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Abstract. Incompressible encryption, recently proposed by Guan, Wichs and Zhandry (EURO-
CRYPT’22), is a novel encryption paradigm geared towards providing strong long-term security
guarantees against adversaries with bounded long-term memory. Given that the adversary forgets
just a small fraction of a ciphertext, this notion provides strong security for the message encrypted
therein, even if, at some point in the future, the entire secret key is exposed. This comes at the
price of having potentially very large ciphertexts. Thus, an important efficiency measure for incom-
pressible encryption is the message-to-ciphertext ratio (also called the rate). Guan et al. provided
a low-rate instantiation of this notion from standard assumptions and a rate-1 instantiation from
indistinguishability obfuscation (iO). In this work, we propose a simple framework to build rate-1
incompressible encryption from standard assumptions. Our construction can be realized from, e.g.
the DDH and additionally the DCR or the LWE assumptions.

1 Introduction

Incompressible Cryptography [26,19,27,42,34,32] is a flourishing paradigm trying to leverage memory
limitations of adversaries to achieve strong security goals. While traditionally, the goal of cryptography
in the bounded storage model [40] is to minimize the need for computational assumptions or even
obtain information-theoretically secure constructions, incompressible cryptography is geared more toward
mitigating the consequences of key exfiltration and key exposure attacks. In this work, we focus on the
notion of incompressible encryption [26,32] 4 recently coined by Guan et al. [32]. An incompressible
encryption scheme produces large, incompressible ciphertexts and guarantees that any adversary who
forgets even a small fraction of the ciphertext data will learn nothing about the encrypted data, even if
he is later given the corresponding secret key!

One motivation for incompressible encryption is to hamper adversaries conducting a mass-surveillance
operation by forcing them to store massive amounts of ciphertext data even if they are just interested in
a tiny fraction of the encrypted data. In a similar scenario, an adversary trying to exfiltrate information
encrypted under an incompressible encryption scheme from a data-center will have to exfiltrate massive
amounts of data, even if his exfiltration target is just a small piece of information.

An orthogonal notion to incompressible encryption is encryption in the bounded-retrieval model
[25,22,4,3,36,9,8,42] where the goal is to make the secret key large and incompressible (to make it hard
to exfiltrate) while keeping all other system parameters small, such as the sizes of public keys and
ciphertexts, as well as the overhead of encryption and decryption.

Encryption with High Rate. An important efficiency measure of encryption schemes is their ciphertext
expansion or rate. The rate of an encryption scheme is the ratio between plaintext size and ciphertext
size. The closer the rate is to 1, the more efficient a scheme manages to pack information into a ciphertext.
Conversely, the closer the rate is to 0, the less information is encoded in potentially large ciphertexts. For
incompressible encryption, achieving a high rate (ideally converging to 1), especially if we think of the
data center application above, where a small rate would also put a massive burden on the data center.

Guan et al. [32] provided two constructions of incompressible encryption.

– A construction from the minimal assumption of public-key encryption which has ciphertext-rate
approaching 0.

4 Dziembowski [26] introduced this concept under the name forward-secure storage in the symmetric key setting.



– A construction from indistinguishability obfuscation (iO) [6,28,37] which achieves ciphertext-rate
approaching 1.

We remark that their rate-1 construction relies on non-black-box techniques and iO, which gives this
result a strong feasibility flavor.

Given this state of affairs, this work is motivated by the following question:

Can we build a rate-1 incompressible encryption scheme based on standard assumptions while only
making black-box use of cryptographic primitives?

1.1 Our Results

In this work, we build a rate-1 incompressible encryption scheme from standard assumptions while
only using black-box techniques. Our result uses what we call programmable hash proof systems (HPS)
(which are a variant of standard HPS [16,17] with some additional properties), plain-model incompressible
encodings [42] and a pseudorandom generator (PRG). In particular, we prove the following theorem.

Theorem 1 (Informal). Let S be the storage capacity of the adversary and let n be the size of the
encrypted messages. Assuming programmable HPS, incompressible encodings and PRGs exist, there is
an incompressible encryption scheme fulfilling the following properties:

1. Ciphertexts are of size n+ nε · poly(λ) for some ε > 0.
2. The public key is of size nε′ · poly(λ) for some ε′ > 1/2.
3. Moreover, the size of ciphertexts is only slightly larger than the adversary’s storage space, that is,

S + poly(λ).

The ciphertext rate n/(n + nε · poly(λ)) approaches 1 for large enough messages. Additionally, the
public key is sublinear in the size of the encrypted message.

In terms of assumptions, incompressible encodings can be based on either decisional composite resid-
uosity (DCR) or learning with errors (LWE). The PRG can be based on any one-way function. We also
show that programmable HPS can be instantiated from the decisional Diffie-Hellman (DDH) assump-
tion by tweaking the famous HPS by Cramer and Shoup [17]. Consequently, our final incompressible
encryption scheme can be based solely on standard assumptions.

Streaming encryption. Streaming encryption/decryption is a property of incompressible encryption
schemes which allows the honest encryptor/decryptor to perform operations with very low storage ca-
pacity. It is easy to see that streaming decryption is an inherently conflicting property with high rate
ciphertexts [32]. This is because the honest decryptor needs storage at least as large as the size of the
message. Otherwise, an adversary can essentially mimic the decryptor and learn something about the
encrypted message (e.g., the most significant bit).

However, we note that our scheme has stream encryption, i.e., the honest encryptor does not need
much space to perform encryption. This follows from the fact that the incompressible encodings con-
struction of [42] has stream encoding.

Extension to CCA security. In the security experiment for incompressible encryption presented in [32]
the adversary is never allowed to query a decryption oracle. In other words, their work only considered
IND-CPA incompressible encryption. In this work, we also give the adversary access to an decryption
oracle extending incompressible encryption to IND-CCA2 incompressible encryption. We stress that
IND-CCA2 security is usually considered the right security definition to use in practice. We show that
our construction is, in fact, is IND-CCA2 incompressible secure.

1.2 Comparison with Previous Work

[32] presented two incompressible encryption schemes. The first one is based only on the minimal as-
sumption of PKE. However, the ciphertext rate is very far from 1. The second one achieves rate-1 but is
based on iO. We compare these schemes in Table 1.
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Ciphertext
Rate

Public key
Size

Hardness
Assumption

Security

[32] 1/poly(λ) poly(λ) PKE IND-CPA

[32] 1 poly(λ) iO IND-CPA

Our result 1 nε′ · poly(λ) DDH ∧
(DCR ∨ LWE)

IND-CCA2

Table 1. Comparison with previous work. Here, n denotes the size of the encrypted messages and ε′ is any
constant between 1/2 and 1.

Other related work. Some recent works made significant progress in the area of incompressible cryptog-
raphy. The works of [19,27,42] proposed constructions for incompressible encodings either in the random
oracle model or in the CRS model. The work of [34] used the BSM together with computational assump-
tions to propose constructions of primitives that are not known just from computational assumptions,
such as virtual grey-box obfuscation.

Incompressible cryptography is closely related to the bounded storage model (BSM) [39]. However,
most works in the BSM (e.g. [13,5,45,33,24]) focus on achieving unconditional security for primitives
that are already known from computational assumptions such as public-key encryption and oblivious
transfer.

Open Problems. We leave the open problem of developing an incompressible encryption scheme that
combines concretely short public keys with small ciphertexts. A possible approach for this would be to
find a programmable hash proof system where the size of the public key is essentially independent of the
size of the encapsulated key.

Full Version In the full version [11], we justify focusing on the plain model by providing a simple
incompressible encryption scheme that is secure in the random oracle model but is broken for any
instantiation of the random oracle. This provides another uninstantiability for the random oracle in the
vein of [14,21,29,7,41,10,12,31].

The full version also contains a programmable HPS based on isogeny-based assumptions with worse
parameters than the DDH programmable HPS and a programmable HPS based on the hardness of LWE
with superpolynomial modulus-to-noise ratio with better parameters than the DDH programmable HPS.
The LWE construction, however, only results in incompressible IND-CPA security.

Acknowledgement. We would like to thank Stefan Dziembowski, Daniel Wichs, and the anonymous
reviewers of TCC for discussions and comments.

Nico Döttling is funded by the European Union. Views and opinions expressed are however those
of the author(s) only and do not necessarily reflect those of the European Union or the European
Research Council Executive Agency. Neither the European Union nor the granting authority can be held
responsible for them. (ERC-2021-STG 101041207 LACONIC).

Part of the work of Pedro Branco was done while at IST University of Lisbon.

2 Technical Overview

In this technical overview, we sketch the main techniques to build an IND-CPA incompressible scheme.
We later argue how these techniques can be tweaked to obtain a scheme that is IND-CCA2 incompressible
secure.

Security Notion The syntax and correctness notions for incompressible encryption are identical to stan-
dard public-key encryption (PKE). The main difference is in the security definition. Since the security no-
tion of incompressible encryption is relatively new, we will briefly detail its security experiment here. Con-
sider the following security game between a challenger C and a 3-stage PPT adversary A = (A1,A2,A3).

1. C creates a pair of public and secret keys pk, sk.
2. Given pk, the first stage A1 chooses two messages m0,m1.
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3. C chooses b←$ {0, 1} uniformly at random and encrypts ct← Enc(pk,mb).
4. Given the ciphertext ct and the state of A1, the second stage A2 produces a state st of size S < |ct|.

That is, the state st should be somewhat smaller than ct.
5. Now, the third stage A3 receives as input the state st (produced by A2) and the secret key sk. The

goal of A3 is to guess the bit b.

We say that an incompressible encryption is secure if, for any adversary, A the advantage of winning the
following game is negligible in the security parameter λ.

2.1 The Scheme of GWZ

Before we provide an outline of our construction, we will briefly discuss the underlying ideas of the low-
rate incompressible encryption scheme constructed in [32]. At the very core is the following idea: The
ciphertext essentially consists of a very long truly random random string R and a short payload part
c = (c1, c2), where c1 is an encryption of a seed k for a randomness extractor Ext, and c2 = Ext(k,R)⊕m
is essentially a one-time-pad encryption of the message m under the key Ext(k,R). Clearly, if c1 was not
part of the ciphertext, then security of this scheme follows routinely by the following observations:

– In the view of the third stage A3 of the adversary R has high min-entropy, as R is uniformly random
and the state st is significantly shorter than R.

– Furthermore, as we assume c1 is not part of the ciphertext, st is independent of k
– Hence by the extraction property of Ext the string Ext(k,R) is uniformly random in the adversary’s

view, and therefore mb is statistically hidden.

Now, the main idea of [32] to make this approach work even though c1 is part of the ciphertext is
to encrypt k in such a way that c1 can be made independent of the extractor seed k. This is achieved
by choosing a suitable encryption scheme for which c1 can be chosen independently of k, and a suitable
secret key which decrypts c1 to k can be chosen after the fact, i.e. after the leakage st has been computed.
[32] provide an elegant construction of such a scheme from non-compact single-key functional encrytion,
which can be built from any public key encryption scheme [30].

2.2 The Big Picture

While our construction departs significantly from the blueprint of [32] we use the same high-level concept
of an encryption scheme that allows delaying secret-key generation in the security proof. Rather than
constructing incompressible PKE directly, we first tackle the intermediate and simpler task of realizing
a rate-1 incompressible symmetric-key encryption. In a second step, we will then transform any incom-
pressible SKE scheme into an incompressible PKE scheme in a rate-preserving way. It turns out that
even constructing a rate-1 incompressible SKE from standard assumptions is a non-trivial task and does
not follow, e.g. from the (low-rate) public-key construction of [32].

Since our two steps are independent of one another, improvements of either in future work will lead
to better incompressible encryption schemes. For simplicity, in the following outline, we will focus only
on CPA security, whereas in the main body, we present a CCA secure construction.

LWE

DCR

Rate-1
Incompressible
Encodings

Rate-1
Incompressible
SKE

Programmable HPS (Sec.5)

Rate-1
Incompressible
PKE

[42]

[42]

Sec.4 Sec.6

Fig. 1. Overview of the results in this work, bold arrows are contributions of this work.
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2.3 Rate-1 Incompressible Symmetric-Key Encryption

In the symmetric-key setting, the syntax and correctness of incompressible SKE are pretty much that
of standard symmetric-key encryption, whereas the security notion is similar to that of incompressible
PKE, just with the difference that the first stage A1 of the adversary is not given a public key (as there
is none). Thus, the security notion we consider here is the incompressible encryption-analogue of security
against an eavesdropper (IND-EAV).

Failed Naive Attempts. As a (failed) very first attempt, one may try ”make work” an incompressible
SKE construction from the One-Time-Pad (OTP), i.e. the secret key k is a random bit-string as long
as the message m and the ciphertext is c = k ⊕ m. However, the obvious issue with this is that such a
ciphertext c decomposes into many one-bit ciphertexts ci = ki ⊕ mi, and it is enough for A2 to leak a
few bits of c to enable A3 to partially decrypt c and thus distinguish encryptions of m0 from encryptions
of m1. As a next idea, one may try the following: Encryption chooses a (fresh) pseudorandom generator
(PRG) seed s, encrypt m into m̂ = m ⊕ PRG(s), use k to encrypt the seed s into a header ciphertext c,
i.e. the encryption of m is (Enc(k, s),m⊕ PRG(s)). While this approach does look promising, we observe
that it is stuck at either leakage-rate 1/2 or ciphertext-rate 1/2, that is as soon as A3 learns Enc(k, s) in
its entirety and a few bits of mb ⊕ PRG(s), he will be able to distinguish encryptions of m0 from m1.

Introducing Circularity. Clearly, we need some kind of mechanism to glue the two ciphertexts components
together, i.e. we want to make it such that if some parts of m̂ are missing, then c will be useless (and
vice versa). As a first, heuristic ”hands-on” approach to achieve this, we can try to use m̂ as a source of
randomness from which we extract a key to mask the seed s. Thus, let Ext(·, ·) be a seeded randomness
extractor. We compute a ciphertext (c, m̂) by first computing m̂ = m ⊕ PRG(s) for a random seed s as
before, but then encrypt s into c via c = s⊕Ext(k, m̂), i.e. we use k as an extractor seed to extract a one-
time-pad key Ext(k, m̂) from m̂. Clearly, given k and a ciphertext (c, m̂), we can decrypt by first computing
s = c⊕Ext(k, m̂) and thenm = m̂⊕PRG(s). The rationale for why we hope this construction to be secure is
that as soon as a significant fraction of the bits of m̂ are lost, the output of the extractor Ext(k, m̂) should
look uniform, and thus m̂ = m⊕PRG(s) should hide m by the pseudorandomness of PRG. However, this
circularity backfires when trying to establish security of this construction just from the pseudorandomness
of PRG and the randomness-extraction property of Ext: In order to use pseudorandomness of PRG, we
first need to remove the s from the view of the adversary, but c = s⊕Ext(k, m̂) is correlated with s given
k. On the other hand, in order to use the randomness extraction property of Ext we need that m̂ has
high entropy given st. But all the entropy of m̂ = m⊕PRG(s) comes from the seed s, which is very small.
Hence ≈ λ bits of m̂ suffice to information-theoretically determine s.

Consequently, while heuristically, this construction seems secure, it seems unlikely the individual
security properties of PRG and Ext suffice to prove this construction secure.

Breaking Circularity Hence, what we need is a mechanism to break the circularity, which we have just
introduced. Looking at where establishing security of the above construction gets stuck, a natural point
to start is to make it such that m̂ looks like it has a large amount of real entropy once a few bits of m̂
are missing, i.e. L(m̂) being computationally indistinguishable from L(r̂) for a high-entropy distribution
r̂ for any efficiently computable leakage function L(·) 5.

Incompressible encodings. Fortunately, an encoding mechanism achieving this notion called incompress-
ible encodings was just recently introduced and constructed by Moran and Wichs [42]. As a technical
tool, they introduced the notion of HILL-entropic encoding in their work, which will be sufficient, if not
to say ideally suited for our construction. Such a scheme consists of an encoding algorithm En and a
decoding algorithm De, both of which rely on a (large) common random string crs←$ {0, 1}t:

– The encoding algorithm Encrs(m) is a randomized algorithm which takes a message m and produces
an encoding m̂

– The decoding algorithm Decrs(m̂) is a deterministic algorithm which takes an encoding m̂ and returns
a message m.

5 In our case the leakage function L is described by the adversary’s second stage A2
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In terms of correctness, one naturally requires that encoding followed by decoding leads to the original
message. Security-wise, we require that there exists a simulator Sim which on input a messagem produces
a pair (crs′, m̃), which is computationally indistinguishable from a real pair of crs and encoding of m, i.e.

(crs,Encrs(m)) ≈c Sim(m),

where crs ←$ {0, 1}t. Additionally, we require that if (crs′, m̃) ← Sim(m), then m̃ has almost full true
min-entropy given crs′, i.e. H̃∞(m̃|crs′) ≥ (1 − ϵ)n, where H̃∞ is the average conditional min-entropy.
The (very) high level idea how this can be achieved is that in simulation the common random string and
the encoded message switch roles, in the sense that the simulated common random string crs′ encodes
the message m, whereas the encoding m̃ now has room to have (very) high entropy.

Moran and Wichs [42] provide two instantiations of their construction, one from DCR and one from
LWE. These constructions achieve rate-1, i.e., the encoding is only slightly larger than the encoded
message. The conceptual idea behind the construction is rather elegant: The encoding function Encrs(m)
generates a pair of public key and trapdoor (pk, td) of preimage-sampleable surjective lossy function F (for
which we have efficient constructions from DCR or LWE) and sets x to be a randomly sampled preimage
of m ⊕ crs, i.e. x = F−1td (m ⊕ crs), and sets m̂ = (pk, x). To decode m̂, one computes m = Fpk(x) ⊕ crs.

The simulator Sim chooses a highly lossy public key p̃k, chooses x uniformly at random, and sets crs′ =
m⊕Fp̃k(x) and m̃ = (p̃k, x). Given that Fpk is regular for surjective keys pk, meaning that if x is uniform
then Fpk(x) is also (statisticalluy close to) uniform, we can routinely establish that real pairs (crs, m̂)
are computationally indistinguishable from simulated (crs′, m̃) using the indistinguishability of surjective
public keys pk and highly lossy public keys p̃k. Moreover, for simulated pairs (crs′ = m ⊕ Fp̃k(x), m̃ =

(p̃k, x)) we can easily argue that x (and hence m̃) has high min-entropy given crs′ = m⊕ Fp̃k(x), as Fp̃k

is highly lossy and hence x has high min entropy given Fp̃k(x).

Moran and Wichs [42] go on to show that for any incompressible encoding/HILL-entropic encoding,
the common random string crs must be as long as the message, if one wants to establish security from a
falsifiable assumption [43] under a black-box reduction.

The Full Construction. We will now provide our complete construction of incompressible SKE and sketch
the security proof. For our scheme, the secret key K is a uniformly random bit-string of suitable length
which will be parsed as K = (crs, k), where crs is the common random string for a HILL-entropic encoding
(En,De), and k is the seed for a randomness extractor Ext. Encryption and decryption work as follows.

– Enc(K = (crs, k),m): Choose a uniformly random PRG seed s←$ {0, 1}λ and compute m̂ = Encrs(m⊕
PRG(s)). Compute c = s⊕ Ext(k, m̂) and output the ciphertext ct = (c, m̂).

– Dec(K = (crs, k), ct = (c, m̂)): Compute s = c⊕ Ext(k, m̂) and output m = Decrs(m̂)⊕ PRG(s).

Correctness of this scheme follows routinely.

Security of this scheme is established along the following lines. First we rely on the security of
the HILL-entropic encoding to replace (crs, m̂) with a simulated pair (crs′, m̃) = Sim(m ⊕ PRG(s)). By
the security of the HILL-entropic encoding, this modification is (computationally) unnoticeable to the
adversary. However, now the encoding m̃ has true high min-entropy given crs′. Thus, using a min-entropy
chain rule (e.g. by [23]) we can argue that m̃ still has sufficiently high min-entropy given both crs′ and
a leak L(m̃). Hence, the randomness extraction property guarantees that Ext(k, m̃) will extract uniform
randomness (given crs′ and L(m̃)). To establish this we need a mild extra property of the extractor Ext
that given a (uniformly random) extractor output y and m̃ we can sample a key k′ after the fact such
that (k′, y) ≈ (k,Ext(k, m̃)). Hence in the next hybrid modification, we can thus replace c = s⊕Ext(k, m̃)
with a uniformly random and independent string c′. Now that c′ is independent of s, we can use the
pseudorandomness property of PRG to replacem⊕PRG(s) in (crs′, m̃) = Sim(m⊕PRG(s)) with a uniformly
random string u, i.e. (crs′, m̃) = Sim(u). We have finally arrived at an experiment where the ciphertext
ct = (c′, m̃) is independent of the message m, and hence the adversary’s advantage is 0.

Concerning the rate of this scheme, note that a ciphertext ct = (c, m̂) has rate 1, as c is just of size
poly(λ) (independent of the message length n), and the HILL-entropic encoding m̂ is rate 1.
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2.4 From Symmetric-Key to Public-Key Incompressible Encryption via Hash Proof
Systems

Now that we have a construction of incompressible SKE, we need a way to establish a long key K between
the sender and receiver. This is a job for a key encapsulation mechanism (KEM) [18]. A key-encapsulation
mechanism consists of:

– A key-encapsulation mechanism consists of a key-generation algorithm KeyGen which produces a pair
of public and secret keys (pk, sk).

– An encapsulation algorithm which takes a public key pk and produces a symmetric key K and a
ciphertext header c0 encapsulating K.

– A decapsulation algorithm Dec which takes a secret key sk and a ciphertext header c0 and outputs
a key K.

The correctness requirement is the obvious one, whereas the standard security requirement is that K is
pseudorandom given pk and c0. A symmetric key K generated via a KEM can now be used to encrypt a
message m into a payload ciphertext c1 using a symmetric key encryption scheme. The full ciphertext is
c = (c0, c1).

However, to transform an incompressible SKE into an incompressible PKE not just any key encap-
sulation mechanism will do. The simple reason is that in the incompressible (public key) encryption
security game, the adversary gets to see the secret key sk in the end, which will allow him to decapsulate
the (short) ciphertext header c0 into the symmetric key K. But the standard security notion of KEMs
discussed above does not require that the encapsulated key K follows a uniform distribution. Indeed, e.g.
for simple PRG-based KEMs, the encapsulated key is statistically far from uniform. However, recall that
in our construction of incompressible SKE above, we made critical use of the fact that the key K follows
a uniform distribution and that the security reduction can program it in a suitable way.

Thus, we need a KEM which we can switch into a mode in which the ciphertext header c0 encapsu-
lates a truly uniform key K. As we need the ciphertext header c0 to be substantially shorter than the
encapsulated key K, the entropy of K in this mode must come from the secret key sk.

Enter Hash proof systems. This is where hash proof systems (HPS) [17] come into play 6. Recall that
HPS are defined relative to an NP-language L ⊆ {0, 1}k. We have a key-generation algorithm KeyGen
which generates a public or projected key pk, and a secret or hashing key sk. The hashing or decapsulation
algorithm Decap takes the secret key sk and any x ∈ {0, 1}k and produces a hash value K. The restricted
hashing or encapsulation algorithm Encap takes a public key pk, an x ∈ L and a witness w (with respect
to a fixed NP-relation for L) for membership of x in L and produces a hash-value K.

In terms of correctness or completeness, we require that Decap and Encap agree on L, i.e. if x ∈ L
and w is a valid witness for x, then it holds that Decap(sk, x) = Encap(pk, x, w).

In terms of security, we require smoothness, namely given that x /∈ L, it holds that Decap(sk, x) is
statistically close to uniform given pk.

HPS are especially useful for sparse pseudorandom languages L, such as the decisional Diffie-Hellman
(DDH) language) [17]. We define this language with respect to a pair of (randomly chosen) generators
g, h ∈ G, where G is a cryptographic group of prime order p. A pair x = (g′, h′) is in L, if there exists
an r ∈ Zp such that g′ = gr and h′ = hr. The DDH assumption states that a random element in L,
i.e. a pair (gr, hr) is computationally indistinguishable from a pair of uniformly random group elements
(u, v) 7

In the Cramer-Shoup [17] scheme, the secret key sk = (α, β) consists of two uniformly random values
α, β ∈ Zp, and the public key pk is computed as pk = gαhβ . Given a public key pk an instance c0 = (gr, hr)
with witness r, we compute a key K = pkr. Given a secret key sk = (α, β) and an instance c0 = (g′, h′)

we compute a key K = g′
α
h′

β
. It follows routinely that encapsulation and decapsulation agree on L.

Moreover, for a (g∗, h∗) /∈ L it holds K∗ = g∗αh∗β is uniformly random given pk = gαhα by a simple
linear algebra argument.

Hash Proof Systems, and in particular the Cramer-Shoup HPS (almost) give us a KEM with the
desired properties. Namely, given pk and (g, h), to encapsulate a key k we choose a uniformly random

6 HPS have been instrumental in many prior works on leakage resilience cryptography e.g. [3,36]
7 Note that such a pair is not in L, except with negligible probability 1/p.
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r ∈ Zp and compute c0 = (gr, hr) and K = pkr. To decapsulate K from c0 = (g′, h′) given sk = (α, β),

we compute K = g′
α
h′

β
.

A typical proof-strategy using HPS lets a reduction compute the encapsulated key (on the sender’s
side) via the decapsulation algorithm using the secret key. Correctness of the HPS ensures that this does
not change K. Hence this modification will not be detected by an adversary. Now we don’t need the
witness r anymore. We can replace c0 with a uniformly random c′0 and argue that this modification is
computationally undetectable by the adversary, thanks to the DDH assumption. Since now c′0 is outside
of L w.o.p, it holds that K is uniform even given pk, as desired.

However, this is still not enough to make our security reduction go through. It turns out we not only
have to ensure that K is uniform given pk, but also that for any given K and fixed pk and c0 we can
find a secret key sk (compatible with pk) such that Decap(sk, c0) = K. Realizing this property using the

Cramer-Shoup HPS directly seems hard, as in order to sample an sk = (α, β) with K = g′
α
h′

β
we would

need to compute a discrete logarithm of K.

Programmable Hash Proof Systems For this purpose, we will consider a notion of programmable hash proof
systems, which obey a stronger smoothness notion. In short, such an HPS has the following property.
Given a public key pk, a (fake) ciphertext header c∗0 (not in L) and secret auxiliary information aux
depending on both pk and c0, we can sample a uniformly random secret key sk∗ such that Decap(sk∗, c∗0) =
K, for which it holds that (pk, c∗0, sk

∗) ≈s (pk, c
∗
0, sk) if K is chosen uniformly random.

Our idea to achieve this is simple: We will concatenate Decap (and also Encap) with a balanced
small range hash function HC : G → {0, 1}, i.e. we have Decap′(sk, c0) = HC(Decap(sk, c0)) and
Encap′(pk, c0, r) = HC(Encap(pk, c0, r)). Here balanced means that if h ∈ G is a uniformly random
group element, then HC(h) is statistically close to a uniformly random bit. While there exist determin-
istic constructions of such extractors for certain groups (e.g. [15]) we can find such an HC for any group
via the leftover-hash lemma [35]. For such a hash function, we can efficiently sample a uniformly random
pre-image h ∈ G of K for which we do know the discrete logarithm (with respect to a generator g ∈ G).
We achieve this via rejection sampling: Given a bit K ∈ {0, 1}, choose a uniformly random z ∈ Zp and
test whether HC(gz) = K (which happens with probability 1/2), and reject and resample if the test fails.

Now let h = gy, pk = gt and c∗0 = (g′ = gr, h′ = gs) be a public key and (fake) ciphertext, for which
the auxiliary information is (y, t, r, s), i.e. the discrete logarithms of pk and c∗0. Given a key K ∈ {0, 1},
we first sample a uniformly random z ∈ Zp such that HC(gz) = K. Now we have 2 linear constraints
(over Zp) on sk = (α, β) ∈ Z2

p, namely
t = α+ β · y

from pk = gα · hβ and
z = αr + βs

from HC(gz) = HC(g′α ·h′β). Since we now have two equations and two unknowns α and β, we can solve
for α and β using basic linear algebra.

We do pay a price to get programmability: Instead of getting log(|G|) key bits per public key pk,
we only get a single bit. Naturally, this can be improved up to log(λ) key-bits while keeping the above
rejection sampling procedure expected polynomial time.

The Full Construction We are now ready to present our fully-fledged construction. This construction
will have a large public key. We will later discuss how the size of the public key can be reduced.

Assume thus that (Enc,Dec) is an incompressible SKE scheme, and that (KeyGen,Encap,Decap) is
a programmable HPS for a decision-membership-hard language L, for concreteness assume the DDH
language. Our incompressible PKE construction is given by the following algorithms.

– The key-generation algorithm KeyGen′ generates random group elements g, h ∈ G and n pairs of pub-
lic and secret keys (pk1, sk1), . . . , (pkn, skn) using KeyGen (on g, h) and set PK = (g, h, pk1, . . . , pkn)
and SK = (sk1, . . . , skn).

– The encryption algorithm Enc′ proceeds as follows, given a public key PK = (g, h, pk1, . . . , pkn) and
a message m. First, generate a random DDH instance c0 = (g′ = gr, h′ = hr) using a random
r ←$ Zp. Now compute the key-bits K1 = Encap(pk1, c0, r), . . . ,Kn = Encap(pkn, c0, r) and set
K = (K1, . . . ,Kn). Next, we use K to encrypt m using the incompressible SKE scheme, i.e. we
compute c1 = Enc(K,m) and output the ciphertext c = (c0, c1).
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– The decryption algorithm Dec′ takes a secret key SK = (sk1, . . . , skn) and a ciphertext c = (c0, c1), and
proceeds as follows. First, it decapsulates the key K = (K1, . . . ,Kn) by computing K1 = Decap(sk, c0),
. . . , Kn = Decap(skn, c0). Next, it decrypts c1 to m via m = Dec(K, c1).

Correctness of this scheme follows routinely from the correctness of its components.

Note that if the incompressible SKE scheme (Enc,Dec) is rate-1, then so is our public-key scheme
(KeyGen′, Enc′, Dec′), as the only additional information in ciphertexts c = (c0, c1) is the header c0,
which consists of just two group elements. On the other hand, note that the size of the public key of this
scheme scales with the size n of the symmetric key K, which in our symmetric-key construction scales
with the size of the message m.

Security of the Full Construction We will now turn to sketching the security proof for the main con-
struction. In the first hybrid step (somewhat expectedly), we use the HPS Decap algorithm instead of
the Encap algorithm to compute the key-bits Ki in the encryption of the challenge ciphertext. That is,
in the encryption of the challenge ciphertext we replace Ki = Encap(pki, c0, r) with Ki = Decap(ski, c0)
for all i = 1, . . . , n. Due to the correctness property of the HPS, this modification does not change the
distribution of K. Hence this hybrid change goes unnoticed by the adversary. In the second hybrid step,
since we don’t need r anymore, we replace c0 = (gr, hr) with a uniformly random c′0. We can use the
DDH assumption to argue that this modification goes unnoticed.

The next hybrid step is the critical one: We choose g, h, the pki and c′0 with auxiliary information, i.e.
together with their discrete logarithms with respect to g, choose K←$ {0, 1}n uniformly at random and
sample each ski such that Ki = Decap′(ski, c

′
0) using the programming algorithm of the programmable

HPS. We can argue statistical indistinguishability using the programmability property of HPS. The
crucial observation now is that the public key PK = (g, h, pk1, . . . , pkn) and the ciphertext header c0 are
computed independently of K and SK, and in fact we choose SK depending on K, i.e. we can choose SK
after everything else.

This now allows us to turn an adversary A with non-negligible advantage in this hybrid experiment
into an adversary A′ with the same advantage against the incompressible SKE scheme. A′ first generates
PK as in the hybrid experiment and provides PK to the first stage A1 of A, which will output m0,m1.
Now the second stage A′2 gets to see a symmetric-key encryption c1 of mb, and turns this into a public-key
encryption by setting c = (c0, c1), where c0 computed as in the hybrid experiment. This ciphertext c is
then given A2, which outputs a state/leak st, and A′2 outputs the same state st.

Finally, A′3 given a symmetric key K and the state st proceeds as follows. Using the auxiliary infor-
mation aux8. and the key K, it samples a secret key SK = (sk1, . . . , skn) such that for all i = 1, . . . , n it
holds that Ki = Decap′(ski, c0), as in the hybrid experiment. Then, A′3 runs A3 on SK and st and outputs
whatever A3 outputs.

It is not hard to see that from the view of A, A′ simulates the hybrid experiment perfectly. Hence,
the advantage of A′ against the incompressible symmetric-key security experiment is the same as that
of A against the hybrid experiment, and we derive the desired contradiction.

Reducing the Public-Key-Size. As mentioned above, the construction we discussed in the last two para-
graphs has a near-optimal ciphertext size (i.e. increasing the size of the symmetric-key ciphertext only
by two group elements). In contrast, it has a very large public key which scales linearly with the size of
the encrypted messages/the ciphertexts.

We will now discuss a tradeoff which achieves a better balance between ciphertext size and public
key size. Concretely, we will provide a tradeoff which achieves a ciphertext size of n + nϵpoly(λ) for
an 0 < ϵ < 1 and public key size nϵ′poly(λ) for an 1/2 < ϵ′ < 1. I.e. we achieve ciphertext rate
1− nϵ−1poly(λ), which approaches 1 for sufficiently large n, while having a key of sublinear size.

8 There is a technical subtlety in the security definition of incompressible SKE which we omitted before: We
allow the first stage A′

1 of a symmetric-key adversary A′ to produce a large state (i.e. scaling with the message
size), which is provided to both A′

2 and A′
3. This is to communicate a potentially large public key PK from A1

to A3 without putting a burden on the leakage-budget of the leaker-stage A′
2. One could consider an alternative

definition where this communication from A′
1 to A′

3 is not allowed. In such a setting we could still prove our
construction secure by compressing the auxiliary information aux from which PK and c0 are generated using a
PRG
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In order to declutter the presentation, we will switch from multiplicative notation of group operations
in G to additive notion in the following discussion. That is we will denote group elements gx by [x], and
write α · [x] instead of (gx)α. Furthermore, we will consider vectors and matrices of group elements, i.e. if
x ∈ Zk

p is a vector, then [x] is its element-wise encoding in the group G. Likewise, we write an encoding

of a matrix A ∈ Zk×l
p as [A].

In our discussion above we considered a HPS for the two-dimensional DDH language, i.e. the language
consisting of all r · [v] given two [v], where v ∈ Z2

p is a randomly chosen 2-dimensional vector over Zp.

Thus let v ∈ Zk
p be a randomly chosen k-dimensional vector. The goal of the k-dimensional DDH

problem is to distinguish ([v], t · [v]) from ([v], [u]), where v and u are chosen uniformly random from Zk
p

and r is chosen uniformly from Zp. It follows routinely via a standard rerandomization argument that
the k-dimensional DDH problem is hard, given that the 2-dimensional DDH problem is hard.

We can construct an HPS for k-DDH analogously to the 2-dimensional case: Fix a vector [v] ∈ Gk.
The secret key sk is a random vector ααα ∈ Zk

p, whereas the public key is given by [pk] = ααα⊤[v], i.e. the
inner product of ααα and [v]. Given a vector [w] = r · [v] and a witness r, the Encap algorithm computes
[K] = r · [pk]. On the other hand, given any vector [w] ∈ Gk and a secret key sk = ααα, the Decap
algorithm computes ααα⊤ · [w]. Arguing correctness and smoothness are again simple exercises in linear
algebra. Furthermore, this HPS satisfies a stronger notion of k− 1-smoothness: Given uniformly random
[w1], . . . , [wk−1], it holds that

(pk,ααα⊤[w1], . . . ,ααα
⊤[wk−1]) ≈s (pk, [u1], . . . , [uk−1]),

where the [u1], . . . , [uk−1] are uniformly random in G. Establishing this is again routine linear algebra.

We will first briefly discuss how the HPS can be made programmable. In essence, we follow the
same idea as above: We take a balance function HC : G → {0, 1} and define the Decap algorithm to
compute HC(ααα⊤[w]). We claim this construction is k − 1-programmable. That is, given [v], [pk] = [t],
uniformly random [w1], . . . [wk−1] together with the witnesses v, t and w1, . . . ,wk−1, and a random
K = (K1, . . . ,Kk−1) ∈ {0, 1}k−1, we can efficiently sample a uniformly random ααα ∈ Zk

p such that t = ααα⊤v

and Ki = HC(ααα⊤[wi]) for i = 1, . . . , n. We proceed as above: First we choose uniformly random zi ∈ Zp

such that Ki = HC([zi]) for all i. Then we get the linear equation system

ααα⊤v = t

ααα⊤w1 = z1

...

ααα⊤wk−1 = zk−1.

Since the wi are chosen uniformly random, this system has full rank w.o.p., and hence we can find a
matching secret key ααα via simple linear algebra.

Now, plugging this programmable HPS into our construction of incompressible PKE, we obtain the
following parameters.

– A single public pk consisting of one group element can be used to encapsulate k key bits. Hence, to
encapsulate n key bits we need n/k public keys amounting to n/k group elements.

– The ciphertext header now contains k ·(k−1) ≤ k2 group elements (in the above notation the vectors
[w1], . . . , [wk−1]).

Hence, if we want to strike a balance where the (additive) ciphertext overhead is of the same size as the
public key, we obtain the relation

n

k
= k2,

which yields to k = n1/3. Hence, for this choice of parameters the public key consists of a n2/3 group
elements (which is sublinear), and the size of the ciphertext is n+ n2/3 log(|G|) = n(1− n−1/3 log(|G|))
bits, which approaches rate 1.
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2.5 Extension to CCA security

The scheme described so far achieves IND-CPA incompressible security. This work also considers an
IND-CCA2 incompressible security definition where the adversary gets oracle access to a decryption
oracle.

To achieve IND-CCA2 security, we follow the framework of [17]. We add a second hash proof system
that acts as integrity proof for ciphertexts. The second hash proof system does not need to be pro-
grammable but universal2 [17] or 2-smooth [1]. It allows the decryption oracle to only answer queries
to honestly generated ciphertexts. This mechanism ensures that the decryption oracle does not give up
entropy of the programmable HPS’s secret key.

In the main body of this work, we provide the full construction that achieves this level of security.

3 Preliminaries

The acronym PPT denotes “probabilistic polynomial time”. Throughout this work, λ denotes the security
parameter. By negl(λ), we denote a negligible function in λ, that is, a function that vanishes faster than
any inverse polynomial in λ. Let n ∈ N. Then, [n] denotes the set {1, . . . , n}. If A is an algorithm, we
denote by y ← A(x) the output y after running A on input x. If S is a (finite) set, we denote by x←$ S
the experiment of sampling uniformly at random an element x from S. If D is a distribution over S, we
denote by x←$ D the element x sampled from S according to D.

For two probability distributions X,Y , we use the notation X ≈s Y to state that the distribu-
tions are statistically indistinguishable and X ≈c Y to state that the distributions are computationally
indistinguishable.

For ease of notation, in any of our constructions we assume public parameters p are known to every
algorithm and every secret key sk also contains the corresponding public key pk.

We present some information-theoretical notions and results that will be instrumental throughout
this work.

Definition 1 (Average Min-Entropy [23]). For two jointly distributed random variables (X,Y), the
average min-entropy of X conditioned on Y is defined as

H̃∞(X|Y ) = −log(Ey←$Y [maxx Pr[X = x|Y = y]]).

Lemma 1 (Lemma 2.2 b) of [23]). For random variables X,Y, Z where Y is supported over a set of
size T , we have

H̃∞(X|(Y,Z)) ≥ H̃∞((X,Y )|Z)− log(T ) ≥ H̃∞(X|Z)− log(T ).

Definition 2 (Average-Case Extractor [23]). Let n, d,m ∈ N. A function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ϵ) strong average-case min-entropy extractor if, for all random variables (X,Y ) where X
takes values in {0, 1}n and H̃∞(X|Y ) ≥ k, we have that (Ud,Ext(X,Ud), Y ) is ϵ-close to (Ud, Um, Y ),
where Ud and Um are independent uniformly random strings of length d and m respectively.

Lemma 2 (Generalized Leftover Hash Lemma 2.4 of [23]). Let n,m ∈ N. Let {Hr : {0, 1}n →
{0, 1}m}r∈R be a family of universal hash functions, then Ext(x, r) 7→ Hr(x) is an average-case (k, ϵ)-
strong extractor whenever m ≤ k − 2log( 1ϵ ) + 2.

Definition 3 (Pseudorandom Generator). Let n,m = poly(λ). A function G : {0, 1}n → {0, 1}m is
a pseudorandom generator if, for uniformly random s←$ {0, 1}n and r ←$ {0, 1}m, we have

G(s) ≈c r.

Definition 4 (Collision-Resitant Hash Function). Let n,m, l = poly(λ). A collision-resistant hash

function is a seeded function CRHF : {0, 1}n × {0, 1}m → {0, 1}l with the property that for all PPT
adversaries A, random seed s ∈ {0, 1}n we have A(s) outputs x,x′ with x ̸= x′ and CRHFs(x) = CRHFs(x

′)
with negligible probability.
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3.1 Decisional Diffie-Hellman assumption

In the following, let G be a (prime-order) group generator, that is, G is an algorithm that takes as an
input a security parameter 1λ and outputs (G, p, g), where G is the description of a multiplicative cyclic
group, p is the order of the group which is always a prime number unless differently specified, and g is
a generator of the group. Sometimes we denote the size of the group by |G|.

We denote by [a] be value ga. Similarly, if A ∈ Zn×m
p is a matrix with entries ai,j then [A] denotes

the matrix where each (i, j)-entry is the value gai,j . Note that given x ∈ Zn
p , y ∈ Zm

p and [A], we can

compute xT [A] = [xTA] and [A]y = [Ay].
In the following we state the decisional version of the Diffie-Hellman (DDH) assumption.

Definition 5 (Decisional Diffie-Hellman Assumption). Let (G, p, g) ←$ G(1λ). We say that the
DDH assumption holds (with respect to G) if for any PPT adversary A

|Pr[1← A((G, p, g), ([a], [b], [ab]))]− Pr[1← A((G, p, g), ([a], [b], [c]))]| ≤ negl(λ)

where a, b, c←$ Zp.

3.2 Public-Key Encryption

Definition 6 (Public-Key Encryption). A public-key encryption (PKE) scheme is a triple of PPT
algorithms

(pk, sk)← KeyGen(1λ): Given the security parameter λ the key-generation algorithm outputs a public key
pk and a secret key sk.

c← Enc(pk,m): Given a public key pk and a message m encryption outputs a ciphertext c.
m← Dec(sk, c): Given a secret key sk and a ciphertext c decryption outputs a message m.

Correctness. For all λ, S ∈ N, messages m and (pk, sk) in the range of KeyGen we have that m =
Dec(sk,Enc(pk,m)).

IND-CPA security. For all λ ∈ N and all adversaries A = (A1,A2) we have that

Pr

b← A2(st, c) :

(pk, sk)← KeyGen(1λ)
(m0,m1, st)← A1(pk)

b←$ {0, 1}
c← Enc(pk,mb)

 ≤ 1

2
+ negl(λ).

3.3 HILL-Entropic Encodings

We recall the notion of HILL-entropic encodings from [42].

Definition 7 (HILL-Entropic Encodings [42]). An (α, β)-HILL-entropic encoding scheme with se-
lective security in the CRS setting consists of two PTT algorithms:

– c ← Encrs(1
λ,m): An encoding algorithm that takes a common random string crs and a message m

producing an encoding c.
– m ← Decrs(c): A decoding algorithm that takes a common random string crs and an encoding c and

produces a message m.

Correctness. There is some negligible µ such that for all λ ∈ N and all m ∈ {0, 1}∗ we have

Pr[Decrs(Encrs(1
λ,m)) = m] = 1− µ(λ).

α-Expansion. For all λ, k ∈ N and all m ∈ {0, 1}k we have |Encrs(1λ,m)| ≤ α(λ, k).
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β-HILL-Entropy. There exists an algorithm SimEn s.t. for any polynomial k = k(λ) and any ensamble
of messages m = {mλ} of length |mλ| = k(λ), consider the following ”real” experiment:

– crs←$ {0, 1}t(λ,k)

– c← Encrs(1
λ,mλ)

and let CRS,C denote the random variables for the corresponding values in the ”real” experiment. Also
consider the following ”simulated” experiment:

– (crs′, c′)← SimEn(1λ,mλ)

and let CRS′, C ′ denote the random variables for the corresponding values in the ”simulated” experiment.
We require that (CRS,C) ≈c (CRS′, C ′) and H̃∞(C ′|CRS′) ≥ β(λ, k).

We call a (α,β)-HILL-entropic encoding good if α(λ, k) = k(1 + o(1)) + poly(λ) and β(λ, k) = k(1−
o(1))− poly(λ). Moran and Wichs [42] provide good HILL-entropic encodings from DCR [44,20] or LWE
[46] in the CRS model. They also show that the CRS must be as big as the encoded message.

4 Incompressible Symmetric-Key Encryption

In this section, we define incompressible symmetric-key encryption (SKE) and give a construction from
entropic encodings.

4.1 Definition

First, we recall the notion of forward-secure storage [26] under the name of incompressible symmetric-key
encryption. For our purposes we only need IND-EAV style security but this could be extended similar
to what we did with incompressible public-key encryption.

Definition 8 (Incompressible SKE). An incompressible symmetric-key encryption scheme is a tuple
of PPT algorithms using uniformly random keys k

c← Enc(k,m): Given a symmetric key k and a message m encryption it outputs a ciphertext c.

m← Dec(sk, c): Given a symmetric key k and a ciphertext c decryption it outputs a message m.

We require size of message space, size of key space, and size of ciphertext space to be polynomials over
the security parameter λ and the space bound S; that is, n = n(λ, S), k = k(λ, S), and l = l(λ, S)
respectively.

Correctness For all λ, S ∈ N, messages m and keys k ∈ {0, 1}k we have that m = Dec(k,Enc(k,m))

Security For security parameter λ and space bound S, a symmetric-key encryption scheme (Enc,Dec)
has incompressible SKE security if for all PPT adversaries A = (A1,A2,A3) the probability of winning
the following experiment is ≤ 1

2 + negl(λ).

DistIncomSKE
A,Π (λ, S) Experiment :

– Run the adversary (m0,m1, st1)← A1(1
λ) to receive two messages m0 and m1

– Sample a bit b←$ {0, 1} uniformly at random

– Sample k←$ {0, 1}n(λ,S)
uniformly at random

– Run c← Enc(k,mb) to encrypt mb

– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S

– Run the final adversary b′ ← A3(k, st1, st2,m0,m1)

– The adversary wins if b = b′

13



4.2 Construction

Now we show how to build incompressible symmetric-key encryption using HILL-entropic encodings,
extractors, and pseudorandom generators.

Construction 1 Let λ be the security parameter, S be the space bound of the adversary and n be the size

of the message space. Let (En,De) be an (α, β)-HILL-entropic encoding, Ext : {0, 1}α(λ,n) × {0, 1}d(λ) →
{0, 1}λ be a (β(λ, n)− S, negl(λ)) strong average-case min-entropy extractor where d(λ) is a polynomial

and G : {0, 1}λ → {0, 1}n be a PRG.

Enc(k,m):
– Parse k = (k1, k2, crs).

– Sample s←$ {0, 1}λ uniformly at random.
– Let c1 ← Encrs(1

λ, G(s)⊕m).
– Let c2 ← s⊕ Ext(c1, k1)⊕ k2.
– Return c = (c1, c2).

Dec(k, c):
– Parse k = (k1, k2, crs).
– Parse c = (c1, c2).
– Let s← Ext(c1, k1)⊕ c2 ⊕ k2.
– Return Decrs(c1)⊕G(s).

Parameters. The ciphertexts are of size λ + α(λ, n). The keys are of size d(λ) + t(λ, n), where t(λ, n)

is the size of the encoding’s crs. Notice that the extractor exists if β(λ, n) − S − 2 log
(

1
negl(λ) + 2

)
≥ λ

according to Lemma 2. So, the adversary is allowed a leakage of size S ≤ β(λ, n)−λ−2 log
(

1
negl(λ) + 2

)
.

Therefore, if we choose a ”good” entropic encoding we get a rate of n
n(1+o(1))+poly(λ) , allowed leakage

of S = n(1− o(1))− poly(λ), and keysize of k = n(1 + o(1)) + poly(λ).

Correctness. By the correctness of the entropic encoding Decrs(Encrs(1
λ, G(s) ⊕ m)) = G(s) ⊕ m. Since

Ext is deterministic under a fixed key k1 then Ext(c1, k1) ⊕ c2 ⊕ k2 = Ext(c1, k1) ⊕ s ⊕ Ext(c1, k1) = s.
Therefore, Decrs(c1)⊕G(s) = m.

Theorem 2 (Security). The incompressible SKE presented in Construction 1 has incompressible SKE
security if (En,De) is an (α, β)-HILL-entropic encoding, Ext is a (β(λ, n)−S, negl(λ)) strong average-case
min-entropy extractor, and G is a pseudorandom generator each with the listed parameters.

Proof. We prove security via hybrids. First we list the hybrid and then argue their indistinguishability.
In each hybrid we highlight the changes compared to the previous one.

H0 :
– Run the adversary m0,m1, st1 ← A1(1

λ) to receive two messages m0 and m1.
– Sample bit b←$ {0, 1} uniformly at random.
– Sample k←$ {0, 1}n uniformly at random.
– Run c← Enc(k,mb) to encrypt mb.
– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.
– Run the final adversary b′ ← A3(k, st1, st2,m0,m1).
– The adversary wins if b = b′.

In H1 we explicitly represent what happens in Enc.

H1 :
– Run the adversary m0,m1, st1 ← A1(1

λ) to receive two messages m0 and m1.
– Sample bit b←$ {0, 1} uniformly at random.

– Sample k1 ←$ {0, 1}d(λ,n) uniformly at random.

– Sample k2 ←$ {0, 1}λ uniformly at random.

– Sample crs←$ {0, 1}t(λ,n) uniformly at random.
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– Sample s←$ {0, 1}λ uniformly at random.

– Let c1 ← Encrs(1
λ, G(s)⊕mb).

– Let c2 ← s⊕ Ext(c1, k1)⊕ k2.

– Let c← (c1, c2) and k← (k1, k2, crs).

– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.
– Run the final adversary b′ ← A3(k, st1, st2,m0,m1).
– The adversary wins if b = b′

In H2 we switch the entropic encoding to the simulated code that has a lot of entropy.

H2 :
– Run the adversary m0,m1, st1 ← A1(1

λ) to receive two messages m0 and m1.
– Sample bit b←$ {0, 1} uniformly at random.

– Sample k1 ←$ {0, 1}d(λ,n) uniformly at random.

– Sample k2 ←$ {0, 1}λ uniformly at random.

–

– Sample s←$ {0, 1}λ uniformly at random.

– Let (crs, c1)← SimEn(1λ, G(s)⊕mb).

– Let c2 ← s⊕ Ext(c1, k1)⊕ k2.
– Let c← (c1, c2) and k← (k1, k2, crs).
– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.
– Run the final adversary b′ ← A3(k, st1, st2,m0,m1).
– The adversary wins if b = b′.

I H3 we switch the order in which we sample c2 and k2.

H3 :
– Run the adversary m0,m1, st1 ← A1(1

λ) to receive two messages m0 and m1.
– Sample bit b←$ {0, 1} uniformly at random.

– Sample k1 ←$ {0, 1}d(λ,n) uniformly at random.

–

– Sample s←$ {0, 1}λ uniformly at random.
– Let (crs, c1)← SimEn(1λ, G(s)⊕mb).

– Sample c2 ←$ {0, 1}λ uniformly at random.

– Let c← (c1, c2) .

– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.

– Let k2 ← c2 ⊕ Ext(c1, k1)⊕ s.

– Let k← (k1, k2, crs).

– Run the final adversary b′ ← A3(k, st1, st2,m0,m1).
– The adversary wins if b = b′.

In H4 we replace the output of the extractor Ext by a uniformly random value.

H4 :
– Run the adversary m0,m1, st1 ← A1(1

λ) to receive two messages m0 and m1.
– Sample bit b←$ {0, 1} uniformly at random.

– Sample k1 ←$ {0, 1}d(λ,n) uniformly at random.

– Sample s←$ {0, 1}λ uniformly at random.
– Let (crs, c1)← SimEn(1λ, G(s)⊕mb).

– Sample c2 ←$ {0, 1}λ uniformly at random.
– Let c← (c1, c2).
– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.
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– Sample k2 ←$ {0, 1}λ uniformly at random.

– Let k← (k1, k2, crs).
– Run the final adversary b′ ← A3(k, st1, st2,m0,m1).
– The adversary wins if b = b′.

Finally we replace the output of G(s) by a uniformly random value.

H5 :
– Run the adversary m0,m1, st1 ← A1(1

λ) to receive two messages m0 and m1.
– Sample bit b←$ {0, 1} uniformly at random.

– Sample k1 ←$ {0, 1}d(λ,n) uniformly at random.

– Sample s←$ {0, 1}λ uniformly at random.

– Sample r ←$ {0, 1}n uniformly at random.

– Let (crs, c1)← SimEn(1λ, r).

– Sample c2 ←$ {0, 1}λ uniformly at random.
– Let c← (c1, c2).
– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.

– Sample k2 ←$ {0, 1}λ uniformly at random.
– Let k← (k1, k2, crs).
– Run the final adversary b′ ← A3(k, st1, st2,m0,m1).
– The adversary wins if b = b′.

H0 ≈ H1 :
The differences between H0 and H1 are purely syntactical. In H1 we just show more detail of Enc.

H1 ≈c H2 :
Instead of sampling the common random string for the entropic encoding uniformly at random and
then encoding G(s)⊕m we simulate both steps using SimEn. Assume there exists a PPT adversary
A = (A1,A2,A3) that can distinguish the two hybrids H1 and H2 with a non-negligible advantage
of ϵ. From this we construct a PPT adversary A′ = (A′1,A′2) that can break the β-HILL-entropy of
(En,De) with advantage ϵ.
A′1(1λ) :

– Run the adversary m0,m1, st1 ← A1(1
λ) to receive two messages m0 and m1

– Sample bit b←$ {0, 1} uniformly at random

– Sample k1 ←$ {0, 1}d(λ,n) uniformly at random

– Sample s←$ {0, 1}λ uniformly at random
– Return G(s)⊕mb

A′2(crs, c1) :
– Let c2 ← s⊕ Ext(c1, k1)
– Let c← (c1, c2)
– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S
– Run the final adversary b′ ← A3(k, st1, st2,m0,m1)
– Return b′

If A can distinguish H1 from H2 then A′ can distinguish a uniformly random crs←$ {0, 1}t(λ,n) and
c1 ← En(1λ, G(s)⊕mb) from (crs, c1)← SimEn(1λ, G(s)⊕mb) as it perfectly simulates H2 in the case
that (crs, c1)← SimEn(1λ, G(s)⊕mb) and perfectly simulates H1 in the other case.

H2 ≈ H3 :
In H3 we switch the order in which we sample c2 and k2. From the view of the adversary this is
statistically identical.

H3 ≈s H4 :
Let C1, C2, CRS, K1, K2, and ST2 denote the random variables for the corresponding values in
the experiment and Uλ independent uniform randomness of length λ. By the β-HILL entropy of the
entropic encoding we know that H̃∞(C1|CRS) ≥ β. Using Lemma 1 we deduce that

H̃∞(C1|(CRS,K2, ST2, C2)) ≥ β − 2λ− log(S)

Therefore, the extractor gives us that (K1,K2, CRS, ST2, Uλ) and (K1,K2, CRS, ST2,Ext(C1,K1))
are statistically close.
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H3 ≈c H4 :
InH4 we encode a uniformly random string instead ofG(s)⊕mb. Assume there exists a PPT adversary
A = (A1,A2,A3) that can distinguish the two hybrids H3 and H4 with a non-negligible advantage
of ϵ. From this we construct a PPT adversary A′ that can break the pseudorandomness of G with
advantage ϵ.
A′(r′) :

– Run the adversary m0,m1, st1 ← A1(1
λ) to receive two messages m0 and m1

– Sample bit b←$ {0, 1} uniformly at random

– Sample k1 ←$ {0, 1}d(λ,n) uniformly at random

– Sample s←$ {0, 1}λ uniformly at random
– Sample r ← r′ ⊕mb uniformly at random
– Let (crs, c1)← SimEn(1λ, r)

– Sample c2 ←$ {0, 1}λ uniformly at random
– Let c← (c1, c2)
– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S
– Run the final adversary b′ ← A3(k, st1, st2,m0,m1)
– Return b′

If A can distinguish H3 from H4 then A′ can distinguish G(s) with uniformly random s ←$ {0, 1}λ
from uniformly random r′ ←$ {0, 1}n as it perfectly simulates H3 in the case that r′ ← G(s) and
perfectly simulates H4 in the other case.

H4 :
In H4 the winning probability of the adversary is 1

2 as it gets no information about b at all.

5 Programmable Hash Proof Systems

In this work we think of a hash proof systems as a key encapsulation mechanism where the encapsulated
key is independent of the public key and the ciphertext under certain conditions. This allows us to later
resample the secret key in the incompressibility experiments.

For our construction we need two different hash proof systems. One that is Y -programmable and one
that is 2-smooth both using the same language.

5.1 Definitions

First we define hash proof system that we will use as a mask in our encryption scheme.

Definition 9 (Y -Programmable Hash Proof System [17,38]). A Y -programmable hash proof sys-
tem is defined over a NP language L ⊂ X, where each element x in the language L has a witness w.
Additionally there exist a subset Y ⊂ X\L and efficient ways to sample a language L with a corresponding
trapdoor tdL, an x ∈ L with its witness w and an x ∈ Y with a corresponding trapdoor tdx

– (p, tdL) ← Gen(1λ, 1k): Given the security parameter λ, the encapsulated key size k the language
generation algorithm that outputs public parameters p defining a language L and a trapdoor tdL to
that language.

– (x ∈ L, w) ← sampL(p): Given the public parameters, it outputs an element x ∈ L with the corre-
sponding witness w.

– (x ∈ Y, tdx)← sampY (p, tdL): Given the public parameters and a trapdoor tdL, it outputs x ∈ Y and
the corresponding trapdoor tdx.

The hash proof system itself consists of these algorithms:

– (pk, sk)← KeyGen(p): Given the public parameters, the key generation algorithm outputs a public key
pk and a secret key sk.

– k ← Encap(pk, x, w): Given the public lye pk, en element x and a witness w. the key encapsulation
algorithm outputs an encapsulated key k.

– k ← Decap(sk, x): Given the secret key sk and any x ∈ X, the key decapsulation algorithm outputs
an encapsulated key. k. Notice x can be outside L.

– sk′ ← Program(tdL, tdx, sk, x, k) Given two trapdoors tdL, tdx, a secret key sk, an element x ∈ Y , and
an encapsulated key k, the programming algorithm outputs a new secret key sk′.
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Correctness. For all λ, k ∈ N, (p, tdL) in the range of Gen(1λ, 1k), (pk, sk) in the range of KeyGen(p),
x ∈ L and for k← Encap(pk, x, w), we have k = Decap(sk, x) with |k| = k.

Language Indistinguishability. For all λ, k ∈ N if we sample (p, tdL)← Gen(1λ, 1k), L ∋ x← sampL(p),
and (x∗ ∈ Y, tdx∗)← sampY (p, tdL), we have the computational indistinguishability: x ≈c x

∗.

Programmability. For all λ, k ∈ N, (p, tdL) in the range of sampL(1λ, 1k), (pk, sk) in the range of
KeyGen(p), k ∈ {0, 1}m, and for (x, tdx) in the range of sampY (p, tdL), sk

′ ← Program(tdL, tdx, sk, x, k),
we have Decap(sk′, x) = k.

Y -Programmable Smoothness. For all λ, k ∈ N, (p, tdL) in the range of Gen(1λ, 1k), (pk, sk) in the range
of KeyGen(p), (x, tdx) in the range of sampY (p, tdL), k ∈ {0, 1}m, and sk′ ← Program(tdL, tdx, sk, x, k)
we have statistical indistinguishability (pk, sk, x) ≈s (pk, sk

′, x).
Notice, if Y = X \ L then Y -programmable smoothness implies smoothness.

Next we recall 2-smooth hash proof systems with our adjusted notation.

Definition 10 (2-Smooth Hash Proof System [17,1]). A 2-smooth hash proof system is defined
over a NP language L ⊂ X as above The hash proof system itself consists of the following algorithms:

– (pk, sk)← KeyGen(p): Given the public parameters, the key generation algorithm that outputs a public
key pk and a secret key sk.

– k← Encap(pk, x, w, τ): Given public key pk, an element of the language x ∈ L, its witness w, and a
tag τ , the key encapsulation algorithm outputs an encapsulated key k.

– k← Decap(sk, x, τ): Given the secret key sk, any x ∈ X, and a tag τ . the key decapsulation algorithm
outputs an encapsulated key k. Notice x can be outside L.

Correctness. For all λ, k ∈ N, (p, tdL) in the range of Gen(1λ, 1k), (pk, sk) in the range of KeyGen(p),
x ∈ L, tags τ , and for k← Encap(pk, x, w, τ), we have k = Decap(sk, x, τ) with |k| = k.

Language Indistinguishability. Exactly as above.

2-Smoothness. For all λ, k ∈ N, (p, tdL) in the range of Gen(1λ, 1k), x, x′ ∈ X \ L, two tags τ, τ ′

such that (x, τ) ̸= (x′, τ ′), let (pk, sk) ← KeyGen(p) and sample k ←$ {0, 1}k we have computational
indistinguishability between (pk,Decap(sk, x, τ),Decap(sk, x′, τ ′)) and (pk,Decap(sk, x, τ), k).

5.2 Programmable Hash Proof System from DDH

In our protocols we need programmable HPS with a big encapsulated key space (for classic notation [17]
this would be called the hash space).

Some smooth hash proof systems are easily transformed into programmable HPS with big encapsu-
lated keys by generating more public keys and using them on the same x ∈ X. These HPS include the
one from weak pseudorandom effective group actions [2]. That transformation causes the public key size
to scale linearly with the size of the encapsulated key and leave the size of the ciphertext indepent of the
encapsulated key size. We provide more details about this in the full version [11].

We present a variant of the original [17] HPS with an interesting trade off. Here both public key size
and ciphertext size scale in the 2/3-power with k, the size of the encapsulated key.

Construction 2 Let HC : G× {0, 1}log(|G|) → {0, 1} denote a 1-bit randomness extractor over a group
element; if this function is applied over a matrix of group elements, then it means that the function is
applied entry-wise with the same randomness. In the following let ℓ, s ∈ N such that ℓ · s = k. We get an
interesting tradeoff for our application when ℓ = k1/3 and s = k2/3.

Gen(1λ, 1k) :
– (G, p, g)←$ G(1λ).
– Sample h←$ Zℓ

p \ {0} uniformly at random.
– Return p = (G, p, g, [h]) and tdL = h.
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sampL(p) :
– Parse p = (G, p, g, [h]).
– Sample y←$ Zℓ−1

p uniformly at random.
– Return x = [y] and w = y.

sampY (p, tdL) :
– Parse p = (G, p, g, [h]).
– Let tdL = h.
– Sample E←$ Zℓ×(ℓ−1)

p such that
(
h E

)
is invertible uniformly at random.

– Return x = [E] and w = E.
KeyGen(p):

– Parse p = (G, p, g, [h]).

– Sample r ←$ {0, 1}log(|G|) the public randomness for a extractor.
– Sample A←$ Zs×ℓ

p uniformly at random.
– Return pk = (A[h], r) and sk = A.

Encap (pk, c = [hyt] , w = y):
– Parse p = (G, p, g, [h] ∈ Gℓ).
– Parse pk = ([f ] ∈ Gs, r).
– Let K← HC([f ]yt, r) the component-wise extractor of the outer product between f and y.
– Return k = K.

Decap (sk, x = [E] ∈ Gℓ×(ℓ−1)):
– Parse pk = ([f ], r)
– Parse sk = A ∈ Zs×ℓ

p .
– Let K← HC(A[E], r) the component-wise extractor of the product between A and [E].
– Return k = K.

Program(tdL, tdx, sk, x, k):

– Parse pk = ([f ], r), tdL = h ∈ Zℓ
p, tdx = E ∈ Zℓ×(ℓ−1)

p , sk = A, and k = K ∈ {0, 1}s×(ℓ−1).
– For each i ∈ [ℓ − 1], j ∈ [s] sample Bi,j ←$ Zp such that Ki,j = HC([Bi,j ], r) via rejection

sampling.

– Set B = (B)i,j. Let A
′ ←

(
Ah B

) (
h E

)−1
.

– Return sk′ = A′.

Correctness. For any (p = (G, p, g, [h]),tdL) in the range of Gen, (pk = ([Ah], r),sk = A) in the range of
KeyGen, and [hyt] ∈ L we have Encap(pk, [hyt]) outputs k = HC([Ah]yt, r) = HC([Ahyt], r). Decapsu-
lation then outputs k = HC(A[hyt], r) = HC([Ahyt], r).

Programmability. Since we choose h and E s.t.
(
h E

)
is invertible Program always outputs a matrix A′

with the property that A′E = B and k = HC([B], r).

Programmable Smoothness. If we first sample k uniformly random and then program for the key k
Program(tdL, tdx, sk, x, k) the resulting distribution over B will be uniformly random. And because

(
h E

)
is invertible then A′ is a uniformly random under the condition that A′h = Ah. The same holds for A.
Therefore, (pk, sk = A, x) and (pk, sk′ = A′, x) are identically distributed.

Theorem 3 (Language Indistinguishability). If DDH is hard for G then elements from the lan-

guage L = {[h]yt|y ∈ Zℓ−1
p } and Y = {[E]|E ∈ Zℓ×(ℓ−1)

p ∧
(
h E

)
is invertible} of construction 2 are

indistinguishable.

Proof. We prove security via hybrids. First we list the hybrids and then argue their indistinguishability.
In each hybrid we highlight the changes compared to the previous one.

H0 :
– Let (p, tdL)← Gen(1λ, 1k).
– Let (pk, sk)← KeyGen(p).
– Let (x,w)← sampL(p).
– Let k← Encap(pk, x, w).
– Run the adversary A(pk, sk, x).
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H1 :

– Sample a group (G, p, g)←$ G(1λ) .

– Sample r ←$ {0, 1}log(|G|) the randomness for the extractor .

– Sample h←$ Zℓ
p \ {0} uniformly at random .

– Sample A←$ Zs×ℓ
p uniformly at random .

– Let p = (G, p, g, [h]) .

– Let pk = ([Ah], r) and sk = A .

– Sample y←$ Zℓ−1
p uniformly at random .

– Let x = [hyt] = [C] .

– Run the adversary A(pk, sk, x).

H2,i :
– Sample a group (G, p, g)←$ G(1λ).
– Sample r ←$ {0, 1}log(|G|) the randomness for the extractor.
– Sample h←$ Zℓ

p \ {0} uniformly at random.

– Sample A←$ Zs×ℓ
p uniformly at random.

– Let p = (G, p, g, [h]).
– Let pk = ([Ah], r) and sk = A.
– Sample y←$ Zℓ−1

p uniformly at random.
– Let [C] = [hyt].

– Sample E←$ Zl×(l−1)
p uniformly at random .

– Replace the first i entries of [C] by the first i entries in [E] .

– Let x = [C].
– Run the adversary A(pk, sk, x).

H3 :
– Sample a group (G, p, g)←$ G(1λ).
– Sample r ←$ {0, 1}log(|G|) the randomness for the extractor.
– Sample h←$ Zℓ

p \ {0} uniformly at random.

– Sample A←$ Zs×ℓ
p uniformly at random.

– Let p = (G, p, g, [h]).
– Let pk = ([Ah], r) and sk = A.

– Sample E←$ Zl×(l−1)
p uniformly at random such that

(
h E

)
is invertible .

– Let x = [E].
– Run the adversary A(pk, sk, x).

H0 ≈ H1 :
The differences between H0 and H1 are purely syntactical. In H1 we just show more detail of Gen
and Encap.

H1 ≈ H2,0 :
The differences between H1 and H2,0 are purely syntactical.

H2,i ≈c H2,i+1 :
In H2,i+1 we replace the n+1st element of C by a random one. Assume there exists a PPT adversary
A that can distinguish the two hybrids H2,i and H2,i+1 with a non-negligible advantage of ϵ. From
this we construct a PPT adversary A′ that can break DDH with advantage ϵ.
A′ ((G, p, g), ([a], [b], [ρ])):

– Let u← i mod l
– Let v ← ⌊i/l⌋
– Sample r ←$ {0, 1}log(|G|) the randomness for the extractor
– Sample h←$ Zℓ

p \ {0} uniformly at random
– Replace [xu] by [a]
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– Sample A←$ Zs×ℓ
p uniformly at random

– Let p = (G, p, g, [h])
– Let pk = ([Ah], r) and sk = A
– Sample y←$ Zℓ−1

p uniformly at random

– For u′ ∈ [l] and v′ ∈ [l − 1] let Cu′,v′ ←


[ρ] if u′ = u, v′ = v

[b]xu′ if u′ ̸= u, v′ = v

[xu′ ]yv′ else

– Sample E←$ Zl×(l−1)
p

– Replace the first i entries of [C] by the first i entries in [E]
– Let x = [C]
– Run the adversary b′ ← A(pk, sk, x)
– Return b′

If A distinguishes between H2,i and H2,i+1 then A′ distinguishes between ρ = ab and ρ being
uniformly random as A′ perfectly simulates H2,i in the case that ρ = ab and H2,i+1 if r is uniformly
random.

H2,m ≈s H3 :
H2,m is statistically close to H3 because with probability 1− negl(λ) we have

(
h E

)
is invertible.

Parameters. For an encapsulated key of size k this scheme roughly gets us public parameters of size
k1/3 · poly(λ), public key of size k2/3 · poly(λ) and elements from X of size k2/3 · poly(λ).

5.3 2-Smooth Hash Proof System from DDH

The above hash proof system only is programmable if x ∈ Y . To make our encryption scheme CCA secure
we need a efficient way to check whether x ∈ L or x ∈ X \L. To do this we construct the 2-smooth hash
proof system below that is defined over the same language.

Construction 3 We construct a 2-smooth hash proof system with a output size of λ using an extractor
Ext : Gℓ−1 × {0, 1}p → {0, 1}λ and a collision resistant hash function CRHF that maps into Zp. As a
language description we use the same as in Construction 2.

KeyGen(p):
– Parse p = (G, p, g, [h]).

– Sample r ←$ {0, 1}log(|G|) uniformly at random.

– Sample s←$ {0, 1}λ uniformly at random.
– Sample a,b←$ Zℓ

p uniformly at random.
– Return pk = (at[h],bt[h], r, s) and sk = (a,b).

Encap (pk, x = [hyt] ∈ Gℓ×(ℓ−1), w = y ∈ Zℓ−1
p , τ):

– Parse p = (G, p, g, [h] ∈ Gℓ) and pk = ([f ], [f ′] ∈ G, r, s).
– Let [d] = ([f ]y) + (CRHFs(x, τ)[f

′]y).
– Return k = Ext([dt], r).

Decap (sk, x = [E] ∈ Gℓ×(ℓ−1), τ):
– Parse p = (G, p, g, [h] ∈ Gℓ) and pk = ([f ], [f ′] ∈ G, r, s).
– Parse sk = (a ∈ Zℓ

p,b ∈ Zℓ
p).

– Parse x = [E] ∈ Gℓ×(ℓ−1).
– Return k = Ext(at[E] + CRHFs(x, τ)b

t[E], r).

Correctness. For any (p = (G, p, g, [h]),tdL) in the range of Gen, (pk = (at[h],bt[h], r, s),sk = (a,b)) in
the range of KeyGen, and [hyt] ∈ L we have Encap(pk, [hyt]) outputs

k = Ext
(
(([f ]y) + ([f ]CRHFs(x, τ)y))

t
, r
)
= Ext

(
[(ath)yt + CRHFs(x, τ)(b

th)yt], r
)
.

On the other hand, decapsulation outputs

k = Ext(at[hyt] + CRHFs(x, τ)b
t[hyt], r) = Ext

(
[(ath)yt + CRHFs(x, τ)(b

th)yt], r
)

21



Language Indistinguishability. Since we use the same language as in construction 2 the language indis-
tinguishability holds by the same argument.

2-Smoothness. For all λ, n ∈ N, (p, tdL) in the range of Gen(p), x, x′ ∈ X \ L, two tags τ, τ ′ such
that (x, τ) ̸= (x′, τ ′), let (pk, sk) ← KeyGen(p) and sample k ←$ {0, 1}m. Let γ ← CRHFs(x, τ) and
γ′ ← CRHFs(x

′, τ ′). Using (x, τ) ̸= (x′, τ ′) and the collision resistance of CRHF we can assume that
γ ̸= γ′.

In the following let d = at[E] + γbt[E] (computed in Decap(sk, x, τ)) and d′ = at[E′] + γ′bt[E′]
(computed in Decap(sk, x′, τ ′)). Then the following equation holds:

(
f f ′ dt d′

t) = (
at bt

)(h 0 E E′

0 h γE γ′E′

)
If x, x′ ∈ X \ L then there exists a column z with index i in E s.t. z is linearly independent of h and z′

with index i′ in E′ s.t. z′ is l.i. of h. Then the following equation also holds:

(
f f ′ di d

′
i′
)
=

(
at bt

)(h 0 z z′

0 h γz γ′z′

)

Now, we argue that the matrix on the right side has rank 4. We have that

(
h
0

)
and

(
0
h

)
are linearly

independent. Moreover,

(
z
γz

)
is outside the span of

(
h
0

)
and

(
0
h

)
because h and z are linearly inde-

pendent. Finally,

(
z′

γ′z′

)
is outside the span of

(
z
γz

)
,

(
h
0

)
, and

(
0
h

)
. To see this, assume that this is

not the case, i.e., that there exists a linear combination(
z′

γ′z′

)
= c1

(
z
γz

)
+ c2

(
h
0

)
+ c3

(
0
h

)
.

Assume there exist c1,c2,c3 ∈ N+ such that z′ = c1z+ c2h and γ′z′ = c1γz+ c3h. Then we replace z′ in
the second equation

γ′(c1z+ c2h) = c1γz+ c3h

⇔ (γ′ − γ)c1z = (c3 − γ′c2)h

This however can only be true if γ′ − γ = 0 because z is linearly independent of h.
Since a and b are chosen uniformly at random then so are f ,f ′, di, and d′i. If di and d′i are uniformly

random then Decap(sk, x, τ) = Ext(dt, r) and Decap(sk, x′, τ ′) = Ext(d′t, r) are statistically close to
uniformly random by the extractor property.

Parameters. For the same language as in Construction 2 with public parameters of size k1/3 · poly(λ)
and elements of k2/3 · poly(λ) construction 3 roughly results in public keys of size 2k1/3 · poly(λ) and an
encapsulated key of size λ.

6 Incompressible PKE from Incompressible SKE and HPS

First we extend the incompressible encryption security notion [32] to the chosen ciphertext scenario and
then we show a new construction paradigm using hash proof systems and incompressible symmetric-key
encryption.

6.1 CCA Incompressible Encryption

We use the definition of incompressible encryption by Guan et al.[32]. It defines a public-key encryption
scheme where the adversary has to know most of the ciphertext to decrypt it even with access to the
secret key.
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Definition 11 (Incompressible PKE). An incompressible public-key encryption scheme is a triple of
PPT algorithms

(pk, sk)← KeyGen(1λ, 1S): Given the security parameter λ and a space bound S the key-generation al-
gorithm outputs a public key pk and a secret key sk.

c← Enc(pk,m): Given a public key pk and a message m the encryption algorithm outputs a ciphertext
c.

m← Dec(sk, c): Given a secret key sk and a ciphertext c the decryption algorithm outputs a message m.

Both size of message space and size of ciphertext space are polynomials over security parameter λ and
space bound S, that is, n = n(λ, S) and l = l(λ, S) respectively.

Correctness. For all λ, S ∈ N, messages m and (pk, sk) in the range of KeyGen we have that m =
Dec(sk,Enc(pk,m)).

CCA Incompressible Security. Similar to standard IND-CCA (sometimes referred to as IND-CCA2)
security we extend incompressible encryption such that the adversary has access to an encryption oracle.

For security parameter λ and space bound S, a public key encryption scheme (KeyGen,Enc,Dec)
has incompressible CCA PKE security if for all PPT adversaries A = (A1,A2,A3) wins the following
experiment with probability ≤ 1

2 + negl(λ).

DistCCAIncomPKE
A,Π (λ, S) Experiment :

– Run key generation algorithm KeyGen(1λ, 1S) to obtain (pk, sk).

– Run the adversary m0,m1, st1 ← A
Decsk
1 (pk) on public key pk with oracle access to Dec(sk, ·) to

receive two messages m0, m1 and state st1.
– Sample bit b←$ {0, 1} uniformly at random.
– Run c← Enc(pk,mb) to encrypt mb.

– Run the adversary st2 ← A
Decsk
2 (pk, c, st1) with oracle access to Dec(sk, ·) for all inputs but c to

produce a state st2 smaller than S.
– Run the final adversary b′ ← A3(sk, st1, st2,m0,m1).
– The adversary wins if b = b′.

Rate We define the rate by |m|
|Enc(pk,m)| the size of a message divided by a ciphertext encrypting the

message. We say a scheme has rate-1 when the rate is 1− o(1).

6.2 Construction

We construct a encryption scheme that very much resembles the classic Cramer-Shoup [17] scheme.
Instead of masking the ciphertext with the randomness that comes out of the hash proof system we use
it as a key for an incompressible symmetric-key encryption scheme.

Construction 4 (Incompressible PKE) Given security parameter λ, space bound S, and message
length n let (KeyGen′, Encap′, Decap′, Program′) be a Y -programmable hash proof system for a language
L ⊂ X (where you can sample x with according witness from L and sample x with according trapdoor from
Y ) where the representation size of X is p(λ, S, n) and encapsulated keys of size k(λ, Ssym, n), (KeyGen

′′,
Encap′′, Decap′′) is a 2-smooth hash proof system for the same language with encapsulation key size of
λ and public key size p′(λ, S, n), and (Encsym, Decsym) be an incompressible SKE with messages of size
n, keys of size k(λ, Ssym, n) and ciphertexts of size l(λ, Ssym, n) with incompressible SKE adversary being
allowed to leak a state of size Ssym = S + p(λ, S, n) + p′(λ, S, n).

KeyGen(1λ, 1S):
– Generate language and corresponding trapdoor (p, tdL)← Gen(1λ, 1n).
– Let (pk′, sk′)← KeyGen′(p).
– Let (pk′′, sk′′)← KeyGen′′(p).
– Return pk = (pk′, pk′′) and sk = (sk′, sk′′).

Enc(pk,m):
– Parse pk = (pk′, pk′′)
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– Let (x,w)← sampL(p).
– Let k← Encap′(pk′, x, w).
– Let csym ← Encsym(k,m).
– Let π ← Encap′′(pk′′, x, w, csym).
– Return c = (x, csym, π).

Dec(sk, c):
– Parse sk = (sk′, sk′′).
– Parse c = (x, csym, π).
– If π = Decap′′(sk′′, x, csym)
• Let k← Decap′(sk′, x)
• Return m = Decsym(k, csym).

– Return ⊥.

Parameters. (KeyGen,Enc,Dec) is an incompressible PKE with messages of size n, ciphertexts of size
l(λ, Ssym, n)+p(λ, S, n)+p′(λ, S, n), the adversary is allowed a leak of size S = Ssym−p(λ, S, n)−p′(λ, S, n),
and the public key is of size p(λ, S, n) + p′(λ, S, n).

When instantiating the two hash proof systems with constructions 2,3 and the incompressible SKE
with construction 1 then (KeyGen,Enc,Dec) is an incompressible PKE with messages of size n, ciphertexts
of size (n+n2/3poly(λ))(1+ o(1)), the adversary is allowed a leak of size S = n(1− o(1))−poly(λ)(n(1+
o(1)))2/3, the public key is of size n2/3(1 + o(1))poly(λ), and the secret key is of size n(1 + o(1))poly(λ).

Correctness. Follows from the correctness of (KeyGen′, Encap′, Decap′, Program′), (KeyGen′′, Encap′′,
Decap′′), and (Encsym, Decsym).

Theorem 4 (Security). The PKE construction 4 has incompressible CCA PKE security if (KeyGen′,
Encap′, Decap′, Program′) is a programmable hash proof system with the listed parameters, (KeyGen′′,
Encap′′, Decap′′) is a 2-smooth hash proof system with the listed parameters, and (Encsym, Decsym) is an
incompressible secure SKE with the listed parameters.

The proof of this theorem can be found in the full version [11] of this paper.
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