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Abstract. Zero-knowledge proofs allow a prover to convince a verifier
of a statement without revealing anything besides its validity. A major
bottleneck in scaling sub-linear zero-knowledge proofs is the high space
requirement of the prover, even for NP relations that can be verified in a
small space.
In this work, we ask whether there exist complexity-preserving (i.e. over-
head w.r.t time and space are minimal) succinct zero-knowledge argu-
ments of knowledge with minimal assumptions while making only black-
box access to the underlying primitives. We design the first such zero-
knowledge system with sublinear communication complexity (when the
underlying NP relation uses non-trivial space) and provide evidence why
existing techniques are unlikely to improve the communication complex-
ity in this setting. Namely, for every NP relation that can be verified
in time T and space S by a RAM program, we construct a public-coin
zero-knowledge argument system that is black-box based on collision-
resistant hash-functions (CRH) where the prover runs in time Õ(T) and
space Õ(S), the verifier runs in time Õ(T/S + S) and space Õ(1) and the
communication is Õ(T/S), where Õ() ignores polynomial factors in log T
and κ is the security parameter. As our construction is public-coin, we
can apply the Fiat-Shamir heuristic to make it non-interactive with sam-
ple communication/computation complexities. Furthermore, we give ev-
idence that reducing the proof length below Õ(T/S) will be hard using
existing symmetric-key based techniques by arguing the space-complexity
of constant-distance error correcting codes.

1 Introduction

Zero-knowledge proofs, introduced by Goldwasser, Micali and Rackoff [20]
are powerful cryptographic objects that allow a prover to convince a veri-
fier of a statement while revealing nothing beyond the validity of the state-
ment. Succinct non-interactive zero-knowledge arguments (ZK-SNARKs and
ZK-SNARGs) are variants of zero-knowledge proof systems that offer very effi-
cient verification, namely, proof lengths and verification times that are polylog-
arithmic in the size of the instance. ZK-SNARKs have been the focus of intense
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research from both theory and practice in the past few years as they are be-
coming an indispensable tool to bringing privacy and efficiency to blockchains
(see [23, 35] for two recent surveys).

While the initial constructions of concretely efficient ZK-SNARKs suffered
from significantly high prover times, recent works have shown how to improve
the computational complexity to essentially linear in the time taken compute
the underlying relation (for an NP-language) [14, 36, 37, 33, 34, 26, 12, 27].
However, these works come with a steep price in terms of space, namely, for
computations that take time T and space S, the space complexity of the prover
is Ω(T). Notably, only a few works provide time and space efficient construc-
tions that we discuss next. This fact turns out to be a major bottleneck in
scaling up zero-knowledge proofs to larger and larger computations.

To make the context precise, we focus on the task of proving that a non-
deterministic RAM machine M accepts a particular instance x, i.e. uniform
non-deterministic computations. The goal here is if M accepts/rejects x in time
T and space S the resulting ZK proof system preserves these complexities on
the prover’s side and polylogarithmic in T (i.e. succinct) or even sublinear on
the verifier’s side.

When considering designated verifier ZK-SNARKs, complexity preserving
solutions (i.e. poly-logarithmic overhead in space and time) have been con-
structed by Bitansky and Chiesa [8] and by Holmgren and Rothblum [22] in
the non-interactive setting. The work of Ephraim et al. [18] show that assuming
the existence of standard (circuit) SNARKs one can construct a non-interactive
succinct argument of knowledge (i.e. SNARK) for parallel RAM computations
where the complexities are preserved on the prover’s side and the verifier re-
quires polylogarithmic in T time and space based on collision-resistant hash
functions (CRHF), where the underlying CRHF and SNARK is used in a non-
black-box manner. Publicly-verifiable ZK-SNARKs with similar overheads can
be accomplished via recursive composition [13, 16, 15]. However, these con-
structions have significant overheads as they typically rely on non-black-box
usage of the underlying primitives. Imposing black-box access to the under-
lying primitives is an important step to obtain practically viable constructions
[28, 1, 21].

More recently, two works by Block et al. [9, 10], designed the first black-
box construction of a ZK-SNARKs with polylogarithmic overhead in space and
time based on “more standard” assumptions. The first work assumes hardness
of discrete logarithm in prime-order groups and relies on the random oracle
to construct a public-coin zero-knowledge argument where the proof length
is polylog(T), the prover is complexity preserving and the verifier runtime is
T · polylog(T) while using polylog(T) space. The second work improves the
verifier’s runtime from T · polylog(T) to n · polylog(T), where n is the input
length, under hardness assumptions on hidden order groups. We note that
these works make extensive use of public-key operations - e.g., the prover
needs to do Ω(T) exponentiations, and public-key operations are typically
orders of magnitude more expensive than symmetric key operations.
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Thus, the prior works leave the following question open:

Is it possible to design a complexity preserving (zero-knowledge) argument
system based on minimal assumptions (eg, symmetric-key primitives) with
a succinct verifier where the underlying primitives are used in a black-box
manner?

As noted above, the problem is solved if we are willing to assume (and
extensively use) public-key primitives. We further highlight that the problem
can be solved if we relax either the computation or the space requirements of
the prover. The works of [5, 7] demonstrate a ZK-SNARK with succinct proofs
and verification (i.e. polylogarithmic in T), where the prover’s running time
and space are quasilinear in T. If we relax the time but restrict the space of
the prover, it is easy to see how to extend the same constructions of [5, 7] by
observing that a Reed-Solomon encoding of streaming data of size T can be
computed in time polynomial in T with space polylog(T). Finally, if we relax
the black-box requirement, recursive composition can be used to construct
(ZK-)SNARKS [13, 16, 15].

1.1 Our Results

Theorem 1. Assume that collision-resistant hash functions exist. Then, every NP
relation that can be verified by a time T and space S RAM machine has a public-coin
zero-knowledge argument-system such that:

1. The prover runs in time T · poly(log(T), λ) and uses space S · poly(log(T), λ).
2. The verifier runs in time (T/S+S) ·poly(log(T), λ) and uses space poly(log(T), λ).
3. The communication complexity is (T/S) · poly(log(T), λ) and number of rounds

is constant.
4. The protocol has perfect completeness and negligible soundness error.

where λ is the computational security parameter. Moreover, applying the Fiat-Shamir
heuristic results in a non-interactive sublinear zero-knoweldge argument of knowledge
with the same asymptotic efficiencies.

We remark that our construction could lead to concretely efficient com-
plexity preserving ZK-SNARKs that are possibly post-quantum secure since
it is based on symmetric-key primitives and is black-box in the underlying
primitives.

Next we complement our upper bound with a lower bound. We prove
that any constant-distance code with an encoding algorithm that runs in time
quasi-linear in the input length n must require space at least Ω̃(n). More for-
mally, we prove the following theorem.

Theorem 2 (Informal). Suppose that a a code over F with message length n, code-
word length m and minimum relative distance δ (i.e. [m, n, δm] code) can be encoded
via a RAM machine with space S while making r passes over the input message, then
S ∈ Ω(δn/r · log |F|).
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Interpreting theorem 2 in the context of proof systems, we note that most
IOP/PCP constructions use constant-distance codes to encode the computation-
transcript, which is of size Õ(T). Our lower bound implies that encoding an
Õ(T) message with space S will have distance Õ(S/T) which implies a query
complexity (and consequently proof length) of Ω(T/S) for the IOP/PCPs that
encode the transcript and this matches our upper bound.

1.2 Technical Overview

The most common approach to design a ZK-SNARK black-box from symmetric-
key primitives in a black-box way is to first design an interactive oracle proof
(IOP) system [6, 31], then compile it to an succinct interactive zero-knowledge
proof system (honest-verifier) using collision-resistant hash functions and fi-
nally relying on the Fiat-Shamir heuristic [19] to make it non-interactive.

Interactive oracle proofs and probabilistically checkable proofs encode the
computation in such a way that the verifier needs to query only few bits to
verify its validity. These proofs typically involve encoding the computation
transcript using some constant-rate constant-distance error-correcting codes.
Computing these codes on a computational transcript of size T can be done
efficiently, i.e. in time Õ(T) using FFTs. Unfortunately, all FFTs are believed to
require a high space complexity. In fact, it was shown in a specific computa-
tional model that computing Fourier transforms on a domain of size n with
time T and space S requires T · S ∈ Ω(n2) [32]. This means that if S << T,
then the running time to compute Fourier transforms will no longer be quasi-
linear in n. As mentioned above, we demonstrate that even designing codes
with constant-distance requires significant space.

Our starting point for our upper bound is the Ligero ZK argument system
[1] which is an instantiation of the IOP framework (based on the MPC-in-
the-head paradigm [24]) but provides a trade-off between size of the Fourier
transforms and proof length. Given a parameter β, for a computation of size
T, the Ligero proof system provides a O(T/β + β)-sized proof and requires
executing several O(T/β) FFTs on size β. However, the proof system as we de-
scribe below still requires a space complexity of O(T). Our main contribution
is a new proof system that follows the blueprint of the Ligero proof system
and preserves time and space efficiency.

We provide a high-level description of the Ligero proof system in the IOP
model and identify the bottlenecks in making it time and space efficient. Given
an arithmetic circuit C over a field F, the Ligero system proves satisfiability of
C as follows:

1. Preparing the proof oracle: In the first step in Ligero, the prover computes
an “extended” witness (of size O(|C|)) that incorporates all intermediate
computations (namely, output of each “gate”) and encodes it using an In-
terleaved Reed-Solomon code. This code is set as the proof oracle.

2. Testing the encoding: Next, the verifier tests if the prover set the oracle
with a valid encoding of some message. The Interleaved Reed-Solomon
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Code can be interpreted as a matrix U where each row is a Reed-Solomon
code of some message. The verifier challenges the prover with a set of
random elements (one for each row of U) and the prover responds with a
random linear combination of the rows based on the randomness provided
by the prover. The verifier rejects if this combination is not a valid (Reed
Solomon) code. The idea is that if each row of U is a valid Reed Solomon
code, then by linearity the random linear combination provided by the
prover must also be a valid Reed Solomon code.

3. Testing linear constraints: Linear constraints incorporate all the addition
gates and circuit wiring in C. The verifier tests these constraints by pro-
viding randomness and obtaining an encoding of a random linear com-
bination of the result of all the linear constraints applied to the extended
witness. Given the prover’s response the verifier checks if the response
encodes values that sum up to 0. The idea here is that even if one of the
linear relations do not hold, then the values encoded in the random linear
combination will not sum up to 0 with very high probability.

4. Testing quadratic constraints: Quadratic constraints incorporate all the
multiplication gates in C. The verifier tests these constraints analogously
to the linear constraints. Specifically, the verifier checks if the prover’s re-
sponse encodes a vector of all zeros. This test utilizes the strong multiplica-
tive property of the Reed-Solomon encoding [30].

5. Column check: Finally, the verifier checks if the responses provided by the
prover in the three tests presented above are consistent with the code in the
proof oracle. Since all the tests can be performed via row operations on the
matrix, the verifier selects a random subset of the columns of the matrix
and recomputes the results of the tests for these columns and checks if
they are consistent with the responses.

Compiling the IOP system to a sublinear argument is achieved by replacing
the proof oracle with the root hash of a Merkle hash tree with leaves as the
elements of the code matrix and providing Merkle decommitments along with
the elements (columns) revealed in the column check step [25, 6].

Next, we analyze the space complexity of the Ligero system, describe the
obstacles to make it space-efficient and then explain our approach to overcome
these obstacles.

1. The first step of the argument system involves the prover computing the
code generated by encoding the witness where this codeword serves as
the proof oracle. This is followed by computing the Merkle hash tree of the
code. The size of the code is O(|C|) and if we naively compute the Merkle
tree it will require holding the entire code in memory. However, if the In-
terleaved Reed Solomon code can be computed one row at a time then the
Merkle hash tree can be computed with space proportional to the length
of the code (i.e. number of columns in the matrix) as the hash of the leaves
can be iteratively aggregated using the Merkle-Damgard construction [17].
We remark that computing the code one row at a time is not straight for-
ward as the Ligero proof system actually requires the extended witness
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to be arranged in a specific structure. The verifier on the other hand can
check the Merkle decommitments of the κ columns in space proportional
to κ and polylog(T).

2. In the code test, the prover computes a random linear combination of the
rows of the matrix. Once again, if we assume that the code matrix can
be computed one row at a time, then the linear combination can also be
computed in space proportional to the length of the code by maintaining
a running aggregate.

3. The linear test is one of the main bottlenecks in terms of space complexity.
As the wiring in the circuit C can be arbitrary the linear constraints can
involve values encoded in arbitrary rows of the matrix. This means even
if the code can be computed one row at a time, computing the response
to the linear constraint could involve recomputing the entire code for each
constraint to access different rows of the code and this blows up the run-
ning time of the prover beyond quasi-linear in the worst case. The issue
of the wiring in the circuit C being arbitrary (as described in the previ-
ous step) poses a challenge to improving the verifier’s space complexity
as well. In addition to the same issues as discussed above, the verifier has
more stringent space restrictions, and verifying the prover’s response to
the linear test in small space is non-trivial. We discuss our approach for
the linear test below.

4. In the quadratic test, the verifier checks the correctness of all the multipli-
cation gates. The prover prepares the extended witness in a specific way
where the multiplication gates are batched and the wire values are aligned
so that they can be tested for correctness as follows: the verifier provides
randomness and the prover provides an aggregate computed via row op-
erations which the verifier checks if it encodes the all 0’s string. Making
this space-efficient requires arranging each batch of multiplication gates in
neighboring rows.

5. In the final step, the verifier queries the proof oracle on a subset of the
columns and verifies if the responses provided by the prover for the code,
linear and quadratic tests are consistent with the columns. In the Ligero
system, all these tests are results of row operations on the encoded ma-
trix. Hence the verifier can check the correctness by simply recomputing
the row operations on the subset of columns opened by the verifier and
checking against the prover’s responses. If the tests can be computed by
the prover in a space efficient manner, then the verifier can rely on a similar
approach to recompute the responses for the columns in a space-efficient
manner.

1.2.1 Our Approach We want to design a space-efficient ZK-SNARK for
RAM computations. First, we fix the RAM model of computation as a machine
that has (multi-pass) unidirectional input tapes and a work tape with RAM ac-
cess. Our first step is to rely on the transformation from [4, 11] to transform the
RAM computation into a (succinct) circuit C. We modify the compiler to gen-
erate directly a constraint system that can be consumed by the Ligero system.
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In slightly more detail, the Ligero constraint system is over a m × ℓ matrix X
that represents the “extended witness” and instantiated via a linear constraint
(A, b) and quadratic constraint system specified by tuples of rows (il , ir, io) on
the matrix X. The linear constraint requires that Ax = b where x is the flatten-
ing of the matrix X (namely concatenating the rows of X) and the quadratic
constraint (il , ir, io) requires that for every j ∈ [ℓ], Xil ,j · Xir ,j = Xio ,j.

By relying on the transformation of [4, 11], we will obtain a Ligero con-
straint system over a Õ(T/S) × Õ(S) matrix X where we can decompose X
into Õ(T/S) blocks where a block, denoted by Xi, contains polylog(T) rows of
X with the following properties:

1. First, a block can be stored in space Õ(S) (as opposed to storing X which
requires Õ(T) space). The transformation will allow the prover to generate
and encode X block-wise as needed by the Ligero proof system while using
only Õ(S) space.

2. The linear and quadratic constraints over the extended witness X will be
localized to a block or consecutive blocks i.e. these constraints only involve
values within a block or consecutive blocks of X. We will show that this
allows us to test constraints block-wise in a space efficient manner.

Next, we explain the main technical novelty of our approach - implement-
ing the linear and quadratic tests.

Linear Test. In this step, the prover convinces the verifier that the extended
witness X satisfies all the linear constraints. We observe from [4, 11] that the
linear constraints are “localized” to blocks of size Õ(S) and “uniform” i.e., the
set of the constraints applied to each block are the same. The efficiency of the
linear constraints relies on these two properties. In more detail, we express
the linear constraints for each block as Ayi = b where A is a public matrix
of size Õ(S)× Õ(S) extracted from the transformation, b is a public vector of
size Õ(S) and yi is Õ(S)-sized flattened vector corresponding to block Yi that
is obtained by concatenating the rows of Yi.

We briefly describe the linear test for “uniform” constraints. To verify these
constraints, the witness is split into blocks yi and the verifier verifies that
rT(Ayi) = rTb for all blocks yi, where r is a random challenge it provides
of length Õ(S). We explain the rest of the test for a specific block. To apply
batching, the output of the batched test is takes as the random linear combi-
nation of the individual tests. In such a test, the prover rearranges the vector
rT A as an Õ(1) × Õ(S) matrix and computes its Interleaved Reed Solomon
encoding, denoted by R. Then, instead of sending rT(Ayi), the prover sends
the vector q = (1m)T(R ⊙ Ui) where Ui is an encoding of Yi, 1m is the all ones
length m vector and ⊙ denotes pointwise product. By the multiplicative prop-
erty of Reed-Solomon codes, it follows that checking whether rT(Ayi) = rTb
is equivalent to checking whether the decoding of q satisfies that the sum of
the decoded values equals rTb. Towards making this test efficient in terms of
both time and space, the following three steps need to be computed efficiently.
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1. The prover and the verifier need to compute rT A. Note that naively storing
the entire matrix A requires space Õ(S2). Instead, we observe the matrix
A benefits from the following properties of the circuit (which is obtained
from the RAM-to-Circuit reduction of [4, 11]): (a) each wire of the circuit is
involved in at most polylogarithmic linear and quadratic constraints and
(b) all constraints involving a particular wire can be efficiently identified.
This translates into the following properties for A: (a) A is a sparse matrix
i.e., the number of non-zero elements in A is Õ(S) and (b) all the non-zero
elements of a column can be efficiently computed in time Õ(1) and space
Õ(1). To perform the matrix-vector multiplication, we just need to query
the non-zero values for each column of A in time Õ(1) and then multiply
each of these non-zero values with the appropriate randomness in r. The
randomness associated with ith row is set to si where s is a randomly
generated seed. Hence, we can compute each element of rT A in time Õ(1)
and space Õ(1).

2. Next, both the prover and the verifier need to compute the encoding of
rT A. The prover rearranges the Õ(S)-length vector into a Õ(1)× Õ(S) ma-
trix and then encodes each row using an RS encoding, denoted by R. The
prover can do this by first interpolating each row i of the matrix to gen-
erate a polynomial ri(·) and then evaluate ri(·) at Õ(S) evaluation points;
performing interpolation followed by evaluation (of size Õ(S)) is done ef-
ficiently using iFFT followed by FFT and requires space Õ(S). The prover
can perform these operations, but the verifier has much less space i.e.,
poly(log T, κ). First, note that the verifier needs to compute only at O(κ)
columns of R (as opposed to the prover who needs to compute the entire
codeword, which is of size Õ(S)). However, this does not directly reduce
the space to Õ(1) as interpolation followed by evaluation requires space
Õ(S) to store the interpolated polynomials. By exploiting the structure of
FFTs, we present an algorithm DEval that can implicitly evaluate the poly-
nomial without storing all the coefficients at a particular point using Õ(1)
space given an input of size Õ(S). This algorithm will allow the verifier to
recompute the result of the linear test on the Õ(1) columns in Õ(1) space.

3. Lastly, the verifier needs to check if the prover’s response in the linear
test encodes values that sum up to rTb. Suppose q(·) is the polynomial
associated with the prover’s response, then the verifier needs to evaluate
q(·) at ℓ points and check if they sum up to rTb i.e., ∑i∈[ℓ] q(ζi) = rTb
where {ζi}i∈[ℓ] are the interpolation points. It is non-trivial to ensure that
both the time and space are optimal for this check as evidenced by the
following two approaches where one is optimal in time but not in space
and vice-versa.

(a) If we use FFTs to evaluate the polynomial at ℓ points, then the check is
optimal in time but not space i.e., this approach requires time O(ℓ log ℓ)
and space O(ℓ).
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(b) Alternately, instead of storing all ℓ evaluations of q(·) and then adding
them up, we can compute the running aggregate of the values encoded
by q(·) while simultaneously evaluating the polynomial at all ℓ points.
This approach updates the running partial aggregate as the terms of
the polynomial are computed and just needs to store 1 field element.
But the time to evaluate a t degree polynomial at ℓ points is at least
O(tℓ), which is O(ℓ2) when t = ℓ. Hence, this approach is optimal in
terms of space but not time i.e., it requires space O(1) and time O(ℓ2)
(if the degree of q(·) is ℓ).

We address this issue by setting the interpolation points to be the ℓth roots
of unity. It turns out that the sum of the values encoded by q(·) is equal to
ℓ(c0 + cℓ) i.e., ∑i∈[ℓ] q(ζi) = ℓ(c0 + cℓ) where c0 and cℓ are the coefficients of
q(·). Our time and space-optimal approach is as follows. The prover sends
only the coefficients c0 and cℓ during the linear test. The verifier sums up
the two coefficients and checks if it is equal to rTb i.e., c0 + cℓ = rTb, which
requires time O(1) and space O(1).

Quadratic Test. Similar to the linear constraints, the quadratic constraints are
“localized” to a block i.e., the constraints involve only values within a block
of X. Further, the quadratic constraints require the rows of X to be aligned in
a specific way: the left, right, and output wire values of multiplication gates
are aligned in corresponding rows of a block. During the test, The verifier
provides a vector r′ of length Õ(1) and tries to verify the following for all
blocks i ∈ [O(T/S)], r′T(Yleft

i ⊙Yright
i −Yout

i ) = [0]1×Õ(S) where Yleft
i , Yright

i and

Yout
i are submatrices of X is size Õ(1)× Õ(S) corresponding to left, right and

output wire values respectively (and they are all aligned). Towards this, the
prover computes the encoding of r′T(Yleft

i ⊙ Yright
i − Yout

i ) for each block and
then combines them by taking a random linear combination of such encodings.

Similar to the linear test, the verifier needs to additionally check if the
prover’s response encodes a vector of all zeros. A similar challenge as de-
scribed in the linear test arises here as well. The verifier needs to evaluate the
prover’s response to the quadratic test, say q(·), at ℓ points and check if each
of them is 0. Like the previous solution for linear test, we set the interpolation
points to be the ℓth roots of unity. However, the solution for the previous step
cannot be directly applied here as we need to check if each of the values is 0
(instead of the sum being 0). Instead, we observe that the polynomial q(·) can
be expressed as a product of two polynomials q′(·) and z(·) such that z(·) eval-
uates to zero at all the interpolation points. We modify the quadratic test so
that the prover sends q′(·) instead instead of q(·) and the verifier computes q(·)
from q′(·) and z(·) where z(·) is a publicly known polynomial. This entirely
avoids the need to check if q(·) encodes all 0 values.

IPCP to ZK-SNARK. We compile an IPCP to a ZKSNARK in two steps. First
we compile an IPCP to a ZKIPCP and then transform ZKIPCP to a ZKSNARK.
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In the first step, we need to ensure that the information revealed to the
verifier is “zero-knowledge”. Recall that information regarding the extended
witness is revealed in each of the code, linear and quadratic tests and in the
symbols (i.e. columns of the U matrix) queried by the verifier. The columns
revealed can be protected by adding redundancy to the encoding. More pre-
cisely, we instantiate the Reed-Solomon code so that the columns of U matrix
provide t-privacy as a secret sharing scheme where t is the number of sym-
bols opened by the verifier. To make sure that the result of the tests leak no
information, it suffices to mask the results by adding additional rows to the U
matrix that blind the results of the tests. The IPCP protocol can be converted
into ZKIPCP protocol without any additional overhead by : 1) adding blind-
ing random codewords to encoded witness U and 2) adding randomness while
generating U. This compilation only incurs a constant multiplicative overhead.

In the second step we rely on the compilation of Ben-Sasson et al. [6] (which
in turn is based on [25]) using Merkle trees. We argue that this step affects the
asymptotic computation or communication complexity only by a multiplica-
tive factor proportional to poly(κ) where κ is computational security parameter.

Efficiency. To get the target space and time efficiency we will set the β pa-
rameter (length of a block) of the proof system to be Õ(S) and get a proof
length of Õ((T/S)+ S). The prover requires Õ(T)-time and Õ(S)-space, which
is complexity-preserving. Further, the verifier is “succinct” and will require
Õ(T/S + S)-time and Õ(1)-space to verify the proof.

Improving proof length. To improve the proof length, the protocol does not send
the polynomials q(·) in the test. Instead, the polynomials generate a codeword
which will be used as an oracle. The prover proves the degree of the polyno-
mial using a low-degree testing protocol FRI [2] which requires polylogarith-
mic communication in the degree of polynomial, thereby reducing the proof
length to Õ(T/S) and preserving the time and space complexities of both the
prover and the verifier.

1.2.2 A Matching Lower Bound We complement our positive result with a
lower bound that demonstrates why getting a proof length better than Õ(T/S)
will be hard using current techniques. As mentioned above, all techniques in-
volve codes with constant distance in one form or another. We show that any
code that makes polylogarithmic passes on an input message of length n and
produces a code with constant distance must require space Õ(n). Interpreting
the result in the context of proof systems, if we want to generate a code of a
message of length T in quasilinear time, it will require space Ω(T). A slightly
more refined implication is that with space S, encoding a T-length message in
quasilinear time (in T), can yield a code of distance at most S · polylog(T)/T.
Testing such codes typically requires queries inversely proportional to the dis-
tance i.e. T/(S · polylog(T)). Hence, any proof system that employs such a
code and encodes a length T message, will need a query complexity of at
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least T/(S · polylog(T)), implying that the proof length will also be at least
T/(S · polylog(T)).

The high-level idea of the lower bound is to prove that for any constant-
distance code over a field F, the encoding algorithm requires space S > (n/(rδ)−
O(log m)) · log |F|, where n is the message length, m is the codeword length, δ
is the distance and r is the number of passes. We prove this in two steps.

First, consider an encoding algorithm that reads each block (i.e., contiguous
portion) of a message and outputs a portion of the codeword. We show that
there must be a message M that consists of a block of length O(n/δ) such that
the number of elements output by the encoding algorithm corresponding to
that block is δm/2.

Next, consider the set of all messages m′ that agree with m everywhere
except on that block (there are |F|O(n/δ) such messages). We show that there
will be a subset of messages, say D, of size at least |F|O(n/δ)−rS/ log |F|−O(r log m)

such that the encoding of any two messages will differ only in at most δm/2-
elements where r is the number of passes made by the encoding algorithm on
the input. If this set has at least two messages, then the encodings of these mes-
sages will differ in at most δm/2 locations, thereby violating the distance prop-
erty of the codeword whose minimum distance is δm. To evade this contradic-
tion, we require the size of D to be at most 1, i.e., |F|O(n/δ)−rS/ log |F|−O(r log m) ≤
1 which implies that the space S > (n/(rδ)− O(log m)) · log |F|.

1.3 A Comparison with Related Work

Related to the design of sub-linear zero-knowledge arguments, the work of
Mohassel, Rosulek and Scafuro [29] constructs zero-knowledge arguments
when modeling the NP relation via a RAM program, that are sublinear in
a different sense. More precisely, they considered the scenario of a prover that
commits to a large database of size M, and later wishes to prove several state-
ments of the form ∃w such that Ri(M, w) = 1. After an initial setup with a
computational cost of O(M) only on the prover’s side, they achieve compu-
tation and communication complexities for both parties that are proportional
to Õ(T) where T is the running time of the RAM program implementing the
relation and Õ hides a factor of poly(log(T), κ).

Previously, the two works [9, 10] also designed black-box constructions of
ZK-SNARKs with polylogarithmic overhead in time and space. These works
rely on the hardness of discrete logarithm and hidden order groups. Our pro-
tocol, on the other hand, relies on symmetric key operations and requires
collision-resistant hash functions. The prover’s time and space complexities
of [9, 10] match our complexity. This is the case for the verifier’s space com-
plexity as well. The verifier’s running time in [9] is Õ(T) and Õ(n) in [10]
where n is the input length. On the other hand, our verifier’s complexity is
Õ(T/S + S). Finally, the communication complexity of prior works is Õ(1)
while we achieve Õ(T/S). We summarize these results in Table 1.
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P time P space V time V space
[9] Õ(T) Õ(S) Õ(T) Õ(1)

[10] Õ(T) Õ(S) Õ(n) Õ(1)
Theorem 1 Õ(T) Õ(S) Õ(T/S + S) Õ(1)

Table 1. The complexity analysis of black-box ZKSNARKs. T and S are the respective
time and space complexities required by the RAM program to verify the NP relation. n
is the input length and Õ(·) ignores polynomial factors of log T.

2 Preliminaries

Basic notations. Let κ be the security parameter. We use lower-case letters such
as x,y to represent vectors, and x[i] denotes the ith element in vector x. We
use capital letters such as X, Y to represent matrices. Also, X[j] denotes the
jth column and Xi,j denote the element in ith row and jth column in matrix
X. We use the notation Õ(.) to ignore polylog(.) terms. A matrix X is said
to be flattened into a vector x (i.e. denoted by the lower-case letters of the
corresponding matrix), if x is a rearrangement of the matrix X row-wise i.e.,
x = (X1,1, . . . , X1,n, . . . , Xm,1, Xm,n) where X is of size m × n.

We also Xi or Yi to denote matrices, especially when there many such matri-
ces and i identifies a specific matrix in the set {Xi}i∈[n]. Note that the flattened
vector associated with Xi and Yi are denoted by corresponding lower-case let-
ters i.e. xi and yi respectively.

2.1 Circuit Notations

A arithmetic circuit C is defined over a field F and has input gates, output
gates, intermediate gates, and directed wires between them. Each gate com-
putes addition or multiplication over F. We define the notion of a transcript
for an arithmetic circuit C to be an assignment of values to the gates where
the gates are ordered in a lexicographic order; each gate in circuit C will have
a gate id gid and will have two input wires and one output wire. Each wire
will also have a wire id wid and in case a wire value is an output wire of gate
gid, then the wire id wid = gid. Each element in the transcript W is of the form
(gid, type, γ) where gid is the gate label, type ∈ {inp, add,mult, out} is the type
of the gate and γ is the output wire value of gate gid.

2.2 Zero-Knowledge Arguments

A zero-knowledge argument system for an NP relationship R is a protocol
between a computationally-bounded prover P and a verifier V. At the end
of the protocol, V is convinced by P that there exists a witness w such that
(x; w) ∈ R for some input x, and learns nothing beyond that. We focus on
arguments of knowledge which have the stronger property that if the prover
convinces the verifier of the statement validity, then the prover must know w.
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Formally, consider the definition below, where we assume R is known to P

and V.

Definition 1. Let R(x, w) be an NP relation corresponding to an NP language L. A
tuple of algorithm (P,V) is an argument of knowledge for R if the following holds.

– Correctness. For every (x, w) ∈ R and auxiliary input z ∈ {0, 1}∗, it holds:

⟨P(w),V(z)⟩(x) = 1

– Soundness. For every x /∈ L, every (unbounded) interactive machine P∗, and
every w, z ∈ {0, 1}∗ and a large enough security parameter λ,

Pr[⟨P(w),V(z)⟩(x) = 1] ≤ negl(λ)

It is a zero-knowledge argument of knowledge it additionally satisfies:

– Zero knowledge. There exists a PPT simulator S such that for any PPT algo-
rithm V∗, auxiliary input z ∈ {0, 1}∗, and (x; w) ∈ R, it holds that

View(⟨P(w),V(z)∗⟩(x)) ≈ SV∗
(x, z)

Here SV∗
denotes that the simulator S sees the randomness from a polynomial-size

space of V∗.

Succinct vs. Sublinear Arguments. We say an argument of knowledge is suc-
cinct if there exists a fixed polynomial p(·) such that the length of the proof is
is bounded by p(λ + log |C|) where C is the circuit corresponding to the NP
relation. Similarly, we say an argument of knowledge is sublinear if the proof
length is oλ(|C|) where oλ(·) hides multiplicative factors dependent on the
security parameter λ.

2.3 Random-Access Machines (RAM)

A Random-Access Machines (RAM) comprises of a finite set of instructions
that are executed sequentially on a finite set of registers and can make arbi-
trary memory accesses. We assume that each time step during the execution
of a RAM program executes a single instruction or accesses the memory lo-
cations. We model the RAM as a Reduced-Instruction Set Computer (RISC)
which more closely models programs compiled from high-level languages
such as Java, C++. We adopt the formal notation for RAM from [4].

Definition 2. (The RAM Model [4]) A random-access machine (RAM) is a tuple
M = (w, k, A,C,T), where:

– w ∈ N is the register size;
– k ∈ N is the number of registers;
– C = (I0, . . . , In−1) is a set of instructions (or the code for the RAM program),

where n ∈ {1, . . . 2w} and each Ii is an instruction.
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– T is a set of tapes which consists of a constant number of unidirectional input
tapes with read-only access and single unidirectional output tape.

– W is a work tape with arbitrary read and write accesses.

Consider a RAM program M that runs in time T(n) and uses S(n) memory
cells on input x with n-bits. For simplicity, we use T and S instead of T(n) and
S(n) as the input length can be easily inferred.

The RAM program M has arbitrary access to a work tape3. At any time
step, the RAM program may read from or write into the cells (also referred
to as memory cells) of the work tape using the load and store instructions
respectively. We say a RAM program uses space S, if at most S memory cells of
the tape were accessed during an execution of the M.

2.4 Succinct Matrix

We define succinct matrices which will be used in our zero-knowledge argu-
ment system.

Definition 3 (Succinct Matrix). A succinct matrix A is a matrix of dimension n1 ×
n2 with the following properties:

– There are n1 · polylog(n1) non-zero values.
– There exists an algorithm getColumn(·) that takes input j and outputs a list L.

The list L contains all non-zero elements of column j where each non-zero element
is represented as a tuple (k, val) where k represents the row number and val
represents the non-zero value. This algorithm runs in polylog(n1).

3 Lower Bound for Space-Efficient Encoding Schemes

In this section, we present our lower bound on space-efficient constant-distance
codes. This lower bound provides evidence for why it is unlikely for current
proof systems to be complexity preserving (in both time and space) when the
underlying RAM machine uses space S << T for non-trivial space.

3.1 Interpreting the Lower Bound in the Context of Proof Systems

As mentioned in the technical overview, all constructions of succinct non-
interactive arguments based on symmetric-key primitives that are black-box
in the underlying assumptions rely on constant-distance codes [25, 5, 3, 1]. In
slightly more detail, all constructions first rely transforming the circuit evalu-
ation to an “execution” transcript that is proportional to the size of the circuit
and then encoding the transcript via a constant-distance code. For a RAM ma-
chine, such a transformation typically results in a transcript of size T where T
is the running time of the RAM computation. In this section, we will show that

3 Generally, the RAM program has access to memory which we model as a work tape.
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encoding a T-element message via a constant-distance code will require space
Ω(T/r), where r is the number of passes taken by the algorithm on the input
tape. In other words, current techniques for constructing a time-preserving
ZK-SNARK, i.e. r is at most polylog(T), will require prover’s space of Ω(T/r).
In particular if the space of the underlying RAM machine is S << T, it is
unlikely to get such a proof system that is complexity preserving (in time and
space).

3.2 Warm Up: A Simple Lower Bound

As a warm up, we first present a lower bound where we assume a small re-
striction on the encoding algorithm and then prove a more general result. We
begin with some notation that will help in our lower bounds.

Notation. We consider an encoding algorithm executed via a RAM machine
with space S that encodes a message of length n. The encoding algorithm
has unidirectional (i.e. linear) access to the input tape and can make multi-
ple passes on the input. The machine also has a unidirectional output tape.
Further, the the encoding algorithm has RAM access to a work tape of size
S bits (or equivalently S/ log |F| field elements). To keep track of the current
position of the read head of the encoding algorithm on the input tape, we
introduce the notion of head. Specifically, we use read head and write head
to denote the heads in the input tape and output tapes, respectively (where
the message to be encoded is read from the input tape and the codeword is
written on to the output tape). Note that the contents of the work tape of the
encoding algorithm differs depending on the position of the read head. It will
be convenient to divide a msg into contiguous blocks of equal length. We will
denote by by msg[i] the ith block of msg. We denote by cmsg the output of Enc
on input msg. Let cmsg[i, j] denote the part of the codeword output by the en-
coding algorithm when it reads the block msg[i] during the jth pass, i.e. when
the read head moves from the left end to the right end of the block msg[i] in
the jth pass. Let cmsg[i] be the concatenation of {cmsg[i, 1], . . . , cmsg[i, r]}. We
will drop the subscript when the msg is understood from the context.

We present a high-level overview of the simplified version of the lower
bound, which imposes certain restrictions on the encoding algorithm. Note
that the encoding algorithm reads a certain portion of the message (referred to
as a block), outputs a portion of the codeword (associated with this block) and
then proceeds to the next message block. We make a simplifying assumption
that the length of the codeword portion associated with any message block is
independent of the contents of the message. This is formally stated in assump-
tion 1 below.

Assumption 1 The position of the read head and write head at any step during the
encoding is independent of the message.

As a corollary we have the following: Suppose we divide the input message
into ⌈2/δ⌉ blocks of equal length. Given any two messages msg,msg′ ∈ Fn, the
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output of the encoding algorithm satisfies |cmsg[i, j]| = |cmsg′ [i, j]| for all blocks
i ∈ [2/δ] and passes j ∈ [r].

We begin with a proof overview. On a high-level the idea is to identify a set
of messages whose encoding violate the minimum distance property. First, by
a simple counting argument we can argue that there must be a message block
t of length O(n/2δ) such that the total number of elements output by the en-
coding algorithm when the read head passes through block t (i.e. ∑j |c[t, j]|) is
at most δm/2. Observe that block t will have the same property for any mes-
sage by our Assumption 1. Next, we will focus on messages that are identical
everywhere except on block t; if we fix the remaining blocks then there are
|F|δn/2 such messages as each block is of size δn/2. Out of these |F|δn/2 mes-
sages, we identify a subset of messages that result in identical work tapes after
the encoding algorithm reads block t in each pass. These messages have prop-
erty that the code can only differ in the portions output when reading block t,
namely c[t, j]. We conclude by showing that there exist at least two messages in
this set when S ≤ (δn/2r) · log |F|. Since the codewords corresponding to these
messages only differ in at most δm/2 locations, but the minimum distance of
the code is δm, we arrive at a contradiction.

Theorem 3. Let C be a [m, n, δm] code over F with message length n, codeword
length m and minimum relative distance δ. Also, let Enc(T,S,r) : Fn → Fm be a
Turing machine that on input msg ∈ Fn outputs an encoding of msg in time T with
a work tape of size S while making r passes on the message. Suppose Assumption 1
holds, then S ≥ (δn/2r) · log |F|.

Proof. Assume for contradiction that there exists a [m, n, δm] code C over F

with an encoding algorithm Enc(T,S,r). Consider an arbitrary message msg.
Let’s partition it into 2/δ blocks each of length δn/2 elements.

Assumption 1 implies that the length of the output of the encoding algo-
rithm associated with message block i, which is denoted by |c[t]|, is the same
for all messages. Here, c[i] is a concatenation of {c[i, 1], . . . , c[i, r]} for some
message msg. We drop the subscript for |cmsg[t]| as the length is the same for
all messages. Next, We show that there exists a message block t such that c[t]
is of length at most δm/2.

Lemma 1. There exists a t ∈ [2/δ] such that |c[t]| ≤ δm/2.

Proof. Assume for contradiction, for every t, |c[t]| > δm/2. Then,

|c| = ∑
i
|c[i]| > 2/δ × δm/2 > m

which is a contradiction.

Lemma 2. Given message block t ∈ [2/δ] and pass k ∈ [r], there exists a set of mes-
sages Dk of size at least |F| δn

2 −kS/ log |F| such that for any two messages msg,msg′ ∈
Dk the following holds:
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1. msg[i] = msg′[i] for all i ̸= t.
2. At the end of the kth pass, cmsg and cmsg′ differ only at positions occupied by

c[t, 1], . . . , c[t, k]. Furthermore, the contents of the work tape of the encoding algo-
rithm at the end of the kth pass for messages msg and msg′ will be identical.

Proof. Consider an arbitrary message msg, define D0 to be the set of all mes-
sages that are identical to msg in every block i ̸= t, but differ in block t. D0

contains |F| δn
2 messages. We prove the claim via an induction on the number

of passes.

Base case: In the first pass, we show that there exists D1 ⊆ D0, such that the
properties of the claim hold. By an averaging argument, there must exist a

subset of D0, say D1, of size at least |F|
δn
2 − S

log |F| with the following property:
the contents of the work tapes are identical for any two messages in D1 after
the encoding algorithm finishes reading block t message during the first pass.

We now show that the codewords cmsg and cmsg′ differ only in the code-
word portions c[t, 1] for any two messages msg,msg′ ∈ D1. Since all messages
in D0 are identical except for block t, the encoding will be identical before the
codeword portion c[t, 1]. Next, since the contents of work tapes after reading
block t are identical and the remaining part of the message (i.e., after message
block t) are the same, the rest of the output until the encoding finishes the first
pass will be the identical as well. Furthermore, the work tapes will be identical
when the encoding finishes the first pass.

Induction: Suppose that there exists a set of messages Dk for which the con-
ditions of the claim holds at the end of the kth pass. Then in the (k + 1)st

pass, the encoding algorithm starts with identical contents on the work tape
for every message in Dk, so it will output the same elements until the encod-
ing reaches block t. Applying another averaging argument, there must exists

a subset Dk+1 ⊆ Dk of size at least |F|
δn
2 − kS

log |F| /|F|S/ log |F| = |F|
δn
2 − (k+1)S

log |F| such
that the work tape will be identical when the encoding finishes reading block
t in the (k + 1)st pass. Similarly the contents of the work tapes and the output
for these messages will also be identical for every two messages in Dk+1 until
the end of the (k + 1)st pass. This completes the induction step.

Finally, we combine lemmas 1 and 2 to prove theorem 3 via contradiction.
As per lemma 1, there exists a message block t such that the encodings of
messages differing only at this block have a distance of at most δm/2. If we
instantiate lemma 2 for block t, we get that there exists a set of messages Dr

of size |F|
δn
2 − rS

log |F| such that the encodings of any two messages in Dr differ in
at most δm/2 locations. If we set S < (δn/2r) · log |F|, then Dr will contain at
least 2 messages whose encodings differ in at most δm/2 locations. This con-
tradicts the distance requirements of the codeword CF,n,m,δ whose minimum
distance is at least δm.



18 Bangalore et al.

3.3 Lower Bound for Multi-Pass Space-Efficient Encoding Schemes

In this section, we extend the lower bound where we do not make Assump-
tion 1. Without this assumption, for two different messages, the portion of
the code affected by different blocks of the message could be different. The
main idea to deal with the general case is to show that there exist sufficiently
many messages for which Assumption 1 holds and then apply the preceding
argument.

Theorem 4. Let C be a [m, n, δm] code over F with message length n, codeword
length m and minimum relative distance δ. Also, let Enc(T,S,r) : Fn → Fm be a
Turing machine that on input msg ∈ Fn outputs an encoding of msg in time T with
a work tape of size S while making r passes on the message. Then S ≥ (δn/4r −
2(log|F| m)− 2/r) · log |F|.

Proof. Assume for contradiction that there exists a code C and encoding algo-
rithm Enc. We partition the message msg into 4/δ blocks each of length δn/4.
We first show that there exists a subset containing |F|δn/4−2 messages, say D,
and an index t such that for each message msg in D, we have |cmsg[t]| ≤ δm/2.
Note however, that since Assumption 1 does not hold, the corresponding code
blocks for these messages might not be aligned.

Lemma 3. There exists a set of messages D of size at least |D| ≥ |F|δn/4−2 and
t ∈ [4/δ] such that for any two msg,msg′ ∈ D the following holds:

1. msg[i] = msg′[i] for all i ̸= t.
2. |cmsg[t]| ≤ δm/2.

Proof. Assume for contradiction that such a set D does not exist. Given a mes-
sage msg, let At[msg] be the set of all possible messages that agree with msg on
all blocks except block t. We know that the size of At[msg] is |F|δn/4. By our
assumption, we have that for more than |F|δn/4 − |F|δn/4−2 of the messages in
At[msg], it holds that c[t] is of length bigger than δm/2. We will now compute

∑
s∈{0,1}n−δn/4

∑
t

∑
s′∈{0,1}δn/4

|cCombine(s,s′ ,t)[t]|

where Combine(a, b, i) denotes the string obtained by inserting b into string a
at position t × δn/4. Observe that the sum above, counts the sum total of the
lengths of the encodings of every message, which should be equal to m × |F|n.
By our assumption, we can lower bound the sum as

|F|n−δn/4 × 4/δ × (|F|δn/4 − |F|δn/4−2)× δm/2 = 2 × |F|n × (1 − 1/|F|2)× m
> |F|n × m

where the last step holds for |F| ≥ 2. This is a contradiction.



On Black-Box Constructions of Time and Space Efficient Sublinear Arguments 19

Next, we show that there are sufficiently many messages in D and indices
t, such that the message block t influences identical portions of the codeword.
In other words, the assumption we made for the warm-up proof holds for a
subset of the messages in D.

Lemma 4. Given any index t ∈ [4/δ], set D of messages there exists a subset of
messages D′ ⊆ D of size at least |D|/m2r such that for all messages msg′,msg′′ in
D′, the starting and ending positions of cmsg′ [t, i] and cmsg′′ [t, i] w.r.t the code are
identical for every i ∈ [r].

Proof. There are overall 2r positions considering the starting and ending points
of cmsg[t, 1], . . . , cmsg[t, r] w.r.t the code. The number of possibilities for these
2r points is exactly (m

2r) (because selection of 2r positions can be assigned as
starting and ending positions uniquely to the code blocks). By an averaging
argument there must be at least |D|

(m
2r)

≥ |D|
m2r messages in D for which these 2r

locations will be identical.

Combining Lemmas 3 and 4, we get that there exists a set B of size at least

|F|
δn
4 −2r log|F|(m)−2 and index t that satisfy the conditions in both the lemmas.

Lemma 5. There exists a set of messages D ⊆ B of size at least |F|
δn
4 −2r(log m)− rS

log |F|−2

where the following properties hold for any messages msg,msg′ ∈ D:

1. msg[i] = msg′[i] for all i ̸= t.
2. At the end of the kth pass, cmsg and cmsg′ differ only in the portions occupied

by the blocks c[t, 1], . . . , c[t, k]. Furthermore, the contents of the work tape of the
encoding algorithm at the end of the kth pass will be identical.

Proof. Observe that all messages in B have the property that they are identical
on all blocks except at block t. Moreover, the starting and ending positions
w.r.t the code when the encoding algorithm reads block t are identical for all
messages in B. We can now follow essentially the same argument as Claim 2

to prove this claim.

We conclude the proof of Theorem 4 by observing that if D has at least two
messages we arrive at a contradiction because for every message in D, c[t] is
at most δm/2 and for any two messages the corresponding codes only differ
in these locations. Thus, if δn

4 − 2r(log|F| m) − rS
log |F| − 2 > 0, we arrive at a

contradiction.

4 Main Construction

In this section, we present a short overview of our space-efficient zero-knowledge
argument system for RAM programs based on collision-resistant hash-functions.
Please refer to the full version for a more detailed presentation.

The first main step in our construction is transforming a RAM program to
the Ligero constraint system. This is summarized in the Lemma below.
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Lemma 6. Let M be an arbitrary (non-deterministic) Random Access Machine that
on input strings (x, w) runs in time T and space S. Then, (M, x) can be transformed
into the following system of constraints over a m × ℓ matrix X:

1. X is a m × ℓ matrix that is subdivided into sub-matrices or blocks X1, . . . , XB

where each Xi is a m′× ℓ matrix, X =


X1
X2
...

XB

 and B = O
(

T
S

)
, m′ = polylog(T),

m = m′ · B and ℓ = S · polylog(T). We denote by xi the “flattened” vector
corresponding to matrix Xi (namely, xi is the vector obtained by concatenating
the rows of Xi).

2. (Intra-block Linear Constraints) A is of size (m′ · ℓ)× (m′ · ℓ) and b is a length
(m′ · ℓ)-vector and Axi = b for all i ∈ [B].

3. (Inter-block Linear Constraints) A′ is a (2m′ · ℓ)× (2m′ · ℓ) matrix and b′ is a

length (2m′ · ℓ)-vector and A′
[

xi
xi+1

]
= b′ for all i ∈ [B − 1].

4. (Input-Consistency Constraint) A′′ is a |x| × (m′ · ℓ) matrix and A′′x1 = x
where |x| is the size of x.

5. (Quadratic Constraints) For each i ∈ [B], Xle f t
i ⊙ Xright

i = Xout
i where ⊙ denotes

point-wise products and Xi =


Xinp

i
Xle f t

i
Xright

i
Xout

i

 where Xinp
i is minp × ℓ matrix and

Xle f t
i , Xright

i , Xout
i are mmult × ℓ matrices.

Efficiency. Furthermore, the matrices A, A′ and A′′ are succinct according to Defi-
nition 3 and an input-witness pair (x, w) that makes M accept can be mapped to an
extended witness X by a RAM machine in T · polylog(T) and space S · polylog(T).
Equivalency. Any X that satisfies the system of constraints can be mapped to a w
such that M accepts (x, w).

The core of our construction is a space-efficient IPCP for the linear and
quadratic tests. We will only focus on linear test in this version of the paper.
For the full description of all the elements of our protocol, we refer the reader
to the full version. A formal description of the linear test is given below.

Lemma 7. Protocol 1 is an IOP/IPCP for testing linear constraints with the following
properties:

– Completeness: If U ∈ Lm is an encoding of a m × ℓ matrix X such that, for
every i ∈ [B], Ayi = b where yi is the flattened vector corresponding to Yi and
block Yi is a m′ × ℓ submatrix of X starting at the I[i]th row of X and the P is
honest, then V accepts with probability 1.
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Protocol 1 (Testing linear constraints over Interleaved RS Codes)
Input: Lm-codeword U, #blocks B, vectors {yi}i∈[B] each of length m′ℓ, indices {I[i]}i∈[B],
matrix A of size ma × m′ℓ, vector b of length ma.
Oracle: A purported Lm-codeword U that should encode m × ℓ matrix X such that, for every
i ∈ [B] we have Ayi = b where yi is the flattened vector corresponding to Yi and block Yi is a
m′ × ℓ submatrix of X starting at the I[i]th row of X.
Linear Test:

1. V picks two random seeds s, s′ ∈ F and sends it to P.
2. P sends q(·) = ∑i∈[B] r′[i]qi(·) to V where r = (1, s, s2, . . . , sma−1),

r′ = (1, s′, s′2, . . . , s′B−1),rT A = (r1,1, . . . r1,ℓ, . . . , rm′ ,1, . . . , rm′ ,ℓ) and qi(·) =
∑k∈[m′ ] rk(·)pI[i]+k−1(·), and ri(·) is the polynomial of degree < ℓ such that ri(ζ j) = ri,j
for all j ∈ [ℓ].

3. V queries a random subset Q ⊆ [n] of size t to obtain the columns of U corresponding Q.
4. V accepts if

(a) q(·) is of degree < 2ℓ− 1.
(b) ∑k∈[ℓ] q(ζk) = ∑i∈[B] r′[i]rTb.
(c) For every i ∈ Q,

∑j∈[B],k∈[m′ ] r′[j] · rk(ηi)Uk+I[j],i = q(ηi).

Fig. 1. Protocol for Linear Test.

– Soundness: Let e be a positive integer such that e < d/2 where d is minimal
distance of Reed-Solomon code. Suppose that a badly formed matrix U∗ is e-close
to a codeword U that encodes a matrix X such that ∃i ∈ [B], Ayi ̸= b where yi
is the flattened vector corresponding to Yi and block Yi is a m′ × ℓ submatrix of X
starting at the I[i]th row of X. Then for any malicious P∗ strategy, V will reject
except with probability ((e + 2ℓ)/n)t + (ma + B)/|F|.

– Complexity:
P has X on its input tape and has a work tape of size O(m′ℓ). In this model,
P makes a single pass on the input tape. We denote by mℓ the length of X, the
number of blocks as B and yi is a flattened vector of a block within X of size
m′ × ℓ. Given that P is provided with a one-way linear access to X, matrix A is a
public succinct matrix of dimension ma × m′ℓ as defined in Definition 3 then the
following complexities are obtained:
• Prover’s Time = m′ℓpoly log ma + O(m′ℓB log ℓ).
• Verifier’s Time = m′ℓpoly log ma + O(m′ℓκ + Bm′κ)
• Prover’s Space = O(m′ℓ).
• Verifier’s Space = O(κm′ + ma).
• Communication Complexity = O(ℓ).
• Query Complexity = O(κ).

Our IPCP protocol Given a RAM program M, we construct a zero-knowledge
argument system for BHRAM(M) by composing the following two compo-
nents.
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1. A complexity-preserving reduction from BHRAM to extended witness X
that satisfies the system of constraints defined in lemma 6.

2. The protocols for testing interleaved linear codes, linear constraints and
quadratic constraints require oracle access to Lm-codeword U that encodes
the extended witness X. The prover computes the outputs of the tests by
processing X block-by-block. The verifier has a “succinct” representation
of the system of constraints imposed on X and can therefore check the
outputs of the tests in a space-efficient manner.

We compose these two components as follows. At a high level, the prover
generates the extended witness X block-by-block as described in the reduction
from BHRAM to X. As and when a block is generated, the prover processes this
block to compute “running partial outputs” for each of the three tests. The
prover only needs to store a few blocks in memory at a time rather than the
entire extended witness.

Theorem 5. Fix parameters m, m′, mmult, n, ℓ, B, t, e, d such that e < d/3 and d =
n − ℓ+ 1. For every NP relation that can be verified by a time T and space S RAM
machine M with input x has a public-coin IOP/IPCP with the following properties:

1. Completeness: If there exist an witness w such that M(x, w) with time T and
space S is accepted and P generated the oracle U honestly, then V accepts with
probability 1.

2. Soundness: Let there exist no witness w such that M(x, w) is accepted in time T
and space S, then for every unbounded prover strategy P∗, V will reject except
with (1 − e/n)t + 4((e + 2ℓ)/n)t + (d + 3m′ℓ+ mmult + |x|+ 3B)/|F|.

3. Complexity: The complexities are in terms of the number of field operations per-
formed or number of field elements over a field F below.
(a) The prover runs in time T · poly(log T, κ) and uses space S · poly(log T, κ).
(b) The verifier runs in time (T/S+S) ·poly(log T, κ) and uses space poly(log T, κ).
(c) The communication complexity is S · poly(log T, κ), query complexity of the

verifier is (T/S) · poly(log T, κ) and number of rounds is a constant.

where κ is the statistical security parameter.

In the full version, we also show how to modify our IPCP to obtain zero-
knowledge and then how to improve the communication to Õ(T/S).

5 Space-Efficient Affine Code Testing for Interleaved Reed
Solomon Codes

We begin by providing a high-level overview of our IPCP system. It follows
the same blueprint of the Ligero system (described in the introduction). In
a nutshell, our construction is a space-efficient variant of each phase of the
Ligero blueprint. The main steps involved in our IPCP system are as follows.
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1. RAM to circuit reduction: Given a RAM program M, we transform the
RAM program to circuits by relying on the transformation of [4, 11] where
the resulting circuit C has a “succinct” representation.

2. Preparing the proof oracle: Next, the prover evaluates the circuit C on
the private witness w to compute all wire values (input, intermediate and
output) and arranges the values in a specific way in a m × ℓ matrix X
referred to as the extended witness. The prover then encodes the matrix
using a Interleaved Reed Solomon (IRS) code to obtain a m × n matrix U,
namely, each row of U is an encoding of a corresponding row in X using
a Reed Solomon code; this is the proof oracle. The prover computes U in a
row-by-row manner, which is space-efficient.

3. Testing the encoding: This step involves testing interleaved linear codes
in a space efficient manner. This essentially follows as in the previous step
as rTU can be computed by recomputing U row-by-row and maintaining
a running partial aggregate of ∑j rjUj,·.

4. Testing linear constraints: This step shows how the linear test can be per-
formed in a space efficient manner. This is the non-trivial part of the con-
struction as we need to utilize the succinct representation of C and the
arrangement of the extended witness in U to compute the response in a
space-efficient manner.

5. Testing quadratic constraints: This step relies on ideas from the previous
two steps to obtain a space-efficient version of the quadratic test.

In this section, we focus on our space-efficient IPCP for the linear test (men-
tioned in step 4 above), which is one of the core aspects of our construction.
We defer to the reader to the full version of our paper for the descriptions of
the rest of the steps mentioned above.

This test checks if the linear constraints imposed by the addition gates
and the circuit’s structure are satisfied. The linear check is performed over
blocks, where each block Yi starts at the row I[i] of the extended witness X
and is of size m′ × ℓ for all i ∈ B. Precisely, given a public matrix A of size
(m′ · ℓ)× (m′ · ℓ) and a vector b of size (m′ · ℓ), the linear constraints are Ayi = b
for each i ∈ [B] where yi is the flattened vector of Yi and is of size (m′ · ℓ). Note
that linear constraints imposed on each block are the same, which are captured
by same parameters A and b for all blocks.

Recall that the linear test in Ligero handles all the linear constraints over the
extended witness X in a single shot (represented as a linear equation A′X = b′

for some public matrix A′ and vector b′). Whereas we consider a variant of
the linear test where the same set of linear constraints repeat over different
sections (i.e., blocks) of the extended witness, which is represented as linear
equations Ayi = b for all i ∈ [B].

We first describe a simple algorithm for the new variant of linear test and
later show how to further improve the verifier’s time and space costs. At a
high level, we apply Ligero’s linear test on each block and then take a random
linear combination of the outputs of the test for each block. At the prover’s
end, naively computing rT A is expensive as A is a large matrix. By observing
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Parameter Description
Yi Blocks associated with the linear constraints
yi Flattened vector corresponding to block Yi
B #Blocks associated with the linear test
m′ #Rows in each block Yi
I[i] Index of the first row of X included in Yi

s Seed 1 for randomness
s′ Seed 2 for randomness
r randomness vector 1

r′ randomness vector 2

A Linear constraint matrix
b linear constraint vector

ma #Linear constraint for each yi
ri,j the value of the matrix at position (i, j) when parsing rT A into a matrix

ri(·) ith polynomial generated by encoding rT A

Table 2. Description of the parameters.

that the matrix A is sparse (more precisely, A is succinct), we reduce the time
and space required significantly by efficiently computing the positions of the
non-zero elements of A.

Roughly, the protocol for linear test proceeds as follows. The verifier pro-
vides two random seeds s, s′ ∈ F, from which the prover and verifier can gen-
erate random vectors r and r′. We require two randomness vectors where one
is used as random linear combiners for rows within a block, while the other
is used as random linear combiners across blocks. The prover computes the
polynomial encoding qi(·) of (rT A)yi for each block Yi and then computes the
polynomial encoding q(·) = ∑i∈[B] r′[i] · qi(·) of all the blocks. Lastly, the veri-
fier checks the consistency of q(·) with ∑i∈[B] r′[i] · (rTb) and U on t randomly
chosen columns. Refer to Fig. 1 for the formal description of the protocol.

Algorithm DEval(v, R): On input (v, R), this algorithm outputs an evaluation
vector e = {p(ηj)}ηj∈R where the polynomial p(·) is defined such that p(ζi) =

v[i] for all i ∈ [ℓ] , ζi are the interpolation points, ηj are the evaluation points
and R is the set of query points. The input vector v is provided to the algorithm
in an input tape where the algorithm individually reads and processes each
element in vector v. The algorithm repeats until all the elements are read from
the input tape. The input v is a vector of size ℓ which needs to be interpolated.
We denote the set of interpolation points to be ζ and set of evaluation points
to be η. Note that the set R needs to be a subset of η i.e. R ⊆ η.

We set the evaluation points and interpolation points to be related to the
roots of unity. In more detail, let w be a primitive 2nth root of unity where
w2n = 1 but wm ̸= 1 for 0 < m < 2n. We set the variable f = n/ℓ, ζ =

{1, w2 f , w4 f , . . . , w2 f (ℓ−1)} and η = {w, w3, . . . w2 f (ℓ−1)+1}. Each individual in-
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terpolation point and evaluation point can be represented as ζi = w2(i−1) f and
ηj = w2j−1 respectively. The algorithm is as follows:

1. Check if R ⊆ η. Abort if the check fails. If the check succeeds, initialize
ej = 0 for all j such that ηj ∈ R.

2. Upon receiving an element v[k] from the input tape, update the running
partial sum ej = ej +

1
ℓ

w(2j−1)ℓ−1
w2k−1−2 f k+2 f −1

v[k] for all j such that ηj ∈ R.
3. After processing each element from the vector v, output all e′js for all j such

that ηj ∈ R.

Proof. Correctness: Define a vector c such that each element of c represents the
coefficient of the polynomial p(·) and v is the vector which is being interpo-
lated. We represent the relation between c and v as v = Xc where X is a public
matrix and the ith row of X can be represented as X[i] = (ζ0

i , ζ1
i , . . . ζℓ−1

i ). Each

element in X can be represented as X[i, j] = ζ
j−1
i = w2(i−1)(j−1) f . Another way

to represent the same equation is c = X−1v where X−1 is the inverse of the
matrix X i.e. XX−1 = I and I is an identity matrix.

It now follows that X−1[i, j] = 1
ℓw−2(i−1)(j−1) f . Lastly, to evaluate p(·) at ηj,

we define a vector w = (1, ηj, . . . , ηℓ−1
j ) and represent p(ηj) as p(ηj) = wTc =

wTX−1v. We calculate vector wTX−1 as:

wTX−1[k] =
ℓ

∑
l=1

w[l] · X−1[l, k]

=
ℓ

∑
l=1

ηl−1
j · 1

ℓ
w−2(l−1)(k−1) f

=
1
ℓ

ℓ

∑
l=1

w(2j−1)(l−1) · w−2(l−1)(k−1) f

=
1
ℓ

ℓ

∑
l=1

w(l−1)(2j−1−2k f+2 f )

=
1
ℓ

w(2j−1)ℓ − 1
w2j−1−2k f+2 f − 1

p(ηj) = wTX−1v

=
ℓ

∑
k=1

wTX−1[k]v[k]

=
1
ℓ

ℓ

∑
k=1

w(2j−1)ℓ − 1
w2j−1−2k f+2 f − 1

v[k]
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The algorithm reads each element of the vector v sequentially from the
input tape. Initialising ej = 0 and after reading the element v[k], the algorithm

updates ej = ej +
w(2j−1)ℓ−1

w2j−1−2k f+2 f −1
v[k]. After processing the whole vector v, ej will

satisfy ej = p(ηj). Hence it shows the correctness of the algorithm.

Efficiency Analysis: For each element of v, the algorithm performs O(1)
operations per evaluation point. Thus, the overall computational cost is O(tℓ)
where t is the number of evaluations and ℓ is the size of v. The algorithm
requires only O(t) space to store only ej’s and the t evaluation points.

Lemma 8. Protocol 1 is an IOP/IPCP for testing linear constraints with the following
properties:

– Completeness: If U ∈ Lm is an encoding of a m × ℓ matrix X such that, for
every i ∈ [B], Ayi = b where yi is the flattened vector corresponding to Yi and
block Yi is a m′ × ℓ submatrix of X starting at the I[i]th row of X and the P is
honest, then V accepts with probability 1.

– Soundness: Let e be a positive integer such that e < d/2 where d is minimal
distance of Reed-Solomon code. Suppose that a badly formed matrix U∗ is e-close
to a codeword U that encodes a matrix X such that ∃i ∈ [B], Ayi ̸= b where yi
is the flattened vector corresponding to Yi and block Yi is a m′ × ℓ submatrix of X
starting at the I[i]th row of X. Then for any malicious P∗ strategy, V will reject
except with probability ((e + 2ℓ)/n)t + (ma + B)/|F|.

– Complexity:
P has X on its input tape and has a work tape of size O(m′ℓ). In this model,
P makes a single pass on the input tape. We denote by mℓ the length of X, the
number of blocks as B and yi is a flattened vector of a block within X of size
m′ × ℓ. Given that P is provided with a one-way linear access to X, matrix A is a
public succinct matrix of dimension ma × m′ℓ as defined in Definition 3 then the
following complexities are obtained:
• Prover’s Time = O(m′ℓ(poly log ma + B log ℓ)).
• Verifier’s Time = O(m′ℓ(poly log ma + κ) + Bm′κ).
• Prover’s Space = O(m′ℓ).
• Verifier’s Space = O(κm′ + ma).
• Communication Complexity = O(ℓ).
• Query Complexity = O(κ).

Refer to the full version for the proof of completeness and soundness. Next,
we discuss the time and space complexities for the prover and the verifier.

Prover’s Time Complexity. Each column of of A can be computed in time
O(poly log ma) and computing each element of rT A requires the same com-
plexity. As length of vector rT A is m′ℓ, computing rT A needs O(m′ℓpoly log ma)
time. The polynomials ri(·) generated in Step 2 can be constructed using
inverse-FFT in O(m′ℓ log ℓ) time. The intermediate proof polynomial qi(·) is
composed by multiplying m′ pairs of polynomial, each multiplication costs
O(ℓ log ℓ) using FFT. The proof polynomial q(·) requires O(Bm′ℓ log ℓ) time



On Black-Box Constructions of Time and Space Efficient Sublinear Arguments 27

as it is generated by taking a random linear combination of all the intermedi-
ate proof polynomials. The prover’s total time is O(m′ℓ(poly log ma + B log ℓ)).

Before proceeding to the next analysis, we introduce a new lemma. This
lemma allows the verifier to efficiently evaluate the sum of evaluation of a
polynomial given the evaluation points are roots of unity.

Lemma 9. Given a polynomial p(·) of degree t and H be the ℓth roots of unity, then
∑a∈H p(a) = ℓ∑imodℓ=0 ci.

We refer the readers to the full version for the proof.

Verifier’s Time Complexity. The verifier upon receiving the proof polyno-
mial q(·), needs to execute two checks. The first check is to check whether
∑j∈[ℓ] q(ζ j) = ∑i∈[B] r′[i]rTb. To optimise the check, we leverage the structure
of interpolation points ζ. We show that ℓ(c0 + cℓ) = ∑j∈[ℓ] q(ζ j) where c0 and
cℓ are the constant and ℓth coefficient of the polynomial q(·). To prove this, we
directly use Lemma 9. This Lemma states that if a polynomial p(·) is evaluated
at ℓth roots of unity, then the evaluation of the polynomial at all the roots of
unity sums up to ℓ∑i mod ℓ=0 ci where ci is the ith coefficient of the polyno-
mial p(·). Therefore, we can verify whether ℓ(c0 + cℓ) = ∑i∈[B] r′[i]rTb. This
requires O(ma + B) time. To verify the second check, the verifier needs to gen-
erate t evaluations of polynomial ri(·) defined in Step 2. To compute it, the ver-
ifier first evaluates rT A element by element. For each vector v = (ri,1, . . . , ri,ℓ)
which is computed element by element and stored in the input tape of algo-
rithm DEval. The algorithm DEval outputs t evaluation ri(·) where ri(·) can be
generated using v. Evaluating v requires O(ℓpoly log ma) time and t = O(κ)
evaluations is generated in O(ℓκ). As there are total m′ polynomials, all evalu-
ations are completed in O(m′ℓ(poly log ma + κ)) time. In addition, the verifier
needs O(ℓκ) for evaluating q(·) at t = κ evaluations and require O(Bm′κ)
operations to verifying the consistency between q(·) and U. Therefore, the
total time to verify this check is O((Bm′ + ℓ)κ). The verifier’s total time is
O(m′ℓ(poly log ma + κ) + Bm′κ + ma).

Prover’s Space Complexity. Firstly, the prover computes rT A and the polyno-
mials ri(·) defined in Step 2 and stores them to be used for each i ∈ [B] which
requires O(m′ℓ) space in the work tape. To compute the polynomial q(·) in
Step 2 in a space-efficient manner while making a single pass on input tape
X, we implement Step 2 by maintaining a running partial aggregate. More
precisely, the prover initialises the polynomial agg(·) = 0. Next, the prover
processes X row by row. It keeps track of the blocks Yi that contain the current
row. There can be at most m′ blocks Yi that contain X as there can be at most
one block that starts from any row of X. Let mini and maxi denote the first
and last block indices which contain the ith row of X. The polynomial agg(·) is
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updated as follows:

agg(·) = agg(·) + pi(·)
maxi

∑
l=mini

r′[l]ri−I[l](·) (1)

After every row of X is processed, we set our proof polynomial as q(·) =
agg(·). The space required to generate the polynomial q(·) is the space for
storing pi(·), agg(·) and the product of two polynomials of degree < ℓ. Since
we can multiply polynomials via FFT, the space required is O(ℓ). Therefore,
the overall space complexity of the prover in the interactive phase is dominated
by storing the ri(·) polynomials which is O(m′ℓ) .

Verifier’s Space Complexity. Upon receiving the proof polynomial q(·), the
verifier performs the following three checks:

– The degree of q is at most k + ℓ− 1. This can be done by simply counting
the number of coefficients.

– The polynomial q satisfies ∑j∈[ℓ] q(ζ j) = ∑i∈[B] r′[i]rTb. Following the op-
timization mentioned in the time complexity analysis, the verifier simply
checks if ℓ · (c0 + cℓ) = ∑i∈[B] r′[i]rTb where c0 and cl are the constant and
ℓth coefficient of the polynomial q(·). This requires O(ma) space to store b.

– Finally, the verifier needs to compute t = O(κ) evaluations on polynomials
ri(·) generated in Step 2. As we described in the beginning of this section,
the verifier will rely on the DEval algorithm is executed to generate these
evaluations. The verifier needs O(m′κ) space where m′ is the number of
polynomials. For each query j ∈ Q, the verifier initialises each variable
aggj = 0. When the verifier processes the ith element (or ith row of U) of
each column of U queried, it computes public variables mini and maxi just
as the prover and each variable aggj for all j ∈ Q is updated as follows:

aggj = aggj + Ui,j

maxi

∑
l=mini

r′[l]ri−I[l](ηj) (2)

As all ri(ηj) are already stored by the verifier, the verifier requires to store
only the aggj variable for each j. Overall the verifier’s space is O(m′κ +ma).
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