ [λ2], the following
holds:
1. RΣ accepts the commitment (πσi,1, I, π

σ
i,3).

2. VAI accepts the proof (πi,1, πi,2, πi,3) for the statement (x, a, α, {viewσi,j}j∈I).
3. The j-th view viewσi,j that appears in πσi,3 represents also the input share for

the j-th view viewi,j that appears in πi,3, for each j ∈ I.

Decommitment procedure: On input an accepting transcript of the protocol, and
on input all the decommitment information for the λ2 commitments generated via
Σ, return m, if and only if the majority of the Σ-commitments are commitments
of (m‖ · ).

a We recall that the protocol requires the witness to be secret shared.

Fig. 3: ΠCP = (PCP,VCP)

6.3 The 4-Round Non-Malleable Commitment Scheme of [24]

The 4-round non-malleable commitment of Goyal et al. [24] is composed of two
parts: the first one is a special public-coin Πwnmc commitment scheme, that en-
joys a weak form of non-malleability. Loosely speaking, Πwnmc is non-malleable
as long as the MiM, acting as a sender, is committing to a well-formed com-
mitment. The second part is a zero-knowledge PoK that ensures that Πwnmc is
computed correctly. In Figure 4, we recall the protocol Πwnmc. This uses as an un-
derlying building block a non-interactive commitment that is statistically bind-
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Public parameters: 1λ, `4nmc, tags tg1, . . . , tg`4nmc
and a large prime q s.t. q > 2tgi

for all i. A default second round message πσ2 for Σ (i.e., πσ2 = {1, 2, . . . , k}).
Private input: Swnmc gets m ∈ Fq.

Round 1 Swnmc computes the following steps:
1. Pick at random r1, . . . , r` and perform λ2 executions of SΣ on in-

put (1λ,m||r1||, . . . , ||r`), thus obtaining πσ1 = {πσ1,i}i∈[λ2] and decσ =

{decσi }i∈[λ2]. Send π1
σ to Rwnmc.

Round 2 Rwnmc computes the following steps:
1. Pick at random challenge vector ~α = (α1, . . . , α`4nmc ), where αi ∈ [2tgi ] ⊂ Fq.
2. Send ~α, π2

σ to Swnmc.
Round 3 Swnmc computes the following steps:

1. Compute the third message πσ3 of Σ executing SΣ on input πσ2 .
2. For all i ∈ [`4nmc], compute ai ← riαi +m, set ~a = (a1, . . . , a`4nmc ).
3. Send (πσ3 ,~a) to Rwnmc.

Fig. 4: Πwnmc = (Swnmc,Rwnmc)

ing. We replace this commitment with our interactive Σ-commitment Σ where
the challenge is a default value (i.e., this trivially makes the Σ-commitment
non-interactive). Finally, we prove that, after this modification, Πwnmc remains
hiding.

Lemma 2. Let Σ be the Σ-commitment described in Figure 2, then Πwnmc =
(Swnmc,Rwnmc) described in Figure 4 enjoys the hiding property.

This follows from Theorem 2 and from the fact that r1, . . . , r`4nmc and a1, . . . , a`4nmc

information theoretically hide the committed message.

7 Our 4-Round Black-Box Non-Malleable Commitment
Scheme

An informal overview of our 4-round NM commitment is given in the Introduc-
tion. Here we provide a formal description of the protocol Πnmc presented in
Figure 5. We conclude this section with a sketch of the proof.

7.1 Formal Description of Πnmc = ((Snmc,Rnmc),Decnmc)

Our 4-round non-malleable commitment Πnmc = ((Snmc,Rnmc),Decnmc) makes
use of the following tools.

- A 3-round public-coin delayed-input adaptive-input SHVZK commit-and-
prove protocol Πtr = (Ptr,Vtr) (as defined in Figure 3) for the relation Reltr =
{((m0,m1), w) : m0 = w ∨m1 = w}. We denote the adaptive-input SHVZK
simulator with Simtr.



24 Michele Ciampi, Emmanuela Orsini, and Luisa Siniscalchi

Common inputs: 1λ, parameters k, n, t, `nmc, tags tg1, . . . , tg` and a large prime q s.t.
q > 2tgi for all i.
Private input: At the beginning Snmc gets m ∈ Fq.

Round 1. Rnmc picks two random strings ŝ0, ŝ1 and runs PcomWI on input (1λ, ŝ0, 0)
thus obtaining πcomWI

1 and sends it to Snmc.
Round 2. Snmc executes the following steps:

1. Compute the 1st round of Πwnmc: Pick ` random strings r1, . . . , r`nmc and run
PCP on input (1λ,m||r1||, . . . , ||r`nmc ) thus obtaining (π1, π

com
1 ).

1.1. Run the simulator for Πtr: Pick a random β0 from the space of all the
possible challengers of Πtr, set πtr

2 = π1||β0.
1.2. Run Simtr on input πtr

2 thus obtaining (aux, πtr
1 ).

1.3. Compute the second round πcomWI
2 of VcomWI.

2. Send (πcom
1 , πtr

1 , πcomWI
2 ) to Snmc.

Round 3 Rnmc executes the following steps:
1. Compute the 2nd round of Πwnmc: Pick a random challenge vector ~α =

(α1, . . . , α`), where αi ∈ [2tgi ] ⊂ Fq.
2. Run the third round πcomWI

3 of PcomWI on input (πcomWI
2 , ŝ1).

3. Sample a random β1 from the space of all the possible challenges of Πtr and
send (~α, πcomWI

3 , ŝ0, ŝ1, β1) to Snmc.
Round 4. Snmc computes the following steps:

1. If VcomWI accepts the proof, (πcomWI
1 , πcomWI

2 , πcomWI
3 , ŝ0, ŝ1) continue, else abort.

2. Compute the 3rd round of Πwnmc: For all i ∈ [`nmc], compute ai = riαi +m.
3. Define state = {ai, αi}i∈[`nmc], and w =

(
m, {ri}i∈[`nmc]

)
4. Compute the third message of ΠCP by running PCP on input (state, w, π2 =

β0 ⊕ β1), obtaining (π3, π
com
3 ).

5. Run the simulator for Πtr: Run Simtr on input (aux, ŝ0, ŝ1) thus obtaining πtr
3

6. Send πtr
2 = (π1||β0), πtr

3 , π3, (ai)i∈[`nmc] to Rnmc.
Verification step. Rnmc parses π2

tr as (π1||β0), set π2 = β0 ⊕ β1 and accepts the
commitment if and only ifa:
1. Vtr,VCP accept, respectively, the proofs for (πtr

1 , π
tr
2 , π

tr
3 ) and(

(π1, π
com
1 ), π2, (π3, π

com)
)

Decommitment procedure Decnmc: This proceeds as follows.
1. Snmc sends the decommitment information for ΠCP for (m||r1||, . . . , ||r`nmc ).
2. Rnmc checks if the decommitment information for ΠCP are valid w.r.t. the

message (m||r1||, . . . , ||r`nmc ), and accepts m as the decommitted message if
(m||r1||, . . . , ||r`) is consistent with {ai, αi}i∈[`nmc].

a We abuse of notation when using the ⊕ symbol because the challenge π2 it is not a
binary string, but a set of indices. In our case β0 and β1 are just a set of indexes,
and π2 is obtained by pairwise summing (with modular arithmetic) the indices in
β0 and β1

Fig. 5: Πnmc = ((Snmc,Rnmc),Decnmc)
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- A 3-round public-coin SHVZK, delayed-input complete commit-and-prove
protocol ΠCP = (PCP,VCP) (as defined in Figure 3, but using λ3 parallel
repetitions) for the relation RelCP defined as follows:

RelCP =

{
st =

(
{ai, αi}i∈[`nmc])

w =
(
m, {ri}i∈[`nmc]

) ∀ i ∈ [`nmc] ai = m+ riαi

}
.

- A one-of-two binding commitment scheme ΠcomWI = (PcomWI,VcomWI) (Defi-
nition 4).

The reason why we explicitly require Πtr and ΠCP to be protocols constructed
following the approach described in Section 6.2 is that in the security proof we
will exploit the fact that Πtr and ΠCP are based on non-malleable HVZK with
respect to commitment protocols. We refer the reader to the full version for a
thorough discussion on this and for the full proof.

Theorem 4. Let Πtr = (Ptr,Vtr) be the 3-round public-coin adaptive-input SHVZK
commit-and-prove for the relation Reltr, defined in Figure 3, let ΠCP = (PCP,VCP)
be the 3-round public-coin SHVZK commit-and-prove for the relation RelCP, de-
fined in Figure 3, let ΠcomWI = (PcomWI,VcomWI) be the one-of-two binding com-
mitment scheme, then Πnmc = ((Snmc,Rnmc),Decnmc), described in Figure 5 is a
4-round non-malleable commitment.

The corollary given below immediately follows from the results shown in the
previous sections and from the fact that ΠcomWI can be instantiated in a black-
box way from one-to-one one-way functions.

Corollary 3. Assuming the existence of one-to-one one-way functions, there ex-
ists a 4-round non-malleable commitment that makes black-box use of the OWFs.

8 Comparison with Previous Non-Black-Box Approaches
to Four-Round Non-malleable Commitments.

As we argued, our main strategy to construct a non-malleable commitment
scheme is to lift the security of the weak non-malleable commitment scheme
of [25, Fig. 2] (that we also recall in Figure 4), relying on a special notion of
zero-knowledge that we call non-malleable HVZK with respect to commitment.
This notion guarantees that a sender of a commitment scheme does not change
the distribution of the committed messages depending on whether they receive
an honestly generated zero-knowledge proof or a simulated one. We construct
a NMZKC for a specific class of commitments, which includes the weak-non-
malleable commitment scheme of [25, Fig. 2] that we mention above.

Although our approach is inspired by [25], where the authors also lift the
security of a weak-non-malleable commitment scheme relying on zero-knowledge,
concretely, our techniques significantly depart from those of [25]. In the next
paragraphs, we highlight the main difference between the two approaches and
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explain why we could use as one of the main building block the simple weak-
non-malleable commitment of [25, Fig. 2], instead of a modified version, as the
authors of [25] do.

The main technical challenge in designing non-malleable commitments with
low round complexity is due to arguing in the proof that the security of the
primitives involved in the protocol is maintained despite performing rewinds to
extract the message committed by the MiM (on the right session). One of the
primitives involved in the scheme of Goyal et al. is a non-rewind secure witness-
indistinguishable proof denoted by Π, and to cope with the rewinds performed
by the extractor in the proof (while still relying on the WI property of Π), the
prover prepares n first rounds for the non-rewind secure WI protocol (denoted
with Π). Upon receiving one valid second round from the verifier, the prover
picks one instance of Π at random (let us say the i-th) and completes the proof
providing an accepting third round only with respect to the i-th instance. Let
us denote the above protocol by Πrew.

Despite this protocol being rewind secure, Goyal et al. cannot use just one
execution of Πrew, which proves that either the committer has behaved honestly
in the algebraic part of the commitment or that the committer knows a trapdoor.
The reason is that there is a simple adversarial strategy for which such a proof
would not work in this case. Intuitively, consider a MiM that completes an
execution on the right session only if it receives a proof for the j-th instance
of Π, and aborts in any other case (note that this MiM is non-aborting with
non-negligible probability). This MiM would make the reduction to the WI of
Π fail. In particular, any rewind performed by the extractor on the right session
would make the MiM ask different second rounds for the same execution of Π (or
abort if on the left session a different instance of Π is completed). To solve this
problem the authors of [25] compute a secret sharing of the message and perform
one execution of Πrew for each of the shares. Now, even if the MiM applies the
same strategy to one run of Πrew, it is safe to allow the MiM to perform this
rewind since the only thing that will be leaked is a share of the message m (note
that two accepting transcripts for the same execution of Π for two different
second rounds might completely leak the witness). In the formal proof, Goyal
et al. need to rely on the fact that the number of executions of Π that are
not rewound (and consequently the number of shares not leaked) is sufficient to
protect the secrecy of the message m. This modification also requires changing
how the extractor works (e.g., by relying on the quadratic polynomials). Hence,
to obtain their non-malleable commitment scheme, Goyal et al. rely on a more
sophisticated version of the weak-non-malleable commitment described in their
work. In our paper, we do not rely on any rewind secure primitive (which we
replace with a proof system non-malleable with respect to commitments), so we
do not need to split the message into shares and follow the strategy described
above. We note that similarly to us, also [9] relies on the simpler sub-scheme
of [25, Fig. 2] to obtain a 4-round concurrent non-malleable commitment scheme.
To summarize, the main difference between ours and the approach of [25] (that
relies on rewind secure primitive) is that our work is based on the observation



Four-Round Black-Box Non-Malleable Schemes from One-Way Permutations 27

that the rewinds are performed in the reductions or during the simulation, and
as such, the adversary does not have clue that the rewinds are happening. Hence,
relying on primitives that are rewind-secure (i.e., the adversary can consciously
make rewinds and collect the transcripts generated during the rewinds) can be
avoided for the application we consider in the paper.
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