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Abstract. An important theme in the research on attribute-based
encryption (ABE) is minimizing the sizes of secret keys and ciphertexts.
In this work, we present two new ABE schemes with constant-size secret
keys, i.e., the key size is independent of the sizes of policies or attributes
and dependent only on the security parameter λ.
– We construct the first key-policy ABE scheme for circuits with

constant-size secret keys, |skf | = poly(λ), which concretely consist of
only three group elements. The previous state-of-the-art scheme by
[Boneh et al., Eurocrypt ’14] has key size polynomial in the maximum
depth d of the policy circuits, |skf | = poly(d, λ). Our new scheme
removes this dependency of key size on d while keeping the cipher-
text size the same, which grows linearly in the attribute length and
polynomially in the maximal depth, |ctx| = |x| poly(d, λ).

– We present the first ciphertext-policy ABE scheme for Boolean
formulae that simultaneously has constant-size keys and succinct
ciphertexts of size independent of the policy formulae, namely,
|skf | = poly(λ) and |ctx| = poly(|x|, λ). Concretely, each secret key
consists of only two group elements. Previous ciphertext-policy ABE
schemes either have succinct ciphertexts but non-constant-size keys
[Agrawal–Yamada, Eurocrypt ’20, Agrawal–Wichs–Yamada, TCC ’20],
or constant-size keys but large ciphertexts that grow with the policy
size as well as the attribute length. Our second construction is the
first ABE scheme achieving double succinctness, where both keys
and ciphertexts are smaller than the corresponding attributes and
policies tied to them.

Our constructions feature new ways of combining lattices with pairing
groups for building ABE and are proven selectively secure based on
LWE and in the generic (pairing) group model. We further show that
when replacing the LWE assumption with its adaptive variant introduced
in [Quach–Wee–Wichs FOCS ’18], the constructions become adaptively
secure.

1 Introduction

Attribute-based encryption (ABE) [24,37] is a novel generalization of public-key
encryption for enforcing fine-grained access control. In this work, we focus on
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improving the efficiency of ABE schemes, especially on minimizing the sizes of
secret keys while keeping ciphertexts small. In key-policy (KP) ABE, a secret
key skf is tied to a policy f and a ciphertext ctx encrypting a message µ is
tied to an attribute x, so that a secret key is only “authorized” to decrypt a
ciphertext if the associated attribute x satisfies the policy f . At first glance,
since a secret key specifies the associated policy f , it appears that the size of
the secret key would have to depend at least linearly on the (description) size
of f . Similarly, a ciphertext would have to grow linearly with the length of the
associated attribute x. Secret keys and ciphertexts with linear dependency of
their sizes on the policies and attributes they are tied to are said to be compact,
and most ABE schemes are indeed compact.

However, upon closer examination, as ABE does not guarantee privacy of
the policies nor the attributes, it is possible to give a description of the policy f
in the clear in the secret key, and the non-trivial part of the secret key may
be smaller than the policy. In this case, the right measure of efficiency should
be the size of the non-trivial part (i.e., the overhead), which we now view as
the secret key. We can now aim for secret keys of size smaller than that of the
policy — i.e., |skf | = o(|f |) — referred to as succinct keys, or even keys of size
independent of that of the policy — i.e., |skf | = O(1) — referred to as constant-
size keys.1 Similarly, succinct ciphertexts have size smaller than the length of the
attributes, |ctx| = o(|x|), and constant-size ciphertexts satisfy |ctx| = O(1). We
further examine the efficiency of ciphertext-policy (CP) ABE [10], which enables
instead the ciphertexts ctf to specify the policies, so that only secret keys skx with
attributes satisfying the policies can decrypt them. Naturally, succinct keys and
ciphertexts have size |skx| = o(|x|) and |ctf | = o(|f |), and constant size means
the same as in KP-ABE.

How close can we get to the ideal efficiency of having both constant-size keys
and ciphertexts? Despite tremendous effort, the state-of-the-art is still far from
the ideal. Current ABE schemes with either succinct keys or succinct ciphertexts
can be broadly classified as follows (see Figs. 1 and 2):

– The work of [11] built KP-ABE based on LWE for polynomial-size circuits
with succinct keys |skf | = poly(d) and ciphertexts of size |ctx| = |x|poly(d),
where d is the depth of the circuit.

– Several works [5–7,32,38,42,43] constructed KP-ABE and CP-ABE for low-
depth computations with either constant-size secret keys or constant-size
ciphertexts from pairing, i.e., either |sk| = O(1) or |ct| = O(1), at the cost of
the other component being much larger, of size Ω(|f | · |x|).

– The recent works of [3,4] constructed CP-ABE for Boolean formulae with
succinct ciphertexts |ctf | = Θ(|x|) and compact keys |skx| = Θ(|x|). These
schemes are based on LWE and strong assumptions on pairing groups —
either the generic (pairing) group model [4] or knowledge assumptions [3].

In this work, we set out to improve the state-of-the-art towards the direction of
ideal efficiency. We observe that though there are ABE schemes for low-depth

1 We always ignore polynomial factors in the security parameter.
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Fig. 1. Efficiency comparison for KP-
ABE schemes. The pink region high-
lights succinctness for |ctx| and |skf |.
This work and [BGG+14] are KP-ABE
schemes for circuits, while the rest of
the schemes are for low-depth compu-
tation.

Fig. 2. Efficiency comparison for CP-
ABE schemes. The pink region high-
lights succinctness for |ctf | and |skx|.
All the included schemes are CP-ABE
for low-depth computation.

computations with constant-size keys, we do not have such ABE for general
circuits. We ask:

Can we construct ABE for circuits with constant-size keys?

Furthermore, all of the above schemes either have succinct keys or succinct cipher-
texts, but never both at the same time. If we were to eventually achieve ideal
efficiency, we would have to first overcome the intermediate barrier of simul-
taneously having succinct keys and ciphertexts — we refer to this as double
succinctness. We thus ask:

Can we construct ABE for expressive policies with
both succinct keys and succinct ciphertexts?

We note that the above questions are unanswered even when assuming the strong
primitive of indistinguishability obfuscation (iO). Several works [17,18,27] con-
structed ABE for circuits (or even functional encryption for circuits) using indis-
tinguishability obfuscation or related primitives. However, they all have large
secret keys of size poly(|f |). The only work that manages to obtain ABE for
RAM with constant-size keys [20] rely on a strong primitive called extractable
witness encryption, which however lacks provably secure instantiation.

Our Results. We address both questions. For the former, we construct the first
KP-ABE scheme for circuits with constant-size keys while keeping the ciphertext
size the same as in [11]. Concretely, each secret key consists of only 3 group
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elements. For the latter, we present the first CP-ABE scheme for Boolean for-
mulae achieving double succinctness — it has constant-size keys and succinct
ciphertexts. Concretely, each secret key consists of only 2 group elements. Both
constructions rely on LWE and the generic (pairing) group model, similar to [4].

Theorem (KP-ABE). Assuming LWE, in the generic (pairing) group model,
there is a KP-ABE for circuits (Construction 2) that achieves selective security
and has key size |skC | = poly(λ) (concretely, containing 3 group elements) and
ciphertext size |ctx| = |x|poly(λ, d), where d is the maximum depth of the policy
circuits.

Theorem (CP-ABE). Assuming LWE, in the generic (pairing) group model,
there is a CP-ABE for Boolean formulae [31] that achieves very selective secu-
rity, and has constant-size keys |skx| = poly(λ) (concretely, containing 2 group
elements) and ciphertexts of size |ctf | = |x|2 poly(λ) independent of the formula
size |f |.

Additional Contribution — Adaptive Security. The standard security
property of ABE is collusion resistance, which stipulates that no information of
the message µ encrypted in a ciphertext should be revealed even when multiple
secret keys are issued, as long as none of the keys alone is authorized to decrypt
the ciphertext. Adaptive security requires collusion resistance to hold even when
attributes and policies tied to the challenge ciphertext and the secret keys are
chosen adaptively by the adversary. The weaker selective security restricts the
adversary to commit to the attribute (in KP-ABE) or the policy (in CP-ABE)
associated with the challenge ciphertext before seeing any parameters of the
system, and very selective security further requires all attributes and policies in
both the challenge ciphertext and the secret keys to be chosen statically.

Adaptive security guards against more powerful adversaries than selective
security. It is known that the latter can be generically lifted to the former via
complexity leveraging, at the cost of subexponential hardness assumptions. How-
ever, complexity leveraging is undesirable not only because it requires subexpo-
nential hardness, but also because it requires scaling the security parameter to
be polynomial in the length of the information to be guessed, λ = poly(|x|) in
KP-ABE or λ = poly(|f |) in CP-ABE. As a result, complexity leveraging is not
a viable solution when aiming for constant-size keys, as key size poly(λ) would
already depends on |x| or |f |.

Instead, we show that in our constructions of KP- and CP-ABE, if assume
adaptive LWE instead of plain LWE, then they achieve adaptive security and our
reduction only incurs a polynomial amount of security loss. The adaptive LWE
assumption [36] postulates that LWE samples of the form {sT(Ai − x[i]G) + eT

i}i
are pseudorandom, even if the adversary adaptively chooses x depending on the
random matrices {Ai}i.

Theorem (adaptive security). Assuming the polynomial hardness of adaptive
LWE (instead of LWE), in the generic (pairing) group model, the KP-ABE scheme
(Construction 2) and the CP-ABE scheme [31] are adaptively secure.
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In the literature, the ABE schemes for circuits based on lattices [11,21] achieve
only selective security (without complexity leveraging). Adapting it to have adap-
tive security has remained a technical barrier, except for very limited classes of
policies such as 3-CNF [39]. Alternatively, there are schemes based on indistin-
guishability obfuscation or functional encryption for all circuits that are adap-
tively secure [27,40], but requiring stronger assumptions. Our technique can be
viewed as making the lattice-based schemes adaptively secure when combined
with pairing. Note that this is not trivial, for instance, the recent CP-ABE
schemes in [3,4] that combine [11] with pairing groups inherit the selective secu-
rity of the former (even if assuming adaptive LWE).

Organization. In Sect. 2, we present an overview of our techniques. In Sect. 3,
we introduce preliminaries. In Sect. 4, we define nearly linear secret sharing
schemes and non-annihilability, and construct such a scheme for bounded-depth
circuits based on the adaptive LWE assumption. In Sect. 5, we present our
adaptively secure KP-ABE for bounded-depth circuits. Due to space constraints,
we refer the readers to the full version [31] for our doubly succinct CP-ABE as
well as the secret sharing scheme and our new analysis of IPFE of [1] for that.

2 Technical Overview

High-Level Ideas. Let’s focus on our KP-ABE scheme for circuits first. The
first known construction of KP-ABE for circuits from LWE [22] has keys of size
|f |poly(d, λ). The scheme of [11] reduces the key size to poly(d, λ). Both schemes
achieve only selective security because they rely on the lattice trapdoor simulation
techniques. Consider the BGG+ scheme. Its ciphertext encodes the attributes x
and message µ as follows.

BGG: sTA+ eT, sT
( B︷ ︸︸ ︷
(A1|| · · · ||Aℓ)− x⊗G

)
+ (e′)T, sTv + e′′ + µ⌊q/2⌉.

One can homomorphically evaluate any circuit f on the attribute encoding to
obtain sT(Bf − f(x)G) + eT

f . To decrypt, the secret key skf simply is a short
vector rA,f satisfying (A||Bf )rA,f = v, which can be sampled using a trapdoor
TA for A. This approach however has two drawbacks:

– Difficulty towards Constant-Size Keys. The short vector rA,f contained in the
secret key skf has size poly(d, λ). This is because it has dimensionm = n log q
for log q = poly(d, λ) and entries of magnitude exponential in d.

– Difficulty towards Adaptive Security. The security proof relies on the ability
to simulate trapdoors for these matrices A||Bf corresponding to secret keys
that are unauthorized to decrypt the challenge ciphertext with attribute x∗,
that is f(x∗) = 1. However, to do so, current technique plants x∗ in the
public matrices Ai’s (contained in mpk), leading to selective security. Note
that even with the stronger adaptive LWE assumption, it is unclear how to
simulate these trapdoors in another way.
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Towards constant-size keys and adaptive security, our construction circumvents
the use of lattice trapdoors all together. At a high level, we turn attention to a
much weaker lattice primitive called attribute-based laconic function evaluation
(AB-LFE) [36], and lifts it to a KP-ABE scheme for circuits using pairing. AB-
LFE is an interactive protocol where a receiver sends a digest of a function, which
is exactly the matrix Bf in BGG. The sender then encodes the attribute x and
message µ as follows.

AB-LFE: sT
(
(A1|| · · · ||Aℓ)− x⊗G

)
+ (e′)T, sTBfr+ e′′ + µ⌊q/2⌉.

where r = G−1(a) is the bit decomposition of a random vector a. Security
guarantees that the encoding reveals only the output f(x). At a first glance, the
LFE encoding appears the same as BGG, but the novelty is in details. Since the
LFE encoding depends on Bf (and hence f), it can be generated without using
lattice trapdoors — the short vector r sampled first, and Bfr computed next.
When f(x) = 1, the hiding of µ follows directly from the pseudorandomness of
LWE samples sT((A1|| · · · ||Aℓ)−x⊗G))+e′ and sTa+e′′′. When x is adaptively
chosen, security follows naturally from adaptive LWE.

However, AB-LFE is able to avoid lattice trapdoor only because it is signif-
icantly weaker than ABE, or even 1-key ABE: 1) its message encoding depends
on Bf (unknown at ABE encryption time), and 2) it is only secure for a single
function. Our next challenge is lifting AB-LFE back to full ABE, for which we
use pairing.

More specifically, we first modify the AB-LFE scheme of [36] to obtain a
nearly linear secret sharing scheme for circuits. It contains two parts.

Our LSS encoding: Lx = sT
(
(A1|| · · · ||Aℓ)− x⊗G

)
+ (e′)T mod q,

Lf = sTRound(Bfr) + e′′ + µ⌊p/2⌉ mod p.

Note that we roundBfr frommodulus q of poly(d) length to p of poly(λ) length so
that the component Lf in the secret sharing that depends on f and µ has constant
size, which is the key towards constant-size ABE keys. To solve the problem that
Lf requires knowledge ofBf unknown at encryption time, we use a pairing-based
inner-product functional encryption (IPFE) to compute Lf in the exponent, by
viewing it as as inner product Lf = ⟨sT||µ⌊p/2⌉,Round(Bfr)||1⟩, where the two
vectors are known respectively at ABE encryption and key generation time. To
overcome that AB-LFE only guarantees security for a single Lf . We follow the
idea of [3,4] to compute δf ·Lf in the exponent instead, where δf is an independent
and random scalar chosen at key generation time. In GGM, the presence of δf
prevents adversaries from meaningfully “combining” information from multiple
Lf for different f .

Comparison with [3,4]. Our way of combining lattice-based LSS with pairing-
based IPFE differs from that of [3,4], in order to address unique technical difficul-
ties. To start with, they use an LSS scheme based on the BGG ABE and inherits
the selective security. Second, our KP-ABE scheme reveals part of the secret h
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Lx in the clear (in ciphertext), and only compute Lf in the exponent, whereas [3,
4] computes the entire LSS in the exponent. This is because the decryptor needs
to perform the non-linear rounding operation on the result of homomorphic eval-
uation on Lx, in order to obtain Round(sT(Bf − f(x)G)r + eT

f ) for decryption.
Keeping Lx in the clear allows rounding, but renders security harder to prove.

Furthermore, the security proof of AB-LFE relies on noise flooding — their
technique can only show that Lf + ẽ is secure for a super-polynomially large
ẽ. But noise flooding is incompatible with computing Lf in the exponent, since
we must keep noises polynomially small in order for decryption to be efficient
(which performs discrete logarithm). Without noise flooding, we cannot prove
that unauthorized shares are pseudorandom as in [36]. Nevertheless, we show
that unauthorized shares are “entropic”, captured by a new notion called non-
annihilability, and that the “entropic” Lf computed in the exponent still hides
the message µ. The proof of non-annihilability combines techniques from AB-
LFE and leakage simulation [16,25]. The work of [3,4] does not encounter issues
with super-polynomial noises.

We add a note on our doubly succinct CP-ABE for Boolean formulae. It is
closer to the CP-ABE scheme of [3,4]. However, to obtain constant-size keys,
we rely on an IPFE scheme with strong (selective) simulation security — it
enables simultaneously simulating a polynomial number k of ciphertexts, by
programming k inner products for every secret key, while keeping the secret key
constant-size (independent of k). Such strong simulation is impossible in the
standard model following an incompressibility argument. We show that this is
possible in GGM, in particular, the IPFE scheme of [1] satisfies it. IPFE with
such strong simulation may find other applications.

Next, we explain our ideas in more details.

Combining LSS with IPFE. An IPFE scheme enables generating keys isk(vj)
and ciphertexts ict(ui) associated with vectors vj ,ui ∈ ZN

p such that decryption
reveals only their inner products ⟨ui,vj⟩ and hides all other information about
ui encrypted in the ciphertexts (whereas vj associated with the keys are public).
It can be based on a variety of assumptions such as MDDH, LWE, or DCR [1,2].

A nearly linear secret sharing scheme enables generating shares Lf , L0, {Lb
i}

associated with a policy f and some secret µ, such that for any input x ∈ {0, 1}ℓ,
its corresponding subset of shares Lx = (L0, {Lx[i]

i }), together with Lf can be
used to approximately reconstruct the secret µ if and only if f(x) = 0:

(Lf , L0, {Lb
i}i∈[ℓ],b∈{0,1})← Share(f, µ; r)

f(x) = 0 =⇒ µ ≈ Recon(f,x, Lf , L
x).

Near linearity means that Recon is linear in the shares Lf , L
x and that its output

is close to the secret µ.
How can we combine these two primitives to construct a KP-ABE?We require

L0, {Lb
i} to be independent of f and µ, and Lf to be linear in µ and the random-

ness r of Share. The first requirement allows us to simply put Lx in the ciphertext.
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The second requirement allows us to encode µ, r into ict’s and the coefficients (of
Lf as a function of µ, r) into isk’s, so that their inner product is exactly Lf . For
convenience, we write JxKi for gxi and use additive notation for the groups. The
idea is as follows:

kp.skf : JδK2, isk(coefficients of δLf )

kp.ctx : Lx, ict(µ, r)

}
JδLf KT and Lx. (1)

If f(x) = 0, the linear reconstruction can be carried out in the exponents to
approximately obtain JδµKT. Decryption enumerates all possible errors to recover µ
exactly. We stress again that different from [3,4], we keep Lx in the clear (in the
ciphertext), instead of computing the entire secret sharing Lx, Lf in the expo-
nent, which is important for achieving constant-size keys, but makes proving
security more difficult.

We construct a secret sharing scheme that features Lf of constant size, which
translates to KP-ABE with constant-size secret keys.

Combining secret sharing and IPFE to construct CP-ABE is similar. We can
encode L0, {Lb

i} in ict’s, and a “selection” vector according to x in isk’s, so that
their inner products are exactly Lx:

cp.skx : JδK2, isk(δ · selection vector for x)

cp.ctf : JLf K1, ict(L0, {Lb
i}).

}
JδLf KT and JδLxKT. (2)

We use an IPFE scheme with secret keys of constant size, independent of the
vector dimension or the number of ciphertexts, and a secret sharing scheme
whose Lf , L

x grows only with the input length |x|. This translates to CP-ABE
with double succinctness.

Lattice-Based Nearly Linear Secret Sharing. The BGG+ ABE scheme
introduces an important homomorphic evaluation procedure: Given public matrices
B = (A1|| · · · ||A|x|), and the following encoding of an input x, one can homo-
morphically evaluate any circuit f on the encodings to obtain an encoding of the
output.

cT = sT(B− (1,x)⊗G) + eT

2,

EvalCX(c2, f,x) = cT

f = sT(Bf − f(x)G) + eT

f , where EvalC(B, f) = Bf . (3)

As discussed before, the BGG+ ABE scheme uses lattice trapdoor simulation
technique, which we try to avoid in order to get constant-size key and adaptive
security.

We hence turn to using the weaker primitive of AB-LFE scheme introduced
by [36]. It is a two-party protocol between a sender and a receiver who share
the LWE public matrix B as the common reference string. The receiver first
computes a digest Bf = EvalC(B, f) for a function f and sends it to the sender.
Upon receiving the digest, the sender masks a message µ by an LWE sample
c0 = sTvf + e+ µ⌊q/2⌉, where r = G−1(a) and vf = Bfr are analogues of rA,f
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and v in BGG+. It also encodes an attribute x into LWE samples c1 as described
below.

AB-LFE.crs : B

AB-LFE.digest : Bf = EvalC(B, f)

∣∣∣∣∣∣∣∣∣∣∣∣

AB-LFE.ctf,x(µ) :

a $← Zn
q

c0 = sT BfG
−1(a)︸ ︷︷ ︸

vf

+µ⌊q/2⌉+ e

cT

1 = sT(B− (1,x)⊗G) + eT

1

To decrypt, first run EvalCX(c1, f,x) to obtain cf = sT(Bf − f(x)G) + eT

f . If
f(x) = 0, the decryptor can compute c0 − cT

fr = µ⌊q/2⌉+ (e− eT

fr) and round
it to recover µ.

Observe that the above scheme can be viewed as a nearly linear secret sharing
scheme, where the shares chosen by x are exactly Lx = c1 and the shares depen-
dent on f and µ is Lf = c0. At the moment, the bit-length of Lf is Θ(log q). Since
the noise growth during the homomorphic evaluation is exponential to the depth
of the computation, q is a poly(d, λ)-bit modulus in order to accommodate for the
noise growth. We next turn to reducing the size of Lf to a constant independent
of d.

Rounding to Make Lf Constant-Size. Since the encrypted message is only a
single bit, we can afford to lose a lot of precision in the above decryption process.
In particular, the scheme is still correct if we round down the digestBf to a much
smaller, depth-independent, modulus p≪ q, and change c0 to use the rounded
digest (while keeping cT

1 unchanged):

c′0 = sT⌊BfG
−1(a)⌉p + µ⌊p/2⌉+ e over Zp.

During decryption, one now computes, over Zp,

c′0 − ⌊cT

fG
−1(a)⌉p = c′0 − ⌊sTBfG

−1(a) + f(x)sTa+ eT

fG
−1(a)⌉p

= c′0 −
(
sT⌊BfG

−1(a)⌉p + f(x)⌊sTa⌉p + ⌊eT

fG
−1(a)⌉p︸ ︷︷ ︸
e′f

+ es
)

= µ⌊p/2⌉ − f(x)⌊sTa⌉p + (e− e′f − es), (4)

where the rounding error es is of magnitude |es| = Θ(∥s∥1). As long as the error
terms are much smaller than p/2, when f(x) = 0, one can still recover µ. We can
now recast the above rounded AB-LFE scheme into a secret sharing scheme with
Lf of bit-length Θ(log p), independent of depth d. (Only the larger modulus q
will, and thus ef itself can, grow with d.)

SS.pp : a,B mod q;

Lf : c′0 = sT⌊BfG
−1(a)⌉p + µ⌊p/2⌉+ e mod p≪ q;

Lx : cT

1 = sT
(
B− (1,x)⊗G

)
+ eT

1 mod q.
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As shown in Eq. (1), to obtain KP-ABE, we will use a pairing-based IPFE
to compute Lf in the exponent. Specifically, the IPFE secret key isk encodes
(⌊BfG

−1(a)⌉p, ⌊p/2⌉), and the IPFE ciphertext ict encodes (sT, µ). Together,
they decrypt to exactly JLf KT. Since both vectors live in Zp, the KP-ABE key,
consisting of only isk, is of size independent of d. Our secret sharing scheme
is summarized below. It turns out that arguing security is actually tricky and
requires additional modification.

Our Secret Sharing Scheme for KP-ABE

Setup(1λ) : pp = LFE.pp = (a,B) = (a,A0,A1, . . . ,Aℓ).

ShareX(pp) : Compute LWE samples

L0 = sTA0 + e0, Lb
i = sT(Ai − bG) + eT

i .

Output (L0, {Lb
i}, s).

ShareF(pp, f, µ, s) : Compute Bf = EvalC(B, f).

Output Lf = sT⌊BfG
−1(a)⌉p + µ⌊p/2⌉.

∀x ∈ {0, 1}ℓ : Lx =
(
L0,L

x[1]
1 , . . . ,L

x[ℓ]
ℓ

)
Recon(pp, f, Lf ,x,L

x) : If f(x) = 1, output ⊥.
Otherwise, compute cf = EvalCX(Lx, f,x), and

recover µ from Lf − ⌊cT

fG
−1(a)⌉p ≈ µ⌊p/2⌉.

Non-Annihilability by Leakage Simulation. However, using AB-LFE cre-
ates a further complication, as its security relies on flooding the e′f , es terms
(which may contain information of s and x) with e, in order to prove pseudoran-
domness of Lf . By Eqs. (3, 4), when f(x) = 1 we have

Lf = ⌊EvalCX(Lx, f,x)TG−1(a)⌉p
− ⌊sTa+ ea⌉p + µ⌊p/2⌉+ (e− e′f − es). (5)

Observe that in the above, for later convenience, an additional polynomial LWE
noise ea is introduced in the term ⌊sTa+ ea⌉p (which by rounding simply equals
to ⌊sTa⌉p).

At this point, in order to show that Lf is pseudorandom, given that x is
selected before Setup, one could program the public matrices as Ai = A′

i + xiG
according to x, where B′ = (A′

0, ..,A
′
ℓ) are sampled at random. And one would

hope to apply LWE to argue that

Lx = sT(B+ (1,x)⊗G) + eT

1 = sTB′ + eT

1,

and (sTa+ ea) are jointly pseudorandom. However, the noise terms e′f and es
may leak information about e2 and s.

The solution in [36] is noise flooding. By setting e to be super-polynomially
larger than (e′f + es), we have e− e′f − es ≈s e. By LWE, we can now switch Lx

and (sTa+ ea) to random and conclude that Lf is pseudorandom.
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However, the unique challenge here is that Lf is going to be computed in the
exponent of the pairing group, and decryption only recovers (µ⌊p/2⌉+ e) in the
exponent. When e is super-polynomial, we can no longer extract µ out of the
exponent. Our solution is avoiding flooding altogether and remove the noise e
from Lf . As such, we cannot prove pseudorandomness of Lf , but only a weaker
security notion that we call non-annihilability (for Lf ). This notion captures that
Lf is still entropic.

Non-Annihilability. Non-annihilability requires that no adversary, after seeing
Lx (but not Lf ) can come up with an affine function γ such that γ(Lf ) = 0. As
we will see, this security notion, combined with GGM, suffices for our proof.

Towards proving non-annihilability, we want to show thatLf is highly entropic
(even without e). Our idea is to view the noises e′f , es as leakage of the ran-
domness that generates Lx and (sTa+ ea) as well as the other information,
and simulate e′f , es using leakage simulation [16,25]. Crucially, because e′f , es
have polynomial range, the simulation can run in polynomial time. More pre-
cisely, the leakage simulation lemma of [16] states that for any joint distribution
(X,Z) ∼ D (Z viewed as leakage of randomness for generating X), adversary
size bound s, and error bound ε, there is a simulator h simulating Z as h(X)
such that (X,Z) and (X,h(X)) are (s, ε)-indistinguishable. Furthermore, the
running time of h is O(sε−22|Z|). Suppose for contradiction that there is an
adversary A of size s = poly(λ) winning the non-annihilability game with prob-
ability 2ε ≥ 1/poly(λ). Consider the joint distribution D of running the game
with A, defined in the first line below:

D → {X = (pp,x,Lx, f, µ, γ, ψ = sTa+ ea), Z = e′f + es}
s,ε
≈ Hybrid 1→ {X = (pp,x,Lx, f, µ, γ, ψ = sTa+ ea), Z = h(X)}

≈ Hybrid 2→ {X = (pp,x,Lx random, f, µ, γ, ψ random), Z = h(X)}.

Using (X,Z), one can emulate Lf as (cf. Eq. (5) with e removed and (e′f + es)
replaced by Z)

Lf = ⌊EvalCX(Lx, f,x)G−1(a)⌉p − ⌊ψ⌉p + µ⌊p/2⌉ − Z.

Since Z = e′f + es, and s, ε−1 are all polynomially bounded, we can simulate
Z by h(X) in polynomial time (Hybrid 1). Now, we can apply LWE to switch
Lx, ψ = sTa+ ea to random (Hybrid 2). At this point, it seems that Lf is just
pseudorandom by the pseudorandomness of ψ. However, there is a subtle issue:
Z = h(X) depends on ψ contained in X, and hence (⌊ψ⌉p − Z) may not be
pseudorandom, and neither may be Lf . Despite this dependency, thanks again
to (e′f + es), thus h(X), being polynomially bounded, (−⌊ψ⌉p + h(X)) still has
almost full entropy (up to a logarithmic loss). Therefore, the probability that
Lf is annihilated by an affine function γ chosen by A before ψ is randomly
sampled is negligible. This gives a contradiction and concludes the proof of non-
annihilability.
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Multi-Key Security of KP-ABE in GGM. Our KP-ABE scheme combines
an IPFE scheme with the secret sharing scheme described above. As described
before, in our KP-ABE scheme, we only compute the Lf part of secret sharing
using IPFE, and leave the Lx part in the clear so that rounding can be performed.
To achieve multi-key security, we further employ the idea from [3,4] to “isolate”
each ABE secret key in GGM by multiplying it with a fresh random element δ.

kp.sk : JδK2, isk
(
Jδ(⌊BfG

−1(a)⌉p, ⌊p/2⌉)K2
)

kp.ct : Lx, ict(J(s, µ)K1)

}
decrypt to JδLf KT.

The decryption algorithm first computes IPFE decryption to recover JδLf KT. It
then computes (homomorphically in the exponent of gT)

JδLf KT − JδKT⌊cT

fG
−1(a)⌉p = Jδ

(
µ⌊p/2⌉ − (e′f + es)

)
KT.

Since the noise (e′f + es) has a polynomial range, the decryption algorithm enu-
merates all its possible values to recover µ.

Multi-key security, at a high level, relies on the fact that in GGM, an adver-
sary can only learn information about JδLf KT by submitting zero-test queries of
affine functions. When the adversary attacks multiple keys, it essentially submits
zero-test queries over the terms {δjLfj}. Let γ({δjLfj}) be any zero-test query
submitted by A, we can view it as a degree-1 polynomial over δj ’s:

γ({δjLfj}) =
∑
j

γj(Lfj )δj + γ0,

where γj(Lfj ) is the coefficient of δj . Since each δj is sampled independently at
random, by Schwartz–Zippel, with all but negligible probability, γ evaluates to
zero only if all γj ’s evaluate to zero. In other words, the adversary is effectively
constrained to annihilate each Lfj individually. By the non-annihilability for Lf ,
if γj is not the zero function, it evaluates to non-zero with overwhelming proba-
bility. Hence the adversary learns no information of each Lfj and the message µ
encoded in them.

Our KP-ABE Scheme

Setup(1λ) : Output mpk = impk for IPFE, pp for secret sharing

and msk = imsk for IPFE.

KeyGen(msk, C) : Sample δ $← Zp and compute Bf = EvalC(B, f).

Output sk = (JδK2, isk(Jδ(⌊BfG
−1(a)⌉p, ⌊p/2⌉)K2)).

Enc(mpk,x, µ) : Compute (L0, {Lb
i}, s)

$← ShareX(pp).

Output ct = (Lx, ict(Js, µK1)).
Dec(mpk, sk, C, ct,x) : Run IPFE decryption to recover JδLf KT.

Compute cf = EvalCX(Lx, f,x) and find µ from

JδLf KT − JδKT⌊cT

fG
−1(a)⌉p = Jδ(µ⌊p/2⌉ − es − e′f )KT.
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Summary of Our KP-ABE. Combining the above secret sharing scheme
with an IPFE scheme, we obtain a KP-ABE scheme for bounded-depth circuits
as summarized above.

We note that our KP-ABE scheme achieves the same asymptotic ciphertext
compactness as the BGG+ scheme. Let d be an upper bound on the depth of the
policy f , then |ct| = poly(λ, d)|x|. The secret keys of our scheme contains only
O(1) group elements, in fact only three using the IPFE scheme of [2] in a group
of order p. We set log p = poly(λ) and hence obtain constant size keys.

Security Sketch for KP-ABE. Finally, for completeness, we add a security
sketch that puts the previous ideas together. We emphasize that that we only use
GGM in the last argument, when we need to isolate the share Lfj for each f .

The selective security game of ABE (summarized inH0 below) at a high level is
as follows: The adversary A first decides a challenge attribute x∗ before receiving
a master public key mpk and a ciphertext ct∗ from the challenger C. It is then
allowed to repeatedly query secret keys skj for functions fj . The adversary wins
if every queried function fj satisfies fj(x

∗) ̸= 0, and if it guesses the encrypted
bit µ correctly.

H0

C A
x∗

mpk, ct∗ = Lx∗
, ict(Js, µK1)

fj

skj =
(
JδjK2,

isk(Jδj(⌊BfG
−1

(a)⌉p, ⌊p/2⌉)K2)
) repeat

H1

C A
x∗

mpk, ct∗ = Lx∗
, ˜ict(⊥)

fj
IPFE
===⇒

skj =
(
JδjK2,

ĩsk(JδjLfj
K2)

) repeat

Note that we can generate the IPFE ciphertext ict(Js, µK1) before any IPFE
secret keys isk(Jδ(⌊BfjG

−1(a)⌉p, ⌊p/2⌉)K2). Relying on the selective simulation
security of IPFE, we can (as summarized in H1 above) replace ict(Js, µK1) with
a simulated ciphertext ĩct(⊥), and each isk(Jδj(⌊BfjG

−1(a)⌉p, ⌊p/2⌉)K2) with a

simulated secret key ĩsk(JδjLfj K2) using their inner products.
In GGM, we can now argue that A only learns information about µ through

zero-test queries over {δjLfj}. As argued before, by the non-annihilability of Lf ,
the adversary learns no information of µ.

Building Doubly Succinct CP-ABE. To build a CP-ABE scheme we need
a different secret sharing construction, because the previous rounding solution
does not work anymore. As described in Eq. (2), in the CP case, we use IPFE
to compute Lx in the exponent, hence cannot perform rounding on it. Without
rounding, the ef term, as a result of EvalCX, in Eq. (4) becomes super-polynomial.
This again makes the ABE decryption inefficient.

Fortunately, for Boolean formulae, the work of [23] develops specialized homo-
morphic evaluation procedures EvalF,EvalFX that ensure the evaluation noise ef
has a polynomial range. Therefore, our secret sharing scheme for CP removes
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the rounding and replaces EvalC,EvalCX by EvalF,EvalFX. We summarize our
modified secret sharing scheme below (Setup,ShareX are kept the same).

Modified Secret Sharing Scheme for CP-ABE

ShareF′(pp, f, µ, s) : Compute Bf = EvalF(B, f).

Output Lf = sTBfG
−1(a) + µ⌊p/2⌉+ e.

Recon′(pp, f, Lf ,x,L
x) : If f(x) = 1, output ⊥.

Otherwise, compute cf = EvalFX(Lx, f,x),

and find µ from Lf − cT

fG
−1(a) = µ⌊p/2⌉+ (e− e′f ).

As noted before, in our CP-ABE scheme we use IPFE to compute Lx.
To achieve double succinctness, we carefully implement a pair of functions
Sel,Encode using an IPFE with constant-size isk’s, such that Sel(JxK2) and
Encode(JL0, {Lb

i}K1) decrypts exactly to JLxKT. We obtain a CP-ABE scheme
for Boolean formulae as summarized below.

Our CP-ABE Scheme

Setup(1λ) : Output mpk = impk for IPFE and pp for secret sharing,

and msk = imsk for IPFE.

KeyGen(msk,x) : Sample δ $← Zp.

Output sk = (JδK2,Sel(JδxK2)).

Enc(mpk, f, µ) : Compute (L0, {Lb
i}, s)

$← ShareX(pp)

and Lf
$← ShareF′(pp, f, µ, s).

Output ct = (JLf K1,Encode(JL0, {Lb
i}K1)).

Dec(mpk, sk,x, ct, f) : Run IPFE decryption to recover JδLxKT.
Compute Jδcf KT = EvalFX(JδLxKT, f,x),

and find µ from

JLf K1JδK2 − JδcT

f KTG−1(a) = Jδ(µ⌊p/2⌉+ (e− e′f ))KT.

We now describe the Sel,Encode functions. Let ℓ = |x| denote the length of
x. The Sel algorithm first computes the “selection vector” for x as

v = (1, 1− x[1],x[1], . . . , 1− x[i],x[i], . . . ),
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and then computes an IPFE secret key isk(JvK2). The Encode algorithm places
input shares in the matrix

L0 0 0 · · · 0 0 · · · 0 0

0 L0
1 L1

1 · · · 0 0 · · · 0 0

0
...

...
. . .

...
...

. . .
...

...

0 0 0 · · · L0
i L1

i · · · 0 0

0
...

...
. . .

...
...

. . .
...

...

0 0 0 · · · 0 0 · · · L0
ℓ L1

ℓ


and computes one IPFE ciphertext for each row ul of the matrix. Our CP-ABE
has both succinct keys and ciphertexts: |sk| = O(1) and |ct| = poly(λ)|x|2.

Simulation Security for IPFE in GGM. Similar to the security proof for
KP-ABE, our security proof for CP-ABE requires selective simulation security
of IPFE.

Sel : isk(JvK2)
Encode : ∀l ict(JulK1)

∣∣∣∣∣ c
≈

ĩsk(JLxK2)

ĩct(⊥)

Note that above we need to simulate multiple IPFE ciphertexts and program all
their decryption outcome Lx in each secret key. This is possible using existing
IPFE schemes [2,32], but at the cost of having the secret key size proportional
to the number k = |Lx| of ciphertexts to be simulated. However, we aim for
constant-size secret keys (independent of k). Unfortunately, in the standard
model, it is impossible to achieve simulation security for k ciphertexts if the
secret key is shorter than k bits by an incompressibility argument [12]. We show
that simulation security for unbounded polynomially many ciphertexts can nev-
ertheless be achieved with constant-size secret keys in the GGM. In particular,
the IPFE scheme of [1], whose secret key contains a single group element, satisfies
it. Roughly speaking, in the GGM, an adversary only learns information about
values in the exponent through zero-test queries over the pairings of keys and
ciphertexts, which the simulator can answer by translating them into zero-test
queries over the inner products. As a side note, we can in fact prove adaptive
simulation security for the [1] IPFE scheme, though our ABE scheme only relies
on selective simulation security.

Achieving Adaptive Security. Examining the security sketch for KP-ABE,
we observe that in our construction, the ict(Js, µK1) component of ciphertext ct∗

doesn’t depend on the challenge attribute x∗. This means that even in the adap-
tive KP-ABE game, where x∗ is decided after some key queries, the ict(Js, µK1)
component of ct∗ can be fixed at the beginning of the game, before any key
queries. Therefore, we can still rely on selective simulation security of IPFE for
the first proof step.

However, when we next need to invoke non-annihilability for Lf , we run into
a problem: the security for Lf only holds when x∗ is chosen before the LWE
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public matrix B is revealed in the public parameter pp of the secret sharing. To
achieve adaptive security, what we need is adaptive non-annihilability property,
which allows x∗ to be chosen adaptively dependent on pp. We show that this is
implied by the adaptive LWE assumption formulated in [36].

In summary, we obtain adaptively secure KP-ABE for circuits and CP-ABE
for Boolean formulae both with constant-size keys from GGM and Adaptive
LWE.

3 Preliminaries

Let λ be the security parameter, which runs through N. Except in the definitions,
we suppress λ for brevity. We write [a..b] for the set {a, a+ 1, . . . , b} and [n] for
[1..n]. Vectors and matrices are written in boldface, and are always indexed
using [·], i.e., A[i, j] is the (i, j)-entry of A. The infinity norm of a vector and its
induced operator norm of a matrix are denoted by ∥·∥∞. We will use the following
lemma for various proofs:

Lemma 1 (Schwartz–Zippel). Let P (z) be a non-zero polynomial with Z inde-
terminates of degree at most d over Zp, then Pr

[
z $← ZZ

p : P (z) = 0
]
≤ d/p.

3.1 Attribute-Based Encryption

Definition 1 (ABE [24]). Let P = {Pλ}λ∈N be a sequence of predicate families
with Pλ =

{
P : XP × YP → {0, 1}

}
. An attribute-based encryption scheme for

P consists of 4 efficient algorithms:

– Setup(1λ, P ) takes as input the security parameter 1λ and a predicate P ∈ Pλ,
and outputs a pair of master public/secret keys (mpk,msk).

– KeyGen(msk, y) takes as input the master secret key msk and some y ∈ YP ,
and outputs a secret key sk.

– Enc(mpk, x, µ) takes as input the master public key mpk, some x ∈ XP , and
a message µ ∈ {0, 1}, and it outputs a ciphertext ct.

– Dec(mpk, sk, y, ct, x) takes as input the master public key mpk, a secret key sk,
its associated y, a ciphertext ct, and its associated x, and is supposed to recover
the message if P (x, y) = 1.

The scheme is required to be correct, i.e., for all λ ∈ N, P ∈ Pλ, x ∈ XP , y ∈ YP ,
µ ∈ {0, 1} such that P (x, y) = 1, it holds that

Pr

(mpk,msk) $← Setup(1λ, P )

sk $← KeyGen(msk, y)

ct $← Enc(mpk, x, µ)

: Dec(mpk, sk, y, ct, x) = µ

 = 1.

In KP-ABE, each y ∈ YP describes a function from XP to {0, 1}, each x ∈ XP

is an input (bit-string) to the functions, and P (x, y) evaluates y on x. When we
want to emphasize x (resp. y) is a bit-string (resp. circuit), we write x (resp. C)
instead.
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Security. Due to space constraints, we refer the readers to [4,29,31] for the
definitions of adaptive, selective, and very selective security for ABE.

Computation Model. We will consider KP-ABE for bounded-depth circuits
for any polynomial bound. Our CP-ABE for NC1 can be found in the full ver-
sion [31].

Definition 2 (KP-ABE for circuits). A KP-ABE for (bounded-depth) circuits
is ABE for PCkt:2

XCkt
λ,ℓ,d = {0, 1}ℓ, Y Ckt

λ,ℓ,d =
{
Boolean circuit C : {0, 1}ℓ → {0, 1} of depth d

}
,

PCkt
λ,ℓ,d(x, C) = ¬C(x), PCkt

λ =
{
PCkt
λ,ℓ,d

∣∣ℓ, d ∈ N, d ≤ Dλ

}
, PCkt =

{
PCkt
λ

}
λ∈N.

Here, Dλ is a super-polynomial function (specified by the constructions). As an
input to Setup, the predicate PCkt

λ,ℓ,d is represented by (1ℓ, 1d).

Note that since Setup takes the unary representation of ℓ, d, which will be poly-
nomial in λ, as input, they are bounded by that polynomial once the system is set
up. However, d can be up to Dλ, which is super-polynomial in λ, so one can set
up the system for any polynomial depth, i.e., our KP-ABE for circuits supports
bounded-depth circuits for arbitrary polynomial depth bound.

Compactness and Succinctness. Since KeyGen,Enc run in polynomial time,
the lengths of key and ciphertext could grow polynomially in |y|, |x|, respectively.
Moreover, the input length is an argument passed into Setup, so both keys and
ciphertexts could have polynomial size dependency on it. We are interested in
ABE schemes with short keys and ciphertexts:

Definition 3 (ABE efficiency). A KP-ABE for circuits (of depth at most d) has

– succinct keys if |sk| = poly(λ, d) is independent of |C|, |x|;
– compact ciphertexts if |ct| = |x|poly(λ, d) is independent of |C|.

We remark that an ideally succinct component should be of length poly(λ).
Nevertheless, our version defined above is still meaningful as the circuit size can
be much larger than its depth.

3.2 Lattice Tools

Homomorphic Evaluation. We use the following abstraction of homomorphic
evaluation for ABE over lattices, developed in a series of works [11,19,23] with
the syntax in [13,14]. The actual algorithm we use is a slightly changed version of
that for ABE for circuits in [11]. In our version, instead of using G as the gadget
matrix, we consider QG for any invertible Q. Note that G−1(Q−1 × ·) is a right
inverse of QG with binary output. We replace any invocation of G−1(·) in the
original algorithms by G−1(Q−1 × ·) to obtain the following:

2 When working with lattices, it is more convenient to indicate authorization of decryp-
tion by zero, thus the negation of C(x).
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Lemma 2 (homomorphic evaluation for circuits, adapted from [11]). EvalC and
EvalCX are two efficient deterministic algorithms. Let n, ℓ, q be positive integers,
m = n⌈log2 q⌉, G the gadget matrix, B a matrix over Zq of shape n× (ℓ+ 1)m,
Q an invertible matrix over Zq of shape n× n, x an ℓ-bit string (row vector), and
C a circuit of depth d with input length ℓ. The algorithms work as follows:

– EvalC(B,Q, C) outputs HC ∈ Z(ℓ+1)m×m;

– EvalCX(B,Q, C,x) outputs ĤC,x ∈ Z(ℓ+1)m×m.

The outputs satisfy

∥HT

C∥∞, ∥Ĥ
T

C,x∥∞ ≤ (m+ 1)d,
(
B− (1,x)⊗QG

)
ĤC,x = BHC − C(x)QG.

Gadget Matrix [33]. Let n, q be positive integers and m = n⌈log2 q⌉. The
gadget matrix isG = gT ⊗ In, where g

T = (20, 21, . . . , 2⌈log2 q⌉−1). There exists an
efficiently computable function G−1 : Zn

q → {0, 1}
m

such that G ·G−1(u) = u
for all u ∈ Zn

q .

Assumption. We rely on the following assumption, a small-secret version of
adaptive learning with errors (LWE), which itself is a natural variant of LWE
first proposed in [36]:

Definition 4 (small-secret adaptive LWE). We suppress the security parameter λ
and all the parameters are dependent on λ. Let n be the dimension, q the modulus,
χ the error distribution, m = n⌈log2 q⌉, and G the gadget matrix. The small-
secret adaptive LWE assumption sALWEn,q,χ states that Exp0sALWE ≈ Exp1sALWE,

where ExpbsALWE(1
n, q, χ) with adversary A proceeds as follows:

– Setup. The challenger launches A and receives (1ℓ, 1m
′
) from it. The chal-

lenger samplesA $← Zn×m′

q ,B $← Zn×(ℓ+1)m
q , and a uniformly random invert-

ible Q ∈ Zn×n
q . It sends A,B,Q to A.

– Challenge. A submits x ∈ {0, 1}ℓ. Depending on b,

if b = 0: s $← χn , e $← χm′
, f $← χ(ℓ+1)m,

cT = sTA+ eT, dT = sT
(
B− (1,x)⊗QG

)
+ f T;

if b = 1: cT $← Zm′

q , dT $← Z(ℓ+1)m
q .

The challenger sends c,d to A.
– Guess. A outputs a bit, which is the outcome of the experiment.

Lemma 3 (small-secret adaptive LWE). The small-secret adaptive LWE assump-
tion holds if the adaptive LWE assumption [36] holds for the same parameters.

The proof of Lemma 3 can be found in the full version [31].
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Parameter Settings. We rely on the hardness of small-secret LWE with subex-
ponential modulus-to-noise ratio. For some 0 < δ < 1

2 , the small-secret LWE
assumption is assumed to be hard when the dimension is n = poly(λ), the prime

modulus is q = O(2n
δ

), and the error distribution χ is the discrete Gaussian over
Z of width B/λ truncated within [−B..B] for B = poly(λ).3 Hereafter we default
to these parameters.

3.3 Pairing Groups and Generic Asymmetric Pairing Group Model

We construct our ABE using pairing groups and prove its security in the generic
pairing group model.

Pairing Groups. Throughout the paper, we use a sequence of pairing groups

G = {(pλ, Gλ,1, Gλ,2, Gλ,T, gλ,1, gλ,2, gλ,T, eλ)}λ∈N,

where Gλ,1 (resp. Gλ,2, Gλ,T) is a cyclic group generated by gλ,1 (resp. gλ,2, gλ,T)

of prime order pλ = 2λ
Θ(1)

and eλ : Gλ,1 ×Gλ,2 → Gλ,T is the pairing operation,
satisfying eλ(g

a
λ,1, g

b
λ,2) = gabλ,T for all integers a, b. We require the group opera-

tions as well as the pairing operation to be efficiently computable.
For a fixed security parameter λ, we denote gxλ,i by JxKi for i ∈ {1, 2,T}.

The notation extends to matrices, JAKi = gAλ,i, where exponentiation is done
component-wise. With these notations, the group operations are written addi-
tively and the pairing operation multiplicatively. For example, JAK1−BJCK1D =
JA−BCDK1 and JXK2JYK1 = JXYKT.

Generic Asymmetric Pairing Group. The security of our ABE scheme holds
in the generic asymmetric pairing group model (GGM), where the pairing groups
can only be accessed via (non-unique) handles representing group elements and
oracles for operating the handles. Due to space constraints, we refer the readers
to the full version [31] for the formal definition of the version we use in this work.

3.4 Inner-Product Functional Encryption

Inner-product functional encryption schemes enable generating keys and cipher-
texts tied to vectors. Decryption reveals the inner product and nothing more
about the plaintext vector. In this work, we consider IPFE schemes based on
pairing, where keys and ciphertexts are encoded in the two source groups and
decryption recovers inner products encoded in the target group.

Definition 5 (group-based IPFE). Let G be a sequence of pairing groups of
order {pλ}λ∈N. An inner-product functional encryption (IPFE) scheme based on
G consists of 4 efficient algorithms:

3 This truncation only introduces an exponentially small statistical error.
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– Setup(1λ, 1N ) takes as input the security parameter 1λ and the vector dimen-
sion 1N . It outputs a pair of master public/secret keys (impk, imsk).

– KeyGen(imsk, JvK2) takes as input the master secret key and a vector (encoded
in G2), and outputs a secret key isk.

– Enc(impk, JuK1) takes as input the master public key and a vector (encoded
in G1), and outputs a ciphertext ict.

– Dec(isk, JvK2, ict) takes a secret key, the vector in the secret key, and a cipher-
text as input, and is supposed to compute the inner product encoded in GT.

The scheme is required to be correct, meaning that for all λ,N ∈ N,u,v ∈ ZN
pλ
,

Pr

(impk, imsk) $← Setup(1λ, 1N )

isk $← KeyGen(imsk, JvK2)

ict $← Enc(impk, JuK1)

: Dec(isk, JvK2, ict) = JuTvKT

 = 1.

Definition 6 (key-succinct IPFE). An IPFE scheme (Definition 5) is (key-
)succinct if the length of isk is a fixed polynomial in λ, independent of N .

Security. Our basic security notion is selective simulation:

Definition 7 (selective simulation [32,41]). A simulator for an IPFE scheme
(Definition 5) consists of 3 efficient algorithms:

– S̃etup(1λ, 1N ) takes the same input as Setup, and outputs simulated keys ( ˜impk,˜imsk).

– K̃eyGen(˜imsk, JvK2, JziK2) takes as input the simulated master secret key, a
vector encoded in G2, and an inner product encoded in G2. It outputs a

simulated key ĩsk.
– Ẽnc(˜imsk) takes as input the simulated master secret key. It outputs a simu-

lated ciphertext ĩct.

The IPFE scheme is selectively simulation-secure if there exists a simulator such
that Expreal ≈ Expsim, where Expreal(1

λ) or Expsim(1
λ) with A proceeds as follows:

– Challenge. The challenger launches A(1λ) and receives from it the vector
dimension 1N and the challenge vector u ∈ ZN

p .
– Setup. The challenger runs

in Expreal: (impk, imsk) $← Setup(1λ, 1N ), ict $← Enc(impk, JuK1);

in Expsim: (impk, ˜imsk) $← S̃etup(1λ, 1N ), ict $← Ẽnc(˜imsk);

and sends impk, ict to A.
– Query. The following is repeated for arbitrarily many rounds determined

by A: In each round, A submits a vector JvjK2 encoded in G2. Upon receiving
the query, the challenger runs

in Expreal: iskj
$← KeyGen(imsk, JvjK2);

in Expsim: iskj
$← K̃eyGen(˜imsk, JvjK2,uTJvjK2);

and sends iskj to A.
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– Guess. A outputs a bit b, which is the output of the experiment.

Lemma 4 ([2,41]). Assuming the MDDH assumption (true in GGM), there exists
a succinct selectively simulation-secure IPFE scheme. Its components have sizes

|impk| = k(k + 1 +N)|G1|, |imsk| = (k + 1)N log2 p,

|isk| = (k + 1)|G2|, |ict| = (k + 1 +N)|G1|,

where p is the modulus, k is the MDDH parameter (can be 1 in GGM), N is the
dimension, and |Gi| is the bit-length of an element in Gi.

4 Computational Secret Sharing with Adaptive Security

Secret sharing schemes have been used extensively to construct ABE schemes.
The seminal work of [24] and a long line of follow-up works ([5,28–30,35] to name
a few) used linear secret sharing schemes to construct ABE schemes in pairing
groups. Policies with polynomial-sized shares and information-theoretic security
are in NC [8,9,15,26,34].

The works of [3,4] introduced the notion of nearly linear secret sharing with
computational security. The relaxations enabled greater expressiveness and better
efficiency. Assuming LWE, such a scheme exists for all polynomial-sized cir-
cuits [3,4,11,23] and the shares are succinct, i.e., they only grow with the circuit
depth, but not the circuit size. However, the scheme is only selectively secure.
Furthermore, due to technical reasons, when combined with pairing to obtain
ABE, it only applies to Boolean formulae (equivalent to 5-PBP).

This work follows the blueprint of [3,4] for the notions of secret sharing
schemes, but departs from them in three important aspects. First, we consider a
different security notion, adaptive non-annihilability, which is incomparable4 to
selective pseudorandomness considered in [3,4] and enables us to prove adaptive
security of ABE. Second, we further relax the linearity requirement so that it
could apply to KP-ABE for polynomial-sized circuits. Third, we refine the syntax
to separate encodings of input and function.

Definition 8 (secret sharing). Let F = {Fλ,ℓ,param}λ,ℓ∈N,param be an ensemble of
Boolean function families such that for all λ, ℓ ∈ N and param, every f ∈ Fλ,ℓ,param

is a function mapping {0, 1}ℓ to {0, 1}. A secret sharing scheme for F consists of
4 efficient algorithms:

– Setup(1λ, 1ℓ, param) takes the security parameter 1λ, the input length 1ℓ, and
additional parameters param as input. It outputs some public parameter pp.

– ShareX(pp) takes the public parameter pp as input. It outputs 1 + 2ℓ shares,

L0, {Lb
i}

b∈{0,1}
i∈[ℓ] , and some shared randomness r. For x ∈ {0, 1}ℓ, we denote

by Lx the set of shares L0, {Lx[i]
i }i∈[ℓ].

4 It is stronger in that it is adaptive, but weaker in that the shares are not necessarily
pseudorandom.
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– ShareF(pp, f, µ, r) takes the public parameter pp, a function f ∈ Fλ,ℓ,param, a
secret µ ∈ {0, 1}, and the shared randomness r (output by ShareX) as input.
It outputs a share Lf .

– Recon(pp, f,x, Lf , L
x) takes the public parameter pp, the Boolean function

f ∈ Fλ,ℓ,param, the input x ∈ {0, 1}ℓ to f , and the shares Lf , L
x as input. It is

supposed to recover the secret µ if f(x) = 0.5

The scheme is required to be correct, i.e., for all λ, ℓ ∈ N, param, x ∈ {0, 1}ℓ,
f ∈ Fλ,ℓ,param, µ ∈ {0, 1} such that f(x) = 0, it holds that

Pr


pp $← Setup(1λ, 1ℓ, param)

(L0, {Lb
i}

b∈{0,1}
i∈[ℓ] , r) $← ShareX(pp)

Lf
$← ShareF(pp, f, µ, r)

: Recon(pp, f,x, Lf , L
x) = µ

 = 1.

Definition 9 (succinct shares). A secret sharing scheme is succinct if the size of
each share output by ShareX,ShareF is a fixed polynomial in λ, independent of the
length of x or the description size of f , i.e., |Lf |, |L0|, |Lb

i | are all poly(λ, |param|),
where i ∈ [ℓ], b ∈ {0, 1}.6

While correctness (Definition 8) and succinctness (Definition 9) are defined sim-
ilarly to that of [3], our linearity and security notions are different.

4.1 Secret Sharing for Bounded-Depth Circuits from Adaptive LWE

In our KP-ABE construction, we need a secret sharing scheme with two linearity
properties. The first is a relaxation of the nearly linear reconstruction requirement
in [3]. requirement on reconstruction. Our relaxed version (Definition 10) only
stipulates it to be linear in Lf (and possibly non-linear in Lx).

Definition 10 (weakly nearly linear reconstruction). A secret sharing scheme
(Definition 8) is weakly nearly linear if it satisfies the following requirements:

– Let {pλ}λ∈N be a sequence of prime numbers. Lf = Lf is a vector over Zpλ
.

– There is an efficient coefficient-finding algorithm FindCoef(pp, f,x, Lx), taking
as input the public parameter pp, a Boolean function f ∈ Fλ,ℓ,param, an input

x ∈ {0, 1}ℓ to f , and the shares Lx. It outputs an affine function γ and a noise

bound 1B. For all λ, ℓ ∈ N, param,x ∈ {0, 1}ℓ, f ∈ Fλ,ℓ,param, µ ∈ {0, 1} such
that f(x) = 0, it holds that

Pr


pp $← Setup(1λ, 1ℓ, param)

(L0, {Lb
i}

b∈{0,1}
i∈[ℓ] , r) $← ShareX(pp)

Lf ← ShareF(pp, f, µ, r)

(γ, 1B) $← FindCoef(pp, f,x, Lx)

:

4B + 1 < pλ and

∃e ∈ [−B..B]s.t.

γ(Lf ) = µ⌊p/2⌉+ e

 = 1.

5 We use f(x) = 0 to express authorization.
6 There are 2|x|+ 2 shares, so the total share size is linear in the length of x.
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The second is an additional linearity requirement on ShareF.

Definition 11 (linear function sharing). Let {pλ}λ∈N be a sequence of primes.
A secret sharing scheme (Definition 8) has linear function sharing if r = r is a
vector over Zpλ

and ShareF(pp, f, µ, r) is deterministic and linear in (µ, r).

A (weakly) nearly linear scheme is by definition correct. Given FindCoef, we let
Recon call FindCoef to obtain γ,B and output the unique µ ∈ {0, 1} satisfying
γ(Lf )− µ⌊p/2⌋ ∈ [−B..B]. The constructed Recon is efficient and correct. Since
Recon is implied by FindCoef, we will only specify FindCoef and omit Recon when
constructing (weakly) nearly linear secret sharing schemes.

Security. We consider a new security notion called non-annihilability. Unlike [3],
which fixes the choice of policy f before Setup is run, we allow the adversary to
adaptively choose f after seeing the public parameters pp and the input shares
Lx. Another difference is that instead of requiring all shares (Lf , L

x) to look
random, we only require that efficient adversaries cannot find a non-trivial affine
function (potentially dependent on Lx) that evaluates to zero on Lf . This notion
suffices for the security proofs of our KP-ABE scheme.

Definition 12 (non-annihilability for Lf ). Let {pλ}λ∈N be a sequence of prime
numbers. A secret sharing scheme (Definition 8) is adaptively non-annihilable
for Lf if the output Lf of ShareF is a vector over Zpλ

and all efficient adversary

wins ExpANN-f with negligible probability, where in ExpAANN-f(1
λ), the adversary A

interacts with the challenger as follows:

– Setup.The challenger launchesA(1λ) and receives from it the input length 1ℓ

and the additional parameter param. The challenger sets up the system by
running pp $← Setup(1λ, 1ℓ, param), and sends pp to A.

– Share. A first submits an input x ∈ {0, 1}ℓ. Upon receiving it, the challenger

creates the input shares by running
(
L0, {Lb

i}
b∈{0,1}
i∈[ℓ] , r

)
$← ShareX(pp) and

sends Lx to A.
– Challenge. A outputs a Boolean function f ∈ Fλ,ℓ, a message bit µ ∈
{0, 1}, and an affine function γ. Upon receiving them, the challenger runs
Lf

$← ShareF(pp, f, µ, r) and determines the outcome of the experiment. A
wins if i) f(x) = 1; ii) γ is not the zero function; and iii) γ(Lf ) = 0. Other-
wise, A loses.

Furthermore, a secret sharing scheme is selectively non-annihilable if it satisfies
the above conditions, with the change that the adversary must choose the input x
before receiving pp.

We now construct a succinct secret sharing scheme, satisfying the above
linearity and adaptive annihilability for bounded-depth circuits from small-secret
adaptive LWE. Our construction is based on the attribute-based laconic function
evaluation scheme [11,36].
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Construction 1 (secret sharing for circuits). Let n be the LWE dimension,
p = 2ω(log λ) a fixed prime modulus, (the LWE parameters will be chosen during
Setup). We construct a weakly nearly linear and succinct secret sharing scheme,
with linear function sharing, for the family of bounded-depth circuits (see Defi-
nition 2):

Cktλ,ℓ,d =
{
Boolean circuit C : {0, 1}ℓ → {0, 1} of depth at most d

}
,

where d ≤ pδ/4−log2 p
(1+δ−1)Θ(1) . Let (EvalC,EvalCX) be the algorithms in Lemma 2.

– Setup(1λ, 1ℓ, 1d) takes the input length ℓ in unary as input. It sets

n = B =
(
(d+ 1)(δ−1 + 1) + log2 p+O(d)

)2/δ
, q = 2n

δ

, m = n⌈log2 q⌉,

and picks χ to be B-bounded. It next samples and sets

a $← Zn
q , A0,A1, . . . ,Aℓ

$← Zn×m
q , B = (A0,A1, . . . ,Aℓ).

It finally samples a random invertible matrix Q ∈ Zn×n
q , and outputs pp =

(n, q,m,B, χ,a,B,Q).

Note: Recall that δ is a constant depending on the underlying adaptive LWE
assumption. The choice of n,B, q are subject to the requirement of the under-
lying adaptive LWE assumption as well as correctness and efficiency of the
scheme. They satisfy q/B ≥ (m+ 1)d+1 and 4((n+ 1)B + 3) + 1 < p.

– ShareX(pp) takes the public parameter pp as input. It samples and sets

s $← χn, e0, e1, . . . , eℓ
$← χm,

L0 = sT(A0 −QG) + eT

0, {Lb
i = sT(Ai − bQG) + eT

i}
b∈{0,1}
i∈[ℓ] ,

and outputs (L0, {Lb
i}

b∈{0,1}
i∈[ℓ] , s).

– ShareF(pp, f, µ, s) takes as input the public parameter pp, some f ∈ Cktλ,ℓ,d, a
secret bit µ ∈ {0, 1}, and the shared randomness s. It runsHf ← EvalC(B,Q, f),
and sets and outputs

Lf = sT⌊BHfG
−1(a)⌉p + µ⌊p/2⌉, where ⌊x⌉p = ⌊px/q⌉.

Note: The scheme indeed has linear function sharing (Definition 11) because
ShareF is a deterministic linear function over µ, s with coefficients ⌊p/2⌉,
⌊BHfG

−1(a)⌉p. The scheme is also succinct as Lf contains 1 element in Zp,
and each share output by ShareX contains m elements in Zq. Note that m is
a fixed polynomial in λ, d and is independent of the description size of f and
the input length ℓ.

– FindCoef(pp, f,x,Lx) takes as input the public parameter pp, some x ∈ {0, 1}ℓ,
some f ∈ Cktλ,ℓ,d, and the shares Lx. If f(x) = 1, it outputs ⊥ and termi-

nates. Otherwise, it runs Ĥf,x ← EvalCX(B,Q, f,x), and defines

γ
(
Lf

)
= Lf − ⌊LxĤf,xG

−1(a)⌉p, B = (n+ 1)B + 3,
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The algorithm outputs (γ, 1B).

Note: The procedure is indeed efficient since n,B are polynomials in λ, d.
We show that FindCoef is correct, i.e., if f(x) = 0, then 4B + 1 ≤ p and
γ(Lf ) = µ⌊p/2⌉+ e for some e ∈ [−B,B]. First, by the choice of n,B,

4B + 1 = 4((n+ 1)B + 3) + 1 ≤ p.

Next, by construction we have

γ(Lf ) = Lf − ⌊LxĤf,xG
−1(a)⌉p

= sT⌊BHfG
−1(a)⌉p + µ⌊p/2⌉︸ ︷︷ ︸

Lf

− ⌊
(
sT(B− (1,x)⊗QG) + (eT

0, e
T

1, . . . , e
T

ℓ)︸ ︷︷ ︸
Lx

)
Ĥf,xG

−1(a)⌉p

(Lemma 2) = sT⌊BHfG
−1(a)⌉p + µ⌊p/2⌉

− ⌊sT(BHf − f(x)︸︷︷︸
=0

QG)G−1(a) + (eT

0, e
T

1, . . . , e
T

ℓ)Ĥf,xG
−1(a)︸ ︷︷ ︸

=ef

⌉p

= sT⌊BHfG
−1(a)⌉p + µ⌊p/2⌉ − ⌊sTBHfG

−1(a) + ef⌉p

Since G−1(a) ∈ {0, 1}m, by the definition of EvalCX (Lemma 2), we have

|ef | ≤ m · ∥Ĥ
T

f,x∥∞ · ∥(eT

0, e
T

1, . . . , e
T

ℓ)
T∥∞ ≤ (m+ 1)(d+1)B

Note that we can break a rounded sum into a sum of individually rounded
terms, at the expense of some rounding errors:

⌊sTBHfG
−1(a) + ef⌉ = ⌊sTBHfG

−1(a)⌉p + ⌊ef⌉p + ε, where |ε| ≤ 3,

⌊sTBHfG
−1(a)⌉p = sT⌊BHfG

−1(a)⌉p + es, where |es| ≤ n · ∥s∥∞ ≤ nB.

Finally, we have

γ(Lf ) = µ⌊p/2⌉+ sT⌊BHfG
−1(a)⌉p − ⌊sTBHfG

−1(a) + ef⌉p
= µ⌊p/2⌉+ sT⌊BHfG

−1(a)⌉p − ⌊sTBHfG
−1(a)⌉p − ⌊ef⌉p − ε

= µ⌊p/2⌉ − es − ⌊ef⌉p − ε︸ ︷︷ ︸
=e

.

By the definition of ef , es, ε, and the setting of q, we have

|e| ≤ |es|+ |⌊ef⌉p|+ |ε| ≤
⌈
(m+ 1)(d+1)

q/p
B

⌉
+ nB + 3 ≤ B.

Efficiency. In the above construction, the public parameters pp mainly consists

of three matrices a ∈ Zn
q ,B ∈ Zn×(mℓ)

q ,Q ∈ Zn×n
q , where n = poly(λ, d), q = 2n

δ

,
andm = n⌈log q⌉ = poly(λ, d). Therefore, the bit length of pp is |pp| = poly(λ, d)·
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ℓ. The shares L0 and {Lb
i} are 2ℓ + 1 vectors in Zm

q . Therefore |L0| = |Lb
i | =

poly(λ, d). Finally, Lf is a single element in Zp, where p = 2ω(log λ). Therefore,
|Lf | = poly(λ).

We next state non-annihilability security for Lf of the scheme. The proof can
be found in the full version [31].

Proposition 5. Assuming the small-secret adaptive LWE assumption, Construc-
tion 1 is non-annihilable for Lf .

5 KP-ABE for Bounded-Depth Circuits

In this section, we combine a succinct and weakly nearly linear secret sharing
scheme that has linear function sharing, with a succinct and selectively simulation-
secure IPFE scheme to obtain a compact and adaptively secure KP-ABE scheme.

Construction 2 (KP-ABE). All variables xλ are indexed by λ. For simplicity of
notations, we suppress λ in subscripts. Our construction uses the following two
ingredients:

– A group based IPFE scheme (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec)
with modulus p given by Lemma 4.

– A secret sharing scheme (SS.Setup,SS.ShareX,SS.ShareF,SS.FindCoef) for
bounded-depth circuits as in Construction 1. Recall that the scheme has
three properties. First, the shares are succinct: L0 and Lb

i are vectors in Zq of
length m = poly(λ, d), and LC is a single element in Zp. Second, the scheme
has weakly nearly linear reconstruction: the algorithm SS.FindCoef outputs
an affine function γ over LC that approximately evaluates to µ⌊p/2⌉. Third,
the scheme has linear function sharing: SS.ShareFSS.pp,C(·, ·) is a deterministic
linear function over Zp.

Our KP-ABE for circuits (see Definition 2) works as follows:

– Setup(1λ, P ) takes as input the security parameter λ in unary, and a predicate
P ∈ Ckt. Let ℓ, d be the attribute length and depth for P . The algorithm
runs and sets

SS.pp $← SS.Setup(1λ, 1ℓ, 1d),

(impk, imsk) $← IPFE.Setup(1λ, 1N ) for dimension N = n+ 1,

mpk = (SS.pp, impk), msk = imsk.

It outputs mpk,msk.
– KeyGen(msk, C) takes as input the master secret key msk and a policy
C ∈ Cktℓ,d. Since the secret sharing scheme has linear function sharing (Defi-
nition 11), the SS.ShareFSS.pp,C(·, ·) function is a deterministic linear function
with coefficients c = (cµ, cr). The KeyGen algorithm samples δ $← Zp \ {0},
runs

isk $← IPFE.KeyGen(imsk, JδcK2),

and outputs sk = (JδK2, isk) as the secret key for C.
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– Enc(mpk,x, µ) takes as input the master public key mpk, an attribute x ∈
{0, 1}ℓ, and a message µ ∈ {0, 1}. The algorithm runs(
L0, {Lb

i}
b∈{0,1}
i∈[ℓ] , r

)
$← SS.ShareX(SS.pp), ict $← IPFEEnc(impk, J(µ, r)K1),

and outputs ct = (Lx, ict).
– Dec(mpk, sk, C, ct,x) takes as input the master public key mpk, a secret key

sk, its associated policy C, a ciphertext ct, and its associated attribute
x. If P (x, C) = 0, the algorithm outputs ⊥ and terminates. Otherwise,
it parses sk = (JδK2, isk), and computes the coefficients c = (cµ, cr) for
ShareFSS.pp,C(·, ·) as in KeyGen. The algorithm next parses ct into Lx, ict,
and runs

ΛC
$← IPFE.Dec(isk, JδK2c, ict), (γ, 1B) $← SS.FindCoef(SS.pp, C,x,Lx).

The algorithm applies the affine function γ homomorphically in the exponent
of GT to compute γ(ΛC). It then finds and outputs the unique µ′ ∈ {0, 1}
(as the decrypted message) such that γ(ΛC) = Jµ′⌊p/2⌉ + eK1JδK2, for some
e ∈ [−B..B], by enumerating over all possible e.

Note: We show that the scheme is correct. By the correctness of IPFE and by
linear function sharing of the secret sharing scheme, we have

ΛC = Jδ(cµ · µ+ cr · r)KT = JδSS.ShareFSS.pp,C(µ, r)KT = JδLCKT.

Therefore, γ(ΛC) = Jδγ(LC)KT = Jγ(LC)K1JδK2. By the correctness of the
weakly nearly linear secret sharing scheme, the decryption algorithm outputs
the correct bit µ′ = µ.

Efficiency. By Lemma 4, for MDDH dimension k = poly(λ) and input vector
length N = n + 1, the IPFE components have bit lengths |impk|, |imsk|, |ict| =
poly(λ, d), |isk| = poly(λ). Also recall that the secret sharing components have
bit lengths |SS.pp| = poly(λ, d) · ℓ, |L0| = |Lb

i | = poly(λ, d), |LC | = poly(λ). In
the above construction,

– the master public key consists of SS.pp and impk, hence has bit length
|mpk| = |SS.pp|+ |impk| = poly(λ, d) · ℓ.

– The master secret key consists of imsk, hence has bit length
|msk| = |imsk| = poly(λ, d).

– A secret key consists of a single isk, and JδK2 in G2, hence has bit length
|sk| = |isk|+ |G2| = poly(λ).

– A ciphertext consists of a single ict, and ℓ+ 1 shares, hence has bit length
|ct| = |ict|+ (ℓ+ 1)|L0| = poly(λ, d) · ℓ.

We now state adaptive IND-CPA security of the scheme. The proof can be found
in the full version [31].

Proposition 6. Suppose in Construction 2, the IPFE scheme is selectively
simulation-secure, and the secret sharing scheme is non-annihilable for Lf . Then
the constructed KP-ABE scheme is adaptively IND-CPA in GGM.
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