
One-Time Programs from Commodity Hardware

Harry Eldridge1, Aarushi Goel2, Matthew Green1, Abhishek Jain1, and
Maximilian Zinkus1

1 Johns Hopkins University
{hme, mgreen, abhishek, zinkus}@cs.jhu.edu

2 NTT Research
aarushi.goel@ntt-research.com

Abstract. One-time programs, originally formulated by Goldwasser et
al. [26], are a powerful cryptographic primitive with compelling appli-
cations. Known solutions for one-time programs, however, require spe-
cialized secure hardware that is not widely available (or, alternatively,
access to blockchains and very strong cryptographic tools).

In this work we investigate the possibility of realizing one-time programs
from a recent and now more commonly available hardware functionality:
the counter lockbox. A counter lockbox is a stateful functionality that
protects an encryption key under a user-specified password, and enforces
a limited number of incorrect guesses. Counter lockboxes have become
widely available in consumer devices and cloud platforms.

We show that counter lockboxes can be used to realize one-time programs
for general functionalities. We develop a number of techniques to reduce
the number of counter lockboxes required for our constructions, that may
be of independent interest.

1 Introduction

One-time programs, formulated by Goldwasser et al. [26], are a flexible and pow-
erful cryptographic primitive with compelling applications to limited-attempt
authentication, fuzzy vaults, limited-query differential-private data analysis, and
even autonomous ransomware and beyond. In the standard model, one-time
programs are known to be impossible to realize purely in software [26,13]. To
evade this impossibility, prior works have examined the problem of building
one-time programs from secure hardware tokens [26,30], or alternatively, using
blockchains [28].

The works of [26,30] employ tamper-proof hardware that implements one-
time memory – a simple, stateful functionality that allows anyone to read one
location, after which all other locations become inaccessible. While these results
are practical and work in a variety of settings, they have mainly garnered theo-
retical interest. The likely cause is that one-time memory tokens have not been
available as a standard feature of popular personal or cloud computing platforms.
While it is possible to realize these tokens using programmable smart cards or
HSMs [17,52,32], such development typically requires expensive equipment and

2 H. Eldridge et al.

considerable development effort. Moreover, the few affordable platforms that
support custom programming may provide weak or limited security guarantees.
If portability is not required, tamper-proof hardware tokens can also be realized
through virtualization: secure enclaves such as Intel SGX [42] and ARM Trust-
Zone [46] offer tamper-resilience under relatively strong adversarial assumptions
such as operating system (OS) compromise. Indeed, if such an enclave platform
is considered trusted, it is likely easier to implement an entire one-time func-
tionality within the enclave. However, implicit trust in an enclave provider is
unacceptable in some threat models, and the soundness of this trust regardless
of threat model has been repeatedly called into question [14,19,45]. These execu-
tion environments also typically place limitations on end-users’ ability to deploy
arbitrary code [33,6,50].

Counter lockboxes. Recently, a new generation of device- and cloud-based
secure hardware has become available to end users. This includes secure co-
processors that are now built into many smartphones and tablets, including
the Apple Secure Enclave Processor (SEP) [3] and Google’s Titan M2 [27] co-
processor. It also includes specialized Hardware Security Modules (HSMs) that
have recently been deployed within the data centers of consumer cloud providers;
these can be accessed remotely from consumer devices to implement services such
as Apple’s Cloud Key Vault [39], Android Backup [48], WhatsApp backup [38],
and Signal Secure Value Recovery [40]. Notably, these systems are not aimed
at enterprise customers; they are configured to protect end-user cryptographic
keys, even from attacks that might be launched by the device manufacturer or
cloud provider themselves. These systems are now being used across billions
of devices, making them more broadly accessible to consumers than any prior
secure hardware platform.

Unlike secure enclave environments such as TrustZone or SGX, these
consumer-oriented hardware devices do not allow end-devices to securely exe-
cute arbitrary programs. Instead, they present a limited interface to the device’s
application software. Since the primary purpose of these systems is to protect
encryption keys under user-selected passwords, the most common interface is a
functionality akin to what we describe as a counter lockbox.3 To initialize a lock-
box, the application software provides a password to the hardware along with a
maximum attempt limit. At any later point, the software can retrieve the decryp-
tion key by providing the correct password. To protect the key against guessing
attacks, the hardware increments a tamper-resistant counter for each incorrect
guess: when this counter exceeds the maximum attempt limit, the hardware
deletes the stored key. Given that this lockbox functionality has been deployed
at massive scale, it represents an attractive building block for constructing more
sophisticated cryptographic protocols.

Using lockboxes to construct one-time programs. The ubiquity of this
basic lockbox functionality motivates us to investigate the following question:

3 The term counter lockbox was previously introduced by Apple for its SEP [3]. We
use it in this work to refer to a broad class of similar functionalities.

One-Time Programs from Commodity Hardware 3

can such a simple functionality be used to achieve general secure computation?
In this work, we answer the question in the affirmative: given access to a sufficient
number of lockboxes, we show that it is possible to realize the full power of one-
time programs.

This result has important practical implications: since lockboxes are increas-
ingly available to consumer hardware, this approach provides a “backdoor” route
to constructing obfuscated software, even on hardware that does not directly sup-
port this functionality. This capability facilitates many constructive applications.
For example, it can be used to build sophisticated attempt-limiting authentica-
tion functionalities. A limited-attempt fuzzy vault [34] can release cryptographic
secrets when a user provides an input that satisfies some complex approximate
function such as biometric matching or inexact string comparison [15]. Obfus-
cated software also enables privacy-preserving applications such as differentially-
private statistical data analysis, where query limits must be enforced to main-
tain a privacy budget [22]. This functionality has a dark side as well: one-time
programs allow for the creation of autonomous ransomware [20,10,36], a form
of malware with no command-and-control infrastructure: in this paradigm, de-
cryption keys are revealed only when the user provides the malware with proof
of payment on a public blockchain. This last concern illustrates how carefully
system designers must tread when exposing secure lockbox functionality to users
and developers, since as we demonstrate in this work, even this relatively weak
primitive can be leveraged into powerful secure computation. The lower bounds
for this transformation also raise practical concerns: system designers may wish
to know how many instances may be safely exposed to users before the power of
these constructions can be exploited.

1.1 Our Results

In this work, we show that it is possible to construct secure one-time programs
(OTP) using multiple instances of the counter lockbox functionality. Our main
result is a construction of OTP for general functionalities based on one-way
functions that requires a constant number of counter lockboxes per input-bit.
This asymptotically matches prior constructions of one-time programs [25] in
the number of hardware tokens utilized.

Theorem 1 (Informal). Assuming the existence of one-way functions, for any
functionality F , there exists a construction of one-time programs in the lockbox-
hybrid model that makes O(1) invocations to the lockbox functionality per input
bit of F .

We present our main result with counter lockboxes that allow exactly one
password attempt. In practice, lockboxes may allow more attempts. For exam-
ple, lockboxes may fix the maximum number of attempts to some system-wide
constant (e.g., 10 attempts.) To handle such cases, we demonstrate an extension
of our main construction that supports lockboxes with any number of password
attempts. The resulting scheme requires the same number of lockboxes as before.

4 H. Eldridge et al.

Reducing The Number of Hardware Tokens. We observe that at the cost
of stronger assumptions, it is possible to achieve an asymptotic reduction in
the total number of counter lockboxes. In particular, by using laconic oblivious
transfer (LOT) [18] with malicious receiver security, we can reduce the total
number of lockboxes to be independent of the input size and to depend only on
the security parameter.

Our transformation is generic, and is applicable to any OTP construction
(including prior known schemes). As such, this might be of independent interest.

Theorem 2 (Informal). Assuming the existence of malicious receiver laconic
oblivious transfer, for any functionality F , there exists a construction of one-time
programs that makes O(λ) total invocations to the lockbox functionality (where
λ is the security parameter).

LOT schemes with malicious receiver security can be generically constructed
by compiling the receiver message of existing LOT schemes with succinct argu-
ments of knowledge (SNARKs) [44,11] either in the random oracle model, or by
relying on knowledge assumptions.

Our Approach. Our starting point is the observation from the work of Gold-
wasser et al [26] that garbled circuits [51] are almost like one-time programs,
except the seeming need of interactive oblivious transfer (OT) to transmit the
wire labels corresponding to an evaluator’s input. Fortunately, a one-time mem-
ory (OTM) token naturally yields the OT functionality, which paves the way for
constructing one-time programs from OTM tokens.

Unlike OTMs, however, a natural use of counter lockboxes yields a “leaky”
OT functionality, where the receiver is able to learn both sender inputs with some
constant probability (we elaborate on this in Section 2). By applying standard
OT combiner techniques [43,31], the leaky OT functionality can be transformed
into secure OT. However, this results in a significant overhead in the number of
lockboxes required. Specifically, this approach requires O(λ) lockboxes per input
bit of the functionality, as opposed to O(1) OTMs required in prior works.

Towards obtaining our result in Theorem 1, we observe that O(1) lockboxes
per input bit are sufficient to instantiate a leaky “batch” oblivious transfer func-
tionality, where the receiver can learn both sender inputs for an a priori bounded
constant fraction of the input bits. We then devise a way to construct a secure
(i.e., “non-leaky”) batch-OT from leaky batch-OT via robust garbling – a form of
garbling where security holds even if the receiver learns both labels for a constant
fraction of the input wires – for special functions. The secure batch-OT can then
be used together with standard garbled circuits to obtain one-time programs for
general functions.

Finally, we demonstrate that using laconic OT, the task of designing OTP
for general functions with arbitrary input lengths can be reduced to the task
of designing an OTP for functions whose input length is a fixed polynomial
in the security parameter. As a result of this reduction, we are able to “com-
press” the effective input size, thereby achieving a reduction in the number of

One-Time Programs from Commodity Hardware 5

required hardware tokens. As we discuss later, this transformation requires an
LOT scheme that achieves simulation-based security against malicious receivers.

Real World Implications. In order to assess the practical feasibility of our
one-time programs, we need to consider several cost factors – number of hardware
tokens required, cost of each hardware token, time to generate the OTP, and the
size of software component of the OTP.

In our first construction, the main consideration is hardware. Indeed, besides
the use of lockboxes to implement leaky batch OT, the rest of our construction
comprises of robust garbling for special functions – an efficient, information-
theoretic gadget, and regular garbled circuits. The efficiency of state-of-the-art
constructions of regular garbled circuits is well-established in prior works [47]. In
Section 8.1, we evaluate the concrete number of lockboxes required to implement
one-time programs in practice and observe that there is a notable (albeit, con-
stant factor) expansion from the input length to the number of total lockboxes
required due to the use of binary linear error-correcting codes in our scheme.
Overall, our results show that one-time programs may be practical for small to
modest-sized inputs using a number of lockboxes that may be practical on to-
day’s systems or systems that will be available in the near future. Because such
one-time programs may allow for destructive applications, our concrete bounds
on the number of lockboxes can provide safety guidance for system developers
who expose such functionalities to application developers.

Given our current understanding of LOT schemes, our second transforma-
tion is primarily of theoretical interest at the moment. We first note that recent
works [29,1] have achieved significant improvements in concrete efficiency of LOT
by allowing for linear decryption times (as opposed to poly-logarithmic decryp-
tion complexity achieved in the initial works). Our transformation only requires
the laconic digest property of LOT and is not sensitive to decryption complexity.
As such, it can be instantiated using the state-of-the-art LOT schemes with linear
decryption complexity. However, the main efficiency bottleneck stems from the
fact that our transformation requires a “non-interactive” version of LOT which
is obtained by evaluating the LOT sender algorithm inside a garbled circuit.
For current LOT schemes, this translates to evaluating public-key operations
inside a garbled circuit for every receiver input bit, which to our current under-
standing, is quite expensive. Our work, therefore, motivates the design of new
LOT schemes (with potentially linear decryption times) with “garbling friendly”
sender algorithms.

2 Technical Overview

We now describe our main ideas for constructing a one-time program using
counter lockboxes. We first describe a basic construction that relies on a fairly
large number of lockboxes with only one attempt allowed (denoted A = 1). This
approach requires O(λ) lockboxes per bit of input to the one-time program for
security parameter λ. This construction serves as a technical warm-up and high-

6 H. Eldridge et al.

lights the main challenges in building OTPs from counter lockboxes as opposed
to one-time memory (OTM) tokens used by Goldwasser et al. [26].

We then describe our key ideas towards constructing OTPs with many fewer
lockboxes, even constant per input bit. This asymptotically matches prior con-
structions based on OTM tokens. Finally, we discuss two extensions. First, we
describe a generic method using laconic oblivious transfer [18] (LOT) to reduce
the total number of lockboxes to be independent of the input size, and to de-
pend only on λ. Second, we describe how our constructions can be extended to
support counter lockboxes that allow multiple password attempts.

Initial ideas. Goldwasser et al. [26] proposed a construction of one-time pro-
grams using one-time memory (OTM) tokens. Their construction relies on the
observation that garbled circuits are almost like one-time programs, except that
the sender needs to interact with the receiver (via oblivious transfer) to se-
curely hand over input wire labels for the garbled circuit corresponding to the
receiver’s input. This interaction can be replaced with OTMs for each input wire:
the sender can embed both the 0-label and the 1-label for each wire inside an
OTM, and send all the OTMs together with the garbled circuit in one shot. The
security of OTM ensures that the receiver learns at most one label from each
OTM, which it can then use to evaluate the garbled circuit.

While the above idea is intuitive, the security proof requires a bit more care
due to the fact that the adversary can choose its input in an adaptive fashion
and query the OTM tokens in an arbitrary order. In particular, the proof of
security requires garbling schemes with adaptive security. Efficient solutions for
such garbling schemes are known in the random oracle model [8].

In this work, we build OTPs using a different kind of hardware token, the
counter lockbox. A natural approach is to emulate the OTM functionality using
counter lockboxes. However, an immediate challenge arises. Recall that a counter
lockbox protects a secret value with a pre-configured password and limited at-
tempts; if the number of incorrect attempts reaches the threshold, the secret
value is irrevocably deleted. A natural idea is to store the two wire labels for
each input bit in two separate lockboxes and devise a mechanism that allows a
receiver to unlock only one of the two lockboxes. This, however, seems to require
revealing only one of the two passwords to the user, returning to the problem of
emulating OTM.

2.1 Basic Protocol

Our first idea is to use the receiver’s input bits as passwords to the lockboxes.
Concretely, for each input wire, we can use 0 and 1 as the passwords for the
lockboxes that hide the 0-label and 1-label, respectively. The two lockboxes for
each wire are then shuffled so that the input-to-password mapping is not known
to the receiver.

An honest receiver can simply use the same value to attempt to unlock both
lockboxes associated with an input wire. This guarantees that they obtain their
desired label from one lockbox and consumes the single attempt of the other. A

One-Time Programs from Commodity Hardware 7

malicious receiver may attempt to learn both labels by guessing the password for
both of the lockboxes. This will give them only a 1

2 chance of success: at least one
label remains hidden with that probability. This idea can be leveraged to reduce
the adversary’s chances of learning both values: instead of embedding each label
in a single lockbox, we “distribute” each label across additional lockboxes.

We now discuss the baseline construction of OTP that results from using
lockboxes in this manner. A reader already familiar with the garbling based
OTP approach may want to skip the next two paragraphs and directly go to the
analysis of this baseline construction.

Generating the OTP. Let C be a Boolean circuit with input length n. The
sender first garbles C to obtain a garbled circuit C̃ along with n pairs of wire
labels (labeli0, label

i
1). It then performs the following steps:

1. Sample uniform bits b1, . . . , b2ℓ, where ℓ counts the number of lockboxes each
label is distributed across.

2. For each j = 1 to 2ℓ: first, create an independent lockbox Li
j using maximum

attempt counter A = 1 and password P = bj . Receive the corresponding
lockbox secret Kj .

3. Next, compute CTi
0 = labeli0 ⊕

⊕
∀j,bj=0 Kj and CTi

1 = labeli1 ⊕
⊕
∀j,bj=1 Kj .

Finally, the sender provides the receiver with the garbled circuit C̃ and the tuples
(CT1

0,CT
1
1), . . . , (CT

n
0 ,CT

n
1) as well as references to the 2ℓ · n lockboxes.

OTP evaluation. To evaluate this program on an input x = (x1, . . . , xn), the
receiver performs the following steps for i = 1 to n:

1. For j = 1 to 2ℓ, attempt to open the lockbox Li with password xi to retrieve
either Kj or an error (in which case, set Kj = 0.)

2. Compute labelixi
= CTi

xi

⊕λ
j=1 Kj .

The receiver can now evaluate C̃ using the labels label1x1
, . . . , labelnxn

to obtain a
circuit output.

Analysis. It is easy to verify correctness of the above construction. What re-
mains is to show that the protocol achieves security, i.e., that a malicious receiver
has a negligible chance of recovering more than one label for any input wire. The
argument here is simple: to recover both (labeli0, label

i
1) for some wire i, the at-

tacker must query each of 2ℓ lockboxes Li
j using exactly the right passwords.

However, since the lockboxes do not reveal the password until the attempt to
open is made (at which point, the lockbox either reveals the secret or destroys
it), the attacker must succeed in distinguishing between the 0 and 1 lockboxes.
With an optimal guessing strategy, this happens with probability ℓ!ℓ!·n

2ℓ! ≈
1

2O(ℓ) .
Therefore, for λ bits of security, we need ℓ = O(λ) lockboxes per-input wire.

Limitations. While a decent baseline solution, this simple approach has several
limitations. First, the number of lockboxes required grows with O(λ), which is
significantly worse than the one-time program construction of [26] that requires

8 H. Eldridge et al.

a constant number of hardware tokens per wire. Moreover, the above solution
does not support lockboxes that allow multiple password attempts, and there-
fore has limited applicability for real-world use. To address these limitations, in
the following sections we present techniques to reduce the number of counter
lockboxes required. Later, we also describe approaches for supporting lockboxes
that allow multiple password attempts.

2.2 Reducing the Number of Lockboxes

Our baseline solution can be seen as implicitly building a secure combiner for
the OTM functionality. Indeed, the secret-sharing-based approach is also used in
prior works that build secure combiners for oblivious transfer (OT) (e.g. [43,31]).
It is natural to ask whether one can obtain a reduction in the number of lockboxes
by using a more efficient combiner. To the best of our knowledge, however, all
existing methods require an overhead of O(λ) – the same as our baseline solution
– when each component is only secure with constant probability.

We now discuss our key insights towards reducing the number of lockboxes re-
quired for one-time programs. To streamline this discussion, we start by defining
an abstract “leaky” OT primitive and show how to obtain a one-time program
using this primitive. Later, we discuss how counter lockboxes can be used to
instantiate such a primitive and also analyse the total number of the lockboxes
required for this instantiation.

Insight I: Leaky Batch-OT. Let us assume we have access to a leaky OT
functionality, where the receiver can choose to specify: (1) either a choice bit b
and get sender input mb as output, (2) or a special “leakage” option. In this
case, it learns both sender inputs m0 and m1 with some constant probability,
and only one of the these inputs with the remaining probability.

This notion can be generalized to a leaky batch-OT functionality, where the
receiver is allowed to learn both sender inputs for an a priori bounded constant
fraction of the OTs. Furthermore, it is easy to see that multiple copies of the
leaky OT functionality – one for each input bit – can realize leaky batch-OT.
We ask whether it is possible to build one-time programs using leaky batch-OT,
without paying the overhead of standard OT combiners.

At first, this seems highly unlikely. Indeed, the standard approach to one-
time programs – as discussed earlier – involves the use of garbled circuits. Using
leaky batch-OT would result in leakage of both wire labels for several input wires.
The security of standard garbled circuits, however, completely breaks down if
both wire labels are leaked even for a single wire (let alone multiple wires).

Insight II: Robust Garbling. We address this challenge by using a notion
of robust garbling – one where security of the garbled function is ensured even
if the receiver learns both labels for a constant fraction of the input wires. If
achievable, such a tool would be clearly helpful for our task at hand. However,
while intuitively appealing, it is not immediately apparent how to formally define
such a notion.

One-Time Programs from Commodity Hardware 9

With leakage, the adversary may obtain labels for multiple different inputs
– inputs differing at bit locations where both wire labels were obtained. Should
the adversary then be allowed to learn multiple outputs, or only a single output?
Clearly the former conflicts with the one-time nature of the required function-
ality, and thus we would like to enforce the latter. This raises a new question:
which output? For example, if the function is such that each input corresponds
to a different output, it is not clear how we can enforce the single-output require-
ment in a meaningful way. Indeed, achieving our intuitive notion of robustness
seems impossible for general functions. We note that previously, Almashaqbeh et
al. [2], also considered a notion of robustness in garbled circuits (and more gen-
erally in non-interactive secure multiparty computation). However, given their
application, they consider a slightly weaker setting, where they are able to as-
sume an a priori fixed output for the adversary and hence do not need to deal
with the above issue of “which output to reveal”.4 Since such assumptions are
not applicable to our setting, we cannot rely on their definition of robustness.

We therefore weaken our goal and attempt to define robust garbling for a
restricted class of functions that have a huge number of collisions, i.e. where in-
puts have a certain degree of redundancy. If we consider functions where multiple
inputs with an overlapping subset of input bits have the same output, we could
hope to achieve robustness. Even if the receiver learns multiple labels for the
remaining (non-overlapping) bits, it will only learn at most one unique output.

As the following example shows, however, we need to be more careful. Con-
sider two n-bit input strings x1 and x2 that share the same first n/2 bits, and
another input string x3 that shares the same last n/2 bits with x2. Toward the
above intuitive description of collisions, if x1 and x2 correspond to the same
output, and x2 and x3 do as well, by transitivity x1 and x3 (that do not neces-
sarily share a significant fraction of overlapping bits) also have the same output.
Without further specification, this can escalate quickly until all inputs have the
same output and we end up with a constant function.

In a pursuit to capture more interesting and non-trivial functions, we specify
a class of functions that take inputs of length n, with respect to a parameter γ
and try to capture the idea that there is only at most one unique non-⊥ output
associated with any n − γ input bits. Note that this is different from saying
that inputs with the same subset of n − γ input bits have a unique output.
We say that a function is admissible if for any n − γ input bits, there exists at
most one unique combination of the remaining γ bits, such that the output of
this function on the combined n-bit input is a non-⊥ value. Moreover, if such a
unique combination of the remaining γ bits exists, then it is easy to find them
using a deterministic procedure.5 In this work, we consider robust garbling for
such admissible functions.

OTPs from Robust Garbling. Let us now assume that we have robust
garbling for this restricted class of functions. We now describe how we can
leverage robust garbling to build OTPs for general functions. Let F be the

4 we refer the reader to Section 2.5 for a more detailed comparison with their work.
5 The reason why we need this deterministic procedure will be explained shortly.

10 H. Eldridge et al.

intended OTP functionality. Then, consider a new functionality F ′ such that
F ′(enc(x)) = F (x), where F ′ is an admissible function amenable to robust gar-
bling and enc is some mapping function that allows us to map inputs of F to
inputs of F ′. Concretely, we can use an error-correcting code (ECC) as the map-
ping function enc that can introduce redundancy in the mapped input to help
ensure that F ′ satisfies the above conditions of being an amenable function.

This idea can now be used to design an OTP for F as follows: (1) The sender
garbles F using a regular garbling scheme. (2) For each input wire i and bit
b ∈ {0, 1}, it defines F ′i,b such that on input enc(x), F ′i,b runs the ECC decoding
function dec to decode x and then if x[i] = b it outputs the b-label for the i-th
wire, and otherwise it outputs ⊥. For any ECC with distance γ + 1, there is
only one “valid” codeword associated with any n − γ-bit message, hence, it is
easy to see that dec (and as a result F ′i,b) is an admissible function. (3) The
sender garbles each F ′i,b using robust garbling. An important point to note is
that each F ′i,b takes the same input enc(x). (4) The sender uses this observation
to concatenate input labels for each F ′i,b and embed them inside the leaky batch-
OT.

Constructing Leaky OT. We now describe our idea for constructing leaky
OT (and consequently leaky batch-OT). Intuitively, our leaky oblivious transfer
functionality allows the receiver to obtain both sender inputs with some constant
probability.

Our construction of leaky OT is quite natural: in fact, we use the same
approach as in the base protocol discussed earlier, where the sender prepares 2ℓ
lockboxes (where ℓ is some constant) and distributes the “0” and “1” message
across ℓ lockboxes. As before, in order to learn both sender inputs, the adversary
must correctly guess the passwords for each of the 2ℓ associated lockboxes. The
adversary then succeeds with a constant probability of ≈ 1

2O(ℓ) .
For leaky batch-OT, when considering a collection of n such leaky OTs, the

probability that an adversary can successfully obtain both sender inputs for a
constant fraction of the OTs is ≈ 1

2O(nℓ) . Now, observe that if n is sufficiently

large (say n = O(λ)), then the probability ≈ 1
2O(nℓ) is negligible in λ, even if

ℓ is some constant value. While this analysis is somewhat simplified, it suffices
for the purposes of this discussion. More details can be found in the technical
sections.

Importantly, the above insight gives us significant improvement in the re-
quired number of lockboxes. Specifically, we now only require a constant num-
ber of lockboxes per OT (or input wire). However, as discussed before, in order
to implement our idea of combining leaky batch-OT with robust garbling, the
length of input to this leaky batch-OT is slightly longer than our “real” input. In
particular, the input to our leaky batch-OT is an ECC encoding of the receiver’s
input. If we use binary linear ECCs with constant rate, then the length of this
codeword is n+ γ where γ = O(n), and we need a total of ℓ · (n+ γ) lockboxes,
which in an amortized sense is a constant number of lockboxes per n-bits.

Handling Adaptivity. We now highlight some important subtleties regarding
the security definitions of leaky batch-OT and robust garbling.

One-Time Programs from Commodity Hardware 11

In our OTP constructions, we use robust garbling in conjunction with leaky
batch-OT. Specifically, the receiver obtains labels for a robust-garbled circuit
from the leaky batch-OT. From our prior discussion on leaky batch-OT, it is
clear that an adversary can obtain both labels for some (e.g. γ out of n) of the
input wires of this robust garbling. Moreover, recall that in above construction of
leaky batch OT, given the entire set of lockboxes, an adversary can query them
in any order of its choosing. In fact, it can “adaptively” decide an order based
on the outcomes of previously queried lockboxes. In other words, the adversary
can be “fully adaptive”. Our definition of leaky batch-OT must allow for this
flexibility and our robust garbling must also support this “fully adaptive” setting.

Since the adversary can potentially learn both labels for some of the inputs,
for simulation, we need a way to predict the output based only on the input bits
for which the adversary gets exactly one label. This is why we require that the
set of admissible functions admit a deterministic procedure to predict the only
(if any) valid associated output.

Finally, we remark that since the adversary can choose to ask for the second
label of some input wires in any order, the simulator would not know until the
last query which n−γ input bits it must consider to predict the output. However,
by then it might be “too late” to correctly simulate garbling. To overcome this,
we make a crucial observation about our construction of leaky batch-OT from
lockboxes: recall that in our construction we have 2ℓ lockboxes associated with
every index i ∈ [n]. If an adversarial receiver successfully opens the relevant
lockboxes and learns one of the sender messages (say msgbi) associated with
that index, it is easy to predict if the adversary will also be able to learn the
other sender message (say msg1−bi) corresponding to that index. Indeed, if the
adversary made any incorrect password attempts for any of the ℓ lockboxes
associated with msg1−bi , then the simulator can predict that the adversary will
never be able to learn msg1−bi . However, if no incorrect password attempts were
made for those ℓ lockboxes, then the adversary can be certain that the remaining
(unopened) lockboxes associated with index-i have password 1−b and can always
successfully open them and learn msg1−bi .

Therefore, we model our definition of leaky batch-OT to require the fol-
lowing: whenever the adversary makes a query for a particular index, it must
specify whether it plans to query the second message for this index in the future.
Moreover, since we only want to allow for some bounded leakage, the number of
indices for which the adversary can make this request is bounded by a parame-
ter γ. This observation helps ensure that the simulator of robust garbling does
not need to wait until the “last query” to determine which n − γ input bits it
must consider to predict the output. Instead, this can be determined once the
adversary makes at least one query for each of the n indices.

Constructing Robust Garbling. We now discuss robust garbling for a sub-
class of admissible functions. As discussed earlier, such a construction for a
restricted function class suffices for our use in the construction of OTP. In
particular, we consider admissible functions of the form f = (M,u, z), where

12 H. Eldridge et al.

M ∈ {0, 1}k×n, u ∈ {0, 1}k are public and z ∈ {0, 1}k is private, such that on

any input x ∈ {0, 1}n, f(x) =

{
z if u = Mx

z′
$←− {0, 1}k otherwise

While all “invalid” inputs must lead to a⊥ output in admissible functions, the
above function instead outputs a random z′. We note that this is not a problem
in our setting (and the above function is still admissible). This is because in our
OTP construction, the value z will correspond to labels of the garbled circuit
that garbles the actual function for which we compute the OTP. In the case that
the output of the above function is a random unrelated value instead of a valid
label, the receiver will be able to detect this while evaluating and demarcate this
output as essentially equivalent to ⊥. We elaborate more on this in Section 6.2.

Benhamouda et al. [9] design a non-interactive multi-party computation
(NIMPC) protocol for such functions, but where M,u, z could be matrices and
vectors in any field and where each party contributes one element of x as input.
This NIMPC protocol can be re-imagined as a robust garbling for such function-
alities, when M,u, z are matrices and vectors over the Boolean field. Previously,
Almashaqbeh et al. [2] leveraged a similar observation (of combining this NIMPC
protocol with a regular garbled circuit) towards designing a garbling scheme that
remains robust in the presence of an adversary who gets access to both labels
for a fraction of the input-wires. However, there are some important differences
between our definition and theirs; see Section 2.5 for a discussion).

The NIMPC protocol in [9] is presented in two phases – (1) an offline pre-
processing phase that outputs private messages to each party and a broadcast
message to all parties, and (2) an online phase where each party deterministically
computes and broadcasts a single message based on its input and the private
message output in the pre-processing phase. We observe that when working
over a Boolean field, the broadcast message of the offline phase can be viewed
as a garbling of the above function. Since there are only two-possible values
for each element of the input vector x, we can compute both possible messages
corresponding to each element that the parties are expected to send in the online
phase, and these may essentially act as the wire labels for the garbled circuit.

More concretely, this robust garbling works as follows: (1) sample a random

matrix s
$←− {0, 1}k×k and compute s′i = s ·M·,i for each i ∈ [n]. (2) For input

wire i ∈ [n], the 0-label labeli,0 ∈ {0, 1}k is sampled randomly and the 1-label
is computed as labeli,1 = labeli,0 ⊕ s′i. (3) The garbled function is defined as

f̃ = z ⊕ s · u ⊕
⊕

i∈[n] labeli,0. To evaluate, the receiver can simply exclusive-

or all the appropriate labels with f̃ . In Section 6.2, we show this construction
satisfies the above notion of robust garbling, and that if x satisfies u = Mx,
then z = f̃ ⊕

⊕
i∈[n] labeli,x[i], otherwise, this evaluation will output random z′.

2.3 Reducing Lockboxes using Laconic OT

We now describe a generic method for achieving an asymptotic reduction in the
total number of counter lockboxes by using laconic oblivious transfer (LOT) [18].

One-Time Programs from Commodity Hardware 13

Recall that our previous construction requires a total of O(n) lockboxes for n-bit
inputs. Using LOT, we can reduce the number of lockboxes to be independent
of the input size and only depend on the security parameter (as determined by
the LOT scheme).

An LOT scheme allows a receiver to commit to a large input x ∈ {0, 1}n
via a short hash whose size is a fixed polynomial in the security parameter.
Subsequently, a sender with inputs (m0,m1) and an index i sends a short message
to the receiver. Using this message, the receiver can recover mx[i] but m1−x[i]
remains computationally hidden.6 Moreover, the hash value can be reused by the
sender to transmit different messages to the receiver, based on different choices
of indices i.

At a high-level, we can use LOT to “compress” the effective input size,
thereby achieving an asymptotic reduction in the number of lockboxes. More
specifically, let C be a circuit with n-bit inputs. We can build a one-time pro-
gram for C using the following two-step approach:

1. First, we compute an adaptively secure garbled circuit C̃ for C together with
a set of wire labels.

2. Now let Send be the next-message sender function in an LOT scheme. Let us
consider n different copies (Send1, . . . ,Sendn) of Send, where the i-th copy is
hardwired with an index i ∈ [n] and a pair of labels (lab0i , lab

1
i). Here, labbi is

the b-th label corresponding to the i-th input bit computed in the first step.
Now, consider a new circuit Send that computes all of the functions
Send1, . . . ,Sendn (in parallel). The input to this circuit is the LOT receiver
message H – namely, the hash of an input x (to the original circuit C). We

now create a one-time program ÕTP for Send with O(|H|) counter lockboxes
using the scheme described in the previous sub-section. The final one-time

program OTP for circuit C consists of ÕTP and the garbled circuit C̃ com-
puted in the first step.

To evaluate the one-time program OTP on an input x, a receiver first com-

putes an LOT hash H of x and evaluates ÕTP on input H. Using the output
values, it evaluates the garbled circuit C̃ and returns its output.

It is easy to verify that the above construction achieves correctness. In order
to prove security, we need to be able to extract the input of the receiver. However,

from the security of ÕTP, we can only hope to extract the input to ÕTP, namely,
H, which is presumably the LOT hash of some input x. In order to extract the
actual x, we therefore require an LOT scheme that achieves simulation-based
security against malicious receivers.

It is well known that such an LOT scheme cannot be constructed using stan-
dard black-box simulation techniques [21]. However, if we rely on random oracles
or knowledge assumptions, then such a scheme can be constructed by compiling

6 We emphasize that LOT is non-trivial even without privacy for receivers. While
receiver privacy can be generically added [18], we do not require it for our transfor-
mation.

14 H. Eldridge et al.

an LOT scheme with a succinct argument of knowledge (SNARK) [44,11]. Due
to space constraints we defer the formal description of our OTP construction
using Laconic OT to the full version of the paper.

2.4 Counter Lockboxes with Multiple Password Attempts

Up to this point we have only considered counter lockboxes that allow for a single
attempt to guess the password. For some real-world instantiations of counter
lockboxes e.g. [39,40], this may not be a valid assumption. We now discuss how
our construction of leaky batch-OT can be adapted to support counter lockboxes
that allow for any number of password attempts.

A natural approach is that the sender may simply “burn” all but one attempt
from each lockbox they configure. However, this may be undesirable, especially
in a cloud-based lockbox setting or if the sender does not wish to track the state
of each lockbox. Therefore, we also provide a subtler approach described in this
section and more fully examined in the full version of the paper.

Let z be the number of password attempts allowed by a counter lockbox
functionality. We modify the previous construction as follows: once the sender
decides that a particular lockbox should be a b-lockbox for a choice bit b, they
do not simply set its password to b. Instead, they create z distinct strings
bin(1)∥b, . . . , bin(z)∥b – each ending with bit b, where bin(i) denotes the binary
representation of i. The sender then selects one of these z at random and sets it
as the password for the counter lockbox.

For any choice bit b, an honest receiver can simply generate and try all of
the z potential passwords for any lockbox. This guarantees that it can open all
of the required lockboxes to reconstruct the desired label for its choice bit. On
the other hand, the adversary gains no new advantage from having z attempts
since there are 2z potential password choices for any lockbox. In particular, an
adversary can do no better in determining whether a lockbox is a b-lockbox than
by “committing” to some b and trying b concatenated with each possible prefix
string. We can therefore achieve the same parameters for the multiple password
attempt case as in the single attempt case. Due to space constraints we defer a
formal treatment of this topic to the full version of the paper.

2.5 Related Work

Chaum and Pederson [16] were the first to propose the use of tamper-proof hard-
ware for cryptography purposes, and Goldreich and Ostrovsky [24] explored its
application to software protection. Goldwasser, Kalai and Rothblum [26] in-
troduced the notion of one-time programs as well as one-time memory tokens.
Further improvements to their construction were investigated by Goyal et al. [30]
and Bellare et al. [8]. More recently, Goyal and Goyal [28] investigated the use
of blockchains to construct one-time programs.

Prior to our work, Almashaqbeh et al. [2] also leveraged the techniques
from [9] to achieve a form of robustness in non-interactive secure computation

One-Time Programs from Commodity Hardware 15

Functionality FOTP
f

Create: Upon receiving (create, sid, Pi, Pj , x) from Pi where x is a string do:
1. Send (create, sid, Pi, Pj) to Pj .
2. Store (Pi, Pj , x).

Execute: On receiving (run, sid, Pi, y) from party Pj , find the stored tuple (Pi, Pj , x) (if no
such tuple exists, do nothing.) Send f(x, y) to Pj and delete tuple (Pi, Pj , x).

Fig. 1. Ideal functionality for a one-time program (OTP), parameterized with a specific function
f , quoted from [30].

using garbled circuits in a different context. There are some key differences be-
tween our work and theirs: we provide a general definition of robust garbling
that accounts for the challenges involved in determining the adversary’s input
(and output) in our setting involving “leakage”. In particular, as discussed ear-
lier, since it is unclear how to define robust garbling for general functions, we
define a class of admissible functions and robust garbling for such functions (as
discussed in Section 2.2). In contrast, their definitions assume an a priori fixed
input (and output) for the adversary, and are not applicable to our setting. Fur-
ther, our definitions (unlike theirs) account for fully adaptive adversaries, which
is crucial to our setting where the adversary can query the lockboxes in arbitrary
order.

3 Preliminaries

We include preliminary definitions and discussion for computational indistin-
guishability, the UC-Framework, adaptive projective garbling schemes, linear
error-correcting codes and succinct non-interactive arguments of knowledge
(SNARKs) in the full version of the paper.

3.1 One-Time Programs

One-time Programs (OTP) were introduced by [26]. At a high level, a one-time
program for a function f enables a party to evaluate f on any one input of its
choice. The security of a one-time program dictates that no efficient adversary
should be able to learn anything about the function f , beyond what can be
inferred from its output f(x) on any one input x of its choice.

Similar to Goyal et al. [30], we model one-time programs as a two-party non-
interactive protocol that is secure against malicious receivers. We define the ideal
functionality for a one-time program in Figure 1.

4 Counter Lockboxes

In this section, we formalize our notion of counter lockboxes. A counter lockbox, or
just “lockbox,” is a stateful abstraction for securely storing cryptographic secrets

16 H. Eldridge et al.

such that they are protected by a human-memorable password. To create a new
lockbox, a requester provides a password P and a maximum attempt counter
A. The lockbox then generates random value K and returns K to the requester.
The lockbox also stores internally A, some data with which it can re-compute
K given P , and some information it can use to check if a future password guess
matches P .

At a later point, a requester can provide some password P ′ to the lockbox,
which will use its internal state to check if P ′ produces a match. If so, the lockbox
recomputes and returns K to the requester. If the password does not produce a
match, the lockbox decrements A. After A incorrect guesses the lockbox com-
pletely erases its internal content, preventing the value of K from ever being
retrieved.

We model the lockbox functionality as FLockbox
λ , described in Figure 2. In this

work, we study cryptography in the FLockbox
λ -hybrid model.

Functionality FLockbox
λ

Create: On input (create, Pi, Pj , sid, id, P,A) from party Pi where A > 0, send

(create, Pi, Pj , sid, id) to Pj . Sample K ∈ {0, 1}λ, store the tuple (Pi, Pj , sid, id, P,A,K, 0),
and send K to Pi

Open: On input (open, Pi, sid, id, P
′) from party Pj :

– If a tuple (Pi, Pj , sid, id, P,A,K,N) does not exist, then do nothing.
– If N = A then delete the tuple and return expired.
– Otherwise if P = P ′ then delete and replace the tuple with (Pi, Pj , sid, id, P,A,K, 0)

and return K.
– If P ̸= P ′ then delete and replace the tuple with (Pi, Pj , sid, id, P,A,K,N + 1) and

return bad guess.

Fig. 2. Ideal functionality for a counter lockbox. This simplified interface assumes that the lockbox
“secret” K is a random string of length λ and that the password guess is directly compared to a
stored password.

On the communication model. Previous works using secure hardware to-
kens [26] assume a two-party model in which a sender provisions stateful tokens
and sends them to the receiver, who then uses them to evaluate a one-time pro-
gram. This model can be directly adapted to cloud-based lockbox functionalities
by simply forwarding references to the appropriate online locations. Lockboxes
on a fixed device, however, may require adapted usage. For example, unlike
hardware tokens, lockboxes implemented within the Apple SEP are an integral
component of the device and cannot easily be removed or replaced. Hence our
results can rely on the following different usage scenarios:

1. In a cloud-based scenario, the sender provisions a series of lockboxes on
a shared (accessible to both parties) server, such as an Apple Cloud Key
Vault [39] HSM or Google Titan [48] HSM in a remote data center. The
sender then provides the location (IP address or URL) of these lockboxes

One-Time Programs from Commodity Hardware 17

along with some auxiliary data to the receiver. The receiver accesses these
lockboxes to evaluate the one-time program.

2. In a device-based scenario, the sender provisions a device (such as an Apple
iOS device with a SEP) with lockboxes and then physically delivers the device
to the receiver. Given the physical security of the SEP [3], these lockboxes are
designed to resist device forensics. Auxiliary data can be transmitted within
the regular device memory, and evaluation could even be facilitated by custom
on-device software such as an iOS app if deemed acceptable to the evaluator.

3. In a further device-centric instantiation, the sender and receiver may not be
physically co-located. To provision lockboxes on the receiver’s secure hard-
ware, the sender employs a cryptographic protocol that enables secure mes-
sage transmission to the receiver’s secure hardware, while entirely bypass-
ing the receiver’s ability to observe this provisioning. For example, Apple’s
SEP supports a cryptographic protocol for communications between the SEP
and application processor within a single device. With appropriate key man-
agement, this could be repurposed to allow a remote party to communicate
securely with a receiver’s SEP.

In all three settings, we assume that the hardware itself is secure against logical
and physical attacks: this means that the only way to access lockbox secrets is
through the password interface the hardware exposes. By contrast we assume
that, at least at program execution time, the receiver has full control of the
remaining portions of the device processor and can query the lockbox interface
arbitrarily.

Discussion. In all prior hardware-token models, the sender physically transmits
the device to the receiver and it is assumed that there is no “backward commu-
nication channel” to the sender. Indeed, such a channel can lead to privacy loss
for the receiver.

However, one could consider a stronger model, where the sender does in
fact have the ability to inspect lockboxes after the receiver is done querying
them. In such a model, to prevent the sender from learning receiver’s input bits,
it is important to ensure that the following three states of lockboxes remain
indistinguishable – (1) lockboxes with leftover password attempts, (2) lockboxes
that were “destroyed” because of failed password attempts and (3) ones that
are still presumably “functional” because they were opened using the correct
password. For the first kind, we can use a simple defense and ask the receiver to
consume all password attempts on each.

For the remaining two forms, our ideal lockbox functionality implicitly as-
sumes that an adversary cannot distinguish between hardware that outputs the
secret and one where the secret was destroyed because of failed password at-
tempts. In the above stronger model, hardware that matches this ideal func-
tionality clearly will not “leak” extra information once its attempts have been
expired. It simply outputs ⊥, and there is no way to distinguish between “expired
during evaluation without producing a secret” and “did output the secret but
expired later as a defensive cleanup measure.” While in general, real hardware
may not behave like an ideal function, our definition of this ideal functionality is

18 H. Eldridge et al.

Functionality FOT
(n,γ)

Initialize: Upon receiving (init, sid, id, sen, rec, {(mi,0,mi,1)}i∈[n]) from the sender sen, where

{(mi,0,mi,1)}i∈[n]∈ M2n, send (init, sid, id, sen, rec) to the receiver rec and store the tuple
(sid, id, sen, rec, {(mi,0,mi,1)}i∈[n],S1,S2, counter), where S1 = S2 = ∅ and counter = 0.

Open: Upon receiving (open, sid, id, sen, rec, i, b, choice) from party rec, where choice ∈
{both, single}, find the stored tuple (sid, id, sen, rec, {(mi,0,mi,1)}i∈[n],S1,S2, counter) (if no
such tuple exists, do nothing).
– If i ∈ S1, do nothing.
– Else if i ∈ S2, send mi,b to rec.
– Else, do the following:
• If choice = single, send mi,b to rec, then delete and replace the tuple with

(sid, id, sen, rec, {(mi,0,mi,1)}i∈[n],S1 ∪ {i},S2, counter)
• else, if choice = both and counter = γ return forbidden. Else if counter < γ send mi,b to

rec, then delete and replace the tuple with (sid, id, sen, rec, {(mi,0,mi,1)}i∈[n],S1,S2 ∪
{i}, counter + 1).

Fig. 3. Ideal Functionality for leaky batch-OT

inspired by precise technical specifications from vendors such as Apple (see e.g.
Apple iOS Security Guide), and there seems to be strong evidence that hardware
will satisfy it. As a result, our constructions remain secure in this stronger model
as long as the hardware behaves similarly to the ideal functionality.

5 Leaky Batch-OT

In this section, we present and formalize a notion of leaky batch-OT and show
how it can be realised using counter lockboxes.

5.1 Definition

Leaky batch oblivious transfer is a two-party functionality between a sender and
receiver, where the sender initially inputs n pairs of messages {(mi,0,mi,1)}i∈[n]
where each mi,b is in some message domain M. For each i ∈ [n], the receiver
inputs a single bit b ∈ {0, 1} and obtains mi,b. Additionally, at most γ times,
the receiver is allowed to input i and obtain mi,1−b, assuming they have previ-
ously received mi,b. Our specific formulation is more nuanced. We give a formal
definition of this reactive functionality in Figure 3.

5.2 Construction

In this section, we construct a protocol for leaky batch-OT using counter lock-
boxes. Recall that our definition of leaky batch-OT only allows the receiver to
obtain both messages for at most γ indices i ∈ [n]. Therefore, we show that if
ℓ is set to ⌈− log2(

γ
n)⌉ + 1 then except with some negligible probability in n a

malicious receiver can successfully obtain keys of all 2ℓ lockboxes for at most
γ indices i ∈ [n]. We give a formal description of this protocol in the FLockbox

λ -
hybrid model in Figure 4. Due to space constraints we defer the formal proof of
security to the full version of the paper and include a proof sketch here.

One-Time Programs from Commodity Hardware 19

Theorem 3. There exists a protocol for securely realizing the leaky batch-OT
functionality FOT

(n,γ) (Figure 3) against a malicious sender and receiver, in the

FLockbox
λ -hybrid model, where the sender only sends a single message to receiver,

while the receiver does not to send any messages to the sender.

Proof Sketch. We first present a simulator that in the ideal world simulates
sending lockboxes to the adversary as in the protocol. We then show that as
long as the adversary is not able to successfully open all 2ℓ lockboxes associated
with more than γ input wires, with BAD denoting the event that the adversary
succeeds in doing so, the transcript output by the simulator is indistinguishable
from that computed in the real world.

We then proceed to show that the probability that the BAD event happens
in negligible when ℓ = ⌈− log2(

γ
n)⌉+1. For this, we first show that the probabil-

ity of the adversary successfully opening all 2ℓ lockboxes for one wire is at most
p = (12)

ℓ · ℓ!
(2ℓ−1)!! . As intuition, the adversary can do no better when guessing

passwords than just guessing whatever password is in the majority among the
remaining lockboxes. For ℓ of the guesses this gives them a 50% chance of suc-
cess, producing the (12)

ℓ term. The second term follows from a similar but more
involved calculation. Following our derivation of p, we use a Chernoff bound to
show that the overall probability is negligible in n. We then conclude that when
n is large, i.e. O(λ), the protocol is secure.

– Sender: Let ℓ := ⌈− log2(
γ
n)⌉+1. Given inputs {(mi,0,mi,1)}i∈[n], the sender sen samples

a fresh sid. For each i ∈ [n], do the following:
1. Sample a random permutation πi : [2ℓ]→ [2ℓ].
2. Sample 2ℓ unique ids {idi,j}j∈[2ℓ].
3. For each j ∈ [2ℓ],

• If πi(j) ≤ ℓ, invoke FLockbox
λ on arguments (create, sen, rec, sid, idi,πi(j)

, 0, 1) and obtain

K
πi(j)

i,0 in return.

• Else, invoke FLockbox
λ on arguments (create, sen, rec, sid, idi,πi(j)

, 1, 1) and get K
πi(j)

i,1
in return.

4. Compute Ci,0 := mi,0 ⊕
⊕ℓ

j=1 Kj
i,0.

5. Compute Ci,1 := mi,1 ⊕
⊕2ℓ

j=ℓ+1 Kj
i,1.

6. Send {(Ci,0, Ci,1)}i∈[n] to the receiver rec.
– Receiver. Given a set of input bits {bi}i∈[n] and upon receiving

{
(
sid, idi,πi(j)

, sen, rec
)
}j∈[2ℓ],i∈[n] from the FLockbox

λ functionalities and {(Ci,0, Ci,1)}i∈[n]

from the sender, the receiver proceeds as follows for each i ∈ [n]:

1. For each j ∈ [2ℓ], invoke FLockbox
λ on arguments (open, sen, sid, idi,πi(j)

, bi) to receive

either K
πi(j)

i,bi
or bad guess, in which case set K

πi(j)

i,bi
= 0.

2. Compute mi,bi
= Ci,bi

⊕
⊕2ℓ

j=1 K
πi(j)

i,bi
.

Fig. 4. Protocol for Leaky Batch OT

20 H. Eldridge et al.

6 Robust Garbling

In this section, we formalize the notion of robust garbling for a class of admissible
functions. We then present a robust garbling scheme for a sub-class of such
functions, with fully adaptive, information-theoretic security.

6.1 Definitions

In a robust garbling scheme, we want to capture the requirement that even if the
receiver obtains both labels for some of the input wires, it should only be able
to learn exactly one output. However, this poses the following conundrum: on
the one hand, we are allowing the receiver to obtain labels for multiple inputs.
On the other hand, we do not want it to learn more than one output. How do
we reconcile these requirements?

While achieving a reconciliation seems impossible for general functions, we
can hope to do so for functions where the inputs have some level of redundancy.
In other words, if only a subset of the input bits are sufficient to determine the
output of the function, we can hope to construct a garbling scheme where even
if the receiver learns multiple labels for the remaining bits, it will only learn at
most one uniquely defined output.

We now give a formal definition of such a class of functions.

Definition 1 (Function Class Fn,γ). Fn,γ contains all functions f :
{0, 1}n → {0, 1}∗ ∪ {⊥} such that for any set S ⊂ [n] of size (n − γ) and
any set of bits {xi}i∈S , there exists at most one “valid” {xi}i∈S such that
f(x1, . . . , xn) ̸= ⊥.

Further, there is an an associated function Expand : {0, 1}(n−γ) → {0, 1}n
such that for every {xi}i∈S :

1. If ∃{xi}i∈S, such that f(x1, . . . , xn) ̸= ⊥, then Expand({xi}i∈S) =
(x1, . . . , xn).

2. Else, f (Expand({xi}i∈S)) = ⊥.

At a high level, the above definition implies that it is possible to determine
the unique output associated with any (n− γ) bits of input.

Next, we formalize the notion of robust garbling for this class of functions. In
addition to the robustness property discussed above, we also want this garbling
scheme to be “fully adaptive”. That is, upon receiving the garbled circuit, the
adversary should be allowed to choose its input bit-by-bit, depending on the
labels received thus far. We note that this is stronger than the standard notion
of adaptivity for garbled circuits [8,7,23], where the adversary must specify its
entire input in one go, after receiving the garbled circuit.

Moreover, as discussed previously, we allow the adversary to receive both
labels for some of the input wires. However, in case it plans to obtain the second
label for any index, it must specify that at the time of making the first query
for that index. This way, once the adversary has received at least one label for
each input position, the simulator can determine the output based on the ones

One-Time Programs from Commodity Hardware 21

for which the adversary is guaranteed to not make a second query and simulate
accordingly. Therefore, we model our simulator for robust garbling to essentially
consist of three algorithms (SimFunc,SimIn,SimInLast), where SimFunc simulates
the garbled circuit using only “public-information” about the circuit (e.g., the
size of the circuit). SimIn and SimInLast are used for simulating the input wire
labels, where SimInLast is used specifically once the adversary has obtained at
least one label for each input wire.

We now present a definition of robust garbling.

Definition 2 (Robust Garbling). A robust garbling scheme for functions f ∈
Fn,γ consists of a tuple of PPT algorithms (RobGarble,RobGarbleInp,RobEval)
such that:

– (f̃ , st) ← RobGarble(1λ, f): This is a PPT algorithm that takes as input the
security parameter 1λ and a function f ∈ Fn,γ and outputs a garbling f̃ and
some private state information st.

– labi,xi
← RobGarbleInp(st, i, xi): This is a PPT algorithm that takes as input

the state information st, an index i ∈ [n] and an input bit xi, and outputs the
corresponding input label labi,xi .

– y = RobEval(f̃ , {labi,xi
}i∈[n]): Given a garbling f̃ and a set of labels

{labi,xi
}i∈[n] it outputs a value y ∈ {0, 1}k.

Correctness. For every λ ∈ N, f ∈ Fn,γ , and for each x ∈ {0, 1}n, it holds
that: Pr[RobEval(f̃ , {labi,xi

}i∈[n]) = f(x)] = 1, where (f̃ , st) ← RobGarble(1λ, f)
and ∀i ∈ [n], labi,xi

← RobGarbleInp(st, i, xi).

γ-Robust Adaptive Security. There exists a PPT simulator Sim =
(SimFunc,SimIn,SimInLast) such that, for any non-uniform PPT adversary A
there exists a negligible function v such that:

|Pr[ExpRobAdpA,GC,Sim(1
λ, 0) = 1]− Pr[ExpRobAdpA,GC,Sim(1

λ, 1) = 1]| ≤ v(λ)

where the experiment ExpRobAdpA,GC,Sim is defined in Figure 5

6.2 Construction

In this section, we present an information-theoretically secure construction of
robust garbling for functions of the form f = (M,u, z) ∈ Fn,γ , where M ∈
{0, 1}k×n, u ∈ {0, 1}k are public and z ∈ {0, 1}k is private, such that on any

input x ∈ {0, 1}n, f(x) =

{
z if u = Mx

z′
$←− {0, 1}k otherwise

.

We use Fn,γ
linear to denote this subclass of Fn,γ . While all invalid inputs must

to lead to a ⊥ output in any f ∈ Fn,γ , functions in Fn,γ
linear instead output a

random z′. We note that depending on the context, this may not be a problem
(and the above function can still be admissible), if the receiver can distinguish
a valid output z from an invalid random z′ potentially using some “additional

22 H. Eldridge et al.

Experiment ExpRobAdpA,GC,Sim

1. The adversary specifies a function f ∈ Fn,γ and obtains f̃ , where f̃ is created as follows:
– If b = 0: (f̃ , st)← RobGarble(1λ, f)

– If b = 1: (f̃ , st)← SimFunc(1λ, 1|f|) (Here, we implicitly assume that this simulator can
get any public information about f , not just its size.)

2. Initialize S1 = S2 = ∅ and counter = 0. For each j ∈ [n + γ], the adversary A specifies a
tuple (ij , xij

, choicei), where choicei ∈ {single, both}.
– If choicei = single and (i, ·) /∈ S1, update S1 = S1 ∪ {(i, xij

)}. Else if choicei = both,

i /∈ S1 ∪S2 and counter < γ, update S2 = S2 ∪{i} and set counter = counter+1. In both
cases do the following:
• If b = 0, output labij ,xij

← RobGarbleInp(st, ij , xij
).

• If b = 1 and |S1 ∪ S2| < n, output labij ,xij
← SimIn(st, ij , xij

).

• If b = 1 and |S1 ∪ S2| = n,
output labij ,xij

← SimInLast(st, ij , xij
,S, out), where S ⊂ [n] is the set of indices

i ∈ [n] such that (i, ·) ∈ S1 and out = f(fexpand({xi}i∈S)).
– Else if choicei = both, i /∈ S1 and i ∈ S2, do the following.
• If b = 0, output labij ,xij

← RobGarbleInp(st, ij , xij
).

• If b = 1, output labij ,xij
← SimIn(st, ij , xij

).

Finally, the adversary outputs a bit b′, which is the output of the experiment.

Fig. 5. γ-Robust Adaptivity Experiment

information.” In our OTP construction, the value z will correspond to labels of
the garbled circuit that garbles the actual function for which we compute the
OTP. While these labels are also random vectors in {0, 1}k, the receiver gets
“additional information” in the form of the garbled circuit where z is used as an
input wire label. In case the output of the above function is a random unrelated
value instead of a valid label, while evaluating, the receiver will be able to detect
this and demarcate this output as essentially equivalent to ⊥.

Garbling scheme.We now present a construction of robust garbling scheme for
the above class of functions. As discussed previously, this is adapted from the
non-interactive multi-party computation (NIMPC) protocol for such functions
proposed by Benhamouda et al [9].

– RobGarble(1λ, f):

1. Sample a random s
$←− {0, 1}k×k.

2. For each i ∈ [n], sample a random ri ∈ {0, 1}k.
3. Set st = s, {ri}i∈[n].
4. Output garbling f̃ = z⊕ s · u⊕

⊕
i∈[n] ri.

– RobGarbleInp(st, I, {xi}i∈[n]\I):
1. Parse st = s, {ri}i∈[n].
2. For each i ∈ [n], compute s′i = s ·M·,i, where M·,i denotes the i-th column

of M
3. For each i ∈ I, compute and output labi,0 = ri and labi,1 = ri ⊕ s′i.
4. For each i ∈ [n] \ I, output labi,xi

= ri ⊕ s′i · xi.

– RobEval(f̃ , {labi,xi
}i∈[n]): Compute and output f̃ ⊕

⊕
i∈[n] labi,xi

.

One-Time Programs from Commodity Hardware 23

We prove the following theorem in the full-version of our paper.

Theorem 4. There exists an information-theoretically secure robust adaptive
garbling scheme for each every function f ∈ Fn,γ

linear.

7 One-Time Program

In this section we use the tools built in previous sections to construct a one-time
program. In addition to leaky batch-OT and robust garbling for Fn,γ

linear, we make
use of a standard adaptive, projective garbled circuit and linear error-correcting
codes over F2.

We instantiate our one-time program construction using a [n, k, γ+1]2-binary
linear error-correcting code, where k is the message length, n is the code-word
length, and γ+1 is the distance. We give a formal description of this construction
in the FOT

(n,γ)-hybrid model. While an honest receiver does not use the “leaky”

aspect of our leaky batch-OT to receive both (lab′j,0, lab
′
j,1) for any index j, a

malicious receiver can certainly try to exploit it. However, since the number of
“double-labels” that they can obtain is capped at γ (and our robust garbling is
secure as long as double-labels for at most γ input wires are revealed), they will
never receive enough to successfully obtain both labels for any input wire of the
adaptive garbled circuit. As a result, even a malicious receiver will only be able
to learn the output for a single input.

Protocol. We give a formal description of the OTP protocol in Figure 6, in
the FOT

(n,γ)-hybrid model, using [n, k, γ + 1]-binary linear error-correcting codes,

an adaptive projective garbled circuit (AdaGarbleCkt,AdaGarbleInp,AdaEvalCkt)
and a robust function garbling scheme (RobGarble,RobGarbleInp,RobEval) for
Fn,γ

linear.
Note that for all i ∈ [k] and b ∈ {0, 1}, the function Fi,b belongs to the

Fn,γ
linear class of functions described in Section 6.2. It is easy to identify when the

output is ⊥, as the output of each function is an input wire label for a garbled
circuit. The use of an error-correcting code grants the properties required by
Fn,γ

linear. By the definition of minimum distance, any set of (n− γ) fixed bits will
define only a single valid codeword, and the Expand function is simply a lookup
for the codeword uniquely defined by those bits. Finally, each Fi,b clearly meets
the linear construction requirement of Fn,γ

linear. We prove the following theorem in
the full-version of our paper.

Theorem 5. Assuming the existence of one-way functions, there exists a non-
interactive protocol for securely realizing FOTP

f against a semi-honest sender and

malicious receiver in the FOT
(n,γ)-hybrid model.

8 Concrete Analysis

In this section, we present a concrete analysis to investigate the suitability of
our schemes for real-world applications. In Section 8.1, we estimate the number

24 H. Eldridge et al.

– Sender: Given an input f , the sender sen proceeds as follows:
1. Express f as a circuit C, then compute (C̃, {labi,b}i∈[k],b∈{0,1})← AdaGarbleCkt(1λ, C).
2. Instantiate a linear error-correcting code with length n, rank k, minimum distance γ+1

and generating matrix G.
3. For each i ∈ [k], and each b ∈ {0, 1}, compute a matrix Mi,b and vector ui,b such

that ui,b = Mi,b · y if and only if y is a valid codeword generated using G and its

corresponding word has bit b at position i, i.e. ui,b = Mi,b · y ⇐⇒ ∃x ∈ {0, 1}k,yT =

xT ·G ∧ xi = b. Then, define the following function:

Fi,b(y) =

{
labi,b if ui,b = Mi,b · y
z′ $←− {0, 1}k otherwise

Next, compute (F̃i,b, {robustLabi,bj,b′}j∈[n],b′∈{0,1})← RobGarble(1λ, Fi,b).

4. Define
−−−−−−→
robustLabj,b′ := {robustLabi,b

j,b′}i∈[k],b∈{0,1} for all j ∈ [n], b′ ∈ {0, 1}.
5. Sample a fresh sid and id and invoke FOT

(n,γ) on arguments (init, sid, id, send, rec,

{(
−−−−−−→
robustLabj,0,

−−−−−−→
robustLabj,1)}j∈[n],b′∈{0,1})

6. Send (C̃, {F̃i,b}i∈[k],b∈{0,1}) to the receiver rec.

– Receiver: Given an input x and upon receiving (sid, id, sen, rec) from FOT
(n,γ) and

(C̃, {F̃i,b}i∈[k],b∈{0,1}) from the sender, the receiver proceeds as follows:

1. Compute y := xT ·G.
2. For each j ∈ [n], invoke FOT

(n,γ) on arguments (open, sid, id, sen, rec, j,y[j]) and get
−−−−−−→
robustLabj,y[j] = {robustLabi,bj,y[j]

}i∈[k],b∈{0,1} in return.

3. For each i ∈ [k], compute labi,xi
= RobEval(F̃i,x[i], robustLab

i,x[i]

j,y[j]
}j∈[n]).

4. Compute and output z ← AdaEvalCkt(C̃, {labi,x[i]}i∈[k]).

Fig. 6. OTP Protocol

of lockboxes required for different input lengths. In Section 8.2, we discuss how
lockboxes can be instantiated using commodity hardware and the associated
costs and finally in Section 8.3, we discuss some potential applications of our
construction.

8.1 Number of Lockboxes

We use lockboxes to implement the leaky batch-OT functionality and the in-
put to this functionality is an encoding of the “real” input of the receiver. For
encoding, we require linear binary ECC with a constant rate. More often than
not, finding optimal binary ECC for specific input lengths k typically requires
iterating over all possible alphabets in the domain. In our case, the problem
of choosing optimal codes, is made worse by the fact that we don’t necessarily
require codes with optimal distance γ or the smallest codeword length n. In-
stead, we want a code that gives the smallest value of 2nℓ , while ensuring that(

e(ϵ/p−1)

(ϵ/p)ϵ/p

)np

< 1
2O(λ) , where p = (12)

ℓ · ℓ!
(2ℓ−1)!! and ϵ = γ/n (See Section 5.2 for

details). To simplify this problem and to get an estimate of how many lockboxes
are required, we pick a particular binary ECC with constant rate and find values
of n, γ and ℓ that give the smallest value of 2nℓ withing this encoding scheme.
In particular, we use Justesen codes [35].

One-Time Programs from Commodity Hardware 25

Input Codeword (n′, k′,m, γ) ℓ Total LB LB / Bit

Length (k) Length (n) (2nℓ) (2nℓ/k)

192 496 (43,32,6,12) 7 7224 37.625

256 752 (47,32,8,16) 7 10528 41.125

560 1302 (93,80,7,14) 7 18228 32.55

5000 14180 (709,500,10,400) 4 113440 22.688

300000 735720 (24524,20000,15,13080) 4 5885760 19.6192

Table 1. Lockboxes required for various input lengths with statistical security param-
eter λ ≥ 50

Encoding with Justesen codes. Justesen codes are derived as the code con-
catenation of a Reed–Solomon code and the Wozencraft ensemble. The encoding
algorithm works as follows – the given binary input string of length k is divided
into k′ blocks of length m each. This new vector of length k′ is encoded using the
Reed Solomon code (n′, k′, n′ − k′ + 1) over field GF (2m). Finally, the resulting
n′ blocks of length m each are encoded using Wozencraft ensemble. We use a
particular Wozencraft ensemble [41], that yields a final codeword of length 2mn′.
The minimum distance γ of the resulting code is

∑
i∈[g] i ·

(
2m
i

)
, where g is the

smallest integer such that
∑

i∈[g]
(
2m
i

)
≤ n′ − k′ + 1.

Estimating the optimal no. of lockboxes. Since, n′ here can potentially
take any value < 2m (and m ∈ [1, k]), a bruteforce approach to find optimal
values even within Justesen code will result in an exponential search. To reduce
the search space, we observe that for any given input length k and distance γ, it
suffices to only look at the smallest admissible value of n′. Greater values of n′

for the same k and γ yield worse security and larger values of 2nℓ. We use this
observation to deploy the following strategy – for any input length k, iterate over
all possible values of m ∈ [1, k], compute all corresponding admissible values of

g, γ and set n′ = k′ +
(∑

i∈[g]
(
2m
i

))
− 1 (this significantly reduces potential

domain for n′). For each such combination of (m,n′, γ), we calculate security for
reasonable values of ℓ and find the combination of (n′, k′,m, γ, ℓ) that results in
the fewest total number of lockboxes, while ensuring that the security is at least
2−50.

We report the number of lockboxes required for some input lengths in Table 1.
As expected, the number of lockboxes per input wire decreases as the number of
inputs increase. By replacing Wozencraft ensemble with BCH codes [12], we can
hope to get small improvements for larger input lengths; however, for smaller
inputs, BCH codes are unlikely to help. Overall, due to the lack of efficient binary
linear ECC, the number of required lockboxes are unlikely to be significantly
better than the ones computed using Justesen codes. Our laconic OT-based
construction offers some relief in this regard: for instance, if the length of digest
output by the receiver is 256 bits, we require 10,528 total lockboxes for any input
length.

26 H. Eldridge et al.

8.2 Instantiating Lockboxes

To realize counter lockboxes from the widely-available device- and cloud-based
hardware, some implementation considerations arise. In this section, we provide
brief background on each candidate lockbox and the practical considerations
involving their use.

Cloud-based Backup Services. Apple’s Cloud Key Vault was introduced
in 2016 when Apple added functionality to encrypt and store user-controlled
encryption keys within hardware security modules (HSM) to remove Apple’s own
ability to access them. Each iCloud account (registered email address) has access
to a Cloud Key Vault record, which corresponds to a password-protected HSM
entry which allows up to ten attempts7 via the Secure Remote Password [4,5]
(SRP) protocol. Notably, this requires one email address per lockbox, as Apple
allocates a single Cloud Key Vault entry to each user account.

Similar to Apple’s Cloud Key Vault, Google introduced HSM-based user-
controlled encryption to protect backups even from insider threats [37]. Their
system relies on the Titan [48] HSM hardware, and similarly implements a
password-based attempt-limited authentication service which can naturally be
viewed as a counter lockbox. Akin to Apple’s Cloud Key Vault, Google allocates
a single backup service instance per user account, and so each lockbox requires
a registered Google account (email address) to be deployed. Both iCloud and
Google accounts can be acquired for free, but acquiring multiple accounts can
require evading anti-spam measures.

Signal, the secure messaging platform, offers users a backup method rely-
ing on user-controlled encryption inaccessible to Signal’s servers. This service
is called Secure Value Recovery, or SVR. SVR allows users to set a PIN, and
gives them ten attempts to authenticate to an Intel SGX enclave to retrieve
their backup data. As a secure enclave, SGX itself is capable of running one-
time programs. However, to end users only a basic API is exposed which allows
authentication attempts over a secure connection. Rather than email-based reg-
istration, Signal requires phone numbers, specifically to receive a confirmation
SMS. Therefore, each SVR lockbox requires a phone number able to receive
an SMS; such numbers cost $0.50 USD/month each at scale with a service like
Twilio [49].

iOS Devices. Apple also offers the eponymous counter lockbox as hardware
within modern iOS devices (smartphones and tablets) available since Fall 2020.
This component emerged with the second-generation Secure Enclave Proces-
sor [3] (SEP) and was designed to prevent forensic attacks against the passcode
attempt counter which moderates access to a device and its filesystem. Although
there are few official documents, initial exploration seems to imply that iOS de-
vices are able to support up to 1024 counter lockbox instances simultaneously.

7 In Section 2.4, we discuss generic techniques to convert a multiple-attempt (e.g. 10)
lockbox into a single-attempt, including simply “burning” n − 1 attempts of each
n-attempt lockbox before transmitting their locations to the receiver.

One-Time Programs from Commodity Hardware 27

Since counter lockboxes are intended for use by iOS itself, third-party develop-
ers must interact with them directly on jailbroken devices. Finally, a note on
monetary costs: currently, iPad air 4th generation can be purchased for about
$300. Thus, the average cost of each lockbox can be estimated to be about $0.30
USD.

8.3 Applications

Given the cost of each lockbox and the notable expansion between input length
and total lockboxes as seen in Table 1, at present the real-world applicabil-
ity of our constructions is somewhat limited. However, compelling applications
involving small input lengths are within reach: Bitcoin addresses are 160-bit
hashes, which could be input into a delegated signature one-time program. Down-
sampled biometric measurements could be input to fuzzy matching algorithms,
or passwords into client-side key derivations for user authentication. Compressed
descriptions of aggregations could be input to an offline differentially-private
database service to maintain privacy budgets. As lockbox availability grows,
these domains will only expand.

9 Acknowledgements

The first, second and fourth authors were supported in part by NSF CNS-
1814919, NSF CAREER 1942789 and Johns Hopkins University Catalyst award.
The fourth author was additionally supported in part by AFOSR Award FA9550-
19-1-0200 and the Office of Naval Research Grant N00014-19-1-2294. The first,
third and fifth authors were supported by the National Science Foundation un-
der awards CNS-1653110 and CNS-1801479 and by DARPA under Agreements
No. HR00112020021 and Agreements No. HR001120C0084. The fifth author was
additionally supported by a Google Security & Privacy Award. This work was
done in part while the second author was a student at Johns Hopkins University
and while the second and fourth authors were visiting University of California,
Berkeley. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views
of the United States Government or DARPA.

References

1. Navid Alamati, Pedro Branco, Nico Döttling, Sanjam Garg, Mohammad Hajiabadi,
and Sihang Pu. Laconic private set intersection and applications. Cryptology
ePrint Archive, Report 2021/728, 2021. https://eprint.iacr.org/2021/728.

2. Ghada Almashaqbeh, Fabrice Benhamouda, Seungwook Han, Daniel Jaroslawicz,
Tal Malkin, Alex Nicita, Tal Rabin, Abhishek Shah, and Eran Tromer. Gage
mpc: Bypassing residual function leakage for non-interactive mpc. Proceedings on
Privacy Enhancing Technologies, 2021(4):528–548, 2021.

3. Apple Inc. Secure Enclave. https://support.apple.com/guide/security/

secure-enclave-sec59b0b31ff/web.

https://eprint.iacr.org/2021/728
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web

28 H. Eldridge et al.

4. Apple Inc. Escrow security for iCloud Keychain. https://support.apple.com/

guide/security/escrow-security-for-icloud-keychain-sec3e341e75d/web,
2021.

5. Apple Inc. HomeKit communication security. https://support.apple.com/

guide/security/homekit-communication-security-sec3a881ccb1/web, 2021.
6. ARM Holdings. Trusted Base System Architecture Documents. https://www.arm.

com/technologies/trustzone-for-cortex-a/tee-reference-documentation.
Subject to Non-Disclosure Agreement.

7. Michael Backes, Rainer W. Gerling, Sebastian Gerling, Stefan Nürnberger, Do-
minique Schröder, and Mark Simkin. WebTrust - A comprehensive authenticity
and integrity framework for HTTP. In Ioana Boureanu, Philippe Owesarski, and
Serge Vaudenay, editors, ACNS 14, volume 8479 of LNCS, pages 401–418. Springer,
Heidelberg, June 2014.

8. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling
with applications to one-time programs and secure outsourcing. In Xiaoyun Wang
and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 134–
153. Springer, Heidelberg, December 2012.

9. Fabrice Benhamouda, Hugo Krawczyk, and Tal Rabin. Robust non-interactive
multiparty computation against constant-size collusion. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages
391–419. Springer, Heidelberg, August 2017.

10. Alpesh Bhudia, Daniel O’Keeffe, Daniele Sgandurra, and Darren Hurley-Smith.
Ransomclave: Ransomware key management using sgx. In The 16th International
Conference on Availability, Reliability and Security, 2021.

11. Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad
Rubinstein, and Eran Tromer. The hunting of the SNARK. J. Cryptol., 30(4):989–
1066, 2017.

12. R.C. Bose and D.K. Ray-Chaudhuri. On a class of error correcting binary group
codes. Information and Control, 3(1):68–79, 1960.

13. Anne Broadbent, Gus Gutoski, and Douglas Stebila. Quantum one-time programs
- (extended abstract). In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 344–360. Springer, Heidelberg, August 2013.

14. Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Breaking virtual memory protection and the SGX ecosystem with foreshadow.
IEEE Micro, 39(3):66–74, 2019.

15. Rahul Chatterjee, Anish Athayle, Devdatta Akhawe, Ari Juels, and Thomas Ris-
tenpart. password typos and how to correct them securely. In S&P ’16. IEEE,
2016.

16. David Chaum and Torben P. Pedersen. Wallet databases with observers. In
Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 89–105.
Springer, Heidelberg, August 1993.

17. Zhiqun Chen. Java Card Technology for Smart Cards: Architecture and Program-
mer’s Guide. Addison-Wesley Longman Publishing Co., Inc., 2000.

18. Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and
Antigoni Polychroniadou. Laconic oblivious transfer and its applications. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402
of LNCS, pages 33–65. Springer, Heidelberg, August 2017.

19. Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia
Heninger, Ahmad Moghimi, and Yuval Yarom. Cachequote: Efficiently recover-

https://support.apple.com/guide/security/escrow-security-for-icloud-keychain-sec3e341e75d/web
https://support.apple.com/guide/security/escrow-security-for-icloud-keychain-sec3e341e75d/web
https://support.apple.com/guide/security/homekit-communication-security-sec3a881ccb1/web
https://support.apple.com/guide/security/homekit-communication-security-sec3a881ccb1/web
https://www.arm.com/technologies/trustzone-for-cortex-a/tee-reference-documentation
https://www.arm.com/technologies/trustzone-for-cortex-a/tee-reference-documentation

One-Time Programs from Commodity Hardware 29

ing long-term secrets of SGX EPID via cache attacks. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(2):171–191, 2018.

20. Oscar Delgado-Mohatar, José Maŕıa Sierra-Cámara, and Eloy Anguiano.
Blockchain-based semi-autonomous ransomware. Future Generation Computer
Systems, 112:589–603, 2020.

21. Nico Döttling, Sanjam Garg, Vipul Goyal, and Giulio Malavolta. Laconic con-
ditional disclosure of secrets and applications. In David Zuckerman, editor, 60th
FOCS, pages 661–685. IEEE Computer Society Press, November 2019.

22. Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In Theory of cryptography conference,
2006.

23. Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling with near
optimal online complexity. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 535–565. Springer,
Heidelberg, April / May 2018.

24. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious rams. Journal of the ACM (JACM), 43(3):431–473, 1996.

25. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating compu-
tation: interactive proofs for muggles. In Richard E. Ladner and Cynthia Dwork,
editors, 40th ACM STOC, pages 113–122. ACM Press, May 2008.

26. Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. One-time programs.
In Annual International Cryptology Conference, pages 39–56, 2008.

27. Google. Google Tensor debuts on the new Pixel 6 this fall. https://blog.google/
products/pixel/google-tensor-debuts-new-pixel-6-fall/, 2021.

28. Rishab Goyal and Vipul Goyal. Overcoming cryptographic impossibility results
using blockchains. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I,
volume 10677 of LNCS, pages 529–561. Springer, Heidelberg, November 2017.

29. Rishab Goyal, Satyanarayana Vusirikala, and Brent Waters. New constructions
of hinting PRGs, OWFs with encryption, and more. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages
527–558. Springer, Heidelberg, August 2020.

30. Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay
Wadia. Founding cryptography on tamper-proof hardware tokens. In Daniele
Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 308–326. Springer,
Heidelberg, February 2010.

31. Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust
combiners for oblivious transfer and other primitives. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 96–113. Springer, Heidelberg,
May 2005.

32. Carmit Hazay and Yehuda Lindell. Constructions of truly practical secure protocols
using standardsmartcards. In Peng Ning, Paul F. Syverson, and Somesh Jha,
editors, ACM CCS 2008, pages 491–500. ACM Press, October 2008.

33. Intel. Overview on signing and whitelisting for intel software guard extension
(sgx) enclaves. https://www.intel.com/content/dam/develop/external/us/

en/documents/overview-signing-whitelisting-intel-sgx-enclaves-737361.

pdf.
34. Ari Juels and Madhu Sudan. A fuzzy vault scheme. Designs, Codes and Cryptog-

raphy, 38(2):237–257, 2006.
35. Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE

Transactions on Information Theory, 18(5):652–656, 1972.

https://blog.google/products/pixel/google-tensor-debuts-new-pixel-6-fall/
https://blog.google/products/pixel/google-tensor-debuts-new-pixel-6-fall/
https://www.intel.com/content/dam/develop/external/us/en/documents/overview-signing-whitelisting-intel-sgx-enclaves-737361.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/overview-signing-whitelisting-intel-sgx-enclaves-737361.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/overview-signing-whitelisting-intel-sgx-enclaves-737361.pdf

30 H. Eldridge et al.

36. Gabriel Kaptchuk, Matthew Green, and Ian Miers. Giving state to the stateless:
Augmenting trustworthy computation with ledgers. In NDSS ’19, 2019.

37. Troy Kensinger. Google and Android have your back by pro-
tecting your backups. https://security.googleblog.com/2018/10/

google-and-android-have-your-back-by.html, 10 2018.
38. Slavik Krassovsky and Gabriel et al Cadden. Security of End-To-End

Encrypted Backups. https://scontent.whatsapp.net/v/t39.8562-34/

241394876_546674233234181_8907137889500301879_n.pdf/WhatsApp_

Security_Encrypted_Backups_Whitepaper.pdf?ccb=1-5&_nc_sid=2fbf2a&

_nc_ohc=4K040x7GheAAX_-4c-_&_nc_ht=scontent.whatsapp.net&oh=01_

AVxDv1cRlVElvg0Fv89URSU_XOQUupw70bDPw6o2w0LEWg&oe=6211F5FC, 2021.
39. Ivan Krstić. Behind the scenes with iOS security. https://www.blackhat.com/

docs/us-16/materials/us-16-Krstic.pdf, 2016.
40. J. Lund. https://signal.org/blog/secure-value-recovery/, 12 2019. Accessed

2 May 2022.
41. Florence Jessie MacWilliams and Neil James Alexander Sloane. The Theory of

Error-Correcting Codes. North-Holland Pub. Co., 1977.
42. Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson, Re-

bekah Leslie-Hurd, and Carlos Rozas. Intel® software guard extensions (intel®
sgx) support for dynamic memory management inside an enclave. In HASP ’16.
ACM, 2016.

43. Remo Meier, Bartosz Przydatek, and Jürg Wullschleger. Robuster combiners for
oblivious transfer. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS,
pages 404–418. Springer, Heidelberg, February 2007.

44. Silvio Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253–1298, 2000.

45. Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss, and
Frank Piessens. Plundervolt: Software-based fault injection attacks against intel
SGX. In S&P ’20. IEEE, 2020.

46. Sandro Pinto and Nuno Santos. Demystifying arm trustzone: A comprehensive
survey. ACM Computing Surveys (CSUR), 51(6), 2019.

47. Mike Rosulek and Lawrence Roy. Three halves make a whole? Beating the half-
gates lower bound for garbled circuits. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 94–124, Virtual Event,
August 2021. Springer, Heidelberg.

48. Uday Savagaonkar, Nelly Porter, Nadim Taha, Benjamin Serebrin, and Neal
Mueller. Titan in depth: Security in plaintext. https://cloud.google.com/blog/
products/identity-security/titan-in-depth-security-in-plaintext, 2017.

49. Twilio. https://www.twilio.com/sms/pricing/us, 2022.
50. Qixiang Xu. ARM-software/tf-issues. https://github.com/ARM-software/

tf-issues/issues/534, 2017.
51. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).

In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.
52. yubico. YubiHSM 2. https://www.yubico.com/product/yubihsm-2/.

https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html
https://scontent.whatsapp.net/v/t39.8562-34/241394876_546674233234181_8907137889500301879_n.pdf/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf?ccb=1-5&_nc_sid=2fbf2a&_nc_ohc=4K040x7GheAAX_-4c-_&_nc_ht=scontent.whatsapp.net&oh=01_AVxDv1cRlVElvg0Fv89URSU_XOQUupw70bDPw6o2w0LEWg&oe=6211F5FC
https://scontent.whatsapp.net/v/t39.8562-34/241394876_546674233234181_8907137889500301879_n.pdf/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf?ccb=1-5&_nc_sid=2fbf2a&_nc_ohc=4K040x7GheAAX_-4c-_&_nc_ht=scontent.whatsapp.net&oh=01_AVxDv1cRlVElvg0Fv89URSU_XOQUupw70bDPw6o2w0LEWg&oe=6211F5FC
https://scontent.whatsapp.net/v/t39.8562-34/241394876_546674233234181_8907137889500301879_n.pdf/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf?ccb=1-5&_nc_sid=2fbf2a&_nc_ohc=4K040x7GheAAX_-4c-_&_nc_ht=scontent.whatsapp.net&oh=01_AVxDv1cRlVElvg0Fv89URSU_XOQUupw70bDPw6o2w0LEWg&oe=6211F5FC
https://scontent.whatsapp.net/v/t39.8562-34/241394876_546674233234181_8907137889500301879_n.pdf/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf?ccb=1-5&_nc_sid=2fbf2a&_nc_ohc=4K040x7GheAAX_-4c-_&_nc_ht=scontent.whatsapp.net&oh=01_AVxDv1cRlVElvg0Fv89URSU_XOQUupw70bDPw6o2w0LEWg&oe=6211F5FC
https://scontent.whatsapp.net/v/t39.8562-34/241394876_546674233234181_8907137889500301879_n.pdf/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf?ccb=1-5&_nc_sid=2fbf2a&_nc_ohc=4K040x7GheAAX_-4c-_&_nc_ht=scontent.whatsapp.net&oh=01_AVxDv1cRlVElvg0Fv89URSU_XOQUupw70bDPw6o2w0LEWg&oe=6211F5FC
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://signal.org/blog/secure-value-recovery/
https://cloud.google.com/blog/products/identity-security/titan-in-depth-security-in-plaintext
https://cloud.google.com/blog/products/identity-security/titan-in-depth-security-in-plaintext
https://www.twilio.com/sms/pricing/us
https://github.com/ARM-software/tf-issues/issues/534
https://github.com/ARM-software/tf-issues/issues/534
https://www.yubico.com/product/yubihsm-2/

	One-Time Programs from Commodity Hardware

