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Abstract. We present the first non-interactive delegation scheme for
P with time-tight parallel prover efficiency based on standard hardness
assumptions. More precisely, in a time-tight delegation scheme—which
we refer to as a SPARG (succinct parallelizable argument)—the prover’s
parallel running time is t + polylog(t), while using only polylog(t) pro-
cessors and where t is the length of the computation. (In other words,
the proof is computed essentially in parallel with the computation, with
only some minimal additive overhead in terms of time).
Our main results show the existence of a publicly-verifiable, non-interactive,
SPARG for P assuming polynomial hardness of LWE. Our SPARG con-
struction relies on the elegant recent delegation construction of Choud-
huri, Jain, and Jin (FOCS’21) and combines it with techniques from
Ephraim et al (EuroCrypt’20).
We next demonstrate how to make our SPARG time-independent—where
the prover and verifier do not need to known the running-time t in ad-
vance; as far as we know, this yields the first construction of a time-tight
delegation scheme with time-independence based on any hardness as-
sumption.
We finally present applications of SPARGs to the constructions of VDFs
(Boneh et al, Crypto’18), resulting in the first VDF construction from
standard polynomial hardness assumptions (namely LWE and the mini-
mal assumption of a sequentially hard function).

1 Introduction

In an interactive proof system, a prover interacts with a verifier in order to prove
the validity of a computational statement, with the guarantee that the verifier
will be convinced if and only if the statement is true. Since their introduction
by Goldwasser, Micali, and Rackoff [34], proof systems have become one of the
most fundamental concepts in cryptography and more generally in theoretical
computer science.

In this work, we focus on the application of proof systems to computational
delegation, where a weak verifier outsources a potentially expensive computation
to a powerful yet untrusted prover, who performs the computation and returns
the output as well as a proof certifying its validity. We focus on delegating deter-
ministic polynomial-time computation with the non-trivial requirement that the



2 C. Freitag et al.

proof system is succinct [40, 42], meaning that the verifier’s running time and
the length of the communication between the prover and verifier is essentially
independent of the running time of the delegated computation.

Interest in succinct delegation has exploded in recent years due to its many
applications in internet-scale, distributed protocols like blockchains and cryp-
tocurrencies. Two key features for enabling these applications are non-interactivity
and public verifiability. Non-interactivity stipulates that a proof consists of just
a single message to the verifier, and public verifiability means that any third
party can trust the validity of the proof. Such delegation schemes are known
as publicly-verifiable SNARGs (succinct, non-interactive, arguments), and have
seen immense effort in recent years from both the applied and theoretical com-
munities in cryptography (see, e.g., [43, 10, 15, 8, 22]).

On the theory side, constructing publicly verifiable SNARGs from standard
assumptions was previously elusive for many years, partially because of inher-
ent bottlenecks for constructing SNARGs for all of NP from falsifiable assump-
tions [32]. However, the beautiful recent works of Kalai, Paneth, and Yang [38]
and Choudhuri, Jain, Jin [22] have shown that when restricting to languages
in P, SNARGs can be constructed from falsifiable assumptions, including most
recently from the polynomial hardness of LWE [22].

On Parallel Prover Efficiency. Aside from improving the underlying as-
sumptions, a major bottleneck for the adoption of SNARGs has been prover
efficiency. There have been many works (e.g., [16, 23, 48, 35, 17, 18] to name
a few) focused on improving the asymptotic efficiency of the prover as much
as possible under various assumptions. In the setting of delegation, this means
that the running time of the prover should ideally be as close as possible to the
time t of the delegated computation, which is inherent for the prover to even
compute the output itself. To date, the best asymptotic constructions achieve
quasi-linear overhead by the prover, with running time t · poly(λ, log t) where λ
is the security parameter.

Recently, the work of Ephraim, Freitag, Komargodski, and Pass [29] showed
how to construct parallelizable delegation schemes (which they call SPARKs)
where the prover has parallel running time t + poly(λ, log t) (i.e., with only
additive overhead and no multiplicative overhead) using only a modest number,
poly(λ, log t), of processors. Their protocols even work for NP, but at the cost
of either assuming SNARKs (succinct non-interactive arguments of knowledge)
for NP—that are only known to exist from non-standard and non-falsifiable
assumptions—or only achieving an interactive protocol (assuming just standard
collision-resistant hash functions). Thus, the state-of-the art leaves open the
question of whether we can get a non-interactive delegation scheme, even just
for P, with tight prover efficiency from standard (falsifiable) assumptions:

Can we construct publicly verifiable, succinct, parallelizable delegation
schemes for P from standard, falsifiable, assumptions?
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We refer to such publicly verifiable, succinct, parallelizable delegation schemes
as SPARGs (succinct parallelizable arguments) for P, following the notation of
SPARKs from [29].

In this work, we resolve the above-mentioned problem, constructing the first
non-interactive delegation schemes where the prover has t+ poly(λ, log t) paral-
lel running time using poly(λ, log t) processors based on standard assumptions.
More precisely, our construction only relies on the polynomial hardness of the
LWE assumption.

Theorem 1.1 (SPARGs for P from LWE; Informal (see Corollary 2)).
Assuming hardness of LWE, there exists a non-interactive SPARG for P.

We additionally present strengthenings of the above theorem—including a
SPARG for computations that are themselves parallelized, and obtaining so-
called time-independent SPARGs, where the prover and verifier need not know
the length t of the computation in advance—and present corollaries of these
results, including the first construction of a Verifiable Delay Function (VDF)
[19] from standard (polynomial) hardness assumptions.

1.1 Our Results in More Detail

Let us present our results in more detail. As a starting point for our work, we
observe that SPARGs for P can be constructed based on the notion of RAM
delegation, following the framework of the SPARK construction due to [29], so
long as the RAM delegation scheme satisfies quasi-linear prover efficiency. RAM
delegation is known under various assumptions, and most recently was shown
secure under LWE [22]. Unfortunately, known RAM delegation schemes do not
satisfy the quasi-linear prover efficiency that we desire. Therefore, our main
result is to show how to adapt existing schemes to satisfy a notion of efficiency
that will suffice for our construction.

Updatable RAM Delegation. We start by defining the notion of an updatable
RAM delegation scheme with quasi-linear efficiency. From an efficiency perspec-
tive, this is weaker than a (non-updatable) RAM delegation scheme satisfying
quasi-linear efficiency. Nevertheless, we show that it suffices for our purposes,
and can be constructed by relying on the RAM delegation scheme of [22].

At a high level, an updatable RAM delegation scheme is a delegation scheme
for RAM computations that allows for incremental updates and proofs for inter-
mediate pieces of the overall computation. Specifically, a prover can perform part
of a computation and obtain the resulting state as well as some additional aux-
iliary information aux corresponding to this section of the computation. Given
aux, it can then continue to update the computation to a new state, producing
a new piece of auxiliary information aux′. The auxiliary information aux for any
sub-computation can be used as a “witness” to efficiently compute a proof for
the corresponding piece of the computation. (We note that the proof is for a
deterministic computation, but the auxiliary input/ witness is provided for ef-
ficiency purposes.) This enables a large computation to be updated and proved



4 C. Freitag et al.

in different pieces, and in particular allows for taking advantage of the prover’s
knowledge of aux, from running the computation, in order to generate a proof
with significantly less overhead.

In more detail, we require an updatable delegation scheme with the following
efficiency properties:

– Efficiency of computing aux: Given a RAM configuration cf, auxiliary
information auxcf , and time t, the new configuration cf ′ and its associated
auxiliary information auxcf′ that results after t steps of computation starting
from cf can be computed in time t+poly(λ) using poly(λ) parallel processors.

– Efficiency of generating proofs given aux: Given auxiliary information
aux corresponding to a t step transition from initial configuration cf to final
configuration cf ′, a proof of correctness for this transition can be generated
in time t · poly(λ, log t). For an updatable scheme, we refer to this as quasi-
linear prover efficiency. (Note that this is a stronger efficiency requirement
than the one used in [22], where the prover running-time would grow with
|cf|.)

Let us highlight that any RAM delegation scheme is also an updatable one
(by simply letting aux be empty), but does not necessarily satisfy quasi-linear
overhead when generating proofs given aux. Using the auxiliary information, aux,
is helpful for us in achieving this prover efficiency. In particular, we show how to
combine the ideas behind the SNARG construction of [22] with the updatable
hash tree from [29] to get an updatable RAM delegation from LWE with the
desired efficiency.

Theorem 1.2 (Efficient Updatable RAM Delegation; Informal (see The-
orem 4.2)). Assuming hardness of LWE, there exists a succinct, publicly ver-
ifiable, updatable RAM delegation scheme with quasi-linear prover efficiency.

SPARGs from updatable RAM delegation. Next, we show how to adapt
the SPARK construction of [29] to rely on any updatable RAM delegation
scheme with quasi-linear prover efficiency, rather than relying on SNARKs with
quasi-linear prover efficiency. We highlight that the construction in [29] relied on
the proof of knowledge property of the underlying delegation scheme (i.e., the
SNARK in use) and it is not known how to replace it with just a SNARG. This
is why we resort to using the more complicated object of an updatable RAM
delegation scheme with quasi-linear prover efficiency.

Theorem 1.3 (SPARGs from Updatable RAM Delegation; Informal
(see Theorem 5.1)). Assume the existence of a succinct, publicly verifiable,
updatable RAM delegation scheme with quasi-linear efficiency. Then there exists
a non-interactive SPARG for P.

Theorem 1.1 then follows as a direct corollary of Theorems 1.2 and 1.3.
We also extend this result to the setting of parallel computations. Specifically,

given a computation that can be done in time t with p processors, we show a
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SPARG that preserves depth by running in time t+poly(λ, log(t ·p)), while only
using p ·poly(λ, log(t ·p)) processors. This is in contrast to the naive approach of
using the above SPARG for sequential computations, which would naively result
in parallel time that depends on the total work t · p rather than the depth t. We
obtain this result by extending the updatable RAM delegation scheme above to
be depth preserving for parallel computations—that is, both the parallel time
and processors used by the delegation scheme scale quasi-linearly with that of
the computation.

Theorem 1.4 (SPARGs for Parallel Computations; Informal). Assume
the existence of a succinct, publicly verifiable, updatable RAM delegation scheme
for parallel computations that is depth-preserving. Then there exists a non-
interactive SPARG for polynomial-time, parallel computations.

Time-independent SPARGs. SPARKs [29] were initially defined such that
in order to prove a t-time computation, the prover was provided the time bound
t as input. It is perhaps natural to assume that this might be necessary in order
to “fit the computation of the proof” in during the computation itself. However,
in many scenarios, the time bound t may not be a priori known. To circumvent
this issue, we define the notion of a time-independent SPARG, which satisfies
the same properties as a SPARG except that the prover and verifier no longer
get t as input. We additionally show how to extend the above construction to
achieve a time-independent SPARG from LWE:

Theorem 1.5 (Time-independent SPARGs from LWE; Informal). As-
suming hardness of LWE, there exists a non-interactive, time-independent SPARG
for P.

As far as we know, this yields the first construction of a SPARG with time-
independence based on any hardness assumption (that is, a similar result was
not known from the stronger notion of SPARKs).

To prove Theorem 1.5, we define the notion of a time-tight, updatable RAM
delegation. Essentially, this is a RAM delegation as above, but with the prover
efficiency properties of a SPARG, where the final configuration is not known at
the start of proof generation. We emphasize that the prover for such a scheme
is given the time bound t as input in order to compute the proof in time t +
poly(λ, log(t)). We then give a generic transformation that starts with any time-
tight, updatable RAM delegation scheme (that is given the time bound t as
input) and constructs a non-interactive, time-independent SPARG.

Theorem 1.6 (Time-independent SPARG transformation; Informal).
Given any time-tight, updatable RAM delegation scheme, there exists a non-
interactive, time-independent SPARG for P.

Furthermore, a minor adaptation of our construction of a SPARG for P from
LWE (Theorem 1.1 above) satisfies the notion of a time-tight, updatable RAM
delegation scheme, which gives Theorem 1.5 above.
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Applications: Verifiable Delay Functions from Standard Assumptions.
Finally, we observe that one of the main applications of non-interactive SPARKs
for P from [29] was to constructing verifiable delay functions [19]. Roughly
speaking, a VDF is publicly-verifiable function that can be computed in time
t, but cannot be noticeably sped up with poly(t) processors. VDFs have impor-
tant applications in generating trusted randomness in distributed applications
(see [19, 21, 30] for more details).

[29] showed that any function f can be made verifiable essentially “for free”,
by computing the output of the f and a proof certifying its correctness using a
SPARK for f , and that a VDF can be obtained by simply computing any sequen-
tial function—that is, a function that can be computed in time t, but cannot be
noticeably sped up with poly(t) processors—with a SPARK. But given that non-
interactive SPARKs are only known based on non-falsifiable assumptions, this
only gave new VDF constructions assuming non-falsifiable assumptions (namely,
the existence of SNARKs for NP).

We note, however, that the transformation in [29] actually does not rely on
the argument of knowledge property of the underlying SPARK and a SPARG for
parallel P computations suffices. Consequently, we can achieve the same results
but replacing the SNARK assumptions from [29] with just polynomial hardness
of LWE.

Theorem 1.7 (VDFs from LWE and any sequential function; Infor-
mal (see Corollary 3)). Assuming the (polynomial) hardness of LWE and the
existence of a sequential function, there exists a verifiable delay function.

Let us highlight that the assumption that sequential functions exist is neces-
sary for the construction of a VDF—any VDF trivially is a sequential function.
On top of this minimal assumption, our construction only assume the hardness
of LWE. As far as we know, before our work, it was not known how to get VDF
(in the plain model, without random oracles) based on any standard polynomial
hardness + the assumption that sequential functions exist. In particular, pre-
viously, VDFs were known based on either (a) iteratively-sequential functions3

and SNARGs [19], (b) sequential functions and SNARKs for NP [29], or (c)
sub-exponential LWE assumption and the sequentiality of repeated squaring in
a group of unknown order [41], or various construction in the random oracle
model [44, 47, 28]. We emphasize that in terms of practical efficiency, our con-
struction does not compete with constructions in the ROM (such as [44, 47]),
but our goal here is simply to show that VDFs as a primitive can be based on
standard hardness assumptions.

As pointed out in [29], since a SPARG makes any deterministic computation
verifiable, our transformation applies to sequential functions that may satisfy
other properties like memory-hardness. We note that memory-hardness is use-
ful for ASIC-resistance in VDFs, making so attackers cannot easily invest in

3 An iteratively sequential function f has the property that the t-wise composition
f (t) of f cannot be computed faster than computing f sequentially t times, even
with poly(t) processors.
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special-purpose hardware and gain an advantage in computing the VDF quicker.
Informally, a memory-hard sequential function is a sequential function that ad-
ditionally requires a large memory footprint throughout the computation (for a
more formal treatment, see, e.g., [26, 27, 4, 3, 1, 2, 25] for examples of different
definitions and constructions of candidate memory-hard functions). It follows
that our techniques can be used to achieve a memory-hard VDF based on the
hardness of LWE and the existence of any memory-hard sequential function (and
our result is not tailored to any specific definition of memory-hardness). Previ-
ously, the only known construction of a memory-hard VDF was the construction
in [29] which relied on the existence of a memory-hard sequential function and
SNARKs for NP.

1.2 Related Work

We first focus on the computational assumptions needed for SNARGs and RAM
delegation. In the setting of information-theoretic security, the celebrated pro-
tocols of Goldwasser, Kalai, and Rothblum [33] and Reingold, Rothblum, and
Rothblum [45] first showed how to construct interactive delegation protocols
for bounded depth and bounded space computations, respectively. Shifting our
attention to simple 2-round protocols or non-interactive protocols in the CRS
model with only computational security, Kalai, Raz, and Rothblum [39] con-
struct privately verifiable delegation for any time and space Turing machines
based on the quasi-polynomial hardness of LWE. Kalai and Paneth [37] extend
this to the setting of privately verifiable RAM delegation, and it was shown
how to implement this approach based on polynomial-hardness assumptions by
Brakerski, Holmgren, and Kalai [20]. Holmgren and Rothblum [35] show how to
implement the approach of [39] for RAM delegation with a specific no-signaling
MIP with quasi-linear overhead in both time and space, based on the subexpo-
nential hardness of LWE. Kalai, Paneth, and Yang [38] achieved the first publicly
verifiable RAM delegation scheme based on a new falsfiable decisional assump-
tion on groups with bilinear maps. Jawale, Kalai, Khurana, and Zhang [36] show
how to achieve publicly verifiable delegation for bounded depth computation
from subexponential hardness of LWE. Finally, Choudhuri, Jain, and Jin [22]
construct publicly verifable RAM delegation from polynomial hardness of LWE.

We note that implicit in the works of [37, 20, 38, 22], building off the tech-
niques of [39], is the notion of a quasi-argument for a class of restricted NP state-
ments. This is an argument system that has a special “no-signaling” extractor
for certain NP languages that is used to prove soundness of RAM delegation
statements relative to an associated hash tree.

Efficient PCPs. We note that many SNARGs and delegation protocols are
based on probabilistically checkable proofs (PCPs) building off the protocols
of Kilian [40] (in the interactive setting) and Micali [42] (in the random ora-
cle model using the Fiat-Shamir heuristic [31]). Originally PCP constructions
required polynomial length and prover running time [6, 5]. Ben-Sasson and Su-
dan [14] gave the first construction of a PCP with quasi-linear overhead, meaning
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that a PCP for a t-time (possibly non-deterministic) computation had overall
size t · polylog(t). Subsequent work by [11] give a highly parallelizable PCP that
can be computed in parallel time polylog(t) with t processors, after comput-
ing the computation tableau. Interactive oracle proofs (IOPs) are a multi-round
generalization of PCPs, introduced in [45] and [13], that are also useful for dele-
gation protocols. There is a fruitful line of work [9, 12, 46] resulting in linear-size
IOPs useful for delegation, although the prover still runs in at least quasi-linear
time.

Parallelism in proofs. The works of [19] and [24] first introduced the tech-
nique of computing a proof in parallel to a computation in order to improve the
prover’s parallel efficiency. They first applied this technique to iteratively sequen-
tial functions, which necessarily have low space, in the context of verifiable delay
functions. The work of [29] shows how to apply this technique generically to any,
not necessarily space bounded, computation. However, their generic transforma-
tion requires interaction or relies on SNARKs in the non-interactive setting.

1.3 Organization

In Section 2, we give an overview of our SPARG constructions. Then, in Sec-
tion 3, we give preliminaries. Next, in Section 4, we give our construction of
updatable RAM delegation with quasilinear overhead from LWE. Then, in Sec-
tion 5, we give our construction of SPARGs from updatable delegation. Our
VDF construction is given in Section 6. Our construction of time-tight SPARGs,
and that of SPARGs for parallel computations, are deferred to the full version.

2 Techniques

In this section, we give an overview of our SPARG constructions. Our construc-
tions will be for RAM computations, so we start with a brief overview of our
model. Recall that a RAM machine M is an algorithm with random access to a
(possibly long) string D in memory, and keeps a small local state state. At each
step of computation, M reads or writes to a location in memory and updates its
local state. We say that M(x) outputs y in t steps if, when the initial memory of
M contains x, after t steps the local state has a special halting symbol and y is
written to memory. The configuration cf of a RAM machine at any step of the
computation consists of its memory and local state, and hence fully describes
the computation at that point.

2.1 SPARGs from LWE

In this section, we overview our construction of SPARGs for P. Our starting
point is the non-interactive SPARK construction for NP due to [29]. Recall that
to construct SPARGs, we are only concerned with proving soundness for deter-
ministic, polynomial-time computations, whereas the SPARK construction is an
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argument of knowledge, which is a stronger notion that in turn relies on assump-
tions that are too strong for our setting. We start by giving an overview of the
SPARK construction, and then discuss how we modify it to achieve SPARGs
from weaker assumptions.

SPARK construction. We start by overviewing the SPARK construction
of [29], henceforth the EFKP construction, which relies on a SNARK for NP.
To prove that a M(x) = y in t steps, recall that the goal is for the SPARK
prover to run in time at most t + polylog t. The high-level approach of EFKP
is to split the computation into sub-computations, and give a SNARK proof for
each sub-computation in parallel to computing and proving subsequent steps of
the computation.

To illustrate this, suppose that the underlying SNARK requires time 2k to
prove k steps of RAM computation. Then, the largest portion of computation
that can be computed and proven by time t is k = t/3, as one can spend time
t/3 computing these steps of the computation, and then spend time 2t/3 proving
that it was done correctly, thus obtaining a proof π1 of the first t/3 steps by time
t. The observation of EFKP (following prior works [19, 24]) is that this idea can
be applied recursively. Specifically, while π1 is being proven, they continue by
computing and proving 1/3 of the remaining computation in parallel to proving
π1. Overall, they show that this results in roughly O(log t) “threads”, where
each thread computes 1/3 of the remaining computation, and then begins a
SNARK proof while the next parallel thread starts computing. Thus, the full
SPARK proof consists of O(log t) SNARK proofs, all completing by time t. More
generally, if the underlying SNARK could prove k steps of computation in time
α? · k, then this would result in having roughly α? · log t proofs (and parallel
processors).

While this approach seems promising, it only gives a SPARK for computa-
tions with bounded memory size. In particular, it requires giving proofs about
intermediate states of the RAM computation. Since the intermediate state of a
RAM computation is its configuration cf, the above approach requires using the
SNARK to prove statements of the form (M, cf, cf ′, k) stating the M transitions
from configuration cf to configuration cf ′ in time k. However, the size of each
configuration scales with the memory size of M , and thus giving SNARK proofs
for these statements will depend on the memory size as well.

To remedy this, rather than proving that M transitions from cf to cf ′ in k
steps, EFKP show that the prover can maintain an updatable digest rt to the
configuration at any given time step, and prove that there exists a sequence
of k updates to rt, according to M , that result in rt′. At a high level, the di-
gest corresponds to a Merkle tree of the memory at each time step based on a
collision-resistant hash function, and each time M reads or writes to memory,
the corresponding update is done to the Merkle tree. At the end of the compu-
tation, the prover can simply open the bits of the output y with respect to the
final digest, which the verifier can then check efficiently.

Crucially, each update to the digest can be certified with a very short proof
(corresponding to its authentication path in the Merkle tree). Therefore, they
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rely on a SNARK for the NP language Lupd that where an instance (M, rt, rt′, k)
has a witness consisting of the k updates to the Merkle tree. The relation for this
language has complexity roughly k ·poly(λ), as it only requires running M for k
steps and checking that each update was done correctly. It is therefore feasible
to have a SNARK where the prover overhead for proving Lupd statements is
independent of t. Specifically, EFKP instantiate this framework with a SNARK
with quasilinear overhead, where an instance corresponding to k updates can be
proven in time roughly k · poly(λ, log k).

Relaxing SPARKs to SPARGs. Given that the EFKP construction relies
on an underlying argument of knowledge, a natural approach to constructing a
SPARG is to replace the underlying SNARK with a SNARG, and try to prove
soundness for computations in P.

Consider the following straightforward attempt to prove soundness with this
approach. Suppose for contradiction that there exists an adversary A who suc-
ceeds at convincing the verifier of a false statement (M,x, t, y) where M(x) 6=
y. Following the EFKP construction, this means that A outputs sub-proofs
π1, . . . , πm, where the ith sub-proof certifies that M transitions from digest rti−1
to digest rti in some number of steps. Ideally, we would like to say that if the
statement itself is false, then there must be a sub-proof corresponding to a false
statement, hence breaking soundness of the underlying SNARG. However, we
cannot claim that this is the case—all the sub-proofs could correspond to true
statements if one of them contains a collision in the hash function.

Specifically, it could be the case that for some i, the sequence of updates used
by A to prove that rti−1 transitions to rti corresponds to a “divergent” path of
computation, and in reality M makes a different sequence of updates after the
step corresponding to rti−1.

The proof of [29] relied on the extractability of the SNARK to show that if
all sub-statements were true, then A must be able to produce a hash collision at
the point where the computation diverged, in contradiction. However, if we are
only relying on a SNARG, we have no way to extract the collision and reach a
contradiction.

Nevertheless, we have one advantage over the EFKP approach which we have
not yet used—we are only trying to prove soundness for deterministic computa-
tions, whereas their proof had to hold even for non-deterministic ones. In par-
ticular, this means that given M,x, we can actually compute the true sequence
of updates in polynomial time, and thus determine exactly in which sub-proof
the computation diverged.

This does not quite solve the problem, because we still have no way to ex-
tract a collision between rti−1 and rti. However, it does capture an important
soundness property, which will turn out to be the key component of our construc-
tion. Observe that the above proof of soundness would succeed if the underlying
SNARG satisfied the following:

No PPT adversary A can produce a proof π, a transcript of the com-
putation of M as well as digests rt, rt′ and some number of steps k such
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that (a) the verifier accepts π as a proof for (M, rt, rt′, k), (b) rt is the
correct digest at the beginning of the computation, but (c) rt′ is not the
correct resulting digest after k steps.

This definition morally captures the fact that A should not be able to find a
collision in the hash function, but does not require extractability to actually
produce that collision. In particular, it can be viewed as a notion of soundness
relative to a CRH, where the verifier only sees a digest of the statement, yet
cannot be convinced on digests of false statements.

From RAM Delegation to SPARGs. We observe that this property stated
above is in fact the notion of soundness for RAM delegation schemes. In par-
ticular, prior work (such as [37, 38, 22]) adopted this as a meaningful notion of
soundness for RAM delegation to capture the setting where a weak verifier, who
may have pre-computed a digest of a large database, delegates a computation
on that database and can verify the updated digest after the computation to
enable future outsourcing on the updated database.

Putting everything together, to prove soundness of the EFKP construction
for deterministic computations, it suffices to rely on a RAM delegation scheme
with the above soundness notion, rather than a SNARK. By relying on the recent
RAM delegation scheme due to [22], we obtain a sound scheme based only on
LWE.

Updatable Delegation. There is one remaining caveat to the construction,
which is that by replacing the SNARK with a delegation scheme, we have to
ensure that each sub-proof computed using the delegation scheme can be done
with low prover overhead so that the resulting construction satisfies the tight
efficiency requirements of a SPARG.

Looking at the delegation scheme due to [22], in order to delegate the com-
putation of M starting at configuration cf, the scheme first computes a Merkle
tree of cf (analogously to the Merkle tree approach in [29]), and then proceeds to
compute the updates to the Merkle, and prove their correctness using underlying
building blocks. We observe that other than computing this initial Merkle tree,
the delegation prover has quasilinear overhead. Specifically, we show that when
delegating a statement corresponding to k steps of computation, everything other
than computing the initial Merkle tree can be done in time k · poly(λ, log k).

To put this into context in our scheme, recall that we will be breaking
up the computation of M into sub-computations, indexed by configurations
cf0, cf1, . . . , cfm, for which we will then use the delegation scheme to prove that
cfi−1 transitions to cfi for each sub-computation i. However, if the delegation
prover then hashes down each cfi at the beginning of each sub-proof, the run-
ning time of our SPARG will then rely on the memory size, which as mentioned
above, does not suffices for us.

We resolve this by using another piece of the EFKP construction, specifically
their Merkle tree instantiation. Recall that they gave a construction, termed a
concurrently updatable hash function, which enabled updating the Merkle tree
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in parallel to the computation with very little overhead. We observe that if the
Merkle tree in the RAM delegation scheme is instantiated with a concurrently
updatable hash function, then when computing each configuration cfi, we can
compute in parallel the Merkle tree digest of cfi, and give this to the delegation
prover as auxiliary input.

At a high level, this captures a notion which we call updatability for RAM
delegation schemes, since while running the computation from computing a proof
that cfi−1 transitions to cfi, the Merkle tree for cfi computed during the proof
can be given to the next prover.

We show that the [22] scheme satisfies this notion of upatability when in-
stantiated with the hash tree due to [29], and that this notion of updatability
suffices to achieve the required prover efficiency from the delegation scheme in
order to instantiate the EFKP framework and obtain a SPARG for P.

2.2 SPARGs for Parallel Computations

The above framework gives a SPARG for sequential computations—namely, a
proof system that runs in time t + poly(λ, log t) for t-time computations. How-
ever, it is very natural to consider the setting where the computation itself can
be parallelized. In this setting, we show that our SPARG construction can be
extended to prove parallel computations while preserving the depth of the com-
putation. Specifically, for computations that take time t with p processors, our
SPARG will run in time t+poly(λ, log(t ·p)) with p ·poly(λ, log(t ·p)) processors.

To achieve this, recall that the prover in our SPARG construction above splits
the computation into many sub-computations. For each sub-computation, the
prover runs the computation in parallel to updating a hash tree to its memory.
It then uses an updatable RAM delegation scheme to prove correctness of this
sub-computation. Efficiency of the resulting construction relies on the fact that
(1) computing M(x) and updating the hash tree can be done in parallel in time
essentially t, and (2) the delegation scheme has quasi-linear overhead, so proving
any sequence of k steps takes time k · poly(λ, log k).

To extend this to the setting of parallel computations, we observe that the
prover can run the computation in time t with p processors. Moreover, the hash
tree due to [29] allows for concurrent updates, and so the updates can be done
in parallel to the computation. However, a challenge arises when using the up-
datable RAM delegation scheme in this setting, as we have to prove correctness
of concurrent updates. Specifically, for a sub-computation corresponding to k
steps, the concurrent updates to the hash tree result in k updates each to p
locations in memory (as opposed to a single location each, as in the sequen-
tial case). The efficiency of our updatable RAM delegation scheme depends, in
particular, polynomially on the time to verify a single update, which is poly(p)
when considering concurrent updates. Therefore, this would not result in a dele-
gation scheme with quasilinear prover efficiency—instead, the prover time would
depend polynomially on p, which is undesirable when p is large.

The dependence on the time to verify a single update is inherent to our updat-
able RAM delegation construction, and in particular stems from the underlying
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building blocks used in [22]. Therefore, it is not immediately clear how to move
forward—in order to avoid any delays with running the main computation, we
have to perform concurrent updates, but the delegation scheme is incompatible
with these updates.

To solve this, we observe that we can transform concurrent updates to se-
quential ones—namely, k concurrent updates on p locations each can be turned
into k ·p updates, each to a single location. We call a hash tree with this property
sequentializable. At a high level, we do so by taking advantage of the Merkle tree
structure, and the fact that an authentication path for an individual location
` can be derived from the updates to a set of locations containing `. We form
the authentication paths corresponding to the sequential updates level by level,
resulting in time poly(λ, log p) to sequentialize a concurrent update when using
p processors. Therefore, for a sub-computation with k steps, we can sequential-
ize the updates in parallel time k · poly(λ, log p). Crucially, sequentializing the
updates does not delay the main computation of M(x)—instead, the sequen-
tialization can be seen as part of the “proof” phase, before calling the RAM
delegation prover.

After sequentializing the updates, a k-time sub-computation results in k · p
individual updates. We are not quite done, because applying our updatable RAM
delegation scheme to prove correctness of these updates would result in time
quasilinear in the total work k · p, rather than simply k. As the final step in
our construction, we observe that the computation of the RAM delegation proof
can be parallelized as well. Specifically, recall that our RAM delegation scheme
is given the updates as a witness to the computation, and is only required to
compute the proof. When given T = t · p sequentialized updates, it runs in
quasilinear time T · poly(λ, log T ). As a final observation, we show that for any
number of processors p, the RAM delegation prover can be made to run in time
T/p ·poly(λ, log T ) with p processors, when given these updates. At a high level,
this follows due to the fact that the underlying updatable delegation scheme
treats the T updates as a batch of T individual statements for which it proves
correctness. In particular, we show that the proofs of these statements (and the
information tying them together) can be computed in parallel, thus giving the
desired efficiency.

Putting everything together, the combination of sequentializing the updates
and running the parallelized delegation prover gives the desired quasilinear effi-
ciency for our RAM delegation scheme, which in turn suffices to get a SPARG
for parallel computations.

2.3 Time-Independent SPARGs

We consider the application of SPARGs to time-tight RAM delegation, where
by time-tight we mean a delegation protocol that satisfies the same efficiency
properties as a SPARG. So far, we have assumed that the time bound t for the
computation is provided as input. This seems like the a natural requirement
as we have to compute the proof of the computation completely during the
computation itself. We show that this is actually not necessary, at least in the
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case of non-interactive delegation. In particular, we show how to construct a
non-interactive SPARG for any t-time computation M(x) where t does not need
to be provided as input—we refer to this as a time-independent SPARG—given
a non-interactive SPARG that does take as input the time bound t. (In fact,
we actually use a time-tight RAM delegation scheme in order to break up the
computation into different parts, which we will discuss more below.)

As a first attempt, what if the prover computed a SPARG for all possible
time bounds T? The prover could run the computation on the side, see when it
halts, and use the proof corresponding to the actual time bound t, ignoring all
other proofs. If we compute all the SPARG proofs in parallel, then the prover
will compute a proof in the desired parallel time, but this requires using more
than t processors! Even worse, we don’t necessarily know a priori a bound on
what the running time will be, so we would even need to use potentially super-
polynomially many processors to handle all polynomial-time computations. In-
stead, we want to compute the time-independent SPARG using only a modest,
say fixed polynomial poly(λ) in the security parameter, overhead in the number
of processors required.

In an effort to reduce the number of processors used, the prover could instead
compute proofs only for the time bounds T = 20, 21, 22, 24, . . . , 2λ, assuming that
the polynomial time bound t is at most 2λ for large enough security parameters
λ. Now we only have a λ + 1 overhead in the number of processors required.
However, if in computing M(x) we find out that the true time bound t is not
close to a power of 2, then we may have a factor of 2 over head in the time
to compute the next largest proof that encapsulates the full computation. Even
a small multiplicative overhead is not allowed for SPARGs, so this approach
unfortunately does not achieve what we want.

In order to maintain optimal parallel time with only a small overhead in the
number of processors used, we leverage the techniques described in Section 2.1
to break down the proof of the entire computation into proofs of various sub-
computations while still guaranteeing soundness. This is why we actually need to
start with RAM delegation for our underlying scheme so that breaking the proofs
into many parts does not scale with the space of the underlying computation.

The idea of the full construction is to compute proofs for the time bounds
T = 20, 21, . . . , 2λ, but after each proof of size 2i finishes, to continue to compute
proofs in regular intervals of size 2i that continue that computation (using the
same associated memory). So, for every size 2i and every j ≥ 1, we will have a
proof corresponding to the interval of the computation between steps (j − 1) ·
2i and j · 2i. For any such starting point a and ending point b, we let π(a,b)
denote the associated proof. Ignoring efficiency for now, this means that after
the machine M(x) halts at time t, we can simply collect m proofs π(0,a1), π(a1,a2),
. . . , π(am−1,t) that cover the entire interval from 0 to t via intervals of powers of
2. These intervals will then simply correspond to the binary representation of t,
so there will be m ≤ λ proofs in total.

In order to make this approach work, we need a specific, extremely efficient,
underlying RAM delegation scheme. Concretely, we need it to be the case that
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Time to compute M(x), t = 11 Proof Overhead β

.π(0,1) .π(2,3) .π(4,5) .π(6,7) .π(8,9) .π(10,11) .π(12,13) .π(14,15)

.π(0,2) .π(4,6) .π(8,10) .π(12,14)

.π(0,4) .π(8,12)

.π(0,8)

Fig. 1. An example of the time-independent SPARG prover for a computation M(x)
that takes t = 11 steps. A proof π(a,b) corresponds to a RAM delegation proof that M
on input x starts at configuration cfa and ends at configuration cfb. The horizontal axis
represents parallel time, and the prover is computing all proofs along a given vertical
slice in parallel. Each separate thread corresponds to a memory block that is being
updated and outputting proofs for the corresponding intervals at the same time. The
additive overhead per interval is indicated in red, but can be computed separately
while the subsequent update continues. The final proof output by the prover consists
of the sub-proofs corresponding to the 1’s in the binary representation of the actual
time t. For t = 11 shown in the picture, this corresponds to the 8, 2, and 1 digits, so
the prover eventually outputs the proofs π(0,8), π(8,10), and π(10,11). All other proofs
are discarded, and are thus greyed out in the picture above.

we can have a thread of computation that computes proofs for all size 1 inter-
vals (0, 1), (1, 2), (2, 3), . . . , (t− 1, t) without blowing up the complexity of the
protocol. Fortunately, our main SPARG construction actually gives us an updat-
able delegation scheme that is also time-tight. Essentially, this is an updatable
delegation scheme where an update of any sequence of k steps also outputs a
proof of correctness for those k steps. Furthermore, these updates and proofs can
be pipelined together efficiently, ensuring that computing a proof for all size 1
intervals in a row as above does not blow up the overall complexity nor delay the
output of later proofs in the sequence (namely the proof for the interval (i, i+1)
still finishes at time i+ 1 + poly(λ), where the delay is independent of i or t).

We finish by arguing why the protocol is succinct and satisfies the optimal
parallel time requirement of a SPARG while using only a fixed poly(λ) number of
processors. For succinctness, recall the number of proofs that the prover needs to
output is simply the number of 1s in the binary representation of the actual time
bound t. Assuming t < 2λ, this implies that the number of delegation proofs m
that need to be sent at most λ, so there is at most a λ overhead in the size of the
proofs for the time-independent SPARG over the underlying RAM delegation
scheme.
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Analyzing the running time of the prover, we note that by assumption, the
underlying updatable delegation scheme has only an additive overhead of some
polynomial β(λ) to compute proofs with its updates, using at most β(λ) proces-
sors for each update procedure. All of the required proofs finish by time t+β(λ),
so the prover satisfies the required runtime efficiency, we just need to bound the
number of processors used. As each update/ proof computation uses β(λ) pro-
cessors, we just need to bound the number of update procedures happening at
any given time. To do so, consider any T steps into the computation. All proofs
π(a,b) for a final configuration cfb where b < T − λ · β(λ) have already been
completed, as described above, so there are most λ · β(λ) proofs in progress for
ending configurations at or before cfT . Also, for each size 2i, there is at most
one proof of size 2i that could have been started and ends after cfT . This implies
that are at most λ+λ ·β(λ) updates computed at any given time, so the prover
requires only a poly(λ) number of processors in total.

We emphasize that this transformation fundamentally relies on the fact that
the underlying delegation scheme is “time-tight” like a SPARG. Otherwise the
overlap among all of the proofs would be too great, and the protocol would
require too many processors.

3 Preliminaries

In this section, we include the relevant preliminaries. Additional preliminaries,
including definitions of verifiable delay functions, concurrently updatable hash
functions, and succinct arguments for parallel computations are deferred to the
full version.

3.1 RAM Model

RAM computation consists of a machine M which keeps some local state state
and has read/write access to memory D ∈ ({0, 1}λ)∗ (equivalent to the tape
of a Turing machine). Here, λ is the security parameter and length of a word,
and we let n ≤ 2λ be the number of words in memory required to run M (see
below). When we write M(x) to denote running M on input x, this means
that M expects its initial memory D to consist of x followed by zeros. The
computation of M(x) is defined in steps, where at each step the machine either
reads or writes to a location in memory and updates its local state. We assume
that when M writes to a memory location `, it receives the word previously at
`. Without loss of generality, we assume that the state can hold O(log n) bits, or
a constant number of words, and that the local state at each time step includes
the word read in the previous step. We also assume that n words in memory can
be allocated and initialized to zeros for free.

The computation halts when the local state consists of a special halting value
with the output y of M(x) written at the start of the memory. We define the
running time of a RAM machine M as the number of accesses it makes to its
working memory, which corresponds to the number of steps.
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We define the configuration cf at any step of the computation to include the
local state and full memory at that step. This representation allows us to refer
to RAM machines that transition from a configuration cf to configuration cf ′

in some number of steps, as the configuration has all information required to
perform a step.

In order to measure the complexity of RAM computation, we note that on a
fixed CPU architecture, RAM computation can be modeled where the program
M and input x are both given in memory and executed using a fixed machine
U . We therefore fix any universal RAM machine U and define the complexity of
running M(x) to be the number of steps required to run U(M,x). As all of our
RAM computation will be in this model, for simplicity we say that M(x) requires
access to n words of memory if U(M,x) uses a total of n words in memory to
write M , x, and all the memory used by the computation. Henceforth, we say
that M(x) halts in time t if running U on memory M ||x||0n−|M,x| for t steps
results in a halting state.

3.2 Universal Languages

In this section we define a universal language for deterministic RAM computation
with long output, following the universal relation introduced by [7].

Definition 1. The universal language LU is the set of instances (M,x, y, L, t)
where M is a deterministic RAM machine such that M(x) outputs y within t
steps, and additionally |y| ≤ L.

Additionally, we will be considering intermediate portions of RAM compu-
tation, where the universal RAM machine U (see Section 3.1) transitions from
configuration cf to cf ′ in t steps.

Definition 2. The universal RAM delegation language Ldel is the set of in-
stances (cf, cf ′, t) such that the universal RAM machine U transitions from con-
figuration cf to configuration cf ′ in t steps.

3.3 RAM Delegation

In this section, we define RAM delegation, which will be the main building
block for our SPARG construction. Following [20, 37, 38, 22], we define RAM
delegation to capture the following scenario: A verifier wishes to delegate a RAM
computation M with some initial configuration cf, such that running M for t
steps starting with cf results in configuration cf ′. As M may potentially use a
large amount of memory, these configurations could be very long, and thus the
approach in recent works has been to consider a verifier that only receives digests
rt, rt′ of the configurations cf, cf ′.

Recently, [38, 22] showed delegation schemes for RAM where soundness holds
when the verifier only receives these digests, and moreover suffice to delegate
general computation with Turing machines. We adopt this notion for this work.
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As discussed in Section 3.1, we will assume that the machine M is already
part of the memory in cf and thus give a definition for a fixed universal RAM
computation with the universal machine U .

Definition 3 (RAM Delegation). A publicly verifiable, succinct RAM del-
egation scheme for Ldel is a tuple of probabilistic algorithms (Del.S,Del.D,Del.P,
Del.V) with the following syntax:

• (crs, dk)← Del.S(1λ): A PPT algorithm that on input a security parameter
λ outputs a common reference string crs and a digest key dk. We assume
without loss of generality that crs contains dk.

• rt = Del.D(dk, cf): A deterministic algorithm that on input a digest key dk
and a RAM configuration cf outputs a digest rt.

• π ← Del.P(crs, (cf, cf ′, t)): A probabilistic algorithm that on input a common
reference string crs, and a statement (cf, cf ′, t), outputs a proof π.

• b ← Del.V(crs, (rt, rt′, t), π): A PPT algorithm that on input a a common
reference string crs, common reference string crs, statement (rt, rt′, t), and a
proof π, outputs a bit b indicating whether to accept or reject.

We require the following properties:

• Completeness: For every λ ∈ N and (cf, cf ′, t) ∈ Ldel with t, n ≤ 2λ where
n is the memory size of the configurations, it holds

Pr


(crs, dk)← Del.S(1λ)
rt = Del.D(dk, cf)
rt′ = Del.D(dk, cf ′)
π ← Del.P(crs, (cf, cf ′, t))

: V(crs, (rt, rt′, t), π) = 1

 = 1.

• Soundness: For any non-uniform polynomial-time algorithm A = {Aλ}λ∈N,

polynomial-time computable function T , and polynomial T such that T (λ) ≤
T (λ) for all λ ∈ N, there exists a negligible function negl such that for every
λ ∈ N, it holds that

Pr

 (crs, dk)← Del.S(1λ)
(cf, cf ′, rt, rt′, π)← Aλ(crs, dk)

:

V(crs, (rt, rt′, t), π) = 1
∧ (cf, cf ′, t) ∈ Ldel

∧ rt = Del.D(dk, cf)
∧ rt′ 6= Del.D(dk, cf ′)

 ≤ negl(λ),

where t = T (λ).
• Collision resistance: For any non-uniform polynomial-time algorithm A =
{Aλ}λ∈N, there exists a negligible function negl such that for every λ ∈ N, it
holds that

Pr

[
(crs, dk)← Del.S(1λ)
(cf, cf ′)← Aλ(crs, dk)

:
cf 6= cf ′

∧ Del.D(dk, cf) = Del.D(dk, cf ′)

]
≤ negl(λ).

• Succinctness: There exist polynomials q1, q2, q3 such that for any λ ∈ N,
(crs, dk) in the support of Del.S(1λ), (cf, cf ′, t) ∈ Ldel, and proof π in the
support of P(crs, (cf, cf ′, t)), it holds that
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– |Del.V(crs, (rt, rt′, t), π)| ≤ q1(λ, log t) and
– |π| ≤ q2(λ, log t).
– Del.D(dk, cf) is computable in time |cf|·q3(λ) and has output length length
λ.

3.4 SPARGs

In this section, we define SPARGs for P based on the notion of SPARKs in-
troduced in [29]. We note that while they do not restrict to computations with
t ≤ 2λ steps, we require this as it is standard in related notions (e.g., RAM
delegation) and required for our construction.

Definition 4 (Non-interactive SPARGs for P). A Non-interactive Suc-
cinct Parallelizable Argument for a language L ⊆ LU is a tuple of probabilistic
algorithms (G,P,V) with the following syntax:

• crs← G(1λ): A PPT algorithm that on input a security parameter λ outputs
a common reference string crs.

• (y, π)← P(crs, (M,x,L, t)): A probabilistic algorithm that on input a com-
mon reference string crs, and a statement (M,x,L, t), outputs a value y and
a proof π.

• b ← V(crs, (M,x, y, L, t), π): A PPT algorithm that on input a common
reference string crs, a statement (M,x, y, L, t), and a proof π, outputs a bit
b indicating whether to accept or reject.

We require the following properties:

• Completeness: For every λ ∈ N and (M,x, y, L, t) ∈ L where M has access
to n ≤ 2λ words in memory and t ≤ 2λ,

Pr

 crs← G(1λ)
(y, π)← P(crs, (M,x,L, t))
b← V(crs, (M,x, y, L, t), π)

: b = 1

 = 1.

• Soundness for P: For all non-uniform polynomial-time provers P? = {P?λ}λ∈N
and every polynomial T , there is a negligible function negl such that for every
λ ∈ N, it holds that

Pr

[
crs← G(1λ)
((M,x, y, L), π)← P?λ(crs)

:
V(crs, (M,x, y, L, t), π) = 1
∧ (M,x, y, L, t) 6∈ L

]
≤ negl(λ),

where t = T (λ).
• Succinctness: There exist polynomials q1, q2 such that for any λ ∈ N, crs

in the support of G(1λ), (M,x,L, t) ∈ L where M uses n ≤ 2λ words in
memory, t ≤ 2λ, and (y, π) in the support of P(crs, (M,x,L, t)), it holds
that
• workV(crs, (M,x, y, L, t), π) ≤ q1(λ, |(M,x)|, L, log t),
• |y| ≤ L, and
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• |π| ≤ q2(λ, L, log t).
• Optimal prover depth: There exists polynomials q1 and q2 such that for

all λ ∈ N and (M,x, t, L, y) ∈ L where M has access to n ≤ 2λ words in
memory and t ≤ 2λ, it holds that

depthP(crs, (M,x,L, t)) = t+ q1(λ, |(M,x)|, L, log t)

and the total number of processors used by P is in q2(λ, log t).

If the above holds for L = LU , we say that (G,P,V) is a non-interactive SPARG
for polynomial-time RAM computation.

4 Updatable RAM Delegation

In this section, we discuss the main building block for our construction—updatable
RAM delegation with quasilinear overhead and local opening.

4.1 The CJJ Delegation Scheme

Our starting point will be the recent delegation scheme due to Choudhuri, Jain,
and Jin [22], henceforth referred to as the CJJ construction. We start by giving
an overview. We note that they present their construction for a specific RAM
machine M , but we simply treat this as the universal RAM machine U .

The CJJ construction relies on the following building blocks:

– A hash tree that supports local reads and writes. This can be instantiated
from collision-resistant hash functions.

– A no-signalling somewhere-extractable commitment scheme, with a locality
parameter ` corresponding to the size of extracted sets, which in particular
determines the efficiency of the commitment.

– A non-interactive batch argument (BARG) for NP. This is an argument
where k instances of a language can certified with a proof that only depends
sub-linearly on k.

At a high level, their construction follows an approach in recent works (see,
e.g., [37, 38, 29]) which uses a locally updatable hash tree (based on Merkle
trees) to succinctly prove that each step of RAM computation was done cor-
rectly. Specifically, to prove that a RAM machine transitions from configuration
cf to configuration cf ′ in t steps, they run the computation while simultaneously
maintaining a hash tree of the memory at each step. Each step can then be ver-
ified succinctly (in particular in time independent of |cf|) by verifying succinct
local openings to the hash tree. To turn this approach into a full-fledged dele-
gation scheme, previous works have employed a combination of succinct proof
systems with various extractability properties to show soundness.

In the CJJ construction, they follow this framework. After running the com-
putation along with computing a short opening to the hash tree at each step,
they give a no-signalling commitment c to the sequence of t updates to the
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hash tree. They then prove, using a BARG, that each step of the computation
was done correctly and consistently. Specifically, the BARG is for the relation
computed by the circuit Cstep that on input an index i and openings to c cor-
responding to the ith step of computation, checks that (1) these openings are
consistent with c, (2) correspond to a valid step of computation, and (3) are
valid openings to the hash tree. To show that this construction is sound, they
rely on a combination of BARG soundness, the no-signalling extraction of the
commitment scheme, and collision resistance. They show that this results in a
scheme for (deterministic) RAM delegation which can be based solely on LWE.

In the full version, we discuss the differences between the notion of RAM
delegation satisfied by this construction, and Definition 3, and show that the
CJJ scheme satisfies our notion of RAM delegation. As their scheme is based on
LWE, the following holds.

Theorem 4.1 ([22]). Assuming the hardness of LWE, there exists a publicly
verifiable, succinct RAM delegation scheme for Ldel.

4.2 Updatable Delegation with Quasilinear Overhead

For our SPARG construction, we will be concerned with delegation schemes
with tight prover efficiency. In this section, we analyze the prover efficiency of
the CJJ construction, and then show that it can be made quasilinear in t when
the prover is additionally given a witness for the RAM computation. Along the
way, we introduce the notion of Updatable Delegation, which enables the desired
prover efficiency and may be of independent interest.

We start by looking at the efficiency of each building block in the CJJ scheme
individually.

– Hash tree: The hash tree used in [22] is effectively a Merkle tree based
on a collision resistant hash function. Computing the hash tree of a given
configuration cf can be done in time |cf| · poly(λ), but when given the hash
tree already in memory, updating a word in the tree can be done in time
logarithmic in the size of the memory of the RAM program, and so can be
done in time poly(λ).

– BARG: Recall that the BARG enables proving k instances of an NP rela-
tion computable by a circuit C. At a high level, the BARG prover in the
construction due to [22] does the following:
1. For each i ∈ [k], it first computes a PCP πi for the i’th statement. This

takes time k · poly(λ, |C|). Let L ∈ poly(λ, |C|) denote the length of a
single PCP.

2. It then commits columnwise to the PCPs. Creating L commitments to
k bits each takes time L · k · poly(λ) (similar to below, the commitment
is a variation on a Merkle tree, where committing can be done in time
linear in the committed message).

3. It then applies a correlation-intractable hash to the circuit C and com-
mitment. As shown in [22], the hash can be evaluated in time poly(λ,
log k, |C|).
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4. Next, it samples PCP queries for a single PCP using randomness de-
rived from the correlation-intractable hash. They use a PCP requiring
poly(λ, log |C|) queries that can be sampled in time poly(λ, |C|).

5. For each PCP, it then opens the query locations in the commitments.
For each PCP, this corresponds to opening a bit in poly(λ, log |C|) com-
mitments. As each value can be opened in time poly(λ, log k) due to the
Merkle-tree structure of the commitment, putting everything together
this takes time k · poly(λ, log k, log |C|).

6. Finally, it recurses by running a BARG for k/2 instances, where they
show that the circuit for the smaller BARG has size poly(λ, log k, log |C|).
Overall, there are log k recursions.

Putting everything together, the BARG prover runs in time k · poly(λ, |C| ,
log k).

– No-signalling somewhere-extractable commitment: The no-signalling com-
mitment construction is parameterized by an integer `, which determines
the number of bits extractable from the commitment scheme. For a fixed
parameter `, the construction consists of ` independent Merkle trees. Each
Merkle tree consists of an FHE encryption of the committed message at the
leaves, and uses FHE evaluation to compute the value of each node based on
the values of its child nodes. Thus, computing the commitment to a message
of length N can be done in time ` ·N ·poly(λ), because it requires computing
` Merkle trees, which each require encrypting N bits and performing N FHE
evaluations. Moreover, local openings to a single bit in this commitment can
be computed and verified in time ` ·poly(λ, logN), as openings consist of an
authentication path in each of the ` Merkle trees.

Putting everything together, to delegate a t-time computation using the CJJ
scheme, the prover (a) creates a hash tree of the starting configuration, (b) runs
the computation while simultaneously updating the hash tree, (c) commits to the
sequence of updates to the hash tree, where each update additionally contains
some efficiently computable auxiliary information, (d) creates local openings
in the commitment as a witness to each step of computation, and (e) proves
that the computation is correct using a BARG for the circuit Cstep. From the
above analysis, (a) takes the time to run Del.D(dk, cf) when cf is the starting
configuration, (b) takes time t · poly(λ), (c) takes time ` · N · poly(λ) where `
is the length of a single update and N is the length of the committed message,
(d) takes time (t · `) · ` · poly(λ, logN) to open ` bits for each of the t steps, and
(e) takes time t · poly(λ, |Cstep| , log t). It remains to discuss the specific values
|Cstep|, `, and N used in the protocol. The parameter ` corresponds to the length
of the values needed verify a single step of computation, by computing that step
and verifying the openings in the hash tree, and so ` ∈ poly(λ) (for a fixed
polynomial that depends on the size of the universal RAM machine U). The
committed message consists of these values for each of the t steps, and thus
N = t · `. Finally, the circuit Cstep consists of computing a single step of the
RAM program and verifying the openings to the hash tree and commitment,
which together takes time ` · poly(λ, logN) ∈ poly(λ, log t). All together, this
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shows that the prover runs in time

Time
(
Del.P(1λ, (cf, cf ′, t))

)
≤ Time (Del.D(dk, cf)) + t · poly(λ) + ` ·N · poly(λ) + t · `2 · poly(λ, logN)

+ t · poly(λ, |Cstep| , log t)

≤ |cf| · poly(λ) + t · poly(λ) + t · poly(λ) + t · poly(λ, log t) + t · poly(λ, log t)

∈ |cf| · poly(λ) + t · poly(λ, log t).

Achieving quasilinear efficiency. For our SPARG construction, it will be
crucial that the running time of the delegation prover Del.P does not depend on
n, the memory size of the RAM program. Therefore, the CJJ prover efficiency
does not suffice for us, since the running time of the prover on (cf, cf ′, t) depends
linearly on |cf|.

We observe that this dependence on |cf| is due to the fact that the prover
is given an arbitrary starting configuration cf, and must compute a Merkle tree
on the memory given in cf. For our SPARG construction, we are not concerned
with RAM computation from an arbitrary starting point cf. Instead, we will
start from an initial (short) configuration cf0, for which we can afford to run in
time proportional to |cf0| to generating the initial hash tree.

However, this does not entirely solve the problem, because rather than prov-
ing that cf0 results in the final configuration cf ′ after t steps of computation, we
will instead determine “midpoints”—namely, configurations cf1, . . . , cfm, where
cfm = cf ′. We will then rely on the delegation scheme to prove statements of
the form (cf0, cf1, k1), (cf1, cf2, k2), . . . , (cfm−1, cfm, km), that is, that starting
at cfi−1 and running for some number of steps ki results in configuration cfi.
The main idea below is that when we prove each statement (cfi−1, cfi, ki), we
will already have information about cfi−1 from proving the previous statement.
In particular, we will show that we can already have the Merkle tree for cfi−1 in
memory when we start the ith statement, rather than creating it from scratch.

This exact setting was addressed in [29], where they showed that the hash
tree can be instantiated with collision-resistant hash functions to achieve the
following guarantees:

1. Computing the hash tree for the initial configuration can be done in time
|cf0| · poly(λ).

2. Given a hash tree in memory corresponding to any configuration cf, it holds
that the computation can be run for any number of steps k while updating
the hash tree with only poly(λ) additive overhead. This implies that if cf
results in cf ′ after k steps of computation, and we have already computed a
hash tree for cf, then we can compute the hash tree for cf ′ in time k+poly(λ).

The requirements for the hash tree of [22] (which is based on [37]) are satisfied
by that of [29] (see [29] for a more in-depth discussion and comparison between
various definitions). Therefore, we observe that the CJJ construction satisfies
the following notion.
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Definition 5. Consider a RAM delegation scheme (Del.S,Del.D,Del.P,Del.V)
with the following syntax modifications and additional algorithm Del.Update:

– (rt, tree) = Del.D(dk, cf): The digest algorithm additionally outputs a value
tree.

– (rt′, tree′, w) = Del.Update(dk, t, tree): The update algorithm takes as input a
digest key dk, integer t, and a value tree, and outputs a digest rt′, a value
tree′ and a witness w.

– π ← Del.P(crs, (cf, cf ′, t), w): The prover additionally takes as input a witness
w. We require that completeness is preserved when Del.P receives the witness
w computed by Del.Update.

We note that tree and w can be communicated as pointers to memory. In par-
ticular, this implies that Del.D(dk, cf) still runs in time |cf| · poly(λ).

We say that the scheme is β-updatable if for any λ ∈ N, statement (cf, cf ′, t) ∈
Ldel, keys (crs, dk) in the support of Del.S(1λ), (rt, tree) = Del.D(dk, cf), and
(rt′, tree′, w) = Del.Update(dk, t, tree),

(rt′, tree′) = Del.D(dk, cf ′)

and Del.Update runs in t+β(λ) steps with β(λ) processors. Furthermore, for any
two consecutive updates of length t1 and t2 starting at initial state (rt0, tree0), let
(rt1, tree1, w1) = Del.Update(dk, t1, tree0) and (rt2, tree2, w2) = Del.Update(dk, t2,
tree1). Then, the output (rt2, tree2, w2) can be computed in time t1 + t2 + β(λ).
When β(λ) ∈ poly(λ), we say the scheme is updatable.

We emphasize that Del.P no longer has access to the hash tree in memory,
as this would create memory conflicts between Del.P and Del.Update. Instead,
we can view Del.Update as the algorithm that runs the computation on the hash
tree, and collects all of the information needed to prove correctness—namely,
the hash tree updates, which make up the witness w. The prover Del.P can then
use this witness to form the proof. In the following definition, we quantify the
prover efficiency in an updatable delegation scheme.

Definition 6. An updatable RAM delegation scheme satisfies α-prover efficiency
if for all λ ∈ N, (crs, dk) in the support of Del.S(1λ), statement (cf, cf ′, t) ∈ Ldel

using n ≤ 2λ memory with t ≤ 2λ, (rt, tree) = Del.D(dk, cf), and (rt′, tree′, w) =
Del.Update(dk, t, tree), it holds that

Time
(
Del.P(crs, (cf, cf ′, t), w)

)
= α(λ, t).

Based on the above discussion, the CJJ scheme can be made to satisfy up-
datability and quasi-linear prover efficiency. Specifically, we will instantiate the
hash tree in the CJJ construction with that of [29], and modify the delegation
scheme as follows:

– Del.D(1λ, cf) will output rt as before, as the root of the hash tree, and set
tree to be the full hash tree.
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– Del.Update(dk, t, tree) will start with the hash tree in tree, run the computa-
tion for t steps while updating the hash tree, and then output (rt′, tree′, w)
where rt′ is the resulting root, tree′ is the updated tree, and w is the list of
all authentication paths for the t updates.

– Del.P(crs, (cf, cf ′, t), w) will use the updates in w to run the prover algorithm,
rather than computing them from scratch.

By combining the above discussion with Theorem 4.1, we get the following.

Theorem 4.2. Assuming the hardness of LWE, there exists a publicly verifi-
able, succinct, and updatable RAM delegation scheme (Del.S,Del.D,Del.P,Del.V,
Del.Update) for Ldel with α-prover efficiency for α(λ, t) ≤ t · poly(λ, log t).

The proof of Theorem 4.2 is deferred to the full version.

4.3 Local Opening

Given a RAM delegation scheme in which the verifier receives digests of the full
configuration, we will also require a scheme with a very natural local opening
property: a set of locations can be locally opened with respect to a digest, pro-
viding a short proof of the opening. As most RAM delegation schemes employ an
underlying Merkle tree, these are amenable to efficient local openings whenever
the Merkle tree is already in memory. In this full version, we formally define the
local opening property by giving additional algorithms (Del.Open,Del.VerOpen)
to the updatable delegation scheme to capture this notion. We also show that
our updatable RAM delegation scheme satisfies local opening (by relying on the
local opening property of the [29] hash tree), and therefore get the following
corollary to Theorem 4.2.

Corollary 1. Assuming the hardness of LWE, there exists a publicly verifiable,
succinct, and updatable RAM delegation scheme for Ldel with local opening and
α-updatable prover efficiency for α(λ, t) ≤ t · poly(λ, log t).

5 SPARGs for P

In this section, we give our construction of SPARGs for (sequential) RAM com-
putations. Our construction relies on a β-updatable RAM delegation scheme
Del = (Del.S,Del.D,Del.P,Del.V,Del.Update,Del.Open,Del.VerOpen) for Ldel with
local opening and α-prover efficiency (see Section 3.3). We use the following pa-
rameters when proving a statement (M,x,L, t).

– n ≤ 2λ is the memory used by M .
– α is the function denoting the prover efficiency of Del. We let α? , α(λ, t)/t

be the multiplicative overhead, with respect to t, of running Del.P.
– β is the function denoting the efficiency of Del.Update.
– γ , α? + 1 is the fraction of remaining steps done in each chunk of the

computation.
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SPARG (G,P,V) for LU given an updatable delegation scheme with local
opening (Del.S,Del.D,Del.P,Del.V,Del.Update,Del.Open,Del.VerOpen):

– G(1λ):
1. (crs, dk)← Del.S(1λ).

2. Output pp = (crs, dk).
– P(1λ, pp, (M,x,L, t)):

1. Let cf0 be the initial configuration for M(x), which includes the
(empty) local state and M,x. Let (rt0, tree0) = Del.D(dk, cf0).

2. Compute γ as in the parameters paragraph. Initialize T := t to be
the number of steps remaining in the computation.

3. For i = 1, 2, . . ., repeat the following until T = 0:
(a) Calculate the number of steps ki to compute in this iteration. If

T > γ log T , set ki = bT/γc, and otherwise set ki = T .

(b) Compute ki steps of M starting with configuration cfi−1. Let cfi
be the resulting configuration.

(c) In parallel to Step 3b, compute (rti, treei, wi) ← Del.Update(dk,
ki, treei−1).

(d) Without waiting for Step 3c to halt (but after Step 3b), spawn a
process that continues to the next iteration with T = T − ki.

(e) After Steps 3b and 3c complete, spawn a parallel thread to com-
pute τi ← Del.P(crs, (M, cfi−1, cfi, ki), wi).

4. Let (y, st, πy) = Del.Open(dk, [L], treem), where m is the number of
iterations of the loop above.

5. Let ~rt = (rt1, . . . , rtm), ~τ = (τ1, . . . , τm), and ~k = (k1, . . . , km). Output

(y, π) where π = (~rt, ~τ ,~k, st, πy).
– V(1λ, pp, (M,x, y, L, t), π):

1. Parse π = (~rt, ~τ ,~k, st, πy).

2. Let cf0 be the initial configuration of M(x) and compute rt0 as
Del.D(dk, cf0).

3. Output 1 if and only if the following hold, and 0 otherwise:
(a) Del.V(crs, (rti−1, rti, ki), τi) accepts for all i ∈ [m].

(b) ki is as defined above for each i ∈ [m], and t ≤ 2λ.

(c) Del.VerOpen(dk, rtm, [L], y, st, πy) = 1.

(d) st is a halting state, and |y| ≤ L.

Fig. 2. SPARG for LU .

Theorem 5.1. Let Del be a publicly verifiable, succinct, and updatable delega-
tion scheme for Ldel with local opening and α-prover efficiency. Then, (G,P,V),
given in Figure 5, is a SPARG for LU . Specifically, for all λ ∈ N and (M,x,
y, L, t) ∈ LU where M has access to n ≤ 2λ words in memory and t ≤ 2λ, the
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following hold. Let α? be the multiplicative overhead of Del.P with respect to the
number of steps of computation. Then:

– The depth of the prover is bounded by t + L + (α?)2 · poly(λ, |M,x|, log t)
when using poly(λ) + α? log t processors.

– The proof size is bounded by α? · poly(λ, log t).
– The work of the verifier is bounded by α? · L · poly(λ, |M,x|, log t).

By Corollary 1, it holds that there exists an updatable RAM delegation
scheme with local opening based on LWE where α? ∈ poly(λ, log t). Therefore,
by combining Theorem 5.1 with Corollary 1, we get the following corollary.

Corollary 2. Assuming the hardness of LWE, there exists a SPARG for LU .

The proof of Theorem 5.1 is deferred to the full version.

6 Application to Verifiable Delay Functions

In this section, we show that SPARGs for P and any sequential function imply
a VDF. We note that a sequential function is a minimal assumption as VDFs
directly imply sequential functions. We use the following building blocks and
parameters.

• A sequential function SF = (SF.Gen,SF.Sample,SF.Eval). Let pSF, qSF be the
polynomials from the honest evaluation property of SF such that SF.Eval(1λ,
·, ·, t) runs in time t + pSF(λ, log t) with qSF(λ, log t) processors. Let `SF be
the polynomial such that the output length is bounded by `SF(λ, log t).

• A SPARG (G,P,V) for any L ∈ LUpar containing SF.Eval.

Construction. Our VDF construction VDF = (VDF.Gen,VDF.Sample,VDF.Eval,
VDF.Verify) is as follows.

• pp← VDF.Gen(1λ):
1. Sample crs← G(1λ) and k ← SF.Gen(1λ).
2. Output pp = (crs, k).

• x← VDF.Sample(1λ, pp):
1. Sample and output x← SF.Sample(1λ, k).

• (y, π)← VDF.Eval(1λ, pp, x, t):
1. Recall that pSF, qSF, `SF are the polynomials denoting the efficiency of

VDF.Eval. Let statement = (SF.Eval, (1λ, k, x, t), `SF(λ, log t), t+pSF(λ, log t),
qSF(λ, log t)).

2. Compute and output (y, π)← P(1λ, crs, statement).
• b← VDF.Verify(1λ, pp, x, t, (y, π)):

1. Let statement′ = (SF.Eval, (1λ, k, x, t), y, `SF(λ, log t), t+pSF(λ, log t), qSF(λ,
log t)) (note that statement′ differs from statement used by VDF.Eval as
it contains the output y).

2. Output b← V(1λ, crs, statement′, π).
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Theorem 6.1. Assuming the existence of a SPARG for LUpar and a sequential
function, there exists a VDF.

Here, LUpar is the notion of LU extended to parallel computations (this is
defined formally in the full version). In the full version, we show that a SPARG
for LUpar can be based on LWE, which gives the following.

Corollary 3. Assuming the hardness of LWE and a sequential function, there
exists a VDF.

The proof of Theorem 6.1 is deferred to the full version.
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