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Abstract. A multiparty computation protocol is perfectly secure for
some function f if it perfectly emulates an ideal computation of f . Thus,
perfect security is the strongest and most desirable notion of security,
as it guarantees security in the face of any adversary and eliminates the
dependency on any security parameter. Ben-Or et al. [STOC ’88] and
Chaum et al. [STOC ’88] showed that any function can be computed
with perfect security if strictly less than one-third of the parties can be
corrupted. For two-party sender-receiver functionalities (where only one
party receives an output), Ishai et al. [TCC ’13] showed that any func-
tion can be computed with perfect security in the correlated randomness
model. Unfortunately, they also showed that perfect security cannot be
achieved in general for two-party functions that give outputs to both
parties (even in the correlated randomness model).
We study the feasibility of obtaining perfect security for deterministic
symmetric two-party functionalities (i.e., where both parties obtain the
same output) in the face of malicious adversaries. We explore both the
plain model as well as the correlated randomness model. We provide
positive results in the plain model, and negative results in the correlated
randomness model. As a corollary, we obtain the following results.
1. We provide a characterization of symmetric functionalities with (up

to) four possible outputs that can be computed with perfect secu-
rity. The characterization is further refined when restricted to three
possible outputs and to Boolean functions. All characterizations are
the same for both the plain model and the correlated randomness
model.

2. We show that if a functionality contains an embedded XOR or an
embedded AND, then it cannot be computed with perfect security
(even in the correlated randomness model).

Keywords: perfect security; two-party computation; correlated ran-
domness



1 Introduction

Secure Multiparty Computation (MPC) protocols allow a set of mutually dis-
trusting parties to compute a joint function of their private inputs. The two
main security properties that are desirable for protocols are correctness of the
computation and privacy (i.e., the adversary should not learn anything about
the inputs or outputs of the honest parties except what is leaked from the output
of the function). There are two main types of adversaries that are considered.
These are semi-honest (passive) adversaries and malicious (active) adversaries.
A semi-honest adversary always follows the prescribed protocol, but may try to
infer additional information from the joint view of the corrupted parties in the
protocol. A malicious adversary may instruct the corrupted parties to deviate
from the prescribed protocol in any manner it chooses.

A general paradigm for defining the desired security of protocols is known
as the ideal vs real paradigm. This paradigm avoids the need to specify a list of
desired properties. Rather, security is defined by describing an ideal functionality,
where parties interact via a trusted party to compute the task at hand. A real-
world protocol is then deemed secure, if no adversary can do more harm than
an adversary in the ideal-world. In a bit more detail, the definition requires
that the view of the adversary in a real-world execution, can be simulated by an
adversary (corrupting the same parties) in the ideal-world. There are three types
of measurements for the strength of security that may be considered. These are
called computational, statistical, and perfect security. Computational security
requires that the distribution of the view in the real-world is indistinguishable
from the distribution of the view in the ideal-world to a computationally bounded
machine. Statistical security requires these distributions to be statistically close
(indistinguishable even for unbounded machines). Finally, perfect security means
that the views in both worlds are identically distributed.

In this paper we consider perfect security for two-party computation (i.e.,
with no honest majority), in the face of malicious adversaries (when considering
perfect security, we naturally assume the adversary to be computationally un-
bounded). Apart from being a natural research goal, perfect security provides
important and useful security advantages over protocols that offer computational
security and even over those that have a negligible probability of failure (i.e.,
offer statistical security). Because of the stringent requirement, perfectly secure
constructions tend to have a simple structure. More importantly, perfect security
completely eliminates the need for a security parameter, making protocols that
are perfectly secure highly scalable.

Perfect security in the plain model

In the basic setting of secure computation, parties communicate with each other
over some communication network. It is generally assumed that the channels
are secure, but no other setup assumption is made. In this setting, Ben-Or et al.
[2], Chaum et al. [5] showed the feasibility of computing any function with perfect
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security in the face of malicious adversaries that can corrupt strictly less than
one-third of the parties.3

In the two party setting, Kushilevitz [10] characterized the set of functions
that can be computed with perfect security in the face of semi-honest adver-
saries. Cleve [7] showed that full-security (where honest parties always receive
an output) is impossible in general, even for computationally bounded malicious
adversaries. For the setting of two-party plain-model protocols with perfect se-
curity in the face of malicious adversaries, very little was known prior to our
work.

Perfect security with correlated randomness

It is natural to ask whether the impossibilities of obtaining prefect security can
be circumvented by making some reasonable assumption. This brings to the
table the correlated-randomness model that is both theoretically and practically
motivated. In this model, parties are given strings sampled from some fixed joint
distribution at the onset of the protocol. These strings are independent of their
inputs, and are then used alongside the inputs of the parties to run a secure
computation protocol. Interestingly, Cleve’s impossibility result does not apply
to this setting.

In the correlated randomness setting, Ishai et al. [9] showed that it is possible
to construct perfectly and maliciously secure protocols in the sender-receiver
model, i.e., where both parties have an input, but only one receives an output.
On the negative side, [9] showed that, in general, perfect security is impossible to
achieve for two-party functionalities that deliver outputs to both the parties. In
particular, they show that it is impossible to compute the XOR function in this
setting. In fact, the negative implication carries forward even to security with
abort, where the adversary may itself get the output, but can deprive the honest
parties from the output. Other than this result, very little was known prior to
our work regarding perfect security in the correlated randomness setting where
both parties receive an output.

In light of the above, the main question studied in this paper is.

Characterize the set of two-party functionalities that can be computed
with perfect (full) security in the face of malicious adversaries.

We make substantial progress in this direction and leave open several chal-
lenging followup questions. We summarize our results below.

1.1 Our Contribution

In this work, we consider the model of two-party computation of deterministic
symmetric functionalities (i.e., where both parties have the same output in the
computation). We are interested in perfect security and consider computation
both in the plain model and in the correlated randomness model. We provide

3For semi-honest adversaries, they showed that an honest majority is sufficient.
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both positive results in the plain model, and negative results in the correlated
randomness model. In particular, our results form a full characterization for four-
output functionalities, showing that there are only two families of functionalities
that can be computed with perfect security.

Before giving the results in more details, let us first define the two families of
functionalities mentioned above. In the following, for any symmetric determin-
istic functionality f : X ×Y 7→ Z, we associate with it a matrix Mf ∈ Z |X |×|Y|

defined as Mf (x, y) = f(x, y), for all x ∈ X and y ∈ Y.
Definition 1 (Spiral functionality, informal). A symmetric deterministic
functionality f : X × Y 7→ Z is called spiral, if Mf is either constant, or, up
to permuting the rows and columns, and transposing the matrix, is of the form
(M||M′) where M is constant-column, M′ is spiral, and where the set of entries
in the two matrices are disjoint.

As an example, consider the following spiral matrix.
7 7 7 7 7
6 6 6 6 6
5 4 4 1 2
5 4 4 0 2
5 4 4 3 3


Definition 2 (Transparent transfer functionality, informal). A symmet-
ric deterministic functionality f : X×Y 7→ {0, 1, 2, 3} is called transparent trans-
fer if, up to permuting and duplicating the rows and columns, and transposing
the matrix, Mf is of the form 

a c
a d
b c
b d

 (1)

where {a, b, c, d} = {0, 1, 2, 3}.
We refer the reader to Remark 2 for the reasoning behind the name. We are
now ready to state our main result, providing a full characterization for the
four-output functionalities that can be computed with perfect security.
Theorem 1 (Characterization of four-output functionalities, informal).
Let f : X ×Y 7→ {0, 1, 2, 3} be a symmetric deterministic four-output two-party

functionality. If f can be computed with perfect security in the correlated random-
ness model, then f is either spiral or transparent transfer. Conversely, any spiral
and transparent transfer functionality can be computed with perfect security in
the plain model.

A few notes are in place. First, observe that, in particular, we obtain a charac-
terization for symmetric ternary-output and Boolean functionalities. Specifically,
since transparent transfer functionalities require four outputs, for the ternary-
output case, it follows that the only functionalities that can be computed with
perfect security are spiral. Thus, we have the following.
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Corollary 1. Let f : X × Y 7→ {0, 1, 2} be a symmetric deterministic ternary-
output two-party functionality. If f can be computed with perfect security in the
correlated randomness model, then f is spiral. Conversely, any spiral function-
ality can be computed with perfect security in the plain model.

As for the Boolean case, observe that a Boolean functionality is spiral if
and only if it is independent of one of its inputs, which we refer to as trivial
functionalities. Therefore, we obtain the following result.

Corollary 2. Let f : X×Y 7→ {0, 1} be a Boolean symmetric deterministic two-
party functionality. If f can be computed with perfect security in the correlated
randomness model, then f is trivial. Conversely, any trivial functionality can be
computed with perfect security in the plain model.

Second, although our main results consider only four-output functionalities,
we stress that both our positive and negative results can be extended to the
more general case. However, it is currently unknown if these results provide a
characterization for even five-output functionalities.

Third, observe that Theorem 1 implies that for four-output functionalities,
the plain model and the correlated randomness model are equivalent.

Finally, our techniques for the negative direction provide an impossibility
result for a larger class of functionalities, including those with more than four
outputs. An interesting corollary of this general result, is that if a functionality
has an embedded XOR or an embedded AND,4 then the functionality cannot be
computed with perfect security.

1.2 Our Techniques

We now turn to describe our techniques. To warm-up for our techniques, we
first briefly explain the impossibility result for the symmetric XOR functionality
XOR(x, y) = x⊕ y due to Ishai et al. [9]. We then show where it falls short even
for the AND functionality AND(x, y) = x ∧ y. Then, we show how to overcome
this shortcoming and prove a general impossibility result. Finally, we show how
to compute spiral and transparent transfer functionalities with perfect security.

Impossibility of XOR. Let us start with recalling the proof that XOR(x, y) =
x⊕ y cannot be computed with perfect security, even when the parties are given
correlated randomness. Assume towards contradiction that there is a protocol
Π for computing f with perfect security in the correlated randomness model.

Consider an execution of Π on inputs (x, y) ← {0, 1}2 chosen uniformly
at random. Since the protocol is perfectly correct, there exists a round where
the output of party A is fixed (e.g., the last round). That is, regardless of the
correlated randomness generated for the parties, any continuation of the protocol

4A functionality f is said to have an embedded XOR if there exists x1, x2 ∈ X and
y1, y2 ∈ Y such that f(x1, y1) = f(x2, y2) ̸= f(x1, y2) = f(x2, y1). The functionality is
said to have an embedded AND if f(x2, y2) ̸= f(x1, y1) = f(x1, y2) = f(x2, y1).
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functionality trivial spiral transparent transfer

Boolean
(

0 1
0 1

)
- -

ternary
(

0 1 2
0 1 2

) (
0 1
0 2

)
-

four-output
(

0 1 2 3
0 1 2 3

) (
0 1 2
0 1 3

)
;

(
0 1 1
0 3 2

)
;

(
0 0 0
1 2 3

) (
0 0 1 1
2 3 2 3

)
Table 1: The table above shows the functionalities that can be computed with
perfect security with correlated randomness (for presentation, we do not include
constant functions). As stated in Theorem 1, up to transposing the matrix, re-
encoding the output, and permuting and duplicating the rows and columns,
these are the only functionalities that can be computed with perfect security.

results in A outputting x⊕y. Let i be the first such round. Similarly, let j be the
first round, where the output of B is fixed to x⊕y. Since the parties send message
one after the other, it holds that i ̸= j. Assume without loss of generality that
i < j. Then at round i, party A “knows” the output, while party B does not.
In more details, there exists correlated randomness (r1, r2) for which at round
i, there exists messages that A can send causing party B to output 1⊕ x⊕ y.

Consider the following adversary A corrupting A, that aims to “bias” the
output of B towards 0. It instructs A to behave honestly until round i. At this
point, A can locally compute the output z = x⊕ y. If z = 0, then it instructs A
to continue honestly until the termination of the protocol. Otherwise, it sends
random messages sampled independently and uniformly random.

Observe that the probability the adversary sees z = 0 is 1/2, where the prob-
ability is taken over the sampling of the inputs and the correlated randomness.
In this case, by the definition of A, the honest party will output 0. On the other
hand, if z = 1, then as the output of B is not fixed, there is a non-zero proba-
bility that both the correlated randomness is (r1, r2), and A sends the “correct
messages” to B, causing it to output 0. Overall, it follows that the probability
that B outputs 0 is strictly greater than 1/2. On the other hand, in the ideal
world, the output of B is 0 with probability exactly 1/2 regardless of the input
of corrupted A to the trusted party, since B’s input y is chosen uniformly at
random.

Impossibility of AND. Before generalizing the impossibility result of [9] let us
first explain where their argument fails even for the AND functionality AND(x, y) =
x∧ y. Consider the adversary A defined previously, that aims to bias the output
of B towards 0. Note that if y = 1, then a simulator can simulate the attack
by sending x = 0 with the “correct” probability (i.e., the probability that the
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correlated randomness and the messages that A sends cause B to output 0).
On the other hand, if y = 0, then regardless of what A does in the real world,
B already “knows” that the output is 0, thus A cannot introduce any bias. A
similar argument shows that biasing towards 1 might also be simulatable.

To overcome this issue, instead of just biasing the output of the honest party
towards a certain value, we let the adversary also guess uniformly at random the
input of the honest party. To see why it works, let us first analyze the probability
that A biases the output of B towards 0 and guesses its input correctly. Let Succ
be the event where the adversary succeeds. First, consider the case where x = 0.
Here, A will guess y correctly with probability 1/2, and always cause B to output
0. Therefore, Pr [Succ | x = 0] = 1/2. Next, consider the case where x = 1. In
this case, A always learns y from the output. Additionally, if y = 0 then B will
always output 0. If y = 1, then A will send random messages starting at round
i, hence with non-zero probability, B will output 0. Therefore,

Pr [Succ | x = 1] = Pr [y = 0] · Pr [Succ | x = 1 ∧ y = 0]
+ Pr [y = 1] · Pr [Succ | x = 1 ∧ y = 1]

= 1
2 + 1

2 · Pr [Succ | x = 1 ∧ y = 1]

>
1
2 .

Overall, we conclude that the adversary succeeds with probability Pr [Succ] >
1/2.

To see why no simulator exists for A, observe that if a simulator sends x = 0
to the trusted party, then it does not obtain any information on y, and if it
sends x = 1, then B will output 0 only if y = 0, which occurs with probability
1/2. Overall, the simulator can succeed with probability at most 1/2, hence no
simulator can perfectly simulate A.

Generalizing the impossibility result. We now explain how to generalize the above
argument to a more general, possibly non-Boolean, class of functionalities. Our
argument applies for a class of functionalities that are not captured by Theo-
rem 1. We next describe this set of functionalities, and claim they cannot be
computed with perfect security with correlated randomness.

Lemma 1 (Informal). Let f : X × Y 7→ Z be symmetric deterministic two-
party functionality. Suppose there exists X ′ ⊆ X , Y ′ ⊆ Y, and Z ′ ⊂ Z such that
the submatrix M′ of matrix Mf induced by X ′ and Y ′ satisfies the following.
1. M′ contains an element from Z \ Z ′.
2. There is a natural h ≥ 1, such that every row in M′ contains exactly h

distinct elements from Z ′, and every other row in the matrix Mf associated
with f contains at most h distinct elements from Z ′, within the columns of
Y ′.

3. There is a natural h′ ≥ 1, such that every column in M′ contains exactly
h′ distinct elements from Z ′, and every other column in the matrix Mf

contains at most h′ distinct elements from Z ′, within the rows of X ′.
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Then f cannot be computed with perfect security in the correlated randomness
model.

The negative direction of Theorem 1 follows from Lemma 1 via a combinato-
rial argument, showing that if such a submatrix does not exist, then f is either
spiral or transparent transfer. The proof is somewhat technical and is therefore
omitted from the introduction. We refer the reader to Section 5 for the proof.

Let us first describe the attacker. Roughly speaking, the attack follows similar
ideas to the attacker for AND, however, instead of biasing towards a specific
value, A will bias the output of the honest party towards the set Z ′ ⊂ Z. In
more details, ifA sees that the output z is inside Z ′ then it will continue honestly.
Otherwise, it will send random messages. Additionally, A outputs a guess for y
that is consistent with the output it saw, i.e., it outputs a uniform y∗ conditioned
on f(x, y∗) = z.

We next show that A cannot be simulated for x ← X ′ and y ← Y ′. We
first analyze the success probability of the adversary in the real world. Let Succ
denote the event that A both guesses y correctly, and causes B to output a value
from Z ′. We denote by zB the output of B. First, observe that for any fixed
x ∈ X ′ it holds that

Pr [zB ∈ Z ′ ∧ y∗ = y] =
∑

z∈Z′

Pr [zB = z] · Pr [y∗ = y | zB = z]

=
∑

z∈Z′

|{y′ ∈ Y ′ : f(x, y′) = z}|
|Y ′|

· 1
|{y′ ∈ Y ′ : f(x, y′) = z}|

= h

|Y ′|
,

where the last equality follows from Item 2, asserting there are exactly h distinct
element from Z ′ in the xth row of M′. Therefore

Pr [Succ] = h

|Y ′|
+ Pr [z /∈ Z ′] · Pr [Succ | z /∈ Z ′]

for every fixed x ∈ X ′. Now, since we assume that M′ contains an element
outside of Z ′, it follows that there exists a choice of x, for which Pr [z /∈ Z ′] > 0.
Furthermore, since the output of B is not fixed, there is a non-zero chance that
the random messages that A sends to it will cause it to output a value from Z ′.
Therefore Pr [Succ | z /∈ Z ′] > 0. We conclude that Pr [Succ] > h/|Y ′|.

To show that A cannot be simulated, we prove that any simulator can both
guess y correctly and cause B to output a value from Z ′, with probability at
most h/|Y ′|. We show that this is true for any input x the simulator sends to
the trusted party. Indeed, the probability that B outputs a fixed value z ∈ Z ′ is
exactly |{y′∈Y′:f(x,y′)=z}|

|Y′| . Given this output z, the simulator can guess y with
probability 1

|{y′∈Y′:f(x,y′)=z}| . However, among all the appearances of values from
Z ′, at most h of them are distinct. Thus, the simulator successfully guesses y
correctly and force B to output a value from Z ′, with probability at most h/|Y ′|.
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Impossibility of embedded XOR or embedded AND. To show the usefulness of
Lemma 1, we next show that if f contains an embedded XOR or an embed-
ded AND, then f cannot be computed with perfect security in the correlated
randomness model. In fact, we show that if there exists inputs x1, x2 ∈ X and
y1, y2 ∈ Y, and there exists a ̸= b ∈ Z such that the 2× 2 submatrix M induced
by those inputs is of the form

(
a b
b ∗

)
or

(
b a
∗ b

)
, where ∗ is any element from Z,

then f cannot be computed with perfect security in the correlated randomness
model. We show that the constraints from Lemma 1 hold for X ′ = {x1, x2},
Y ′ = {y1, y2}, and Z ′ = {b}. Indeed, M contains the element a /∈ Z ′, and every
row and column in M contains exactly one (distinct) element from Z ′. Finally,
any other row or column in the matrix Mf associated with f , will contain at
most one (distinct) element from Z ′.

The positive direction. We now turn to prove our positive results. Let us start
with describing a protocol for (non-constant) spiral functionalities. Recall that
f is said to be spiral, if its associated matrix Mf or its transpose is, up to
permuting the rows and columns, of the form (M||M′) where the entries of M
and M′ are disjoint, M is constant, and M′ is spiral. Assume without loss of
generality that Mf is of the form (M||M′). The idea is to let party B (which is
associated with the columns) to send to A the output in case the input y belongs
to the columns of M. Otherwise, it sends ⊥ and the parties inductively compute
M′. The security of the protocol stems from the fact that the entries of M and
M′ are disjoint. Thus, the output reveals to A whether y belongs to the columns
of M.

We next show that any transparent transfer functionality f can be computed
with perfect security. We assume without loss of generality that the associated
matrix is

Mf =


0 2
0 3
1 2
1 3

 .

Consider the protocol, where B sends its input y to A, and then A sends f(x, y)
back to B. Clearly the protocol is correct and secure against any corrupt B.
We argue that the protocol is secure against any adversary A corrupting A as
well. First, as we are concerned with perfect security if there is no simulator
for A, then there exists a fixed choice of the randomness of A for which no
simulator exists. Therefore, we may assume without loss of generality that A is
deterministic.

Let Y = {y1, y2} be the domain of B. The idea is to let the simulator query
A on both possible inputs y1 and y2, rewinding it each time. This provides the
simulator with two outputs z1 ∈ {0, 1} and z2 ∈ {2, 3}. Since Mf contains
all possible rows from {0, 1} × {2, 3}, the simulator can find an input x∗ whose
corresponding row is (z1, z2). Finally, the simulator sends x∗ to the trusted party,
and outputs as the view y1 if the output it received is from {0, 1}, and outputs
y2 otherwise.
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1.3 Additional Related Work

In the semi-honest setting, [2] showed that AND is impossible to compute with
statistical security, let alone perfect security in the dishonest-majority setting.
The work of [6] characterizes the Boolean functionalities that can be computed
with dishonest majority.

One of the commonly-known correlated randomness is that of oblivious trans-
fer (OT) which is a pair-wise correlation. In this, the first party gets a pair of
inputs (x0, x1) and the second party gets (b, xb). Brassard et al. [3] showed that
given sufficiently many invocations of the above OT correlation, the 1-out-of-n
string OT functionality can be computed with perfect security against malicious
adversaries. Wolf and Wullschleger [11] showed how to compute 1-out-of-2 bit
TO perfectly, which is the same as OT where the roles of the parties are reversed.
Finally, [1] showed that given access to sufficiently many parallel ideal computa-
tions of OT, most sender-receiver functionalities, where the sender’s domain size
is strictly larger than the receiver’s domain size, can be computed with perfect
security.

1.4 Organization

The preliminaries and definition of the model of computation appear in Section 2.
The statements of our main results are provided in Section 3. The negative
direction is proved in Sections 4 and 5. Specifically, in Section 4 we prove the
more general impossibility result, and in Section 5 we deduce the result for four-
output functionalities. Finally, we prove the positive direction in Section 6.

2 Preliminaries

2.1 Notations

For n ∈ N we let [n] = {1, 2 . . . n}. For a set S we write s ← S to indicate
that s is selected uniformly at random from S. Given a random variable (or a
distribution) X, we write x← X to indicate that x is selected according to X.

Given a matrix M whose rows and columns are indexed by X and Y, respec-
tively, we let M(x, ·) = (M(x, y))y∈Y be the xth row, where x ∈ X . Similarly, we
let M(·, y) = (M(x, y))x∈X be the yth column, where y ∈ Y. We call a matrix
M constant-row if for all x ∈ X it holds that M(x, ·) is a constant vector. Simi-
larly, we call M constant-column if M(·, y) is constant for all y ∈ Y. Given two
matrices M1 and M2 with the same number of rows, we let (M1||M2) denote
the matrix obtained from concatenating M1 and M2.

The following notion captures when two matrices are the same up to per-
muting the rows and columns, and transposing either of the matrices.

Definition 3. Let M1 ∈ Zn1×m1 and M2 ∈ Zn2×m2 be two matrices. We say
that M1 ∼M2 if one of the following holds.
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– n1 = n2, m1 = m2, and there exists a permutation π over the rows of M1
and a permutation σ over the columns of M1, such that

M1(π(x), σ(y)) = M2(x, y)

for all x and y.
– n1 = m2, m1 = n2, and there exists a permutation π over the rows of M1

and a permutation σ of M1 over the columns, such that

M1(π(x), σ(y)) = MT
2 (y, x)

for all x and y.

We next define the reduced form of matrix, which removes all duplicated
rows and columns.

Definition 4 (Reduced form of a matrix). For a matrix M, its reduced
form, denoted red(M), is the matrix obtained by repeatedly removing all dupli-
cated rows and columns from M (note that this is well-defined).

The next definition associates a matrix with any 2-ary function f .

Definition 5 (The matrix associated with a function). Let f : X×Y 7→ Z
be a 2-ary function. The matrix associated with f , denoted Mf ∈ Z |X |×|Y|, is
defined as Mf (x, y) = f(x, y) for all x ∈ X and y ∈ Y.

We next define a combinatorial rectangle.

Definition 6 (Combinatorial rectangles). Given two sets X and Y, a com-
binatorial rectangle (in short, a rectangle) over X×Y, is a subset R = XR×YR,
where XR ⊆ X and YR ⊆ Y.

Given a matrix and combinatorial rectangle over its rows and columns, we
can define the submatrix induced by the rectangle.

Definition 7 (The submatrix induced by a rectangle). Let X , Y, and Z
be three sets, and let M ∈ Z |X |×|Y| be a matrix, whose rows and columns are
indexed with elements from X and Y, respectively. For a combinatorial rectangle
R = XR ×YR over X ×Y, we denote by MR ∈ Z |XR|×|YR| the submatrix of M
induced by R, i.e., MR(x, y) = M(x, y) for all x ∈ XR and y ∈ YR.

2.2 Security Model

We provide the basic definitions for secure multiparty computation according
to the real/ideal paradigm, for further details see [8]. Intuitively, a protocol is
considered secure if whatever an adversary can do in the real execution of the
protocol, can be done also in an ideal computation, in which an uncorrupted
trusted party assists the computation. For concreteness, we present the model
and the security definition of perfect two-party computation with an adversary
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corrupting a single party, as this is the main focus of this work. We refer to [8]
for the general definition.

In this paper we focus on deterministic symmetric two-party functionalities
f : X × Y 7→ Z, i.e., both parties receive the same output.5

The Real Model

A two-party protocol Π is defined by a set of two interactive Turing machines
A and B. Each Turing machine (party) holds at the beginning of the execution
a private input, and random coins. The adversary A is an interactive Turing
machine describing the behavior of a corrupted party P ∈ {A, B}. It starts the
execution with input that contains the identity of the corrupted party and its
input. We assume the protocol proceeds in round, where every odd round party
A sends a message, and every even round party B sends a message.

Throughout the execution of the protocol, all the honest parties follow the
instructions of the prescribed protocol, whereas the corrupted party receive its
instructions from the adversary. The adversary is considered to be malicious,
meaning that it can instruct the corrupted party to deviate from the protocol in
any arbitrary way. Additionally, the adversary has full-access to the view of the
corrupted party, which consists of its input, its random coins, and the messages
it sees throughout this execution. At the conclusion of the execution, the honest
parties output their prescribed output from the protocol, the corrupted party
outputs nothing, and the adversary outputs a function of its view (containing
the views of the corrupted party).

We denote by REALΠ,A (x, y) the joint output of the adversary A (that may
corrupt one of the parties) and of the honest parties in a random execution of
Π, on input x ∈ X for A and input y ∈ Y for B.

Remark 1 (On the absence of a security parameter). Typically, the parties are
also given a security parameter 1κ, which is also used to bound the computa-
tional complexity of the parties. However, we are concerned with perfect security
and functionalities of constant domain, thus having a security parameter is re-
dundant.

Additionally, the adversary is usually said to be non-uniform, and holds an
auxiliary input. However, as there is no security parameter in our setting, the
auxiliary input does not provide A any additional power.

The Correlated Randomness Hybrid Model. For some of our result, we
consider an augmentation of the real world where the parties are provided with a
trusted setup for generating correlated randomness. Formally, we let CR denote
the randomized functionality that receives no input, and outputs random values
r1 and r2 to A and B, respectively. Here, (r1, r2) ← D where D is a fixed

5The typical convention in secure computation is to let f : {0, 1}∗ × {0, 1}∗ 7→
{0, 1}∗. However, we consider only functionalities with a constant domain, which is
why we introduce this notation.
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distribution known in advance. At the start of the protocol (before the parties
receive their inputs), the parties call the functionality CR exactly once to obtain
r1 and r2. The parties then continue in a real execution as described previously.
We call this model the CR-hybrid world.

We denote by REALCR
Π,A (x, y) the joint output of the adversary A (that may

corrupt one of the parties) and of the honest parties in a random execution of
Π in the CR-hybrid world, on input x ∈ X for A and input y ∈ Y for B.

The Ideal Model

We consider an ideal computation with guaranteed output delivery (also referred
to as full security), where a trusted party performs the computation on behalf
of the parties, and the ideal-world adversary cannot abort the computation.
An ideal computation of a deterministic symmetric two-party functionality f :
X × Y → Z, on inputs x ∈ X and y ∈ Y, with an ideal-world adversary A
corrupting a single party P ∈ {A, B} proceeds as follows:

Parties send inputs to the trusted party: Each honest party sends its in-
put to the trusted party. The adversary A sends a value w from the corrupted
party’s domain as the input for the corrupted party. Let (x′, y′) denote the
inputs received by the trusted party.

The trusted party performs computation: The trusted party computes z =
f (x′, y′) and sends z to both A and B.

Outputs: Each honest party outputs whatever output it received from the
trusted party, and the corrupted party outputs nothing. The adversary A
outputs some function of its view (i.e., the input and output of the corrupted
party).

We denote by IDEALf,A (x, y) the joint output of the adversary A (that may
corrupt one of the parties) and the honest parties in a random execution of the
ideal-world computation of f on input x for A and input y for B.

The Security Definition

Having defined the real and ideal models, we can now define security of protocols
according to the real/ideal paradigm.

Definition 8 (Security). Let f : X × Y → Z be a deterministic symmetric
two-party functionality, and let Π be a two-party protocol. We say that Π com-
putes f with perfect security, if for every adversary A, controlling at most one
party in the real world, there exists an adversary Sim, controlling the same party
(if there is any) in the ideal world such that for every x ∈ X and every y ∈ Y it
holds that

IDEALf,Sim (x, y) ≡ REALΠ,A (x, y) .

To remove possible confusion, we will explicitly write that Π computes f with
perfect security in the plain model.

13



We say that Π computes f with perfect security in the CR-hybrid model if

IDEALf,Sim (x, y) ≡ REALCR
Π,A (x, y)

for all x ∈ X and y ∈ Y.

The Hybrid Model

The hybrid model is a model that extends the real model with a trusted party that
provides ideal computation for specific functionalities. The parties communicate
with this trusted party in exactly the same way as in the ideal model described
above.

Let f be a functionality. Then, an execution of a protocol Π computing
a functionality g in the f -hybrid model involves the parties sending normal
messages to each other (as in the real model) and, in addition, having access
to a trusted party computing f . It is essential that the invocations of f are
done sequentially, meaning that before an invocation of f begins, the preceding
invocation of f must finish. In particular, there is at most a single call to f per
round, and no other messages are sent during any round in which f is called.
Note that the CR-hybrid is a special case, where the parties call CR once at the
onset of the protocol.

Let A be an adversary controlling a single party P ∈ {A, B}. We denote by
HYBRIDf

Π,A(x, y) the random variable consisting of the output of the adversary
and the output of the honest parties, following an execution of Π with ideal calls
to a trusted party computing f , on input x given to A and input y given to B.

Similarly to Definition 8, we say that Π computes g with perfect security in
the f -hybrid model if for any adversary A there exists a simulator Sim such that
HYBRIDf

π,A(x, y) and IDEALg,Sim(x, y) are identically distributed.
The sequential composition theorem of Canetti [4] states the following. Let

ρ be a protocol that computes f with perfect security. Then, if a protocol Π
computes g in the f -hybrid model, then the protocol Πρ, that is obtained from
Π by replacing all ideal calls to the trusted party computing f with the protocol
ρ, computes g in the real model with perfect security.

Theorem 2 ([4]). Let f be a two-party functionality, let ρ be a protocol that
computes f with perfect security, and let Π be a protocol that computes g with
perfect security in the f -hybrid model. Then, protocol Πρ computes g with perfect
security in the real model.

3 Analyzing Symmetric Functionalities

In this section, we state our results. Our main results is a characterization of
the symmetric deterministic two-party functionalities with four-outputs that can
be computed with perfect security. Furthermore, the impossibility result can be
extended to functionalities with more than four outputs. Interestingly, although
the impossibility result holds in the CR-hybrid world, for any choice of CR, the
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positive results are stated in the plain model, where the parties do not receive
correlated randomness.

Before stating our results, we first describe three families of symmetric deter-
ministic two-party functionalities. We then assert that among the four-output
functionalities, these are the only ones that can be computed with perfect secu-
rity in the CR-hybrid world.

We first define trivial functionalities, for which the output depends on only
one of the inputs.

Definition 9 (Trivial functionalities). Let f : X ×Y 7→ Z be a deterministic
symmetric two-party functionality. We say that f is trivial if it is independent of
one of its inputs, i.e., either f(x, y) = g(x) or f(x, y) = g(y) for some function
g.

Note that for the matrix Mf of a trivial functionality f , either all rows are
constant or all columns are constant.

We next define the family of spiral functionalities, which is an extension
of the family of trivial functionalities. The definition is recursive. Roughly, a
functionality f is spiral, if it’s trivial or if by removing constant columns or
constant rows (containing a single value α) from the associated matrix Mf ,
results in a matrix associated with a spiral functionality, and contains no α
values.

Definition 10 (The spiral functionality and matrix). We call a matrix
M a spiral matrix if one of the following holds.

– M is a constant matrix.
– There exist a constant-column matrix M1 ∈ Zn1×m1

1 , and there a spiral
matrix M2 ∈ Zn2×m2

2 , where Z1 ∩ Z2 = ∅, such that M ∼ (M1||M2), i.e.,
equality holds up to permutation of the rows and columns and transposing
the matrix.

We call a deterministic symmetric two-party functionality f a spiral func-
tionality, if its associated matrix Mf is a spiral matrix.

Definition 11. Let f : X × Y 7→ {0, 1, 2, 3} be a deterministic symmetric two-
party functionality. We call it a transparent transfer if the reduced form of its
associated matrix satisfies

red (Mf ) ∼


a c
a d
b c
b d


where {a, b, c, d} = {0, 1, 2, 3}.

Remark 2 (On the naming of the function). Let us provide the reasoning behind
the naming of transparent transfer functions. Consider the symmetric functional-
ity f ′ : {0, 1}2×{0, 1} 7→ {0, 1}2 defined as f ′((x0, x1), i) = (xi, i). Observe that,
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up to the encoding of the output, it is the same as the transparent transfer func-
tionality defined in Definition 11. Indeed, mapping the output (xi, i) 7→ xi + 2i
results in a matrix of the form 

0 2
0 3
1 2
1 3

 .

Since the mapping is bijective, we conclude the functions to be the equivalent.

3.1 Characterization of Four-Output Functionalities

We are now ready to state our main result, providing a characterization of the
symmetric deterministic four-output two-party functionalities that can be com-
puted with perfect security in the CR-hybrid model.

Theorem 3 (Characterization of four-output functionalities). Let f :
X × Y 7→ {0, 1, 2, 3} be a deterministic symmetric two-party four-output func-
tionality. Then, f can be computed with perfect security in the CR-hybrid model
if and only if it is either a spiral function or a transparent transfer function.

The proof of Theorem 3 follows from the combination of the following two
lemmas. For the negative direction, we prove the following.

Lemma 2 (Lower bound for four-output functionalities). Let f : X ×
Y 7→ {0, 1, 2, 3} be a deterministic symmetric two-party four-output functional-
ity. Assume that f can be computed with perfect security in the CR-hybrid model.
Then, f is either a spiral function or a transparent transfer function.

Lemma 2 is proved in Section 5. Towards proving it, in Section 4, we prove
a more general impossibility result, Lemma 4, which holds for functionalities
that are not necessarily four-output. When restricting the discussion to four-
output functionalities, our general impossibility result yields the lower bound
for four-output functionalities, see Section 5 for the full details.

For the positive direction of Theorem 3, we prove the following lemma stating
that every spiral functionality, and that the transparent transfer functionality
can be computed with perfect security. Furthermore, this can be done using
deterministic protocols in the plain model, and it holds regardless of the number
of outputs.

Lemma 3 (Upper bound for four-output functionalities). Let f : X ×
Y 7→ Z be a deterministic symmetric two-party functionality. If f is a spiral or
a transparent transfer functionality, then f can be computed with perfect security
in the plain model.

Lemma 3 is proved in Section 6.
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3.2 Characterization of Boolean and Ternary-Output Functionalities

When restricting the discussion to functions with range of size two and of size
three, Theorem 3 yields more refined characterizations. First, note that Defi-
nition 11 requires at least four distinct output values. It hence follows that a
ternary-output functionality can be computed with perfect security if and only
if the functionality is a spiral.

Corollary 3 (Characterization of ternary-output functionalities). Let
f : X ×Y 7→ {0, 1, 2} be a deterministic symmetric two-party ternary functional-
ity. Then f can be computed with perfect security in the CR-hybrid model if and
only if it is spiral.

Second, observe that any spiral Boolean functionality must be trivial. Thus,
we obtain the following characterization for Boolean functionalities.

Corollary 4 (Characterization of Boolean functionalities). Let f : X ×
Y 7→ {0, 1} be a deterministic symmetric two-party Boolean functionality. Then,
f can be computed with perfect security in the CR-hybrid model if and only if it
is trivial.

3.3 Impossibility of Embedded XOR and Embedded AND

In this section we show that any functionality that contains an embedded XOR
or an embedded AND cannot be computed with perfect security in the CR-
hybrid model. Recall that a functionality f is said to have an embedded XOR,
if there exists x1, x2 ∈ X and y1, y2 ∈ Y such that f(x1, y1) = f(x2, y2) ̸=
f(x1, y2) = f(x2, y1). The functionality is said to have an embedded AND if
f(x2, y2) ̸= f(x1, y1) = f(x1, y2) = f(x2, y1). In fact, we are able to prove
a stronger result. To formalize this, we first define the notion of a forbidden
submatrix.

Definition 12 (Forbidden 2× 2 submatrices and rectangles). Let M be
a matrix with entries from some set Z. We call a 2× 2 rectangle R forbidden if
its induced submatrix MR satisfies

MR ∼
(

a b
b ∗

)
(2)

where a and b denote distinct elements of Z, and ∗ denotes an arbitrary element
of Z. We also say that M is forbidden if it contains a forbidden combinatorial
rectangle.

Theorem 4. Let f : X × Y 7→ Z be a deterministic symmetric two-party func-
tionality. Assume there exists a 2 × 2 rectangle R such that its corresponding
induced submatrix is forbidden. Then f cannot be computed with perfect security
in the CR-hybrid model.
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The proof is given in Section 5 and is derived from the general impossibility
result proven in Section 4. We get the following corollary.

Corollary 5. Let f : X ×Y 7→ Z be a deterministic symmetric two-party func-
tionality. Assume that Mf contains an embedded XOR or an embedded AND.
Then f cannot be computed with perfect security in the CR-hybrid model.

4 A General Impossibility Result for Perfect Security

In this section, we prove a general impossibility result for perfectly secure two-
party protocols for a large class of functionalities. Roughly speaking, we identify
several properties that cannot coincide for any sub-matrix, and show that if
the matrix associated with the functionality f contains a sub-matrix that has
all these properties, then f cannot be computed with perfect security in the
CR-hybrid model.

Lemma 4. Let f : X × Y 7→ Z be a deterministic symmetric two-party func-
tionality. Assume there exists a combinatorial rectangle R = XR × YR, where
XR ⊆ X and where YR ⊆ Y, and assume there exists a strict subset of the
outputs ZR ⊂ Z such that the following hold.

1. At least one entry of MR
f (recall that MR

f is the sub-matrix induced by R)
contains an element from Z \ ZR.

2. There exists h ∈ N+ such that for all x ∈ XR it holds that∣∣{MR
f (x, y) : y ∈ YR

}
∩ ZR

∣∣ = h.

In other words, every row in MR
f contains exactly h distinct elements from

ZR.
Additionally, for all x ∈ X \ XR it holds that

|{Mf (x, y) : y ∈ YR} ∩ ZR| ≤ h,

namely, every row x /∈ XR of Mf contains at most h elements from ZR,
within the columns of YR.

3. There exists h′ ∈ N+ such that for all y ∈ YR it holds∣∣{MR
f (x, y) : x ∈ XR

}
∩ ZR

∣∣ = h′.

Additionally, for all y ∈ Y \ YR it holds that

|{Mf (x, y) : x ∈ XR} ∩ ZR| ≤ h′.

Then f cannot be computed in CR-hybrid model with perfect security.

Example 1. To illustrate the requirements of Lemma 4, consider the ternary-
output functionality f whose associated matrix is defined as
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Mf =

0 1 2 2
2 1 0 2
0 1 2 1

 .

For R = {x1, x2} × {y1, y2, y3}, ZR = {0, 1} the condition is satisfied with
h = 2, h′ = 1. Thus, the precondition of Lemma 4 is satisfied, hence f cannot
be computed with perfect security in the CR-hybrid model. It also, for example,
satisfies the precondition with R = {x1, x2}×{y1, y3}, ZR = {0}, and h = h′ = 1
(indeed, there is no uniqueness requirement on R).

Before formally proving Lemma 4, let us provide some intuition. First, simi-
larly to the impossibility of XOR due to Ishai et al. [9], we use the fact that any
protocol for computing f has a first round i in which (in any honest execution
of the protocol) one of the parties, say A, “fully knows” the output, while the
other does not. That is, any continuation from round i would result in A out-
putting the correct output. Conversely, there exists a continuation (and a choice
of correlated randomness) forcing B to output a different value.

Recall that the attack of [9] used the existence of such a round to present
an attacker that “biases” the output of the honest party. We extend this attack
strategy to one, where the adversary, corrupting A, tries to both bias the output
of the honest B towards the subset of outputs ZR, and at the same time, guess the
input of the honest party. Additionally, we are more lenient with the knowledge
of the adversary, requiring it only to “wait” until it knows whether the output is
in ZR or not. We show that if the inputs of the parties are chosen independently
and uniformly at random from the rectangle R, then the attacker can both guess
the input of the honest party correctly, and force it to output a value from ZR,
with probability higher than what any simulator can do in the ideal world. We
now provide the formal argument.

Proof (of Lemma 4). Assume towards contradiction that there exists a protocol
Π in the CR-hybrid model computing f with perfect security. Consider an honest
execution of Π, where the inputs of A and B are x̃← XR and ỹ ← YR, respec-
tively, and are sampled independently. The next claim asserts the existence of
a round, in which one of the parties always “knows” if the output is in ZR or
not, regardless of the choice of the correlated randomness, while the other party
does not necessarily “know” this.

Claim 5 There exists a round i > 0, and a party P ∈ {A, B}, such that the
following hold.

1. For all inputs x ∈ XR and y ∈ YR, and for every possible correlated ran-
domness (r1, r2) ∈ Supp(D), there exists a set Z ′ ∈ {ZR,Z \ ZR}, such
that the following holds. In any execution of Π, where up to (and including)
round i, party A acts honestly (according to x, r1) and party B acts honestly
(according to y, r2), the output of an honest P must be a value from Z ′, re-
gardless of the messages it receives in the following rounds (i.e., regardless
of the behavior of the other party).
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2. There exist inputs x ∈ XR and y ∈ YR, with f(x, y) ∈ Z \ ZR, and there
exists correlated randomness (r1, r2) ∈ Supp(D), such that the following
holds. Consider an execution of Π, where up to (and including) round i, party
A acts honestly (according to x, r1) and party B acts honestly (according to
y, r2). Then, there exists a continuation of Π, in which the remaining party
P′ ̸= P continues to behave honestly, such that, the output of P′ is a value
from ZR. Specifically, there exists a sequence of messages that P can send
in the following rounds to cause this effect.

The proof of the claim is given below. We first use it to conclude the proof
of Lemma 4. We fix the round i as given by Claim 5, and assume without loss of
generality that P = A. The case where P = B is handled analogously. We next
construct an attacker corrupting A and show that it cannot be simulated in the
ideal world.

Define the adversary A that corrupts A as follows.

1. Given the input x̃ of party A and the randomness r1 it obtains from CR, the
adversary A emulates A honestly up to and including round i.

2. Consider the lexicographically first honest continuation of the protocol, and
let z′ denote the resulting output of A in such an execution.

3. If z′ ∈ ZR, then A continues to emulate A honestly until the termination of
the protocol.

4. Otherwise, if z′ ̸∈ ZR, then in the remaining rounds A sends (on behalf of
A) random messages chosen independently and uniformly at random.

5. The adversary outputs a guess for the input of B (one that is consistent with
the output). That is, A samples

y∗ ← {y ∈ YR : f(x̃, y) = z′},

and outputs y∗.

We next prove that A cannot be simulated, and hence the protocol is not se-
cure. It follows that f cannot be realized with perfect security. We analyze the
probability that A successfully, both guesses the input ỹ of B, and causes B to
output a value from ZR. We then compare this to an arbitrary simulator in the
ideal world, showing that no simulator can do the same with exactly the same
probability. Formally, we prove the following two claims. In the following, let
SuccREAL denote the event in the real-world that the output of the adversary is
y∗ = ỹ and B outputs an element from ZR. Similarly, let SuccIDEAL denote the
event in the ideal-world that the output of the simulator implies y∗ = ỹ and B
outputs an element from ZR.

The proof (of Lemma 4) is concluded from the following two claims (Claims 6
and 7) that show that Pr [SuccREAL] > Pr [SuccIDEAL], and hence, that A cannot
be simulated for random (x̃, ỹ) ← R. Thus, there exists inputs x ∈ XR and
y ∈ YR for which A cannot be simulated. Therefore, f cannot be computed
with perfect security in the CR-hybrid model.
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We introduce some notations that will be useful for the following two claims.
For every x ∈ X and for every z ∈ ZR let

wx(z) := |{y ∈ YR : f(x, y) = z}|

denote the number of appearances of z in the xth row of Mf and the columns
corresponding to YR. Finally, let

Wx :=
∑

z∈ZR

wx(z) = |{y ∈ YR : f(x, y) ∈ ZR}|

denote the number of entries from ZR in the xth row of Mf and the columns
corresponding to YR.

Claim 6 In the real world, it holds that

Pr [SuccREAL] >
h

|YR|
.

Proof. We next analyze the probability that SuccREAL occurs in the real world.
Recall that x̃ denotes the input given to A, that z′ denotes the prescribed output
before the attack, and that y∗ is the adversary’s guess for the input ỹ held by
B. Observe that

Pr[SuccREAL] =
∑

x∈XR

Pr [x̃ = x] · Pr [SuccREAL | x̃ = x]

=
∑

x∈XR

Pr [x̃ = x] · Pr [z′ ∈ ZR | x̃ = x] · Pr [SuccREAL | z′ ∈ ZR ∧ x̃ = x]

+
∑

x∈XR:
Wx<|YR|

Pr [x̃ = x] · Pr [z′ ̸∈ ZR | x̃ = x] · Pr [SuccREAL | z′ ̸∈ ZR ∧ x̃ = x]

= 1
|XR|

·
∑

x∈XR

Pr [z′ ∈ ZR | x̃ = x] · Pr [y∗ = y | z′ ∈ ZR ∧ x̃ = x]

+ 1
|XR|

·
∑

x∈XR:
Wx<|YR|

Pr [z′ ̸∈ ZR | x̃ = x] · Pr [SuccREAL | z′ ̸∈ ZR ∧ x̃ = x] ,

(3)

where the probabilities are taken over the sampling of the inputs x̃ and ỹ, the
sampling of the correlated randomness, and the sampling of y∗. The second
equality follows from fact that if Wx < |YR|, then there exists y ∈ YR such that
f(x, y) /∈ ZR. We now analyze each term in the summation. Observe that for
every x ∈ XR it holds that

Pr [z′ ∈ ZR | x̃ = x] = Pr [f(x̃, ỹ) ∈ ZR | x̃ = x] = Wx

|YR|
.
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Additionally, for every x ∈ XR it holds that

Pr [y∗ = ỹ|z′ ∈ ZR ∧ x̃ = x] =
∑

z∈ZR:
wx(z)>0

Pr [z′ = z | z′ ∈ ZR ∧ x̃ = x]

· Pr [y∗ = ỹ|z′ = z ∧ x̃ = x]

=
∑

z∈ZR:
wx(z)>0

wx(z)
Wx

· 1
wx(z)

= h

Wx
.

Substituting this into the first summation in Equation (3) for Wx

|YR| ·
h

Wx
, we

obtain

Pr [SuccREAL] = h

|YR|
+ 1
|XR|

·
∑

x∈XR:
Wx<|YR|

Pr [z′ ̸∈ ZR | x̃ = x]

· Pr [SuccREAL | z′ ̸∈ ZR ∧ x̃ = x] .

(4)

To conclude the proof, it suffices to show that there exists x ∈ XR where Wx <
|YR|, such that

Pr [z′ ̸∈ ZR | x̃ = x] · Pr [SuccREAL | z′ ̸∈ ZR ∧ x̃ = x] ̸= 0.

Now, for every x ∈ XR where Wx < |YR|, let

εx := Pr [SuccREAL | z′ ̸∈ ZR ∧ x̃ = x] ,

where the probability is taken over the sampling of the input ỹ, the guess y∗ of
the adversary, and the sampling of the correlated randomness. Then

Pr [z′ ̸∈ ZR | x̃ = x] · Pr [SuccREAL | z′ ̸∈ ZR ∧ x̃ = x] =
(

1− Wx

|YR|

)
· εx.

We now show that there exists x ∈ XR such that εx > 0 and that Wx <
|YR|. By Claim 5, there exists inputs x ∈ XR and y ∈ YR, and correlated
randomness (r1, r2) ∈ Supp(D), such that f(x, y) ∈ Z \ZR, and for which there
is a continuation of Π after round i causing B to output a value from ZR. Observe
that since f(x, y) ∈ Z \ZR, the adversary A sends messages sampled uniformly
at random and independently starting from round i. Therefore, conditioned on
x̃ = x, the probability it causes B to output a value from ZR, is the probability
that ỹ = y, the correlated randomness is (r1, r2), and A sampled the correct
messages and guessed y∗ = ỹ correctly. By Claim 5, this event occurs with
non-zero probability, i.e., εx > 0.

Claim 7 For any simulator SimA in the ideal world, it holds that

Pr [SuccIDEAL] ≤ h

|YR|
.
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Intuitively, by Item 2, regardless of the input the simulator sends to the
trusted party, any distinct output z ∈ ZR contributes 1/|YR| to the probability
the simulator both guesses the input of the honest party, and forces the honest
party to output z. Due to lack of space, the proof is given in the full-version.

It is left to prove Claim 5, roughly asserting that there exists a round where
the output of one party is fixed, while the output of the other is not.

Proof (of Claim 5). For any certain inputs (x, y) ∈ R and correlated random-
ness (r1, r2) ∈ Supp(D), denote as iA(x, y, r1, r2) the first round for which given
an honest execution of Π up to and including round iA(x, y, r1, r2), the following
holds. There exists a set Z ′ ∈ {ZR,Z \ ZR} such that any continuation of Π
when A continues to behave honestly results in A outputting a value from Z ′

(regardless of the behavior of B). Note that such a round exists, since perfect cor-
rectness implies that at the end of the protocol, if both parties behave honestly,
then for any fixed (x, y, r1, r2) party A outputs f(x, y).

Similarly, denote by iB(x, y, r1, r2) the first round for which given an honest
execution of Π up to and including round iB(x, y, r1, r2), any continuation of
Π when B continues to behave honestly results in it outputting a value from
Z ′′ ∈ {ZR,Z \ ZR} (regardless of the behavior of A).

Next, we let iA be the first round, for which for all inputs (x, y) ∈ R and for
all possible correlated randomness (r1, r2) ∈ Supp(D), the output of A is defined
to be either in ZR or in Z \ ZR. In the same way, we define iB for B. Formally,

iA := max
(x,y)∈R

(r1,r2)∈Supp(D)

iA(x, y, r1, r2), iB := max
(x,y)∈R

(r1,r2)∈Supp(D)

iB(x, y, r1, r2).

Observe that there exists a row x ∈ XR and a column y ∈ YR, such that
MR

f (x, ·) and MR
f (·, y) contain both values from ZR and from Z \ ZR. Indeed,

by Item 1 (in the statement of Lemma 4), there exists a cell (x, y) ∈ R where
MR

f (x, y) ∈ Z \ZR. By Item 2 and Item 3 it follows that MR
f (x, ·) and MR

f (·, y)
contain at least one element from ZR each. This implies that iA, iB > 0, because
there exist (x, y) ∈ R where the possible output for both parties before the
first round can be from ZR and from Z \ ZR. Furthermore, as the parties send
messages one after another, it follows that iA ̸= iB. If iA < iB then assign P := A
and i := iA, else we set P := B and i := iB.

The claim follows from the definition of iA and iB. Indeed, assume that iA <
iB, then for all inputs (x, y) ∈ R and correlated randomness (r1, r2) ∈ Supp(D),
given an honest execution of Π up to and including round iA, there exists a set
Z ′ ∈ {ZR,Z \ ZR} such that any continuation of iA when A behaves honestly,
results in A outputting a value from Z ′. On the other hand, as iB > iA, by
the definition of iB, there exist inputs (x, y) ∈ R and correlated randomness
(r1, r2) ∈ Supp(D) such that iB(x, y, r1, r2) > iA. Hence, for such (x, y, r1, r2)
there are possible continuations of Π resulting in honest B outputting a value
from ZR, and continuations resulting in honest B outputting a value from Z\ZR.
Furthermore, there exists such (x, y) ∈ R satisfying f(x, y) ∈ Z \ ZR as well.
Indeed, observe that since there exists a malicious continuation making B output
a value from Z \ ZR (regardless of the value of the real output f(x, y)), then
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there must exist an input x′ ∈ XR and randomness r′
1 for A that are consistent

with the transcript up to round iA, and that cause B to output a value from
Z \ ZR. Notice that it must be the case that f(x′, y) ∈ Z \ ZR (in addition
to iB(x′, y, r′

1, r2) > iA), thus (x′, y) ∈ R is the desired pair of inputs. The case
where iA > iB follows an analogous argument.

Remark 3 (On proving impossibility of security-with-abort). Similarly to [9], we
can prove that the class of functionality captured by Lemma 4 cannot be com-
puted with perfect security-with-abort. To see this, observe that the real world
adversary still has a non-zero chance of increasing the probability that the hon-
est party outputs a value from ZR, while in the ideal world, giving the simulator
the ability to cause the honest party to output ⊥ will not increase its success
probability.

5 An Impossibility Result for Perfect Security for
Four-Output Functionalities

In this section, we prove Lemma 2. Our starting point is the general impossibility
result stated in Lemma 4, which appears in Section 4. Let us first restate the
lemma.
Lemma 5 (Restatement of Lemma 2). Let f : X × Y 7→ {0, 1, 2, 3} be a
deterministic symmetric two-party four-output functionality. Assume that f can
be computed with perfect security in the CR-hybrid model. Then, f is either a
spiral function or a transparent transfer function.

Towards proving the lemma, we first derive Theorem 4 as a corollary from
Lemma 4.

Corollary 6 (Restatement of Theorem 4). Let f : X ×Y 7→ Z be a deter-
ministic symmetric two-party functionality. Assume there exists a 2×2 rectangle
R such that its corresponding submatrix MR

f is forbidden (see Definition 12).
Then f cannot be computed with perfect security in the CR-hybrid model.

Proof. We show that for ZR = {b} and h = h′ = 1, the constraints from
Lemma 4 hold. Indeed, since MR

f contains the element a ̸= b, Item 1 holds. As
for Items 2 and 3, note that |ZR| = h = h′ = 1, and each row and column in
Mf cannot contain more than one distinct elements from ZR.

As a corollary, any 2 × 2 rectangle of a functionality that can be computed
with perfect security in the CR-hybrid model, must be one of the remaining
forms. That is, we have the following result.
Corollary 7. Let f : X ×Y 7→ Z be a deterministic symmetric two-party func-
tionality. Suppose that f can be computed with perfect security in the CR-hybrid
model. Then any 2 × 2 rectangle R ⊆ X × Y induces one of the following sub-
matrices:

MR
f ∼

(
a a
a a

)
; MR

f ∼
(

a a
b b

)
; MR

f ∼
(

a a
b c

)
; MR

f ∼
(

a b
c d

)
, (5)
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where a, b, c and d denote distinct elements of Z.

We are now ready to prove Lemma 2, which gives necessary conditions for
a two-party four-output symmetric deterministic functionality f : X × Y 7→
{a, b, c, d}, to be computable with perfect security in the CR-hybrid model. Recall
that Lemma 2 asserts that for such functionalities to be computable with perfect
security, they must be one of two types: either a spiral or a transparent transfer
functionality. The proof follows from the following two claims, that give the
conditions for when a four-output functionalities is a spiral, and when it is a
transparent transfer.

Claim 8 Let f : X × Y 7→ {0, 1, 2, 3} be a deterministic symmetric four-output
two-party functionality. Assume that f can be computed with perfect security in
the CR-hybrid model. Further, assume that Mf contains a 2×2 submatrix of the
form (

a b
c d

)
,

where {a, b, c, d} = {0, 1, 2, 3}. Then f is a transparent transfer functionality.

Claim 9 Let f : X × Y 7→ {0, 1, 2, 3} be a deterministic symmetric four-output
two-party functionality. Assume that in Mf there is no forbidden 2×2 submatrix
and no 2× 2 submatrix of the form (

a b
c d

)
,

where {a, b, c, d} = {0, 1, 2, 3}. Then f is a spiral functionality.

Claim 8 is proven below. Due to lack of space, we defer the proof of Claim 9
to the full version. We next use the above two claims to prove Lemma 2.

Proof (of Lemma 2). Fix a symmetric deterministic functionality f : X × Y 7→
{0, 1, 2, 3}, and assume it can be computed with perfect security in the CR-hybrid
model. By Corollary 7, every 2 × 2 submatrix of Mf is of one of the following
forms (up to permuting the rows and columns, and transposing the matrix).(

a a
a a

)
;

(
a a
b b

)
;

(
a a
b c

)
; or

(
a b
c d

)
.

If Mf contains the last submatrix, then by Claim 8 the functionality f is the
transparent transfer functionality. Otherwise, by Claim 9 it is spiral.

It is left to prove Claim 8

Proof (of Claim 8). Suppose there exists a 2×2 rectangle R = {x1, x2}×{y1, y2}
such that

MR
f =

(
a b
c d

)
.
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Using the notation of Lemma 4, consider taking ZR = {a, d}. As each row and
each column in MR

f contains exactly 1 element from ZR, and the submatrix
contains an element from Z\ZR, Item 1 from Lemma 4 holds. As we assume that
f can be computed with perfect security in the CR-hybrid model, by Lemma 4,
at least one of the following must hold.

– There exists a row x3 ∈ X \ {x1, x2} such that

{Mf (x3, y1), Mf (x3, y2)} = {a, d} .

Observe that if Mf (x3, y1) = d and Mf (x3, y2) = a, then the submatrix
induced by {x1, x3}×{y1, y2} is

(
a b
d a

)
. As this is a forbidden submatrix, by

Corollary 6 this contradicts the assumption that f can be computed with
perfect security in the CR-hybrid model. Thus,

(Mf (x3, y1), Mf (x3, y2)) = (a, d) .

– There exists a column y3 ∈ Y \ {y1, y2} such that

{Mf (x1, y3), Mf (x2, y3)} = {a, d} .

Similarly to the previous case, it must be the case where

(Mf (x1, y3), Mf (x2, y3)) = (a, d) .

Taking ZR = {b, c} and using an analogous argument, it follows that at least
one of the following holds.

– There exists a row x4 ∈ X \ {x1, x2} such that

(Mf (x4, y1), Mf (x4, y2)) = (c, b) .

– There exists a column y3 ∈ Y \ {y1, y2} such that

(Mf (x1, y4), Mf (x2, y4)) = (b, c) .

We conclude that one of the following must be a submatrix of Mf .
a b
c d
a d
c b

 ;
(

a b a b
c d d c

)
;

a b b
c d c
a d ∗

 ;

a b a
c d d
c b ∗

 , (6)

where ∗ is an arbitrary element of {a, b, c, d}. Next, observe that the latter two
cases are impossible. This is true since for any assignment for value of ∗ (out of
the four possible values), yields a 2 × 2 forbidden submatrix (in particular, an
embedded AND). Hence, by Corollary 6 these two submatrices are forbidden.
We assume without loss of generality that the first submatrix from Equation (6)
appears in Mf . It is left to show that any other row and column in Mf is a
duplication.
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Consider x5 ∈ X \ {x1, x2, x3, x4} (assuming such exists). Observe that
Mf (x5, y1) ̸= b as otherwise, the submatrix induced by {x1, x5}×{y1, y2} is the
forbidden submatrix

(
a b
b ∗

)
where ∗ is an arbitrary value. By Corollary 6, this con-

tradicts the assumption that f can be computed with perfect security in the CR-
hybrid model. Similarly, it holds that Mf (x5, y1) ̸= d and Mf (x5, y2) /∈ {a, c}, as
otherwise this induces a forbidden submatrix. Therefore, Mf (x5, y1) ∈ {a, c} and
Mf (x5, y2) ∈ {b, d}. All possible rows satisfying those conditions are Mf (x1, ·),
Mf (x2, ·), Mf (x3, ·), and Mf (x4, ·). Therefore, any possible row Mf (x5, ·) must
be a duplication.

Next, consider a column y3 ∈ X \ {y1, y2}. Observe that Mf (x1, y3) ̸= c,
as otherwise the submatrix induced by the rectangle {x1, x2} × {y1, y3} is the
forbidden submatrix ( a c

c ∗ ) . Similarly, it holds that Mf (x1, y3) ̸= d. We next
consider two cases.

We assume that Mf (x1, y3) = a, as the case where Mf (x1, y3) = b can
be handled using an analogous argument. Then Mf (x3, y3) = a, as otherwise
the submatrix induced by a rectangle {x1, x3}× {y1, y3} is forbidden. Similarly,
note that if Mf (x2, y3) ̸= c then Mf contains an induced forbidden submatrix.
Finally, Mf (x4, y3) = c, as otherwise the submatrix induced by a rectangle
{x2, x4} × {y1, y3} is forbidden. Thus,

(Mf (x1, y3), Mf (x2, y3), Mf (x3, y3), Mf (x4, y3)) = (a, c, a, c),

which is a duplication of the first column.

6 Positive Results for Perfect Security

In this section, we prove Lemma 3, serving as the positive direction of Theorem 3.
Specifically, we prove that every spiral functionality and the transparent transfer
functionality can be computed with perfect security. In fact, we show that these
functionalities can be computed by deterministic protocols in the plain model,
i.e., where the parties do not receive correlated randomness. We first restate the
lemma.

Lemma 6 (Restatement of Lemma 3). Let f : X × Y 7→ Z be a determin-
istic symmetric two-party functionality. If f is a spiral or a transparent transfer
functionality, then f can be computed with perfect security in the plain model.

We prove that spiral functionalities can be computed with perfect security
in Section 6.1. We handle transparent transfer functionalities in Section 6.2.

6.1 Computing Spiral Functionalities

In this section, we prove that any spiral functionality can be computed with
perfect security. This result follows from the following two propositions, asserting
the status of a functionality that is obtained from another by adding certain new
rows or columns to the associated matrix.
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The first proposition states an intuitive observation that for a symmetric
functionality f , duplicating rows and columns in Mf does not affect the existence
of a perfectly secure protocol.

Proposition 1. Let f : X × Y 7→ Z be a deterministic symmetric two-party
functionality, and let f ′ : X ′ × Y 7→ Z be such that red(Mf ) ∼ red(Mf ′). Then
f ′ can be computed with perfect security in the f -hybrid model (and vice versa).
Similarly, for f ′′ : X ×Y ′′ 7→ Z such that red(Mf ) ∼ red(Mf ′′), it holds that f ′′

can be computed with perfect security in the f -hybrid model (and vice versa).

Due to lack of space, the proof of Proposition 2 is given in the full version.
We next state the second proposition, which asserts that given a functionality f
that can be computed with perfect security, adding a constant row or column to
Mf with new values, results in a functionality that can still be computed with
perfect security.

Proposition 2. Let f : X × Y 7→ Z be a deterministic symmetric two-party
functionality, and let x+ /∈ X and z+ /∈ Z. Consider the functionality f+ :
(X ∪ {x+})× Y 7→ Z ∪ {z+} defined as

f+(x, y) =
{

f(x, y) if x ∈ X
z+ otherwise

Then f+ can be computed with perfect security in the f -hybrid model.

Due to lack of space, the proof of Proposition 2 is given in the full version.
We first observe that, combined with the composition theorem and the fact that
any constant functionality can be computed with perfect security in the plain
model, it follows that any spiral functionality can also be computed with perfect
security in the plain model.

Corollary 8. Let f : X ×Y 7→ Z be a deterministic symmetric two-party func-
tionality. Assume that f is spiral. Then f can be computed with perfect security
in the plain model.

6.2 Computing Transparent Transfer Functionalities
In this section we show that the transparent transfer functionality defined in Def-
inition 11 can be computed with perfect security (in the plain model). In fact, we
show a family of functionalities, extending the transparent transfer functionality
and show that they can be computed with perfect security. Let us first define
this family.

Definition 13 (Generalized transparent transfer functionality). Let k, n ∈
N and let Σ = {0, . . . , k−1}. We define the symmetric (k, n)-transparent transfer
functionality TTk,n : Σn × [n] 7→ Σ × [n] as

TTk,n ((x1, . . . , xn) , i) = (xi, i) .

Note that TT2,2 is equivalent to the transparent transfer functionality from Defi-
nition 11 (i.e., by applying the mapping (xi, i) 7→ (xi + (i−1) ·k) to the output).
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We next show that any (k, n)-transparent transfer functionality can be com-
puted with perfect security in the plain model.

Claim 10 For every k, n ∈ N the (k, n)-transparent transfer functionality TTk,n

can be computed with perfect security in the plain model.

Proof. We define a protocol Π for TTk,n as follows:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 11
Inputs: Party A holds input (x1, . . . , xn) ∈ Σn and party B holds input i ∈ [n].
1. B sends its input i to A.
2. A sends xi to B, and outputs (xi, i).
3. If B received a value xi /∈ Σ, then it outputs (0, i).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clearly, the protocol admits perfect correctness. We next show that it is secure.
Consider an adversary A corrupting A. We may assume without loss of generality
that A is deterministic (by an averaging argument). We define its simulator SimA
as follows.
1. Query A on every possible j ∈ [n] (rewinding each time). Let (x∗

1, . . . , x∗
n) be

the corresponding messages sent by A to B for every such j. For any j ∈ [n],
if x∗

j /∈ Σ then change it to 0. Let (x′
1, . . . , x′

n) be the resulting vector.
2. Send (x′

1, . . . , x′
n) to the trusted party T, and let (x′

i, i) denote the output it
sends.

3. Rewind A to the beginning, send it i, output whatever it outputs, and halt.
We now analyze the simulator. Since A is deterministic, the input x∗

i it sends
upon receiving i, is the same after rewinding. Thus, the simulator will send the
same input to the trusted party (changing to 0 in case x∗

i /∈ Σ).
We now consider the case where B is corrupted by an adversary B. Its simu-

lator SimB proceeds as follows.
1. Query B to obtain the message i it sends to A in the first round.
2. Send i to the trusted party T, and obtain a value x.
3. Send x to B, output whatever B outputs, and halt.

Clearly, the output of A is i in both worlds, and the view of B is xi. Therefore,
the real and ideal worlds are identical.

Acknowledgements. The work of B. Alon, O. Nissenbaum, E. Omri, and A.
Paskin-Cherniavsky was supported in part by the Ariel Cyber Innovation Center
in conjunction with the Israel National Cyber directorate in the Prime Minister’s
Office. The work of B. Alon, O. Nissenbaum, and E. Omri was also supported in
part by grants from the Israel Science Foundation (no.152/17). This work was
done while E. Omri was visiting Georgetown University, supported by the Robert
L. McDevitt, K.S.G., K.C.H.S. and Catherine H. McDevitt L.C.H.S. endowment
at Georgetown University. The work of A. Patra was supported by DST National
Mission on Interdisciplinary Cyber-Physical Systems (NM-ICPS) 2020-2025 and
SERB MATRICS (Theoretical Sciences) Grant 2020-2023.

29



Bibliography

[1] B. Alon and A. Paskin-Cherniavsky. On perfectly secure 2PC in the
OT-hybrid model. In Theory of Cryptography Conference, pages 561–595.
Springer, 2019. https://doi.org/10.1016/j.tcs.2021.08.035.

[2] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computing. In Proc. of the 20th
STOC, pages 1–10, 1988. https://doi.org/10.1145/3335741.3335756.

[3] G. Brassard, C. Crépeau, and M. Santha. Oblivious transfers and in-
tersecting codes. IACR Cryptology ePrint Archive, 1996:10, 1996. URL
http://eprint.iacr.org/1996/010.

[4] R. Canetti. Security and composition of multiparty cryptographic protocols.
J. Cryptol., 13(1):143–202, 2000. https://doi.org/10.1007/s001459910006.
URL https://doi.org/10.1007/s001459910006.

[5] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure
protocols. In Proceedings of the twentieth annual ACM symposium on The-
ory of computing, pages 11–19, 1988. https://doi.org/10.1145/62212.62214.

[6] B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. SIAM
Journal on Discrete Mathematics, 4(1):36–47, 1991.

[7] R. Cleve. Limits on the security of coin flips when half the processors are
faulty. In Proceedings of the eighteenth annual ACM symposium on Theory
of computing, pages 364–369, 1986.

[8] O. Goldreich. Foundations of Cryptography – VOLUME 2: Basic Applica-
tions. Cambridge University Press, 2004.

[9] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-
Cherniavsky. On the power of correlated randomness in secure compu-
tation. In Theory of Cryptography Conference, pages 600–620. Springer,
2013. https://doi.org/10.1007/978-3-642-36594-2_34.

[10] E. Kushilevitz. Privacy and communication complexity. SIAM Journal on
Discrete Mathematics, 5(2):273–284, 1992.

[11] S. Wolf and J. Wullschleger. Oblivious transfer is symmetric. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 222–232. Springer, 2006.

https://doi.org/10.1016/j.tcs.2021.08.035
https://doi.org/10.1145/3335741.3335756
http://eprint.iacr.org/1996/010
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/978-3-642-36594-2_34

	On Perfectly Secure Two-Party Computation for Symmetric Functionalities with  Correlated Randomness

