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Abstract. We introduce the idea of input obfuscation for secure two-
party computation (io2PC). Suppose Alice holds a private value x and
wants to allow clients to learn f(x, yi), for their choice of yi, via a secure
computation protocol. The goal of io2PC is for Alice to encode x so that
an adversary who compromises her storage gets only oracle access to the
function f(x, ·). At the same time, there must be a 2PC protocol for
computing f(x, y) that takes only this encoding (and not the plaintext
x) as input.

We show how to achieve io2PC for functions that have virtual black-box
(VBB) obfuscation in either the random oracle model or generic group
model. For functions that can be VBB-obfuscated in the random ora-
cle model, we provide an io2PC protocol by replacing the random oracle
with an oblivious PRF. For functions that can be VBB-obfuscated in
the generic group model, we show how Alice can instantiate a “person-
alized” generic group. A personalized generic group is one where only
Alice can perform the algebraic operations of the group, but where she
can let others perform operations in that group via an oblivious interac-
tive protocol.

1 Introduction

Alice has invested significant resources into training a machine-learning clas-
sifier. She decides to capitalize on her investment by creating a service where
customers can pay her to classify inputs of their choice. The classifier itself is
sensitive, and so are the inputs of Alice’s clients, so her service uses secure two-
party computation (2PC) to perform these classifications. She deploys a server
that repeatedly runs the 2PC protocol with customers. This server is a high-
value target for attackers, since it must store the details of Alice’s proprietary
classifier. If a hacker compromises Alice’s server it is unavoidable that he learns
her classifier. . . or is it?

Input obfuscation for 2PC. Abstractly, Alice has an input x and she wants to use
a 2PC protocol to allow customers to repeatedly learn f(x, yi) for any yi of their
choice. An attacker who compromises her computer can gain oracle access to
the function f(x, ·) by running the 2PC protocol in its head, playing the role of
Alice using her private state information which was compromised. In this work,
we investigate whether compromising Alice’s computer can leak no more than



oracle access to f(x, ·). Input obfuscation for 2PC (io2PC) refers to (1) a
way for Alice to encode her input x, along with (2) a 2PC protocol for computing
functions of x that takes this encoding — not x — as input. The encoding itself
should leak only oracle access to the function f(x, ·).

Why isn’t this trivial? If knowledge of Alice’s encoded input is equivalent to
having oracle access to f(x, ·), then her encoded input is actually a virtual-
black-box (VBB) obfuscation. So a natural approach is to use a 2PC protocol
that takes the obfuscation from Alice, and the input y from Bob evaluates the
obfuscation on y and gives the result to Bob.

Unfortunately, this natural approach does not work. The reason is that we re-
quire a strong definition of VBB described in Section 2.2 which precludes known
constructions of non-trivial functions in the standard model as these obfusca-
tions rely on weakened definitions of VBB [25,7,9]. It is possible to construct
VBB for trivial functions such as the constant function, but all (non-trivial) in-
stances of VBB to our knowledge are in an idealized model such as the random
oracle model [21], the generic group model [2], or the generic graded encodings
model [5]. As the algorithm that evaluates a VBB obfuscation on an input will
call the ideal model’s oracle, this algorithm cannot be implemented inside of a
2PC protocol.

One way to think about io2PC is designing a 2PC protocol for obliviously
evaluating an obfuscated program, even if the obfuscation scheme requires an
idealized model.

1.1 Overview of Our Results

We first formally define io2PC, and then show how to achieve it for certain classes
of functions.

Inspiration from saPAKE. In io2PC we are interested in allowing a server to
encode a function in such a way that even on compromise, the adversary only
obtains oracle access to the underlying function. This kind of security property
is similar to one found in the definition of strong asymmetric password-
authenticated key exchange (saPAKE) [19]. In saPAKE, a server wants to
authenticate clients using passwords and stores only “digests” of the passwords
so that when an adversary steals the server’s storage, the adversary gains only
oracle access to a password-checking functionality (i.e. it can submit a password
guess and learn whether that guess is correct). In other words, the adversary
gains oracle access to a point function for each user, with the distinguished point
being the user’s password. It is therefore natural to think of saPAKE as a special
case of io2PC, considering only point functions.

Although the oracle saPAKE protocols provide on compromise is a point
function, saPAKE protocols are much stronger than pure point functions as
they allow for joint key establishment. To simplify, we can consider lighter VBB
obfuscations of point functions in the random oracle model [21]. An obfuscation
of the point function f(x, ·) simply consists of the value Ox = H(x), for random
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oracle H, where the obfuscation can be “evaluated” on y by computing H(y) and
comparing it to Ox. As we will see in Section 3, this simple construction doesn’t
meet the security requirements for io2PC as it allows the oracle interaction in the
obfuscation to take place before server compromise. This is exactly the issue that
OPAQUE [19] set out to solve for asymmetric PAKE (aPAKE) protocols. Jareki,
Krawczyk, and Xu present a compiler which augments an aPAKE protocol by
replacing the client’s input with the output of an oblivious pseudo-random
function (OPRF) on the client’s input. Roughly, an OPRF is a two-party
protocol for evaluating a PRF F on a client’s input x and a server’s key k where
the client learns the PRF output F (k, x) and the server learns nothing. We
discuss modeling this primitive in further detail in Section 4.1. The OPAQUE
technique allows the server to gatekeep the oracle behind an interactive protocol.
This prevents the adversary from evaluating the oracle call locally until the server
is compromised. It is tempting to apply the OPAQUE compiler directly to our
VBB point function, and generally this idea underlying the OPAQUE compiler
serves as valid intuition for the techniques used in our compilers.

Our result for random-oracle VBB obfuscations. Our main constructions develop
and extend the analogy of applying the OPAQUE compiler directly to VBB
obfuscations. We construct io2PC for a function f , if the related class of functions
Cf = {f(x, ·) | x ∈ {0, 1}n} has a VBB obfuscation in the random oracle model.
The obfuscation scheme consists of algorithms Obf and ObfEval satisfying the
following:

– Correctness: ObfEvalH(ObfH(x), y) = f(x, y)
– Virtual black box: For any probabilistic polynomial-time (PPT) adversary
A, there exists a PPT simulator S such that AH(ObfH(x))’s view can be
simulated by S given only black-box access to f(x, ·).

In our io2PC protocol Alice chooses and stores an OPRF key k and uses the keyed
OPRF in place of a random oracle to compute Ox = ObfOPRF(k,·)(x). She then
stores Ox instead of x for future interactions. As in the OPAQUE protocol, we
require an OPRF protocol where knowledge of the key k only gives oracle access
to F (k, ·). Thus, even when an adversary steals the encoding Ox, the OPRF
still acts as a random oracle, in terms of observability and programmability, to
the simulator. This is what allows us to reduce to VBB security and argue that
Ox leaks no more than oracle access to f(x, ·). It is indeed possible to realize
such an OPRF protocol in the random oracle model; in this case, the OPRF
algorithm itself makes calls to the random oracle. Since our simulator must
be efficient, but reduces to the simulator for the VBB obfuscation, our results
do not immediately generalize to virtual grey-box (VGB) obfuscations. This is
because VGB simulators can be inefficient and would not be simulatable under
our restrictions.

When a client wants to interactively evaluate f(x, y), the goal is to instead

run ObfEvalOPRF(k,·)(Ox, y), since Alice holds only Ox instead of x. However, the
two cannot simply run this computation as a 2PC protocol, since OPRF involves
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calls to the random oracle. Instead, Alice can send Ox to the client, who runs
ObfEval?(Ox, y). The parties can then run an OPRF protocol each time ObfEval
makes an oracle query.

Our result for generic-group obfuscation. In our random-oracle result, we can
think of the OPRF as a “personalized” random oracle. It is a random function
that only Alice, holding the OPRF key, can evaluate and her evaluations of this
function are visible and programmable to the simulator. She can also allow a
client to evaluate this function (without leaking the input to Alice) using the
OPRF protocol.

Suppose we have a VBB obfuscation now in the generic group model. What
is the analogy of a “personalized” generic group? How can Alice instantiate
a group, for which only she has the key, which acts as a generic group with
respect to the simulator, and yet she can grant access to the group operations
via an oblivious protocol? We formalize a personalized generic group as an ideal
functionality, and then show how to realize such a functionality. Of course, our
protocol is in the generic group model, just as the OPRF (“personalized random
oracle”) protocol is in the random oracle model.

We show that our main io2PC technique also applies to VBB obfuscations in
the generic group model. In other words, Alice can obfuscate her input, replacing
the generic group with her personalized group during the obfuscation process.
The client can evaluate the obfuscated program, deferring group operations to
the oblivious personalized generic group protocol.

Additionally, we provide example applications of our personalized protocols
and show that the hyperplane-membership obfuscation of [10] is indeed a VBB
obfuscation in the generic group model. Previously, the obfuscation was proven
VBB with an inefficient simulator, under the Strong DDH assumption. Using this
hyperplane obfuscation in our main protocol, we achieve an io2PC for hyperplane
membership.

We conjecture that io2PC is possible for functions that are VBB-obfuscatable
in the generic graded encoding model (i.e. all circuits [6]); however, we leave this
result for future work.

1.2 Related Work

Upon server compromise, an adversary learns no more than oracle access to some
residual function. Specific instances of this kind of property have been considered
previously: in the context of [strong] asymmetric password-authenticated key ex-
change (aPAKE) [4,19], where server compromise should reveal no more than an
equality-test oracle; and by Thomas et al. [24], where server compromise should
reveal no more than a set-membership oracle. Our study of io2PC systematizes
security properties and constructions of this kind, which have previously been
studied in an ad hoc way.

Beyond the context of server compromise, the more general idea of leaking
oracle access appears in some MPC models: In both non-interactive multiparty
computation (NIMPC) [3] and the one-pass computation model [15], each party
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speaks only once in the protocol, with the difference in models being the commu-
nication pattern (star topology vs path topology). In these models, it is inevitable
that certain types of corruption allow the adversary to re-execute the protocol
on different inputs an unlimited number of times. Such an adversary can thereby
learn the output of the function on many inputs of its choice, with the honest
parties’ inputs being fixed. Therefore, the best possible security in these models
is if the protocol leaks no more than oracle access to this residual function.

Beyond this similarity of defining best-possible security with respect to a
residual functino oracle, there are important differences between these prior
works and ours. In the NIMPC protocols of [3] and one-pass protocols of [15,13],
the residual functions are completely learnable from oracle queries, either by
virtue of being over a small domain, or by being algebraically simple. Our work
is meant to be used with unlearnable residual functions — for example, we instan-
tiate our framework with point functions and hyperplane membership queries.

More fundamentally, prior works like [14] in the NIMPC model define se-
curity in the style of indistinguishability obfuscation (iO) — if two vectors of
inputs for honest parties result in functionally identical residual functions, then
the protocol must hide which input vector the honest parties use. This kind of
definition for MPC is not conducive to composable security. By contrast, we
explicitly require a virtual black-box (VBB) style of security, and define security
in the UC framework. Our VBB-style definition also models the fact that, after
compromising the server, the adversary must expend some effort each time it
wants to evaluate the residual function.

2 Preliminaries

Let κ be the security parameter. We assume that all algorithms have 1κ as input
and do not explicitly write it.

2.1 Idealized Models

In an idealized model, all parties have oracle access to some exponentially large
random object. In the random oracle model, the random object is a function
H : {0, 1}∗ → {0, 1}n. In the ideal permutation model, the random object is a
pair of functions Π,Π−1 : X → X where Π and Π−1 are inverses.

We also consider the generic group model, which we discuss in more detail
in Section 5.1.

Immediately below, we define VBB obfuscation in an idealized model, making
the definition agnostic with respect to the actual choice of idealized model. We
simply let all algorithms have oracle access to some idealized oracle Ora, which
may be a random oracle or a generic group.
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2.2 Obfuscation

Definition 1. Let Cf = {f(x, ·) | x ∈ {0, 1}∗} be a class of functions. An
obfuscation for Cf (in the Ora-idealized model) is a tuple of polynomial-time
algorithms (Obf,ObfEval), where

– ObfOra(x) outputs an obfuscated program Ox;
– ObfEvalOra(Ox, y) outputs a value z in the range of f .

The obfuscation satisfies correctness if for all x, y, we have
ObfEvalOra(ObfOra(x), y) = f(x, y) with overwhelming probability.

We often omit explicitly writing Ora if it is clear from the context.
Looking ahead, we replace the idealized oracle in ObfEval with an interactive

protocol. Hence, we must require that the number of oracle queries does not
depend on the input.

Definition 2. An obfuscation (Obf,ObfEval) for Cf has input-independent
query complexity if there is a polynomial function c such that for all x, y,
ObfEvalOra(Ox, y) makes c(κ) queries to its Ora oracle. Throughout the paper,
we then refer to an obfuscation with this property as a triple (Obf,ObfEval, c).

Virtual black-box (VBB) security means that holding an obfuscated program
is equivalent to having oracle access to the function being obfuscated. In our
io2PC protocol, we need to explicitly relate the number of queries an adversary
makes to its idealized oracle, and the number of queries the simulator makes to
its function oracle.

Definition 3. An obfuscation (Obf,ObfEval, c) has virtual black-box (VBB)
security with simulation rate r if there exists a polynomial-time simulator
Sim = (Sim0,Sim1) such that for any polynomial-time adversary A and any x,
the distributions

{Ox ← ObfOra(x);AOra(Ox)} (real interaction)

{(Ox, state)← Sim1();ASim
f(x,·)
2 (state)(Ox)} (ideal interaction)

are indistinguishable, and furthermore in the ideal interaction QS ≤ r·QA

c , where
QS is the number of queries Sim2 makes to its function oracle, and QA is the
number of queries A makes to its oracle interface.

We also need the following extractability property of obfuscation to handle
the case where a corrupt server generates an obfuscated program in our io2PC
protocol.

Definition 4. A VBB obfuscation (Obf,ObfEval, c) for Cf is extractable if for
any polynomial-time adversary A, there is a polynomial-time algorithm Extract
such that

Pr

[
ObfEvalOra(O, y) 6= f(x, y) :

(y,O)← AOra

x := Extract(O,H)

]
is negligible, where H is the list of A’s queries.
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In Section 6 we describe examples of obfuscation schemes that satisfy these
definitions.

Standard Model VBB Recall that at least trivial VBB obfuscations are possible
in the standard model. Even in an idealized model, if ObfEval never queries
its oracle, then we have a VBB obfuscation in the standard model. However,
our constructions need something slightly stronger than VBB. In particular,
Definition 3 and Definition 4 require an idealized model for non-trivial functions.
A standard-model VBB allows the evaluator to learn f(x, ·) on an unbounded
number of inputs, for the cost of 0 oracle queries, making the simulation rate
for Definition 3 infinite. A similar observation has been made in the context
of asymmetric PAKE[16]: aPAKE seems impossible to achieve in the standard
model, as measuring the time of an offline dictionary attack requires counting
the adversary’s oracle queries. In Definition 4, the simulator’s only advantage
over a regular adversary is that it can observe the obfuscator’s idealized oracle
queries.

So our protocol paradigm is incompatible with (at least non-trivial) standard-
model VBB. But the spirit of io2PC is possible for standard-model VBB. The
server stores an obfuscation Ox of f(x, ·). The parties can do a standard 2PC
protocol computing (Ox, y)→ ObfEval(Ox, y), which is possible because ObfEval
is a standard-model program. Upon compromising the server, an adversary learns
only Ox which is equivalent to oracle access to f(x, ·) by the VBB property. This
protocol does not achieve our specific io2PC functionality, though, because the
simulator cannot perform the necessary extractions of x from Ox, and of an
adversary’s oracle queries to f(x, ·) after compromising the server to learn Ox.

3 Defining io2PC

In this section, we formally define io2PC. The ideal functionality is presented in
Figure 1. In FiO2PC and future functionalities, we leverage the universal com-
posability framework’s ability to analyze a single protocol instance by providing
unique session and subsession identifiers (sid, ssid).

Intuitively, io2PC can be thought of as an extension of VBB obfuscation to an
interactive setting where the server may store its obfuscated input for long peri-
ods. This setting has been studied in the context of (strong) asymmetric PAKE
[12,19], where the server stores a “password file” (e.g. the hash of its password)
instead of the plain password. Similar to the asymmetric PAKE functionality,
this is modeled as follows: In the initialization phase, the server sends its input
to FiO2PC who stores it. After that, the functionality provides an interface for
the adversary to compromise the server — the Compromise query — which cor-
responds to stealing the server’s long-term storage in the real world. This allows
the adversary to perform offline evaluations, in which it evaluates the function
primed on the server’s input, without any online interaction.

In an online evaluation, the server can use the stored input, or use a re-
placement input if the server is corrupt. This is meant to model the real-world

7



Parameters:
– client C, server S, and ideal adversary A∗

Storage:
– three maps, status, budget and input

On command (Init, sid, x) from S:
1. If status[sid] is defined: ignore the message.
2. Set status[sid] := active.
3. Set input[sid] := x.
4. Set budget[sid] := 0.
5. Send (Init, sid, S) to A∗.

On command (Compromise, sid) from A∗:
6. Set status[sid] := compromised.

On command (OfflineEval, sid, y) from party P ∈ {A∗,S}:
7. If P = A∗, and either status[sid] 6= compromised or S is honest: ignore the

message.
8. If status[sid] is undefined: send (IOEval, sid,⊥) to P.
9. Otherwise, retrieve x := input[sid] and send (OfflineEval, sid, f(x, y)) to P.

On command (IOEval, sid, ssid, x′) from S:
10. If S is honest, retrieve x := input[sid], otherwise, set x := x′.
11. Send (IOEval, sid, ssid, S) to A∗.
12. If C is corrupt: set budget[sid] := budget[sid] + r.
13. Wait for (IOEval, sid, ssid, y) from C or (Abort, sid, ssid) from A∗.
14. If honest C sends (IOEval, sid, ssid, y): send (IOEval, sid, ssid, f(x, y)) to C.
15. If corrupt C sends (IOEval, sid, ssid, y):

– Set budget[sid] := budget[sid] − 1 and send (IOEval, sid, ssid, f(x, y)) to
C.

16. If A∗ sends (Abort, sid, ssid):
– If S is corrupt, send (IOEval, sid,⊥) to C.

On command (Redeem, sid, ssid, y) from A∗:
17. If status[sid] is undefined: ignore the message.
18. Retrieve x := input[sid].
19. If budget[sid] = 0, send (IOEval, sid, ssid,⊥) to A∗.
20. Otherwise set budget[sid] := budget[sid]−1 and send (IOEval, sid, ssid, f(x, y))

to A∗.

Fig. 1. The functionality FiO2PC computing Cf with simulation rate r

scenario where a corrupt server executes the protocol on fresh input instead of
using stored input. Finally, the client may query against the functionality and
receive the function result on the client and server’s inputs.
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3.1 Simulation Rate

Our eventual io2PC protocol has the following interesting property. A corrupt
client may perform k different IOEval sessions in such a way that it eventually
learns (only) k outputs of the function, but the simulator cannot extract any of
the client’s inputs until after the kth session.1 We handle this issue in FiO2PC

with a ticketing mechanism. During each IOEval the client need not immediately
learn the output of f . Rather, the functionality grants a ticket that entitles the
client to one evaluation of f , and this evaluation of f can be redeemed at any
later point.

More generally, the functionality can grant r tickets for a single IOEval. Intu-
itively, think of IOEval as granting some resources to the client, which it can use
to evaluate f . But there may be “cheap” inputs to f which require r times fewer
resources than the worst case, in which case one session of IOEval may provide
enough resources for a corrupt client to learn r outputs of the function.

3.2 Server Compromise and Offline Evaluation

Following the treatment of server compromise in aPAKE [12,19], our functional-
ity separates Byzantine server corruption and server compromise. Upon being
compromised, the server only leaks its long-term storage to the adversary but
remains honest ; in other words, a Compromise query does not allow the server
to be controlled by the adversary. On the other hand, server corruption not only
leaks the entire state of the server to the adversary, but additionally allows for
complete control of the server. We consider the static corruption model, but cru-
cially, we allow the adversary to adaptively compromise an honest server. This is
reflected in our FiO2PC functionality: the adversary can compromise the server
via a Compromise message at any time, which marks the status of the current
session compromised, after which the adversary can perform offline evaluations.
However, in subsequent online evaluations, a compromised server is still treated
as honest.

Furthermore, similar to the (strong) aPAKE functionality, we require that
both Compromise and OfflineEval messages be accounted for by the environ-
ment. In particular, this means that the ideal adversary (simulator) cannot take
certain actions without some corresponding real-world event caused by the real
adversary: the ideal adversary cannot send Compromise unless the real adversary
compromises the server, and it cannot send OfflineEval unless the real adversary
performs some “work” (in the form of random oracle or generic group queries)
that corresponds to evaluating f . The rationale is similar to why Byzantine cor-
ruptions are accounted for by the environment in the UC framework: to prevent

1 Essentially, our protocol for IOEval simply allows the client to make some fixed
number of OPRF queries. Instead of using those OPRF queries for k sequential
evaluations of the function, the client can schedule the OPRF queries in parallel —
e.g.., the first query in all k evaluations, then the second query in all k evaluations,
etc.
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the simulator from corrupting all parties and making the simulation trivial. In-
deed, the Compromise and OfflineEval messages can be formally modeled as a
special form of corruption — see [8,16] for a detailed description.

3.3 Preventing Precomputation

We require that OfflineEval commands sent by a corrupt client are accounted for
by the environment, and can only be issued by the environment if the real-world
adversary does some observable “work”. Crucially, that “work” must happen
after server compromise. This requirement means that the client cannot “pre-
compute” work before compromise that permits the simulator to send many
OfflineEval commands instantly upon server compromise.

This feature is analogous to the definition of strong aPAKE. In non-strong
aPAKE, an adversary can learn all parties’ stored passwords instantly upon
compromise of the password file. In strong aPAKE, an adversary can only make
password guesses after compromise, and these password guesses must be ac-
counted for by the environment — i.e. they must correspond to observable work
performed after compromise by the adversary. In this sense, our FiO2PC func-
tionality is analogous to the strong flavor of aPAKE.

4 io2PC for Random-Oracle-Model Obfuscation

In this section, we describe a compiler for realizing io2PC from functions that
have VBB obfuscation in the random oracle model. Let us first recall the
OPAQUE compiler [19] from aPAKE to saPAKE. The OPAQUE compiler works
by replacing the input password pw to the starting aPAKE protocol with the
evaluation OPRF(pw). This compiler serves as a source of intuition for an inter-
mediate compiler for io2PC which takes a VBB obfuscation in the random oracle
model and replaces the input x to each random oracle evaluation with OPRF(x).

Recall the point function obfuscation Ox = H(x) for random oracle H, with

evaluation H(·) ?
= Ox [21]. Applying this compiler, we arrive at the io2PC pro-

tocol in which the server stores O′x = H(OPRF(x)) and interactively evaluates

H(OPRF(·)) ?
= O′x by sending O′x to the client then acting as the server in an

OPRF protocol. This intuitive compiler is not far from the truth, as for random
oracle H, H(OPRF(·)) is itself an OPRF, so we simplify slightly by instead re-
placing all random oracle invocations directly with OPRF invocations. Indeed,
with a small modification replacing the OPRF in this compiler with a verifiable
OPRF (VOPRF), we achieve the compiler described in Section 4.2.

4.1 Oblivious PRF

An Oblivious Pseudorandom Function (OPRF) [11] for a Pseudorandom Func-
tion (PRF) family F(·) is, generally, a two-party protocol for realizing the func-
tionality where a server who holds a key k and a client who holds an input
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x evaluate Fk(x) with output (ε, Fk(x)). Namely, the client learns Fk(x) and
the server learning nothing about the input x or the output Fk(x). OPRFs have
found many applications and have been extended to support verification of client
and server inputs [18,20].

Our functionality FVOPRF, in Figure 2, for a verifiable OPRF (VOPRF)
with active compromise closely follows the functionality of Jarecki, Krawczyk,
and Xu [19].

Parameters:
– client C, server S, and ideal adversary A∗

Storage:
– two maps, status and F

On command (VOPRFInit, sid) from S:
1. If status[sid] is defined: ignore the message.
2. Set status[sid] := active.
3. Send (VOPRFInit, sid, S) to A∗.

On command (Compromise, sid) from A∗:
4. Set status[sid] := compromised.

On command (OfflineEval, sid, x) from party P ∈ {A∗, S}:
5. If status[sid] 6= compromised or S is not corrupted, and P 6= S: ignore the

message.
6. If status[sid] is undefined: send (VOPRFEval, sid,⊥) to P.
7. Otherwise, if F [x] is undefined, set F [x]← H, and send (OfflineEval, sid, F [x])

to P.

On command (VOPRFEval, sid, ssid, x) from C:
8. If status[sid] is undefined: send (VOPRFEval, sid,⊥) to C.
9. Send (VOPRFEval, sid, ssid,C) to A∗, (VOPRFEval, sid, ssid) to S, and wait

for (SComplete, sid, ssid) from S.
10. Send (SComplete, sid, ssid, S) to A∗ and wait for either (Deliver, sid, ssid) or

(Abort, sid, ssid) from A∗.
11. If A∗ sends (Abort, sid, ssid):

– If F [x] is undefined, set F [x]← H and send (VOPRFEval, sid, F [x]) to C.
12. If A∗ instead sends (Abort, sid, ssid):

– If S is corrupt, send (VOPRFEval, sid,⊥) to C.

Fig. 2. The functionality FVOPRF for evaluating random function F with range H

The main difference between the functionality in Figure 2 and the comparable
OPRF functionality [19] is the addition of the Abort query. FVOPRF is verifiable
in the sense that it allows for a client to abort in the face of a corrupt server who
may, for example, commit to a PRF key through a public key and use a different
PRF key during evaluation. Instead of presenting multiple tables indexed by
a function parameter as in previous functionalities [18], FVOPRF uses a single
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key provided during initialization and then exposes Abort. This verifiability also
models the client’s ability to verify consistent key usage between various OPRF
interactions with a given server. The client will be assured that all interactions
compute the same underlying PRF or else the client can abort.

Our VOPRF functionality Figure 2 differs from others in the literature (e.g.,
[1]). Our definition requires that the outputs of the VOPRF are pseudorandom
even to the server. This requirement is related to the fact that io2PC (like asym-
metric PAKE) requires programmability of outputs from the simulator, even
for the server’s non-interactive evaluations of the OPRF. [16] In particular, this
means that to provide input obfuscation to non-trivial functions we must rely
on some assumption with stronger programmability than afforded by a CRS.
As such, we cannot achieve this functionality outside a strongly programmable
model such as the random oracle model or the generic group model.

The requirement that the outputs of the VOPRF are pseudorandom even to
the server is necessary to realize the intuition that a corrupt client can only gain
oracle access to the underlying PRF on server compromise. We like to think
of such a (V)OPRF as a “personalized” Random Oracle which the server can
let another party evaluate, privately, on some input. When an honest server is
compromised by a corrupt client, the client gains the ability to evaluate this
personal random function at will; however, since the outputs of the function are
pseudorandom to the server they are also pseudorandom to a client who compro-
mises the server’s storage. To meet the idea of oracle access, these evaluations
must also be observable. With these two properties, we can see that the exposed
oracle is analogous to a personalized random oracle.

Jarecki, Kiayias, and Krawczyk [18] provide an efficient UC instantiation of a
VOPRF in the random oracle model under a one-more Gap DH assumption. We
recall that protocol — called 2HashDH-NIZK therein for its eponymous entry
and exit hashes — in Figure 3.

Similar to previous results for the 2HashDH-NIZK protocol [18] in Figure 3
and its non-verifiable derivative [19], we know that 2HashDH-NIZK satisfies our
requirements for adaptive compromise, and relative to S’s public key, 2HashDH-
NIZK satisfies our verifiability requirements. The inclusion of a NIZK does not
significantly modify the proof for adaptive compromise, and we may consider
the existence of an authenticated channel, mediated through the authenticated
channel functionality FAUTH to provide the server’s public key to the client.
In situations where the public key of the server is known a-priori to the client,
we may drop the need for an authenticated channel; however, in the cases we
consider for io2PC, the existence of an authenticated channel is already assumed.

4.2 io2PC Protocol

We present our OPRF-based io2PC protocol in Figure 4. In the initialization
phase, the server computes an obfuscation of its input x, with the random oracle
queries made via evaluating the random function in FVOPRF offline. Crucially,
after computing the obfuscated input Ox, the server only stores Ox and erases
the original input x. In online evaluation, the server sends its storage Ox to
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Parameters:
Generator g of cyclic group of order q
Random Oracles H1(·), H2(·), H3(·)
Client C and Server S
KeyGen:

S samples k ← Zq.
S stores k and returns public key gk.

Compromise:

S returns stored key k.
Offline Evaluation:

On input x, S returns H2(gk, x,H1(x)k)

Online Evaluation:
C, on input x, samples r ← Zp and

sends (H1(x))r to S.

S, on message b from C sends h = gk,

bk, and NIZKH3(b, bk, g, gk) to C.
C, on message h, c, π from S, verifies
π is a valid proof then returns

H2(h, x, c1/r).

Fig. 3. VOPRF Protocol 2HashDH-NIZK

the client, who then runs the obfuscation evaluation procedure to compute the
function result with the random oracle queries made via evaluating the random
function in FVOPRF online (so the client runs evaluation with FVOPRF c times).

Our protocol bears a resemblance to the OPAQUE strong aPAKE proto-
col [19], where the client evaluates an OPRF on its password and obtains a point
obfuscation of the password (called the “randomized password” in [19]), receives,
from the server, an encryption of the client’s authenticated key exchange (AKE)
credentials under the randomized password, decrypts and learns its credentials,
and then runs an AKE protocol with the server. However, since our goal here is
not key exchange, our protocol is significantly simpler than OPAQUE: the server
only needs to send the obfuscation (the randomized password) to the client, and
no AKE protocol is run between the client and the server.

Using Verifiable OPRF Our io2PC protocol requires a verifiable OPRF,
meaning that the client should be convinced that the server uses a consistent
OPRF key. The alert reader may notice that OPAQUE does not require a verifi-
able OPRF. However, OPAQUE corresponds to a variant of io2PC for the special
case of point functions, and some situations arise in the special case of io2PC
which are not present in that special case.

First, point-function obfuscation (and hence OPAQUE) requires only a single
call to the OPRF / random oracle. In the general case, if multiple random oracle
queries are required to evaluate an obfuscation, and these oracle queries are
replaced by OPRF calls, what should happen if a corrupt server changes its
OPRF key between those calls? This is not just a hypothetical question — in
the obfuscation presented in Section 6.2, the evaluation algorithm should make
some “dummy queries” to its oracle so that the total number of queries does not
depend on the input. But the choice of which queries are “dummies” depends on
the input. A corrupt server could therefore observe whether changing its OPRF
key in an instance leads to any change in the client’s output, thereby deducing
whether a query is a dummy or not.
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Second, point function obfuscation is special because the effect of substituting
the “wrong” OPRF key can be easily simulated. Using the wrong OPRF key
for a point function makes the point function output false with overwhelming
probability, and this can be simulated by the corrupt server simply choosing a
random target point for the point function. But in general, it is not immediate
that selectively changing the OPRF key is equivalent to choosing a different
obfuscated input.

Theorem 1. Suppose (Obf,ObfEval, c) is a VBB obfuscation for Cf with simu-
lation rate r, in the random oracle model. Then the io2PC protocol (Figure 4)
realizes the FiO2PC functionality computing Cf with simulation rate r (Figure 1)
in the FVOPRF-hybrid world.

Parameters:
– Obfuscation (Obf,ObfEval, c) for the class of functions Cf = {f(x, ·) | x ∈
{0, 1}∗}, in the random oracle model.

– Client C and server S.

On command (Init, sid, x) for S:
1. S: Send (VOPRFInit, sid) to FVOPRF

2. S: Run Ox ← Obf?(x), where each time Obf queries its oracle at q:
– Send (OfflineEval, sid, ssid, q) to FVOPRF

– Receive response (OfflineEval, sid, ssid, r)
– Give r to Obf as the response to its oracle query

3. S: Store Ox.

On command (Compromise, sid) from A∗:
4. A∗ must also send (Compromise, sid) to FVOPRF

5. A∗ learns Ox.

On command (IOEval, sid, ssid) for S:
6. S: Send (sid, ssid,Ox) to C.
7. Both parties set i := 0.
8. C: Await command (IOEval, sid, ssid, y).
9. C: Run z := ObfEval?(Ox, y), where each time ObfEval queries its oracle at q:

– C: Send (VOPRFEval, sid, ssid‖i, q) to FVOPRF

– S: Await (VOPRFEval, sid, ssid‖i) from FVOPRF

– Both: set i := i+ 1
– S: If i > c: abort. Otherwise, send (SComplete, sid, ssid‖i) to FVOPRF

– C: Await response (VOPRFEval, sid, ssid‖i, r) from FVOPRF

– C: Give r to Obf as the response to its oracle query
10. C: Output (IOEval, sid, ssid, z)

Fig. 4. The io2PC protocol for computing function f , based on a VBB obfuscation in
the random oracle model.
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We provide the main ideas for the simulator here and provide a proof of this
theorem in the full version of this paper.

In the case that S is corrupt Sim simulates FVOPRF and keeps track of
all queries the corrupt server makes to the functionality. Upon receiving
(IOEval, sid, ssid,C) from F , and (sid, ssid,Ox) from the corrupt server, Sim
makes dummy OPRF evaluations VOPRFEval and receives Deliver, until it re-
ceives a total number of c Deliver messages from A. Finally, Sim calculates
x := Extract(Ox,H) and sends (IOEval, sid, ssid, x) to F . In this case, we write
S∗ for the server to stress the fact that it is corrupt. The simulator Sim behaves
as follows:

In the case that C is corrupt On Init from F , Sim runs Ox := SimObf1(), the first
phase of the VBB simulator for (Obf,ObfEval). When A compromises the server
and FVOPRF, Sim sends Ox to A.2 When A queries its offline OPRF oracle on
input p after compromise, Sim runs SimObf2() with the adversary querying H(p).
When SimObf2 makes a query y to its oracle f(x, ·), Sim sends (OfflineEval, y) to
F , and on F ’s response (OfflineEval, z), Sim sends z to SimObf2 as the response
to its query. Finally, when SimObf2 outputs q as the response to the adversary’s
H(p) query, Sim sends q to A as the OPRF output. On IOEval from F , Sim
sends Ox to the corrupt client. If A queries the OPRF on input p, Sim runs
SimObf2() with the adversary querying H(p) until c queries are made. Finally,
when SimObf2 makes a query y to its function oracle f(x, ·):

– If this is the first such query since the last (IOEval,S) from F , Sim sends
(IOEval, y) to F .

– Otherwise, Sim sends (Redeem, y) to F .

On F ’s response (IOEval, z), Sim sends z to SimObf2 as the response to its
query. Finally, when both of the following happen: (1) SimObf2 outputs q as
the response to the adversary’s H(p) query, and (2) A sends Deliver aimed at
FVOPRF, Sim sends (VOPRFEval, q) to the corrupt client.

5 io2PC for Generic-Group Obfuscations

5.1 Generic Groups

Generic groups were introduced by Shoup [23] as a way to model an idealized
cyclic group where the only allowable operations are the standard group opera-
tions. Consider an encoding σ : Zp → {0, 1}∗ of group elements (without loss of
generality, the cyclic group of order p) into strings. The group operation (on en-
coded elements) is defined by the function multσ(σ(x), σ(y)) = σ(x+ y mod p).
In Shoup’s generic group model, parties have access to an oracle for multσ for

2 Following e.g., [19], we assume that A always sends a Compromise message to S and
FVOPRF simultaneously. These two actions correspond to a single action in the real
protocol, i.e. compromising the server.
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a uniformly chosen encoding σ, along with an encoding of the group generator.
Under such a random encoding, the encoding of a group element leaks nothing
about that item’s “identity” (i.e. its discrete log).

Maurer [22] proposed a slightly different model of generic groups, where the
encoding of elements is not bijective; i.e. each group element may have many valid
encodings. In this model, a stateful oracle maintains a mapping D : {0, 1}∗ → Zp,
where an abstract handle h represents the group element D[h] ∈ Zp. A party
can query its oracle to multiply handles h1, h2 — to do this, the oracle chooses
a new handle h3 and records D[h3] = D[h1] +D[h2] mod p.

In Shoup’s generic group model, every group element x has a unique encoding
σ(x), which means that it is trivial to test equality of group elements. In Maurer’s
model, the oracle must provide an equality-test function — i.e. given handles

h1, h2 the oracle returns D[h1]
?
= D[h2].

The two generic group models are equivalent in terms of algorithmic power
(e.g., the discrete log problem is equally difficult in both models) [17]. However,
the distinction is important when incorporating generic groups into a larger
cryptographic system. For example, in the Shoup model one may compute a
hash of a group element’s encoding, so that anyone who can compute the same
group element can also compute the same hash. In the Maurer model, two parties
may compute two different handles for the “same” group element, so one must
be more careful about the distinction between handles and the group elements
they represent.

In this work we use a generic group model more similar to Maurer’s model.
The details are given in Figure 5. Group elements may be represented by many
handles, and the oracle must therefore provide an explicit equality test feature.
Without loss of generality, we provide a zero-test feature as it is simpler.

In Maurer’s model, the handles can be sequential numbers — i.e. the ith
oracle query is given handle “i”. This suffices to reason about non-interactive
algorithms. In our setting, the generic group oracle is a common resource shared
among many parties (similar to a random oracle), and in that case sequence
numbers would reveal how many group operations other parties have performed.
Our generic group oracle therefore chooses new handles uniformly at random.

Conventions. Although technically a generic group is modeled as an oracle, it
becomes too cumbersome to notate all group operations as oracle calls. Instead,
we use standard (multiplicative) group notation to denote operations in the
group, as is standard.

A group requires both a group operation and inverses. Since we always con-
sider groups of known order p, inverses can be computed by raising to the p− 1
power, which can be done with the group-multiplication oracle, so we do not
provide a separate explicit group-inverse oracle.

Our generic group formulation assumes that every handle represents some
group element. Any handle not specifically generated by the oracle corresponds
to a uniformly chosen group element. Hence, parties can generate [handles of]
random group elements at any time.
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dlog := empty map
g∗ ← {0, 1}2κ
dlog[g∗] := 1

ZeroTest(g1):

if dlog[g1] undefined: dlog[g1]← Zp
return dlog[g1]

?
= 0

Mult(g1, g2):

if dlog[g1] undefined: dlog[g1]← Zp
if dlog[g2] undefined: dlog[g2]← Zp
g3 ← {0, 1}2κ
dlog[g3] := dlog[g1] + dlog[g2] mod p
return g3

gen():

return g∗

Fig. 5. A generic group oracles for group of order p, with handles of length 2κ

Standard Concepts. The generic group oracle uses a map dlog to keep track of
the discrete log of every handle. The discrete log of a group element is of course
an element of Zp. A common proof technique in the generic group model is to
keep track of discrete logs symbolically.

We use the mathbb font to denote formal variables like K,R. Then we extend
the contents of dlog to contain not only scalars from Zp but rational functions
in these formal variables — i.e. dlog[·] ∈ Zp(K,R, . . .). When multiplying group
elements, the new handle’s dlog value is still recorded as dlog[g3] = dlog[g1] +
dlog[g2], but now addition denotes (symbolic) addition of functions over the
formal variables.

In our security proofs, we write an expression like “gaK+b” to indicate that
the simulator generates a new group handle whose dlog value is the symbolic
expression aK + b. Our convention is that lowercase letters like a, b will denote
scalars from Zp.

In a standard generic-group security proof, a random group element like gr

will be replaced by a symbolic one gR. After an adversary performs group opera-
tions, other group elements may have dlog-values that are expressions including
R. A zero-test on such a group element is performed by checking whether the
dlog of that group element is identically (symbolically) zero. A standard argu-
ment shows that symbolic zero-tests are indistinguishable from real/concrete
zero-test, provided that all symbolic dlog expressions have bounded degree, and
the dlog formal variables take the place of uniformly chosen (concrete) discrete
log values.

5.2 Personalized Generic Group

In the previous sections, we saw that we can convert a VBB obfuscation into
an io2PC protocol by replacing a random oracle with an oblivious PRF. We
like to think of an OPRF as a kind of “personalized” random oracle. It is a
random function, to which only the server has the key; yet the server can al-
low the client to evaluate the function on a private input. Even if the server’s
key to the OPRF is stolen, the adversary’s access to the random function is
observable/programmable to the simulator.
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In this section we extend this analogy from random oracles to generic groups.
A personalized generic group (PGG) is a group to which only the server
has the key; yet the server can allow the client to perform the group operation
on private inputs. If the server’s key to the group is stolen, the adversary’s access
to the group is analogous to a true generic group.

We formally define a personalized generic group as an ideal functional-
ity Fpgg in Figure 6. The functionality maintains a map DLog associating
discrete logs with handles, similar to a standard generic group. The server
can perform group operations at any time by sending appropriate commands
(OfflineMult,OfflineZeroTest) to the functionality. The client can perform group
operations, but only interactively (OnlineMult,OnlineZeroTest) and only with ap-
proval from the server. These group operations are oblivious — the server does
not learn which group elements the client is operating on. Only after designating
the session as compromised can a corrupt client also gain the ability to perform
the group operations unilaterally.

We point out some other notable aspects of the definition: There are a few
things that a client can do non-interactively, i.e. without the server’s assistance
and approval. A client can freely “clone” a handle, resulting in another handle
with the same DLog value. In our eventual PGG protocol, this is indeed possible,
but does not seem to give obvious advantage to the client. The client can also
generate a handle representing a random group element since by default, all
handles correspond to uniform group elements.

A corrupt server can learn all discrete logs of all handles. This makes the
simulation considerably easier, but does not seem to represent any issues with
our usage of the functionality. Note that if the server is honest but a corrupt
client compromises the session, the client cannot learn discrete logs. This helps
reflect the fact that the corrupt client can obtain at most oracle access to a
generic group upon compromising the session. It is likely that our PGG protocol
could be proven secure without letting the simulator for a corrupt server learn
all discrete logs, but at the cost of increased proof complexity.

The OnlineMult and OfflineMult commands are not analogous. OfflineMult is
more powerful than OnlineMult, since it allows the caller (either the server or
a client after the session is compromised) to perform arbitrary linear combina-
tions of group elements, not just a single group operation between two elements.
We could define the PGG ideal functionality so that OnlineMult is more pow-
erful than a single group operation, and our protocol could achieve this feature
in a natural way. We have chosen to model only the minimal functionality of
OnlineMult.

The simulator for a Fpgg protocol should only call OfflineMult at most once
for each multiplication made (after compromise) in the common group by the
corrupt client; and it should call OfflineZeroTest at most once for each zero-test
made in the common group by the corrupt client. i.e. an adversary must expend
new effort for each OfflineMult and OfflineZeroTest, and furthermore that effort
must be expended after compromise. However, recall that an OfflineMult is more
powerful than a single multiplication. A corrupt client could perform a single
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multiplication in the common group that is as powerful as a single OfflineMult
(which performs a more powerful linear combination of group elements) in the
personalized group.3 For this reason, it is much more important to measure
an adversary’s effort in terms of zero-tests and not group multipli-
cations, since the simulator does not precisely preserve the number of group
multiplications between the common group and personalized group. Only the
zero-tests are preserved exactly.

5.3 Protocol for Personalized Generic Groups

In this section we describe our protocol for a personalized generic group. The
protocol is in the ideal permutation model and uses a generic group itself. This
leads to a high potential for confusion. We differentiate between the common
group and the personalized group:

The common group is the generic group that is used by the protocol. Both
parties have unrestricted oracle access to the operations of this group. Group
element handles are associated with their discrete log via a map that we call dlog.
In the security proof, the simulator finds it useful to play the role of this generic
group and maintain the dlog map differently (e.g., with symbolic expressions
rather than scalars from Zp).

The personalized group is one that is realized by the protocol. In the ideal
functionality for this personalized group, handles are associated with their dis-
crete log via a map that we call DLog. The goal of this personalized group is to
carefully restrict the client’s access to the operations that involve DLog, via an
interactive protocol.

Main Idea. In our protocol, a “key” for a personalized generic group consists of
a key k to a strong PRP F , with forward and inverse evaluation denoted F+ and
F− respectively, and a random generator ĝ (of the common group). An element
in the personalized group with discrete log x is represented by a handle of the
form (Fk(m), ĝxgm) for m ∈ Z providing a multiplicative blind gm. This kind of
encoding can be motivated as follows:

A client who doesn’t know the “key” to the personalized group can only
create handles of random elements, because the action of F±k is unpredictable.

After compromising the server and learning the “key” (k, ĝ), an adversary
can invert the PRP to obtain m, then remove the gm blinding term to obtain
simply ĝx. In other words, after compromising the server, the handle becomes
equivalent to knowing ĝx. The adversary can now perform group operations on
these unblinded values of the form ĝx, without the server’s help. But since we
are in a generic group, the simulator can continue to observe the adversary’s
group operations on these values.

With the help of the server, it is possible for the client to perform group
operations on two of these handles:

3 This is indeed possible in our protocol but would be mitigated if the common-group
oracle had a group-multiplication feature exactly as powerful as OfflineMult of Fpgg.
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1. Consider two handles of the form (c1, g1) and (c2, g2), where c1 =
Fk(m1), c2 = Fk(m2) and g1 = ĝx1gm1 , g2 = ĝx2gm2 . The client can per-
form g3 = g1g2 = ĝx1+x2gm1+m2 . This is half of a valid handle for the
element with discrete log x1 + x2. If the client can obtain an encryption of
Fk(m1 +m2), they will be able to construct a complete and correct handle.

2. The client and server run a 2PC protocol, where the client provides c1, c2,
and the server provides k, and the client learns Fk(m1 + m2). The server
learns nothing. Note that this 2PC protocol involves no group operations in
the common generic group – it merely involves arithmetic on exponents and
PRP evaluation.

Similarly, the client can perform a zero-test with the server’s help:

1. Given a handle (c1, g1) the client wants to know whether these have the form
c1 = Fk(m1) and g1 = ĝ0gm1 = gm1 . In other words, the client should learn
whether c1 encrypts the discrete log of g1.

2. Our approach again involves enlisting the help of a 2PC protocol. The client
provides c1 and the server provides k, so m1 can be obtained inside the
2PC functionality. The functionality provides two basic functions: First, it
chooses a random s and lets the client learn gs·m1 using the value of m1

that it computed. Next, it allows the client to raise any group element of its
choice to the s power. Assuming the client chooses to compute gs1, the result
equals gs·m1 if and only if g1 = gm1 . We discuss exactly how this is done
below.

Details and fine print. The full details of our protocol are given in Figure 8, where
the separate 2PC functionality invoked by the parties is described in Figure 7.
This “helper functionality” is a typical reactive functionality that can be securely
realized by any standard 2PC protocol. The preceding outline captures the main
intuition of our protocol, but there are several necessary modifications required
for technical reasons.

First, the handles are “wrapped” in an ideal permutation Π± — i.e. a valid
handle is h of the form Π(c1, g1) where c1, g1 are as described above, and Π is an
ideal permutation. By enlisting the ideal permutation, the simulator can observe
every time a new handle is generated or an existing handle is “unpacked” into
its two components.

In our outline, the parties run an oblivious protocol that allows a client,
who holds handles Π(Fk(m1), ĝx1gm1) and Π(Fk(m2), ĝx2gm2), to obtain a new
handle Π(Fk(m1+m2), ĝx1+x2gm1+m2). However, this new handle would leak its
“history” to anyone who holds k, which would be undesirable. The new handle
should instead have a fresh mask m3, rather than a mask m1 + m2 derived
from its parent handles. When the parties run a 2PC to let the client learn its
new ciphertext, the client should instead learn Fk(m3) for a fresh m3. Then the
client needs to learn a correction term ∆ = gm3−m1−m2 so it can complete the
handle as Π

(
Fk(m3), (g1 · g2 · ∆) = ĝx1+x2gm3

)
. Since the 2PC functionality

itself cannot generate group elements (this would require contacting the generic
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Parameters:
– group order p
– handle length `
– client C and server S

Storage:
– map DLog; our convention is uninitialized entries of DLog are sampled uni-

formly from Zp before being used.
– map status

On input (Init, sid, h ∈ {0, 1}`) from server S:
1. If status[sid] already defined: abort.
2. Set status[sid] := active.
3. Send (Init, sid, S, h) to C.
4. Set DLog[h] := 1.

On (Compromise, sid) from A∗:
5. Set status[sid] := compromised.

On input (OnlineMult, sid, ssid, h1, h2) from C:
6. Give (OnlineMult, sid, ssid) to S and await response (Deliver, sid, ssid)
7. Sample h3 ← {0, 1}`.
8. Set DLog[h3] := DLog[h1] + DLog[h2] mod p.
9. Give (OnlineMult, sid, ssid, h3) to P .

On input (OfflineMult, sid, ssid, u0, (u1, h1), . . . , (un, hn)) from party P ∈ {S,A∗}:
10. If status[sid] 6= compromised and P = A∗: do nothing.
11. Sample h′ ← {0, 1}`.
12. Set DLog[h′] := u0 + u1DLog[h1] + · · ·+ unDLog[hn] mod p.
13. Give (OfflineMult, sid, ssid, h′) to P .

On input (cmd ∈ {OnlineZeroTest,OfflineZeroTest}, sid, ssid, h) from party P ∈
{A∗,S}:
14. If status[sid] 6= compromised and cmd = OnlineZeroTest and P = A∗: do

nothing.
15. If cmd = OnlineZeroTest:

Give (OnlineZeroTest, sid, ssid) to S and await response (Deliver, sid, ssid)

16. Give (cmd, sid, ssid, [DLog[h]
?
= 0]) to P .

On input (Identify, h) from corrupt S:
17. Give DLog[h] to S

On input (Register, v) from corrupt S:
18. h← {0, 1}`
19. DLog[h] := v
20. Give h to C

On input (CloneHandle, h) from corrupt C:
21. h′ ← {0, 1}`
22. DLog[h′] := DLog[h]
23. Give h′ to C

Fig. 6. The personalized generic group functionality Fpgg.
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group oracle for the common group), it delegates this task to the server. i.e. it
gives m3 −m1 −m2 to the server, who generates and sends ∆ = gm3−m1−m2 to
the client.

However, the server may cheat and send a different group element than the
functionality intended. To prevent this, the functionality authenticates the group
element with a one-time MAC. The functionality gives random MAC key α, β
to the client, and gives s and its one-time MAC µ = αs+ β to the server. Now
the server can send both gs and gµ to the client, who can check the MAC in the

exponent via (gs)α · gβ ?
= (gµ).

There are two conceptual steps in the zero-test protocol which are more com-
plicated than our high-level outline. First, the 2PC helper functionality wants
the client to learn the group element gm1s. It delegates this to the server, using
the same method above with one-time MACs, so that the client can be sure that
it receives the intended group element. Actually, we must blind the exponent
m1s from the server (since it also learns s below, and it should not learn m1

which is tied to this particular handle) — so the functionality gives a random z
to the client, and asks the server to deliver gm1s+z. The client can unblind by
multiplying with g−z.

Second, the 2PC functionality gives s to the server so that the server can
take part in a blind exponentiation protocol (raising a group element of the
client’s choice to the s power). It is important to ensure that the server raises
the client’s element to the correct power, since otherwise the server could easily
cause a zero-test to fail even when it should correctly succeed. For this, we (1)
have the functionality deliver the value gs to the client (via delegating to the
server), and (2) have the server run a simple verifiable exponentiation protocol,
where the client can be convinced that its group element was indeed raised to
the s power.

Security. In the full version of this paper we prove the following:

Theorem 2. The protocol in Figure 8 UC-securely realizes Fpgg (Figure 6) in
the generic group and ideal-permutation model, when F is a strong PRP.

We provide a sketch of the main ideas here. The case of a corrupt server is
considerably easier. It is easy to see that the server’s view during OnlineMult,
OnlineZeroTest gives no information about the client’s choice of handles, since all
the communication is mediated through the helper functionality Fhelper. The Fpgg

functionality allows a corrupt server to both learn the discrete log for any handle,
and also directly register a handle with a chosen discrete log. The simulator can
use these features to intercept all of the adversary’s Π± oracle queries and relay
discrete log information between the functionality and the actual group elements
used for h = Π(·, g1).

The case of a corrupt client is considerably more complex, but the main idea

is as follows. In the real world, handles have the form h = Π(c, ĝDLog[h]gF
−1
k (c)).

We use the technique of symbolic discrete logs (described in Section 5.1) to
model the adversary’s ignorance of certain values. The adversary does not know
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Parameters:
– modulus p
– strong PRP F± : {0, 1}κ × Zp → Zp
– client C and server S

Storage: value k, initially sampled as k ← {0, 1}κ

On command (HelpInit, sid) from S:
1. Sample α, β, c, s← Zp
2. µ = αs+ β // one-time MAC of s under key (α, β)
3. Send (HelpInit, sid, α, β, c) to C and send (HelpInit, sid, s, µ, c, k) to S.

On command (HelpMult, sid, ssid, c1, c2) from C:
4. Send (HelpMult, sid, ssid) to S await response (Deliver, sid, ssid).
5. m1 := F−1

k (c1); m2 := F−1
k (c2).

6. α, β,m3 ← Zp.
7. c3 = Fk(m3).
8. s = m3 −m1 −m2 mod p.
9. µ = αs+ β mod p. // one-time MAC of s under key (α, β)

10. Give (HelpMult, sid, ssid, α, β, c3) to C and give (HelpMult, sid, ssid, s, µ) to S

On command (HelpZeroTest, sid, ssid, c) from C:
11. Send (HelpZeroTest, sid, ssid) to S and await response (Deliver, sid, ssid)
12. m := F−1

k (c).
13. α, β, γ, s, z ← Zp.
14. t := sm+ z
15. µ = αs+ βt+ γ mod p. // one-time MAC of (s, t) under key (α, β, γ)
16. Give (HelpZeroTest, sid, ssid, α, β, γ, z) to C and

give (HelpZeroTest, sid, ssid, s, t, µ) to S

Fig. 7. Helper functionality Fhelper for our personalized generic group protocol.

the discrete log of ĝ, so we represent it by a formal variable K. Before the session
is compromised, the adversary does not know F−1k (c) for any c, so we represent
this value by formal variable Mc. The adversary initially does not know anything
about the DLog[h] values, so we represent them by formal variables Dh.

The adversary can only gain information about group elements (in the com-
mon group) through a zero-test. When the adversary makes such a zero-test, the
simulator observes it and checks the dlog value of that group element. This dlog
is a symbolic expression over the formal variables. Formal variables Mc and K
represent values that are random from the adversary’s point a view, so if the dlog
expression is not symbolically equal to zero as a function of those variables, then
the zero test in the real world would succeed only with negligible probability.
Hence the simulator can simply claim that the zero-test fails. However, the dlog
expression may contain Dh terms which represent concrete DLog[h] values, and
depending on the actual values in DLog[h] the dlog expression may or may not
be identically zero as a function of the other formal variables. In that case, the
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Parameters:
– generic group 〈g〉 of prime order p, with handles of length 2κ
– strong PRP F±

– ideal permutation Π± : (Zp × {0, 1}2κ)→ (Zp × {0, 1}2κ)
– client C and server S

On input (Init, sid) for server S:
1. S: Send (HelpInit, sid) to Fhelper

2. C: Receive (HelpInit, sid, α, β, c) from Fhelper

3. S: Receive (HelpInit, sid, s, µ, c, k) from Fhelper

4. S: Store (ĝ := gs−m, k), where m := F−1
k (c).

5. S: Send (S = gs,M = gµ) to C.
6. C: If Sα · gβ 6= M : abort.
7. C: Output (Init, sid, h = Π(c, S))

On input (Compromise, sid) from A∗:
8. A∗ should learn (k, ĝ)

On input (OnlineMult, sid, ssid, h1, h2) for C:
9. C: (c1, g1) = Π−1(h1); (c2, g2) = Π−1(h2).

10. C: Send (HelpMult, sid, ssid, c1, c2) to Fhelper

11. S: Await (Deliver, sid, ssid) from environment and forward it to Fhelper

12. C: Receive (HelpMult, sid, ssid, α, β, c3) from Fhelper

13. S: Receive (HelpMult, sid, ssid, s, µ) from Fhelper

14. S: Send (S = gs,M = gµ) to C.
15. C: If Sα · gβ 6= M : abort.
16. C: Output (OnlineMult, sid, ssid, h3 = Π(c3, g1 · g2 · S))

On input (OnlineZeroTest, sid, ssid, h1) for C:
17. C: (c1, g1) = Π−1(h1).
18. C: Send (HelpZeroTest, sid, ssid, c1) to Fhelper

19. S: Await (Deliver, sid, ssid) from environment and forward it to Fhelper

20. C: Receive (HelpZeroTest, sid, ssid, α, β, γ, z) from Fhelper

21. S: Receive (HelpZeroTest, sid, ssid, s, t, µ) from Fhelper

22. S: Send (S = gs, T = gt,M = gµ) to C.
23. C: If Sα · T β · gγ 6= M : abort.
24. C: a, b, c← Zp; A := ga1 · gb; C := gc1; send (A,C) to S.
25. S: Send A′ = As and C′ = Cs to C
26. C: If (A′)c 6= (C′)a · Sbc: abort

27. C: Output (OnlineZeroTest, sid, ssid, [(C′)1/c
?
= T · g−z])

On input (OfflineMult, sid, ssid, u0, (u1, h1), . . . , (un, hn)) for S:
28. S: For each i ∈ [n] do: (ci, gi) = Π−1(hi); mi := F−1

k (ci)

29. S: m∗ ← Zp; c∗ := Fk(m∗); h∗ = Π(c∗, ĝu0
∏
i g
ui
i · g

m∗−
∑

imi)
30. S: Output (OfflineMult, sid, ssid, h∗)

On input (OfflineZeroTest, sid, ssid, h1) for S:
31. S: (c1, g1) = Π−1(h1); m1 := F−1

k (c1)

32. S: Output (OfflineZeroTest, sid, ssid, [g1
?
= gm1 ])

Fig. 8. Our personalized generic group protocol.
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simulator must know whether the concrete DLog values make the dlog expression
identically zero. We carefully analyze what kinds of expressions are possible in
dlog, and show that this situation only happens when the simulator needs to
know whether a single DLog[h] value is zero, and then only after the adversary
has done an OnlineZeroTest on h. In all other cases, the concrete values in DLog
have no bearing on whether a dlog expression is symbolically zero (at least before
session compromise).

When the adversary compromises the session, it learns the PRP key k. This
makes the F−1k (c) values no longer uncertain from the adversary’s point of view.
We model this by having the simulator replace every formal variable Mc with a
concrete value F−1k (c), after compromise. This changes what kinds of expressions
the adversary is able to make appear in dlog. After the compromise, there are
more situations where the concrete values in DLog[h] have a bearing on whether
a dlog expression is symbolically zero. In those cases, the simulator can use
OfflineMult,OfflineZeroTest to learn the relevant information about those DLog
values.

5.4 io2PC Protocol for Generic-Group Obfuscation

Finally, with a personalized generic group, we can realize io2PC for any function
that has a suitable VBB obfuscation in the generic group model. The protocol is
essentially the same as our io2PC for random-oracle obfuscation (Figure 4), but
we replace the OPRF with a personalized generic group. We give the details in
Figure 9.

Theorem 3. Suppose (Obf,ObfEval, c) is a VBB obfuscation for Cf with sim-
ulation rate r, in the generic group model. Then the io2PC protocol (Figure 9)
realizes the FiO2PC functionality computing Cf with simulation rate r (Figure 1)
in the Fpgg-hybrid world.

The proof is essentially identical to that of Theorem 1, with the obvious
changes replacing the random oracle / OPRF with generic group / personalized
group.

6 Compatible Obfuscations

In this section we discuss obfuscations that are compatible with our io2PC ap-
proach, namely those that are input-independent, virtual black-box, and ex-
tractable.

6.1 Point Functions

For the point function, i.e. the function family Cf where f(x, y) = (x
?
= y), there

is a simple obfuscation in the random oracle model. We only sketch the scheme
and its security argument: given a random oracle H with range H, let Obf(x)
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Parameters:
– Obfuscation (Obf,ObfEval, c) for the class of functions Cf = {f(x, ·) | x ∈
{0, 1}∗}, in the generic-group model.

– Client C and server S.

On command (Init, sid, x), S for S:
1. S: Send (Init, sid) to Fpgg

2. S: Receive response (Init, sid, h)
3. S: Run Ox ← Obf?(x), where each time Obf queries its oracle:

– If the query is of the form Mult(h1, h2):
• Send (OfflineMult, sid, ssid, 0, (1, h1), (1, h2)) to Fpgg

• Receive response (OfflineMult, sid, ssid, h3)
• Give h3 to Obf as the response to its oracle query

– If the query is of the form ZeroTest(h1):
• Send (OfflineZeroTest, sid, ssid, h1) to Fpgg

• Receive response (OfflineZeroTest, sid, ssid, b)
• Give b to Obf as the response to its oracle query

4. S: Store Ox.

On command (Compromise, sid) from A∗:
5. A∗ must also send (Compromise, sid) to Fpgg

6. A∗ learns Ox.

On command (IOEval, sid, ssid) for S:
7. S: Send (sid, ssid,Ox) to C.
8. Both parties set i := 0
9. C: Await command (IOEval, sid, ssid, y).

10. C: Run z := ObfEval?(Ox, y), where each time ObfEval queries its oracle:
– If the query is of the form Mult(h1, h2):
• C: Send (OnlineMult, sid, ssid‖i, h1, h2) to Fpgg

• S: Await (OnlineMult, sid, ssid‖i) from Fpgg

• S: Send (Deliver, sid, ssid‖i) to Fpgg

• C: Await response (OnlineMult, sid, ssid‖i, h3) from Fpgg

• C: Give h3 to Obf as the response to its oracle query
– If the query is of the form ZeroTest(h1):
• C: Send (OnlineZeroTest, sid, ssid‖i, q) to Fpgg

• S: Await (OnlineZeroTest, sid, ssid‖i) from Fpgg

• Both: set i := i+ 1
• S: If i > c: abort. Otherwise, send (Deliver, sid, ssid‖i) to Fpgg

• C: Await response (OnlineZeroTest, sid, ssid‖i, b) from Fpgg

• C: Give b to Obf as the response to its oracle query
11. C: Output (IOEval, sid, ssid, z)

Fig. 9. The io2PC protocol for computing function f , based on a VBB obfuscation in
the generic group model.

output H(x), and ObfEval(Ox, y) output (H(y)
?
= Ox). Clearly, this scheme

is correct and input-independent with query rate c = 1. The VBB simulator
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chooses Ox ← H and answers the adversary’s H(y) queries as follows: it learns
whether y = x via querying f(x, y), and if so, it returns Ox; otherwise it returns
a random element in H. The simulation rate is 1 as QS = QA.

For the extractability property, Extract(O,H) checks if there is an x ∈ H
such that H(x) = O. If there is more than one such x, Extract aborts; if there is
exactly one such x, it outputs x; if there is no such x, it outputs ⊥. It is not hard
to see that the probability of the bad event in the definition of extractability is
negligible (it happens only ifA finds a collision in H, or findsO, y withO = H(y)
without querying H(y)).

6.2 Hyperplane Membership

Extending the idea of point-function obfuscation above, we may consider the
same function in higher dimensional spaces. In this section, we provide a new
proof for a hyperplane membership protocol in the generic group model.

Let p be a prime with ||p|| = κ and d = poly(κ). For x ∈ Zdp, define function

Fx : Zdp → {false,true} as

Fx(y) =

{
true if 〈x,y〉 = 0

false otherwise

i.e. Fx computes membership in the subspace of Zdp containing all vectors or-

thogonal to x. We use Fdp to denote the function family {Fx}. Obfuscation of

Fdp has been considered previously [10], and we recall the construction below.

Obfuscation The obfuscation in Figure 10 is due to Canetti, Rothblum, and
Varia [10] whose proof is based on strong DDH assumption proven in the GGM,
but the proof constructs an inefficient simulator in the dimension of the ambient
space. We reconsider the protocol and prove for an efficient simulator with access
to a global GGM.

Parameters:
Generic group G with handle space H.
Public generator g of prime order p.
Ambient space dimension d.
Obf(x):

Sample a generator γ of G.
Return Ox = (γxi)i∈[d].

ObfEval(Ox,y):

Interpret Ox as (oi)i∈[d] ∈ Hd.

Return
∏
i o
xi
i

?
= g0

Fig. 10. VBB Hyperplane Membership Obfuscation

On input x = (xi)i∈[d] ∈ Zdp and input y = (yi)i∈[d] ∈ Zdp, correctness is

immediately evident as ObfEval(Obf(x),y) computes
∏
i (γxi)

yi = γ〈x,y〉
?
= γ0.

27



The obfuscation algorithm Obf(x) must be careful about optimizing its generic
group operations, however. Even if xi = xj for distinct i, j, the obfuscation algo-
rithm must ensure that distinct handles are generated for γxi and γxj ; e.g., by
separately multiplying by g0. Finally, note that depending on how Figure 10
is implemented, the number of multiplication queries that ObfEval makes is
data dependent. Specifically, when evaluating exponentiation through squaring
ObfEval will compute g2 with one query while computing g127 will require 12
queries. To make the total number of multiplication queries a constant, we may
simply require a constant-time exponentiation algorithm.

In our previous definition for simulation rate, we stated that for an obfus-
cation to have simulation rate r, it must hold that QS ≤ r · QA

c . However, the
GGM oracle has two interfaces for queries: the multiplication query Mult and
the zero test query ZeroTest. As we stated earlier (see Section 5.2), it is much
more important to measure an adversary’s effort in terms of zero-tests and not
group multiplications. If we only count ZeroTest queries, the obfuscation scheme
is indeed limited by a single query with QS = QA. In the theorem below, the
statements about query rate and simulation rate refer only to ZeroTest queries.

Virtual Black-Box Property

Theorem 4. The scheme in Figure 10 is a VBB obfuscation Definition 3 for F
in the Generic Group Model, with query rate c = 1 and simulation rate r = 1.

Proof Sketch:
The simulator Sim replaces the obfuscation Ox with uniformly sampled handles
O ← Hd and then plays the role of the two GG oracles Mult and ZeroTest. In
the real world, the obfuscation uses a sampled generator γ with uniform discrete
logarithm and since this value is outside the adversary’s view, we represent it
with the formal variable K. Sim then catalogs the symbolic discrete logarithms
of all multiplications the adversary makes relative to handles {oi}i∈[d], compris-
ing O, and the public generator g. As the adversary can only gain information
about relations between group elements through a zero-test, it can’t tell if O was
replaced until it interacts with the ZeroTest oracle. When the adversary makes
such a zero-test, Sim checks the discrete logarithm of that group element. By
construction, the discrete logarithm of these queries will take on the form of a
polynomial K (

∑
i aixi) + z, for coefficients ai, z ∈ Zp, relative to base g. Noting

that
∑
i aixi is exactly 〈x,a〉, Sim may then check if this combination is zero by

querying the function oracle f(x,a). But since the simulator does not need to
know the xi to make the query, the simulator may run agnostic of the input x.

A full proof of this property and the security of the construction is given in
the full version of this paper.

Extractability The construction in Figure 10 is extractable (Definition 4)
through the following algorithm:

– Extract on input (O,H) iterates through all handles in H and catalogs their
discrete logarithms relative to g in a list DL.
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• If any handles h were sampled by A, Extract samples a uniform discrete
logarithm DL[h]← Zp.

– Extract, interprets O as (oi)i∈[d] ∈ Hd, and for each oi:
• If DL[oi] is defined, Extract sets xi := DL[oi].
• Otherwise, Extract samples xi ← Zp.

– Extract finally returns x = (xi)i∈[d].

A proof of this property is given in the full version of this paper.
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