
Secure Non-Interactive Reducibility is Decidable

Kaartik Bhushan1, Ankit Kumar Misra1, Varun Narayanan2?, and
Manoj Prabhakaran1

1 Indian Institute of Technology Bombay, India
{kbhushan,ankitkmisra,mp}@cse.iitb.ac.in

2 Technion, Israel
varunnkv@gmail.com

Abstract. Secure Non-Interactive Reductions (SNIR) is a recently in-
troduced, but fundamental cryptographic primitive. The basic question
about SNIRs is how to determine if there is an SNIR from one 2-party
correlation to another. While prior work provided answers for several
pairs of correlations, the possibility that this is an undecidable prob-
lem in general was left open. In this work we show that the existence
of an SNIR between any pair of correlations can be determined by an
algorithm.
At a high-level, our proof follows the blueprint of a similar (but re-
stricted) result by Khorasgani et al. But combining the spectral analysis
of SNIRs by Agrawal et al. (Eurocrypt 2022) with a new variant of a
“junta theorem” by Kindler and Safra, we obtain a complete resolution
of the decidability question for SNIRs. The new junta theorem that we
identify and prove may be of independent interest.

1 Introduction

The notion of Secure Non-Interactive Reductions (SNIR) has only recently been
formally defined [2,1,18], but it is a fundamental cryptographic primitive that
lies at the intersection of several major lines of research in information-theory
and cryptography. On the one hand, it is a model of information-theoretically
secure 2-party computation, using correlated randomness [13,14,19,16]. It is a
minimal model without any communication, pushing the limits of minimalism
in secure computation, as initiated by the influential work of Feige et al. [8]. Its
non-secure counterpart, called non-interactive simulation commands a rich liter-
ature in both information-theory and computer science literature spanning half
a century [10,27,29,3,17,11,7,26]. Another important motivation behind SNIR is
also its relevance to cryptographic complexity [5,23,22,4,24] – namely, measuring
the complexity of a function in terms of the number of samples of a correlation
that need to be used in an (interactive) secure 2-party computation protocol
for the function. As pointed out in [1], understanding the power of SNIR is an
important part of understanding the interactive secure 2-party computation pro-
tocol for an inputless function: such a protocol consists of an interaction phase
? Supported by ERC Project NTSC (742754) and ISF Grants 1709/14 & 2774/20.
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(with no security requirements of its own) followed by an SNIR used to securely
sample the output from the correlated views at the end of the interaction.

Finally, and significantly, studying the minimalistic model of SNIR leads us
to mathematical tools that are relatively unexploited in classical cryptography,
including tools from spectral graph theory and harmonic analysis [1,2,18]. Con-
versely, as is the case in this work, studying SNIRs can lead to contributions
back to the development of these tools and their applicability.
Decidability of SNIR. SNIR is a notion of reduction from a (2-output) tar-
get distribution D to a source distribution C. It is simply a statistically secure
2-party computation protocol for sampling from D, when the parties are given
access to samples from C, with the restriction that the parties cannot communi-
cate at all. (In this model, semi-honest security and UC security are equivalent.)

The most fundamental question about SNIRs is the decidability of the fol-
lowing problem:

SNIR Problem: Given a pair of correlations (C,D), does there exist a
statistical SNIR from D to C?

In the works that defined SNIR, this question was tackled for specific pairs of
correlations, using arguments specialized for them [2,1,18]. In [2,18], the authors
insightfully observed that in certain cases, a statistically secure SNIR implies
a perfectly secure one, which can in turn be used to design an algorithm to
decide the existence of an SNIR. In this work too, we follow the same high-level
approach. Further, [2,18] showed that Fourier analytic techniques can be used to
prove the statistical-to-perfect security result. However, the decidability results
in [2,18] were restricted to two specific target distributions, and did not cover
weak notions of security (with only “vanishing” error).

In this work, starting from the spectral analysis of [1] (involving eigenvectors,
or more precisely, the singular value decomposition of the “correlation operator”),
we apply Fourier analytic techniques to SNIRs in an alternate fashion, to obtain
a full answer to the fundamental decidability question.
Our Contributions. We summarize our contributions below:

– Our main technical result is a statistical-to-perfect security result for SNIRs,
which shows that, for a pair of correlations D and C, a statistically secure
SNIR (possibly with weak security) exists from D to C iff there is a perfectly
secure SNIR from D to C⊗` for some finite ` (that can be computed from D
and C). The formal statement, in Theorem 1, involves certain technical re-
strictions onD and C, which are essential (but not a barrier to the decidability
result).
• In order to prove this, we formulate and prove a new “junta theorem” for

“generalized Fourier transforms,” that may be of independent interest. This
is stated as Theorem 2 and proven in Section 5.

– Based on the above, we show that the SNIR problem is decidable.3

3 For simplicity, we assume a computational model in which real numbers can be
represented, computed upon (w.r.t. addition, multiplication and division), and com-
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– We also illustrate how the statistical-to-perfect security result can be used to
obtain new combinatorial necessary conditions for an SNIR to exist between
a pair of correlations; these combinatorial conditions can in turn be used to
rule out an SNIR from OT correlation to Rabin OT correlation, that was not
covered by prior results.

We remark that our decidability result subsumes that of [18] in a couple of
ways: it works for all pairs of correlations, and further works even for a very
weak notion of security. That is, when our algorithm says “No” it rules out an
SNIR with error that goes to 0 however slowly, and when we say “Yes” we obtain
an SNIR with either perfect security (in the absence of common information) or
negligible error. In contrast, the algorithm in [18] could not rule out an SNIR
with error going to 0 slower than 1/n where n denotes the number copies of the
source correlation used. More significantly, the algorithm of [18] is restricted to
two special target correlations.

Related Work. As already mentioned, several lines of work in information-
theoretically secure cryptography intersect with SNIR. Here we clarify the con-
nection with some recent works.

SNIR was defined independently in two concurrent works [2,1], and was fur-
ther developed in [18], which explicitly addressed the decidability of the SNIR
problem. The approach of employing a statistical-to-perfect security result, and
the general idea of using Fourier analysis to prove it, were both present in [18].

A similar sounding concept, called Secure Zero Communication Reduction
(SZCR) was introduced in [24]. It is instructive to compare both SNIR and
SZCR with the standard notion of (semi-honest) secure reduction (SR) to a
correlation like OT (more familiarly known as 2-PC in the OT-hybrid model).
Roughly put,

SNIR⇒ SR⇒ SZCR

indicating that SNIR is a “stronger” primitive than SR, which is in turn stronger
than SZCR. While every function has an SR to the OT correlation (i.e., it is
a complete correlation), that is not the case for SNIR: Indeed, there are no
complete correlations for SNIR [1]. Both SNIR and SZCR are motivated by
approaching the notoriously hard lower bound questions for SR, but they do it
in different ways.

– Lower bounds (or impossibility results) for SNIR are an “easier” target than
those for SR, and would provide a platform for nurturing new techniques; as
and when we completely settle a question for SNIR (as we do here), we can
approach SR by relaxing the model (e.g., allow one-directional communica-
tion).

– Lower bounds for SZCR are formally (but not necessarily conceptually) harder
than those for SR. Here we seek to develop new techniques by asking simpler

pared exactly. The results would extend to all reasonable models of computing with
a subset of real numbers, that is closed under these operations.
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variants of the lower bound question: e.g., existential questions (a la the “in-
vertible rank conjecture” of [24]) or lower bounds for randomized functions
(as in [15]).4 Also, the new perspective provided by SZCR may lead to fresh
approaches to the original hard lower bound problems of SR.

2 Technical Overview

Recap of SNIR. We start with a brief recap of SNIR, as defined in [1], largely
borrowing from the overview in that paper. As shown in [1], there are in fact
multiple perspectives of SNIR, and we profit from switching among them as
appropriate.

– An SNIR is simply a statistically secure 2-party computation protocol for an
inputless functionality (namely, sampling from a 2-output target distribution
D), in which the parties have access to a setup in the form of another inputless
functionality (namely, sampling i.i.d. samples from a source distribution C),
with the restriction that the parties cannot exchange messages.

– Equivalently, an SNIR can be specified as a pair of stochastic “protocol” matri-
ces (A,B) representing Alice and Bob’s actions (mapping a symbol from the
source to a symbol in the target), and a pair of “simulation” matrices (U, V )
such that – restricting here to the case of perfect security – they satisfy the
following correctness and privacy conditions:

Aᵀ C B = D Aᵀ C = D V C B = Uᵀ D. (1)

Here we have written C to denote C⊗n where n is the number of i.i.d. sam-
ples from C that the protocol uses. In the general case of statistical security,
there is a family of protocols indexed by the security parameter (n is allowed
to increase with the security parameter), and the equalities above admit an
additive (matrix) error term, whose (suitably defined) norms can be bounded
by vanishing quantities.

– Finally, there is a spectral perspective of an SNIR. This is a set of necessary
conditions on a pair of matrices (Â, B̂) derived from an SNIR (A,B), and
which satisfy a set of conditions analogous to the original security conditions
as follows (restricting here to perfect security):

Â = FCAF
−1
D B̂ = GCBG

−1
D

ÂᵀÂ = I B̂ᵀB̂ = I

Âᵀ
ΣCB̂ = ΣD Âᵀ

ΣC = ΣDB̂
ᵀ

ΣCB̂ = ÂΣD

(2)

where (FC ,ΣC ,GC) and (FD,ΣD,GD) are matrices associated with C and
D, respectively, via singular value decomposition (with some careful scaling

4 [15] is a concurrent submission to this conference and it also includes the above
comparison between SNIR and SZCR.
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to account for the possibly non-uniform marginal distributions of C and D).
This view uses notions from spectral graph theory to study correlations using
their singular values.

In this work we shall exploit yet another perspective of an SNIR: namely,
a Fourier analytic perspective. While closely related to the spectral perspective
above, this perspective focuses on the case when the source distribution is of the
form C⊗n, and treats the protocols as functions that take n-tuples as inputs. The
Fourier analytic perspective is crucial in investigating if protocols can actually
use an increasing number of copies of C. This perspective was already insighfully
exploited in [2] for some specific correlations which could be related to the Fourier
basis; however, starting from our spectral perspective above, we discover that
any source correlation can be related to an appropriate generalized Fourier basis.
Statistical to Perfect Security. At a high level, the plan for decidability
follows that of [2,18], namely, to show that a statistical reduction from D to C
implies a deterministic, perfect reduction, using only a constant number of copies
of C. (The number of copies of C needed should be effectively determinable from
the correlations D and C.) Then, to see if there is a reduction, it is enough to
search among a finite number of protocols. The outline of how we carry this out
is as follows:

1. Our starting point is the spectral protocol characterization from [1] shown
in (2). We focus on FC . We observe that multiplying by FC corresponds
to a “generalized Fourier transform.” Hence we can interpret the columns of
Â as a generalized Fourier transform applied to the columns of the matrix
Å := AF−1

D . (Å could be thought of as corresponding to a “half-way spectral
protocol.”)
Å is a matrix with real entries, whose rows are indexed by symbols in Xn,
where X is the alphabet of the distribution C (on Alice’s side). So each column
of Å can be interpreted as a function a : Xn → R. A generalized Fourier
transform writes this function as a linear combination of basis functions of
the form γ : Xn → R. Nominally, each basis function takes n inputs from
X , but may depend on fewer of them (e.g., the basis contains the constant
function which depends on 0 inputs); the number of inputs it actually depends
on is called the degree of a basis function.

2. Then we use the spectral protocol conditions of [1] to obtain “approximate
degree bounds” on the columns of Å. That is, we show that under the general-
ized Fourier transform mentioned above, the contribution from higher degree
basis functions has low “energy” (Lemma 7).
There is a caveat: Each column of Å is associated with a singular value of (a
normalized version of) D; the degree bound holds only for columns for which
the singular value associated with them is non-zero. Below, we write Ǎ to
denote Å restricted to these columns with the degree bound.

3. Next, we appeal to a “junta theorem” to argue that each column of Ǎ (inter-
preted as a function, for which the approximate degree bound holds) can be
well-approximated by a “junta” — i.e., a function which depends only on a
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constant number of its inputs. Here, the approximation guarantee given by
the junta is in the sense that it matches the original function exactly on most
inputs.

• While there are several junta theorems available in the literature, the ver-
sion we need (for generalized Fourier transforms) has not been previously
stated or proved. As such, we adapt a proof of the Kindler-Safra junta
theorem [21] by Filmus [9] for our purposes. Presenting this more gen-
eral version of the junta theorem is a contribution of ours that may be of
independent interest.

4. The next step is to translate the junta approximations of the columns of Ǎ to
such an approximation of the protocol matrix A itself. For this step, we invoke
an important insight which is evident from the cryptographic perspective: An
SNIR exists from D to C iff there is one from D′ to C, where D′ is a “non-
redundant” version ofD, which merges output symbols which are “equivalent.”
This means that for the decidability question, we can w.l.o.g. restrict ourselves
to the case when D is non-redundant. This insight was already crucially used
in [1]. In our case, we further rely on it at this step: We show that if D is
non-redundant, then each row of A is fully determined by the corresponding
row of Ǎ (Lemma 5). This also relies on another assumption that [1] showed
can be made w.l.o.g. — that A is deterministic — thanks to a determinization
process that retains statistical security (with a polynomially bounded increase
in error). Then, an approximation of Ǎ (in which most rows are correct) yields
a similar approximation of A; further, since the approximations are juntas,
so is each column of the approximation of A.
The upshot of this step is that Alice’s protocol matrix A can be replaced
by one which consults only a constant number of the n copies of C that it
is given access to, without increasing the error too much. This still yields a
statistically secure protocol family.

5. The final step is to convert the protocol to one in which both Alice and Bob
consult only a constant number of copies of C (Lemma 8).
This is easiest to see from the cryptographic perspective: If we simply remove
the copies of C that Alice ignores, and require Bob to locally sample his side
of C for those copies from the marginal distribution, we obtain a protocol
that is at least as secure as the original one. Note that this transformation
results in a protocol that has only a constant number of copies of C, but
does require Bob to be randomized. We can determinize this protocol again
(increasing the error in a bounded manner) to obtain a statistically secure,
deterministic protocol using only a constant number of copies of C.
Finally, we note that there are only finitely many such protocols, and hence,
to form a statistically secure protocol family (with error that approaches 0),
at least one of those protocols should have perfect security.

A Counterexample. Before proceeding further, we point out an apparent
contradiction to the above claim: Consider C to be a uniformly random bit (both
Alice and Bob get the same bit) and D to be a bit that is 0 with probability,
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say, 1/3. Now, there is a statistical SNIR from D to C, by sampling more and
more uniform bits from C to sample from D with increasingly better accuracy.
However, 3 not being a power of 2 prevents a perfectly secure protocol from
existing.

The reason the statistical-to-perfect security argument above breaks down
in this case is that the argument requires C to have no common information.
Common information in a correlation refers to a value that Alice and Bob can
always agree on, when each of them is given only a sample from their side of
the correlation. The restriction that C has no common information comes at the
very first step of the sequence of arguments above, where we interpreted FC as
a “generalized Fourier transform.”

Nevertheless, using a result from [1], we can handle correlations with common
information. Suppose C has common information – say, w.l.o.g., it is in the
form of sampling an index i ∈ [k] according to some fixed distribution, and
then sampling from a correlation Ci, where C1, · · · , Ck are correlations without
common information, and over disjoint alphabets (called the components of C).
Then, it is not hard to see (from the cryptographic perspective) that for the
purposes of statistically secure SNIR, C is equivalent to a correlation C ′ which
samples (k + 1)-tuples (x0, · · · , xk) for Alice and (y0, · · · , yk) for Bob, where
x0 = y0 is a single uniform random bit, and for i > 0, (xi, yi) is a sample from
Ci. That is, C ′ = Ccoin ⊗ C‖, where Ccoin is the uniform common coin, and C‖
is a correlation without any common information. Then, using a result from [1],
it follows that a correlation D has an SNIR to C ′ iff each of the components of
D has an SNIR to C‖. Since C‖ has no common information this can be tested
using the statistical-to-perfect security argument, as discussed above.

With this we obtain an algorithm that can decide the existence of SNIR for
any pair of source and target correlations. This is detailed in Section 4.2.

New Necessary Conditions and an Example of Interest. Despite its gen-
eral and fundamental nature, our decidability result is practically unsatisfactory,
as the underlying algorithm is hugely inefficient: it involves a brute-force search
over a finite but large space of protocols. An important focus in prior work on
SNIR has been to derive simpler necessary conditions for an SNIR to exist. In
particular, in [1] it was shown that for there to be an SNIR from D to C, the
singular values of the correlation operator corresponding to D should all appear
as singular values of that corresponding to C⊗` for some `. Such a result can be
used to “manually” infer impossibility results for examples of interest.

While the results from [1,2,18] covered several cryptographically interesting
source-target pairs, they also left out some. For instance, it was not known
whether one can reduce the correlation D corresponding to random

(
2
1

)
bit-OT

to the correlation C corresponding to Rabin OT – i.e., an erasure channel with
erasure probability 0.5, for uniformly random input bit. The results in [1] did not
cover this example, as the non-zero singular values of the correlation operator
corresponding to D, namely 1 and 1√

2
also happen to be those associated with
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C.5 The results in [2,18] also do not cover the case of the target correlation being(
2
1

)
-OT.
Our statistical-to-perfect security result for SNIR plugs this gap easily: It is

easy to see that there is no perfectly secure SNIR from D to C⊗` for any `, and
by our result, the impossibility extends to statistical security. Indeed, this readily
generalizes to a broader class of target-source correlation pairs, as captured in
Lemma 10.
Overview of the Proof of the Junta Theorem. In Section 5, we prove
the version of the junta theorem mentioned above. We closely follow a recent
proof of the Kindler-Safra junta theorem [21,20] by Filmus [9], making several
suitable generalizations based on results (and exercises) in [25]. Compared to
the statement proven in [9], the main difference is that we do not restrict it to
functions over the domain {0, 1}n.

The theorem we seek to prove (roughly) states the following: Suppose f :
Ω
n → T ⊆ R is an approximately degree d function as mentioned above, with

the higher degree components f>d having only ε energy (above we defined the
degree of a function w.r.t. a generalized Fourier transform, but it is in fact
a basis-invariant quantity; it however does depend on the distribution π over
Ω w.r.t. which the fourier basis is defined). Then there is a degree d function
h : Ωn → T that is in fact a function of only O(1) of its n inputs (the hidden
constants depending on T , d and π, and not on f or n), and on all but O(ε)
fraction of the domain Ωn (as measured using the distribution π⊗n) h equals f .

Below we exposit the high-level structure of the proof.

? For each coordinate i, we will show that its influence on f≤d is either O(ε) or
Ω(1) where the constants depend on T , d, λ.

• But the degree bound on f≤d implies that the total influence can be at most
d‖f‖2 = O(1). So at most O(1) coordinates i can have Ω(1) influence on f≤d.

? Outside of these O(1) coordinates, the function is shown to have low variance.
• Then averaging over those coordinates gives a function g that does not de-
pend on those coordinates, and is a good approximation in the sense that the
function f − g has small energy.

• This is not quite in the form of the approximation we desire, since we would like
to ensure that Prx←π⊗n [f(x) 6= g(x)] is small. This is ensured by considering
a function h which rounds off g to use values in the set T . Since the variance
is small, this can be done in a way that keeps the energy of f − h still small.
Now, since T is a finite set, there is an Ω(1) lower bound on |f(x) − h(x)|
whenever f(x) 6= h(x).

Above, apart from the starred items, the others rely on mostly elementary
arguments. The first starred step relies on a hypercontractivity result. It is ap-
plied to the so-called Laplacians of the function w.r.t. each coordinate, to prove
5 There were additional interesting examples that the singular value condition did
not cover, but were handled in [1] using another necessary condition – called the
Mirroring Lemma. But the above example evaded those approaches as well.
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a dichotomy for each coordinate, between having very low influence and high
influence. For the second starred step, a result called the Invariance Principle
is invoked to translate the low influence of the variables to low variance. One of
our technical contributions is to flesh out an appropriately generalized version
of the invariance principle (Lemma 15), to complete this step.

3 Preliminaries

Notation. We extensively employ linear algebraic notation, carefully adapted
to allow precise expression of Fourier analytic definitions in terms of matrix
multiplications. Some of the following is borrowed from [1].

We write [n] to denote {1, · · · , n} and JnK to denote the set {0, . . . , n − 1}.
R stands for the set of real numbers. Throughout the paper, all sets defined are
finite. We typically denote such sets as X ,Y, and so on, and a member of X is
denoted as x.

Vectors and matrices are indexed by elements of finite sets. For a set X , we
write v ∈ RX to mean that v is a column vector with real numbers indexed by
the elements of X as its entries (i.e., v is, essentially, a function v : X → R); we
will often refer to v as an X dimensional vector. For an X dimensional vector
v, the entry at the position x is denoted by (v)x. Similarly, for sets X and Y,
we write H ∈ RX×Y to mean that H is an X × Y dimensional matrix with real
numbers as entries. The row of H indexed by x and the column indexed by y are
denoted as (H)(x,·) and (H)(·,y), respectively, and the element indexed by (x, y)
is denoted as (H)(x,y). The transpose is denoted by Hᵀ. Finally, |H| denotes
the absolute value of H, i.e., (|H|)(i,j) = | (H)(i,j) |, for all i ∈ [m] and j ∈ [n].
The parentheses are removed whenever there is no scope for confusion and the
vector/matrix itself is subscripted; i.e., (v)x , (H)(·,x) and (H)(x,y) are simplified
to vx, H(·,x) and H(x,y), respectively.

A column vector over the set X with all elements being 1 (resp. 0) is denoted
by 1X (resp. 0X ). For x ∈ X , ξXx denotes the X dimensional unit vector along
the ‘direction x’; i.e.,

(
ξXx
)
x

= 1 and
(
ξXx
)
x′

= 0 for all x′ 6= x. The superscript
is dropped when there is no scope for confusion regarding the dimension of these
vectors.

We write OD(ε) to denote an upper bound of the form f(D) · ε, for some
fixed non-negative function f .

Probability. We only consider distributions over finite sets in this paper. A
distribution over X is completely described by a distribution vector π ∈ RX≥0 such
that

∑
x∈X πx = 1, and the probability of x ∈ X is πx. Sampling x according

to the distribution π independent of all previously defined random variables is
denoted by x ∼ π. The statistical distance or total variation distance between
two distributions π and π′ over the same set X is denoted by SD (π,π′), and is
computed as

SD (π,π′) =
1

2

∑
x∈X
|πx − π′x|.
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Throughout this paper, we are interested in correlations, which are joint
distributions over the product of two finite sets. A correlation over X × Y is
completely described by a joint distribution matrix H ∈ RX×Y≥0 such that∑

x∈X

∑
y∈Y

H(x,y) = 1.

In the sequel, we will always refer to a correlation by its joint distribution matrix.
The left marginal of H or the marginal distribution of the first coordinate of the
joint distribution is given by the distribution vector H1; the right marginal of
H is given by the row vector 1ᵀH or equivalently the column vector Hᵀ1. We
write (X,Y ) ∼ H to imply that the random variables (X,Y ) are distributed
according to the distribution H; i.e., PX,Y (x, y) = H(x,y) for all (x, y) ∈ X × Y.

When we say Alice and Bob receive a correlation (X,Y ), we mean Alice
and Bob receive random variables X and Y , respectively. The objective of non-
interactive secure reductions is for Alice and Bob to securely realize a desired
correlation among themselves using (potentially many copies) of the correlation
at hand without communicating with each other.

Definition 1 (Norms). For an X × Y dimensional matrix H, 1-norm of the
matrix, denoted by ‖H‖1,1, is the sum of the absolute values of all elements in
H, i.e.,

‖H‖1,1 =
∑

(x,y)∈X×Y

|H(x,y)| = (1X )ᵀ|H|1Y .

The 2-norm of an n dimensional vector v is defined as ‖v‖2 =
(∑

i∈[n] v
2
i

) 1
2

. C

Definition 2. A matrix H ∈ RX×Y≥0 with non-negative entries is said to be
stochastic if H1Y = 1X . A stochastic matrix in which every entry is either 0 or
1 is called a deterministic stochastic matrix or simply a deterministic matrix. C

Definition 3. For a (row or column) vector v ∈ RX , we define diag(v) ∈ RX×X
as the diagonal matrix given by

( diag(v))(x,x′) =

{
vx if x = x′,

0 otherwise.

For H ∈ RX×Y , we define ΔH as the Y × Y dimensional diagonal matrix

ΔH = diag(1ᵀH). C

Tensor product. When G ∈ RX×Y and H ∈ RR×S , tensor (Kronecker) prod-
uct of G and H, denoted as G⊗H, is an (X ×R)× (Y ×S) dimensional matrix
such that, for all (x, r) ∈ X ×R and (y, s) ∈ Y × S,

(G⊗H)((x,r),(y,s)) = G(x,y) ·H(r,s).
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When G and H are joint distribution matrices, the distribution matrix of the
product distribution– independent draws from distributions G and H–is G ⊗
H. Hence, the distribution of n ∈ N i.i.d. samples drawn from a correlation
with distribution matrix G is described by the joint distribution matrix G⊗n.
We will use the following identity which follows from the definitions of matrix
multiplication and tensor product.

Claim 1. For matrices G,H,G′, H ′, (GH) ⊗ (G′H ′) = (G ⊗ G′)(H ⊗H ′). In
particular, for t ∈ N, (GH)⊗t = G⊗tH⊗t.

Definition 4. A correlation H over X × Y is said to be redundant if there
exist distinct x, x′ ∈ X and c ∈ R≥0 such that H(x,·) = c ·H(x′,·) or there exist
y, y′ ∈ Y and c ∈ R≥0 such that H(·,y) = c ·H(·,y′). C

By this definition, both the marginal distributions of a non-redundant dis-
tribution have full support since an all zero column (or row) is trivially a scalar
multiple of any other column (or row). For a redundant correlation, we define its
non-redundant core as the correlation obtained by collapsing redundant symbols
(on both sides) to their equivalence classes.

A correlation is said to have non-zero common information if two parties can
agree on a bit with non-trivial entropy using the correlation without communi-
cating. We formally define this notion below:

Definition 5. Correlation H over X ×Y has common-information if there exist
functions f : X → {0, 1} and g : Y → {0, 1} such that, when (X,Y ) ∼ H,

P[f(X) = g(Y )] = 1 and 0 < P[f(X) = 0] < 1.

H has non-zero common information if and only if there exist ∅ ⊂ X0 ⊂ X
and ∅ ⊂ Y0 ⊂ Y, joint distribution matrices H0 and H1 over X0 × Y0 and
(X \ X0)× (Y \ Y0), respectively, and 0 < α < 1 such that H can be written as

H =

[
αH0 0
0 (1− α)H1

]
.

A correlation that does not admit such a decomposition is said to be common-
information free. C

3.1 Generalized Fourier Transform

Let π ∈ RΩ≥0 be a distribution over a finite set Ω. We consider the normed vector
space L2(Ω,π). The elements of this space are v ∈ RΩ – i.e., real-valued vectors
indexed by Ω, or equivalently, functions v : Ω→ R. The inner product between
two such vectors u,v ∈ RΩ, denoted by 〈u,v〉π, is given by

〈u,v〉π =
∑
ω∈Ω

πω · uω · vω.

A set of vectors {γα ∈ RΩ : α ∈ J|Ω|K} constitute a Fourier basis of L2(Ω,π) if
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1. γ0 is the constant function; i.e., γ0 = 1Ω.
2. For all α ∈ J|Ω|K, γα is unit norm; i.e., 〈γα,γα〉π = 1.
3. For all distinct α, α′ ∈ J|Ω|K, γα is orthogonal to γα′ ; i.e., 〈γα,γα′〉π = 0.

We shall identify the set Γ with a matrix Γ ∈ RΩ×J|Ω|K with γα as its rows: i.e.,
Γ(α,·) = γᵀ

α.

Definition 6. The generalized Fourier transform w.r.t. a Fourier basis Γ =
{γα ∈ RΩ : α ∈ J|Ω|K} of L2(Ω,π) is a linear operation that maps a vector
v ∈ RΩ to v̂ ∈ RJ|Ω|K such that

v̂α = 〈γα,v〉π for all α ∈ [0, |Ω|).

The linear operator F that effects this transformation – i.e., F ∈ RJ|Ω|K×Ω such
that for all v ∈ RΩ, Fv = v̂ – is called the Fourier transform operator for Γ in
L2(Ω,π). C

Proposition 1. Suppose Γ ∈ RΩ×J|Ω|K and its rows γα := Γ(α,·) form a Fourier
basis of L2(Ω,π). Then, the matrix F ∈ RJ|Ω|K×Ω defined as F = Γdiag(π) is
the Fourier transform operator for Γ.

Proof: For all v ∈ L2(Ω,π) and α ∈ J|Ω|K,

(Fv)α = F(α,·)v = γᵀ
α diag(π)v =

∑
ω∈Ω

πω (γα)ω vω = 〈γα,v〉π = v̂α.

Thus, Fv = v̂. �

Energy and Degree. The energy of a vector v ∈ L2(Ω,π) is defined as

‖v‖2 = 〈v,v〉π =
∑
ω∈Ω

πω · vω · vω.

Parseval’s theorem refers to the following alternative for computing the energy
of v ∈ L2(Ω,π):

‖v‖2 =
∑

α∈J|Ω|K

v̂α · v̂α.

For any Fourier basis Γ = {γα | α ∈ J|Ω|K} over L2(Ω,π) and for any n ∈ N, the
following is a generalized Fourier basis over L2(Ωn,π⊗n):

{γα1
⊗ γα2

⊗ . . .⊗ γαn : αi ∈ J|Ω|K for all i ∈ [n]}.

For any α = (α1, . . . , αn) ∈ J|Ω|Kn, degree of α denoted by deg(α) is given by

deg(α) = |{i ∈ [n] : αi 6= 0}|.
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We can project a vector to its low-degree and high-degree components. For a
vector v ∈ L2(Ωn,π⊗n) and d ∈ [0, n],

v≤d =
∑

α∈J|Ω|Kn:deg(α)≤d

v̂α · γα

and v>d =
∑

α∈J|Ω|Kn:deg(α)>d

v̂α · γα

Even though we have written the low-degree component v≤d in terms of the
basis vectors, it should be noted that this is actually the same for all bases [25].
Furthermore, we say that a vector v has degree d when v = v≤d.

3.2 Secure Non-Interactive Reduction

In this section, we formally define SNIR and import a set of statements estab-
lished in [1] that we will need to prove our main result. The definitions and
statement of theorem have been adapted to the current notations, but are oth-
erwise imported verbatim from the older work.

Definition 7. Let C and D be correlations over X ×Y and R×S, respectively.
For any ε ≥ 0, an ε-secure non-interactive reduction (ε-SNIR) from D to C is
a pair of probabilistic algorithms A : X → R and B : Y → S such that, when
(X,Y ) ∼ C and (R,S) ∼ D,

ε-Correctness:

SD ((A(X),B(Y )), (R,S)) ≤ ε. (3)

ε-Security: There exist a pair of probabilistic algorithms, SimA : R → X and
SimB : S → Y such that,

SD ((X,B(Y )), (SimA(R), S)) ≤ ε, (4)
SD ((A(X), Y ), (R,SimB(S))) ≤ ε. (5)

0-SNIR is alternatively called a perfect SNIR. C

Definition 8. Let C and D be correlations over X ×Y and R×S, respectively.
D is said to have a statistical SNIR to C if, for all ε > 0, there exists a sufficiently
large n for which, D has an ε-SNIR to C⊗n. C

Suppose (A,B) is an SNIR from correlation D distributed over U × V to
C distributed over X × Y. The probabilistic algorithm A employed by Alice
can be equivalently thought of as a X × Y dimensional stochastic matrix A
with A(x,u) = PA(u|x) for each x, u. Similarly, probabilistic algorithm B can be
thought of as a Y × U dimensional stochastic matrix B. The simulators SimA

and SimB can also be equivalently thought of as stochastic matrices U and V of
dimensions U ×X and V ×Y, respectively. The following proposition shows how
the correctness and security conditions of SNIR translates to linear algebraic
constraints in terms of these stochastic matrices.
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Proposition 2 ([1, Theorem 2]). A correlation D over U ×V has an ε-SNIR to
a correlation C over X × Y if and only if there exist stochastic matrices A, B,
U , and V of dimensions X × U , Y × V, U × X , and V × Y, respectively, such
that

‖AᵀCB −D‖1,1 ≤ ε (6) ‖AᵀC −DV ‖1,1 ≤ ε (7) ‖CB − UᵀD‖1,1 ≤ ε. (8)

Identifying the stochastic matrices with the probabilistic algorithms as dis-
cussed above, conditions (6), (7), and (8) can be seen to correspond to the
correctness condition (3) and security conditions (4), and (5), respectively.

A (redundant) correlation has a perfect SNIR to its core and vice-versa
(Lemma 5 of [1]). This leads to the following observation in [1]:

Proposition 3. A redundant correlation D has a statistical SNIR to a correla-
tion C iff the core of D has a statistical SNIR to C.

Keeping this in mind, we focus on SNIR of non-redundant target correlations
throughout this work.

Given a purported perfect SNIR (A,B) from D to C, one can verify it easily,
thanks to the following result [1, Lemma 8]:

Proposition 4. Let C and D be non-redundant correlations over X × Y and
U×V, respectively. If deterministic matrices A, B and stochastic matrices U and
V satisfy (1); i.e., (A,B) is a perfect SNIR with U and V being the simulators
for Alice and Bob, respectively, then

V =Δ−1
D Bᵀ

ΔC U =Δ−1
DᵀAᵀ

ΔCᵀ . (9)

In [1], the authors observed that the algorithms employed by Alice and Bob
in a perfect SNIR (to a non-redundant target) is determinsitic. Furthermore,
given a probabilistic statistical SNIR, one can construct a deterministic SNIR
with a slightly worse correctness and security error. This observation is crucially
used in proving our main result.

Lemma 1 ([1, Lemma 7]). Let D be non-redundant correlation over U ×V and
C be a correlation over X × Y. For any ε ≥ 0, if there exist stochastic matrices
A,B,U and V such that

‖AᵀCB −D‖1,1 ≤ ε ‖AᵀC −DV ‖1,1 ≤ ε ‖CB − UᵀD‖1,1 ≤ ε

then there exist deterministic stochastic matrices Ā, B̄ such that,

‖ĀᵀCB̄ −D‖1,1 ≤ OD
(√
ε
)
,

‖ĀᵀC −DV ‖1,1 ≤ OD
(√
ε
)
,

‖CB̄ − UᵀD‖1,1 ≤ OD
(√
ε
)
.
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We recall the definitions coined in [1] relating to spectral protocols:

Definition 9 (Spectral decomposition of a correlation). For a correlation H

distributed over X × Y, its spectral decomposition H̃ is a X × Y dimensional
matrix

H̃ =Δ
− 1

2

HᵀHΔ
− 1

2

H .

Define ΣH , ΨH and ΦH to be given by a canonical singular value decom-
position of H̃, so that ΣH is an J|X |K× J|Y|K dimensional non-negative diagonal
matrix with the diagonal sorted in descending order, ΨH and ΦH are unitary
matrices of dimensions J|X |K×X and J|Y|K× Y, respectively, and

H̃ =Ψᵀ
HΣHΦH .

Finally, define FH =ΨHΔ
1/2
Hᵀ . C

The following properties of the spectral decomposition of a correlation were
observed in [1].

Lemma 2 ([1, Lemma 9]). Let |X | ≤ |Y| and H be a correlation over X × Y.
Then,

(i) 1 = (ΣH)(0,0) ≥ (ΣH)(1,1) ≥ . . . ≥ (ΣH)(|X |−1,|X |−1) ≥ 0. Furthermore, if
H is common information free, then (ΣH)(1,1) < 1.

(ii) For all λ ∈ (0, 1), there exists δ > 0 such that for all n ∈ N and for all
α ∈ J|X |K, either λ = (ΣH)(α,α) or |λ− (ΣH)(α,α) | > δ.

Similar to the correlations, the SNIR protocol also allows a spectral decom-
position, which we now define.

Definition 10 (Spectral Image of SNIR). Let D be a non-redundant correla-
tion over U × V, and C be a correlation over X × Y. The spectral image of an
SNIR (A,B) from D to C is (Â, B̂), where Â and B̂ are matrices of dimensions
J|X |K× J|U|K and J|Y|K× J|V|K, respectively, defined as

Â = FCAF
−1
D B̂ = GCBG

−1
D . C

A crucial observation we make in this paper is that the columns of Â can
be interpreted as a generalized Fourier Transform applied to the columns of a
matrix derived from A. Loosely speaking, the following lemma in [1] shows that
this Fourier spectrum is mostly concentrated on specific coefficients.

Lemma 3 ([1, Lemma 11]). Suppose a non-redundant correlation D over U × V
has a deterministic ε-SNIR (A,B) to C over X × Y. Then, for all β ∈ J|U|K,∑

α∈J|X |K
(ΣC)(α,α) 6=(ΣD)(β,β)

(
(ΣCΣ

ᵀ
C)(α,α) − (ΣDΣ

ᵀ
D)(β,β)

)2 (
Â(α,β)

)2

= OD(ε) .
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Finally, we import a lemma that shows that presence of common randomness
does not help in SNIR.

Lemma 4 ([1, Theorem 6]). Let Cw =

[
1/2 0
0 1/2

]
be the 1-bit common random-

ness correlation. If a non-redundant common-information free correlation D has
a statistical SNIR to Cw ⊗ C for a correlation C, then D also has a statistical
SNIR to C.

4 Decidability of SNIR

4.1 Statistical to Perfect Security

The crucial observation we make to show the decidability of SNIR is that a
statistical reduction from D to C implies a deterministic perfect reduction from
D to a constant number of copies of C. This is the main result of this section.

Theorem 1. A non-redundant correlation D over U × V has a statistical SNIR
to a common information free correlation C over X × Y if and only if, for a
constant ` ∈ N that depends only on D and C, D has a perfect SNIR to C⊗`.

The proof of the theorem follows the outline presented in the technical
overview. Without loss of generality, we assume that |U| ≤ |V| and focus on an
ε-SNIR (for an arbitrary ε ≥ 0) implied by the assumption that D has a statis-
tical SNIR to C. We make several observations about the spectral image of such
an ε-SNIR (A,B) from D to (say) C = C⊗n as defined in Definition 10. Since
|U| ≤ |V|, it is sufficient to focus on Alice’s spectral protocol Â = FCAF

−1
D . In

Lemma 6, we establish that FC is a Fourier transform operator for the normed
vector space L2(Xn,π), where π = C1 is the marginal of C at Alice. This
makes Â the Fourier transform of the “half-way spectral protocol” AF−1

D with
respect to this operator. In Lemma 7, we use the properties of spectral protocols
established in [1]–restated here as Lemma 3–to show that the columns of AF−1

D

associated with non-zero singular values of D concentrate most of their energy
in the lower degree coefficients. We focus on this sub-matrix of AF−1

D given by
AF̌D. Lemma 5 shows that each column of A is completely determined by the
corresponding row of this sub-matrix. At this point, we appeal to a “generalized
junta theorem” stated as Theorem 2 to argue that each column of AF̌D can
be approximated by a junta–a vector in Xn that depends only on a constant
number of coordinates of Xn. Since A is determined by AF̌D which itself is close
to a junta, A itself is close to a junta. Finally, in Lemma 8, we show that if Al-
ice’s protocol A ‘almost entirely’ depends only on a small subset of copies of the
correlations in a sequence of SNIR protocols with progressively better security
error, then there is a perfectly secure SNIR, concluding the proof.

We state the lemmas mentioned above which imply the theorem.
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Lemma 5. Let D be a non-degenerate correlation over U × V, and let (ΣD)(β,β) >

0 if and only if β < k ≤ |U|. Define F̌D ∈ RU×JkK such that

(F̌D)(·,β) =
(
F−1
D

)
(·,β)

∀β ∈ JkK. (10)

There exists a function φ : RJkK → {0, 1}U such that, for any R and R × U
dimensional deterministic matrix A,

A(r,·) = φ
(
A(r,·)F̌D

)
∀r ∈ R. (11)

Proof: For any r ∈ R, the row A(r,·) is a basis vector since A is a determin-
istic stochastic matrix. Fix r ∈ R and let A(r,·) = ξᵀu for some fixed u. Then,
A(r,·)F̌D = ξᵀuF̌D = (F̌D)(u,·). Suppose all the rows of F̌D are distinct, i.e.,
(F̌D)(u1,·) 6= (F̌D)(u2,·) whenever u1 6= u2. Consider the map φ : (F̌D)(u,·) 7→ ξu
for all u (and is otherwise defined arbitrarily). Then, φ

(
A(r,·)F̌D

)
= A(r,·) for

all r. Thus, there exists φ as required in the lemma whenever all the rows of F̌D
are distinct.

The proof is completed by showing that D is degenerate if there exist u1, u2 ∈
U such that (F̌D)(u1,·) = (F̌D)(u2,·).

Δ
−1
DᵀD =Δ−1

Dᵀ

(
Δ

1/2
Dᵀ D̃Δ

1/2
Dᵀ

)
=Δ

−1/2
Dᵀ Ψ

ᵀ
DΣDΦDΔ

1/2
Dᵀ

=
∑

β:(ΣD)(β,β)>0

(ΣD)(β,β)

(
F−1
D

)
(·,β)
·
(
ΦDΔ

1/2
Dᵀ

)
(β,·)

.

The last equality used the outer product expansion of Δ−1/2
Dᵀ Ψ

ᵀ
DΣDΦDΔ

1/2
Dᵀ

with respect to the diagonal matrix ΣD. Since (F̌D)(u1,·) = (F̌D)(u2,·), substi-
tuting F̌D = F−1

D in the above equation,(
Δ
−1
DᵀD

)
(u1,·)

=
∑

β:(ΣD)(β,β)>0

(ΣD)(β,β)

(
F̌D
)

(u1,β)
·
(
ΦDΔ

1/2
Dᵀ

)
(β,·)

=
∑

β:(ΣD)(β,β)>0

(ΣD)(β,β)

(
F̌D
)

(u2,β)
·
(
ΦDΔ

1/2
Dᵀ

)
(β,·)

=
(
Δ
−1
DᵀD

)
(u2,·)

.

But then,

D(u1,·) =
(ΔDᵀ)(u1,u1)

(ΔDᵀ)(u2,u2)

D(u2,·);

hence, D is degenerate. �

Lemma 6. Let C be the n-wise product of a correlation C over X × Y for some
n ∈ N; i.e., C = C⊗n. Rows of Γ =

(
ΨCΔ

−1/2
Cᵀ

)
form a generalized Fourier

basis of the normed vector space L2(Xn,π), where π = C1.
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Proof: For any α,α′ ∈ J|X |Kn,〈
Γ(α,·),Γ(α′,·)

〉
π

=
∑
x∈Xn

πx Γ(α,x) Γ(α′,x) = Γ(α,·) ΔCᵀ (Γᵀ)(·,α′)

=
(
ΨCΔ

−1/2
Cᵀ

)
(α,·)
ΔCᵀ

(
Δ
−1/2
Cᵀ Ψ

ᵀ
C

)
(·,α′)

=
((
ΨCΔ

−1/2
Cᵀ

)
ΔCᵀ

(
Δ
−1/2
Cᵀ Ψ

ᵀ
C

))
(α,α′)

=

{
1 if α = α′,

0 if α 6= α′.

We now show that Γ(0,·) = 1ᵀ. In the context of Lemma 1 in [1] and its
proof, we observe that L(GC) has an eigenvalue 0 corresponding to eigenvector
[(1ᵀ · Cᵀ)1/2, (1ᵀ · C)1/2]ᵀ, and thus

(
(1ᵀ ·Cᵀ)1/2

)ᵀ
= (C · 1)

1/2 is a left sin-
gular vector of C̃ corresponding to singular value 1. Assuming C has a single
connected component, we get that the multiplicity of 1 in ΛC is only one, and
this is the maximum singular value as well, implying (Ψᵀ

C)(·,0) = (C · 1)
1/2, i.e.,

(ΨC)(0,·) = (1ᵀ ·Cᵀ)
1/2. We then have

Γ(0,·) =
(
ΨCΔ

−1/2
Cᵀ

)
(0,·)

= (ΨC)(0,·)Δ
−1/2
Cᵀ = (1ᵀ ·Cᵀ)

1/2
Δ
−1/2
Cᵀ = 1ᵀ.

Thus, the rows of Γ form a generalized Fourier basis of L2(Xn,π). Finally,
by Proposition 1, Γ diag(π) =

(
ΨCΔ

−1/2
Cᵀ

)
ΔCᵀ = FC is a Fourier transform

operator for Γ in L2(Xn,π).
�

Lemma 7. Let D be a non-redundant correlation over U × V and C = C⊗n

be the n-wise product of a common information free correlation C over X × Y.
If (A,B) is a deterministic ε-SNIR from D to C, then there exists a number
d ∈ N that depends only on C and D (and not on n) such that, for each β such
that (ΣD)(β,β) > 0, the vector aβ =

(
AF−1

D

)
(·,β)
∈ L2(Xn,π), where π = C1,

satisfies ‖a>dβ ‖2 ≤ OD(
√
ε).

Proof: Consider the Fourier basis Γ of L2(Xn,π) described in Lemma 6 and its
Fourier transform operator FC =ΨCΔ

1/2
Cᵀ . By Definition 10, Fourier transform

of aβ for any β w.r.t. Γ is given by

âβ = FCaβ = FC
(
AF−1

D

)
(·,β)

= Â(·,β). (12)

By Lemma 3, for α ∈ J|X |Kn,∑
α∈J|X |Kn

(ΣC)(α,α) 6=(ΣD)(β,β)

(
(ΣCΣ

ᵀ
C)(α,α) − (ΣDΣ

ᵀ
D)(β,β)

)2 (
Â(α,β)

)2

= OD(ε) .

(13)
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By Lemma 2 (ii), ∃δ > 0 such that, for any α, β, s.t. (ΣC)(α,α) 6= (ΣD)(β,β)

and (ΣD)(β,β) > 0,

(ΣC)(α,α) + (ΣD)(β,β) ≥
∣∣∣ (ΣC)(α,α) − (ΣD)(β,β)

∣∣∣ ≥ δ.
Using this in (13), for any β s.t. (ΣD)(β,β) > 0,

OD(ε) =
∑

α:(ΣC)(α,α) 6=(ΣD)(β,β)

(
(ΣC)

2
(α,α) − (ΣD)

2
(β,β)

)2 (
Â(α,β)

)2

≥
∑

α:(ΣC)(α,α) 6=(ΣD)(β,β)

δ2
(
Â(α,β)

)2

.

If there exists d ∈ N that depends only on C and D (and not on n) such that
(ΣC)(α,α) 6= (ΣD)(β,β) whenever deg(α) > d, by the above bound and (12),∑

α:deg(α)>d

(âβ)
2
α =

1

δ2

∑
α:deg(α)>d

δ2
(
Â(α,β)

)2

= OD(ε) .

Hence, it is sufficient to show that such a d ∈ N exists. By Lemma 2, when C
is common-information free, there exists λ < 1 such that (ΣC)(α,α) ≤ λ for all
1 ≤ α < |X |. Hence, for α ∈ J|X |K[n], (recalling ΣC = ΣC⊗n = Σ⊗nC ),

(ΣC)(α,α) =
∏
i∈[n]

(ΣC)(αi,αi)
≤
∏
i∈[n]
αi 6=0

λ ≤ λdeg(α).

Choose d such that (ΣD)(β,β) ≥ λd for all β s.t. (ΣD)(β,β) > 0. Then, (ΣC)(α,α) 6=
(ΣD)(β,β) whenever deg(α) > d. This concludes the proof. �

Theorem 2 (Generalized Junta Theorem). Let (Ω,π) be a finite probabil-
ity space, |Ω| = m ≥ 2, in which every outcome has probability at least λ. Let T
be a finite set and let d ≥ 1. If f ∈ L2(Ωn,π⊗n) is a T -valued function such that
‖f>d‖2 = ε, then there exists a T -valued degree d function h ∈ L2(Ωn,π⊗n),
such that Pr[f 6= h] = O(ε), and h depends on O(1) coordinates.

Lemma 8. Let D be a non-redundant correlation over U × V and C be a cor-
relation over X × Y. Suppose, for each i ∈ N, there is an εi-SNIR (Ai, Bi)
from D to C⊗ni such that εi → 0 as i → ∞. For each i, suppose there exists
Si ⊂ [ni], |Si| = ` and a deterministic matrix Ãi such that

(Ãi)(x,·) = (Ãi)(x′,·) for all x,x′ s.t. xj = x′j for all j ∈ Si,

and, when πi = C⊗ni1, it holds that

Px∼πi

[
(Ãi)(x,·) 6= (Ai)(x,·)

]
≤ εi. (14)

Then, D has a perfect SNIR to C⊗`.
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Proof: Fix i ∈ N. By Proposition 2, there are stochastic matrices Ui and Vi such
that

‖Aᵀ
i C
⊗n −DVi‖1,1 ≤ εi ‖C⊗nBi − Uᵀ

i D‖1,1 ≤ εi.

Since i is fixed, we will drop the subscript i and denote ni,πi, Ai, Ãi by n,π, A, Ã,
and so on. Also, we will denote C⊗n by C. We have,

‖AᵀC − ÃᵀC‖1,1 = 1ᵀ|(A− Ã)ᵀC|1
≤ 1ᵀ|(A− Ã)ᵀ|C1 = 1ᵀ|(A− Ã)ᵀ|π.

The final equality used the definition πi = C⊗ni1.

1ᵀ|(A− Ã)ᵀ|π =
∑

x:A(x,·) 6=Ã(x,·)

1ᵀ
(
|A− Ã|(x,·)

)ᵀ
πx

(a)

≤ 2
∑

x:A(x,·) 6=Ã(x,·)

πx

= 2Px∼π

[
(Ãi)(x,·) 6= (Ai)(x,·)

] (b)

≤ 2εi.

Here, (a) used the fact 1ᵀ
(
|A− Ã|(x,·)

)ᵀ
= 2 whenever A(x,·) 6= Ã(x,·) since

A and Ã are stochastic matrices; (b) used (14). Thus, we have argued that
‖AᵀC − ÃᵀC‖1,1 ≤ 2εi. Since B1 = 1, this further implies that ‖AᵀCB −
ÃᵀCB‖1,1 ≤ 2εi. But then,

‖ÃᵀCB −D‖1,1 ≤ ‖ÃᵀCB −AᵀCB‖1,1 + ‖AᵀCB −D‖1,1 ≤ 3εi,

‖ÃᵀC −DV ‖1,1 ≤ ‖ÃᵀC −AᵀC‖1,1 + ‖AᵀC −D‖1,1 ≤ 3εi,

‖CB − UᵀD‖1,1 ≤ εi.

Thus, (Ã, B) is a 3εi-SNIR from D to C.
From (Ã, B), we derive an SNIR that uses only ` copies C but retains the

same security guarantees as the original reduction. We argue this part from a
cryptographic perspective: Consider the protocols Ã : Xn → U and B : Yn → V
corresponding to the stochastic matrices Ã and B, respectively. If x,x′ ∈ Xn
are such that xi = x′i for all i ∈ S, then Ã(x,·) = Ã(x′,·). Equivalently, Ã(x)

and Ã(x′) are identically distributed for such x,x′. In other words, Ã depends
only on XS . If we remove the copies of C that are ignored by A and have B
sample its side of C for these copies from the marginal distribution, we obtain a
protocol that depends only on |S| = ` many copies of C and is at least as secure
as the original SNIR. Let the deterministic protocol obtained by restricting Ã
to XS be called A′, and the stochastic (not necessarily deterministic) protocol
obtained by restricting B to YS be called B′. Then, (A′, B′) is a 3εi-SNIR from
D to C⊗`.
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For each i ∈ N, we constructed 3εi-SNIR (A′i, B
′
i) from D to C⊗`. But then,

for each i ∈ N, by Lemma 1, there exist deterministic matrices Āi ∈ {0, 1}X
`×U

and B̄i ∈ {0, 1}Y
`×V such that (Āi, B̄i) is a OD

(√
εi
)
-SNIR from D to C⊗`. Since

` is a constant, there exist only a finite number of choices of Āi ∈ {0, 1}X
`×U

and B̄i ∈ {0, 1}Y
`×V , and hence there exist deterministic matrices A∗ and B∗

such that (A∗, B∗) is a perfect SNIR from D to C⊗`. �

Proof of Theorem 1. If D has a statistical SNIR to C, there is a sequence of
protocols (Ai, Bi)i∈N such that, for each i ∈ N, (Ai, Bi) is an εi-SNIR from D to
C⊗ni and εi → 0 as i→∞.

Fix i ∈ N; we drop the subscript from ni, Ai, Bi, εi and simply use n,A,B, ε
instead. We denote C⊗ni by C and C1 by π. Consider the normed vector space
L2(Xn,π). Suppose (ΣD)(β,β) > 0 if and only if β ∈ JkK ⊆ J|U|K. Define

TD =
{(
F−1
D

)
(u,β)

: u ∈ U , β ∈ JkK
}
.

For each β ∈ JkK, define aβ ∈ T X
n

D as

aβ =
(
AF−1

D

)
(·,β)
∈ L2(Xn,π).

By Lemma 7, there exists d that depends only on D and C (and not on n) such
that ‖a>du ‖2 ≤ OD(ε). By Theorem 2, for each β ∈ JkK, there exists ãβ ∈ T X

n

D

and Sβ ⊂ [n], |Sβ | = l where l depends only on d, C and TD such that, (ãβ)x =
(ãβ)x′ , for all x,x

′ ∈ Xn such that xi = x′i for all i ∈ S, and

Px∼π
[
(aβ)x 6= (ãβ)x

]
= OD(ε) . (15)

Since D is non-redundant, by Lemma 5, there exists φ : T JkK
D → RU such that

for all x ∈ Xn,

A(x,·) = φ ((a0)x , (a1)x , . . . , (ak)x) (16)

Hence,

Px∼π
[
A(x,·) 6= φ((â0)x , . . . , (âk)x)

]
≤ Px∼π

[
∃β : (ãβ)x 6= (aβ)x

]
≤
∑
β∈JkK

Px∼π
[
(ãβ)x 6= (aβ)x

]
(a)
= OD(ε) ,

where (a) follows from (15). Define the deterministic matrix Ã ∈ {0, 1}Xn×U
such that, for an arbitrary u∗ ∈ U and for all x ∈ Xn,

Ã(x,·) =

{
φ ((a0)x , . . . , (ak)x) if φ ((a0)x , . . . , (ak)x) ∈ {ξu : u ∈ U},
ξu∗ otherwise.
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Since A is a deterministic matrix, i.e., each row of A belongs to {ξu : u ∈ U},

Px∼π

[
A(x,·) 6= Ã(x,·)

]
≤ Px∼π

[
A(x,·) 6= φ((â0)x , . . . , (âk)x)

]
= OD(ε) .

Finally, since ãβ depends only on XSβ for each β ∈ JkK, Ã depends only on
X∪β∈JkKSβ .

We have shown that, for each i ∈ N, there exists a deterministic matrix
Ãi ∈ RXni×U such that

(Ãi)(x,·) =(Ãi)(x′,·) ∀x,x′ ∈ Xn s.t. xj = x′j for all j ∈
⋃
β∈JkK

Si,β ,

and Px∼πi

[
(Ãi)(x,·) 6= (Ai)(x,·)

]
≤ εi,

where Si,β corresponds to Sβ considered for a fixed i in the above discussion.
Since ∪β∈JkKSi,β ≤ (k + 1)l = ` for all i ∈ N, the statement of the theorem
follows from Lemma 8.

4.2 An Algorithm for the SNIR Problem

In this section, we show that the SNIR problem is decidable. Theorem 1 showed
that existence of a statistical SNIR implies that of a perfect SNIR when the
source correlation is common information free and the target correlation is non-
redundant. As previously observed, it is sufficient to study SNIR between non-
redundant correlations. Next, we tackle source correlations with non-zero com-
mon information.
Dealing with common information. An early work [28] on non-secure non-
interactive reduction by Witsenhausen characterized correlations with non-zero
common information to be the complete correlations — correlations that can
be used to derive any desired target correlation — for non-secure reductions.
However, as intuition suggests, common information does not help when secu-
rity is required. This was formally established in [1] and restated in this paper as
Lemma 4. Using this result, we will show that decidability of SNIR between gen-
eral correlations reduces to SNIR between common information free correlations.

Definition 11. For positive numbers 0 < α1 ≤ . . . ≤ αk < 1 that add up to 1,
and common information free correlations H1, . . . ,Hk, consider the correlation

H =


α1H1 0 . . . 0

0 α2H2 . . . 0
...

. . .
...

0 0 . . . αkHk

 .
The parallelization of H, denoted by H‖ is defined as

H‖ = H1 ⊗H2 ⊗ . . .⊗Hk.

C
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H‖ is a common information free correlation, and when H is non-redundant,
H‖ is also non-redundant.

Lemma 9. Let C be a correlation with non-zero common information. A non-
redundant correlation D (with or without common information) has a statistical
SNIR to C if and only if D‖ has a statistical SNIR to C‖.

Proof: Let Ccoin =

[
1/2 0
0 1/2

]
be the 1-bit common randomness correlation.

We will later show that, since C has non-zero common information, C has a
statistical SNIR to Ccoin ⊗ C‖ and vice-versa. By the composability of SNIR
protocols, this implies that D has a statistical SNIR to C if and only if it has a
statistical SNIR to Ccoin ⊗ C‖. If D is common information free, then D‖ = D,
and if D has non-zero common information, then D has a statistical SNIR to
Ccoin ⊗D‖ and vice-versa, as in the case of C. Since common randomness can
be (securely) sampled using common randomness, Ccoin ⊗ D‖ has a statistical
SNIR to Ccoin ⊗C‖ if and only if D‖ has a statistical SNIR to Ccoin ⊗C‖. But,
by Lemma 4, D‖ has a statistical SNIR to Ccoin⊗C‖ only if D‖ has a statistical
SNIR to C‖. Since the other direction is trivially true, we have established the
statement of the lemma.

It remains to show that C has a statistical SNIR to Ccoin⊗C‖ and vice-versa.
Observe that Alice and Bob can agree on the distribution π over [k] such that
(π)i = αi for all i with arbitrarily small error using sufficiently many copies of
Ccoin. But then, by sampling i according to π and then sampling according to
Ci, Alice and Bob have essentially sampled according to C.

To sample Ccoin ⊗ C using C, Alice and Bob approximate (with arbitrarily
small error) the 1-bit common randomness correlation Ccoin using the sufficiently
many copies of π distribution that they (implicitly) share. Furthermore, with
probability

∏k
i=1 αi, the distribution C

⊗l is distributed according to C1⊗. . .⊗Ck.
Hence, Alice and Bob can approximately sample (with arbitrarily small error)
from Ccoin⊗C using sufficiently many copies of C. It is easily verified that both
the above mentioned sampling schemes are secure, concluding the proof. �

Putting things together. Now we can put together our results so far into an
algorithm for the SNIR problem.

1. Given a pair of correlations (C,D) as input, proceed as follows.
2. First replace D by its core and proceed (see Proposition 3). In the following

we assume D is non-redundant.
3. If C has non-zero common information, then replace C by C‖ and D by D‖

(see Lemma 9). (Else retain both C and D unchanged.) In the following we
assume C has no common information.

4. Compute ` ∈ N associated with C and D, as stated in Theorem 1. Let C =
C⊗`.

5. For every pair of (deterministic) matricesA ∈ {0, 1}X `×U andB ∈ {0, 1}Y`×V ,
check if (A,B) is a perfect SNIR from D to C, using Proposition 4. That is,
compute V = Δ−1

D Bᵀ
ΔC and U = Δ−1

DᵀAᵀ
ΔCᵀ , and check if A,B,U , and
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V satisfy the conditions in (1). If any pair is a perfect SNIR, accept the input
and halt.

6. Else, reject the input and halt.

Steps 2 and 3 are justified by Proposition 3 and Lemma 9 respectively. Then,
at the end of Step 3, given a non-redundant D and C with no common informa-
tion, and the rest of the algorithm is justified by Theorem 1. This leads us to
the main result of this paper:

Theorem 3. The SNIR problem is decidable.

4.3 More Necessary Conditions

As mentioned in Section 2, even given an algorithm for the SNIR problem, there
is value in simple necessary conditions for an SNIR to exist. Here we present a
new condition, exploiting Theorem 1.
A concrete example. The motivation for our new condition is the question of
whether there is a statistical SNIR of the OT correlation (or more generally, any
Oblivious Linear-Function Evaluation (OLE) correlation) to the (string) erasure
correlation. We formally define these correlations before formally stating our
resolution of the above question (in the negative).
(String) Erasure Correlation. An n-bit string erasure correlation with era-
sure probability p ∈ (0, 1), denoted by SECpl , is a correlation over {0, 1}l ×
({0, 1}l ∪ {⊥}) such that, for all x ∈ {0, 1}l,

(SECpl )(x,y)
=

{
1−p
2l

if y = x,
p
2l

if y = ⊥.

OLE Correlation. The OLE correlation (or Oblivious Linear-Function Evalu-
ation) over a finite field or ring F is the correlation OLEF over the domain F2×F2

such that, for all a, b, x, y ∈ F,

(OLEF)((a,b),(x,y)) =

{
1
|F|3 if a · b = x+ y,

0 otherwise .

A New Impossibility Criterion. We state the following combinatorial crite-
rion to rule out a SNIR.

Lemma 10. Let C be a correlation over X ×Y such that, for some x, C(x,y) > 0
for all y. Let D be a non-redundant correlation over U × V such that, for each
u, there exists v such that D(u,v) = 0. Then, D does not have a statistical SNIR
to C.

Proof: By Theorem 1, D has a statistical SNIR to C only if there is a perfect
SNIR (A,B) from D to C⊗` for some ` ∈ N. By our assumption, there exists
x ∈ X ` such that

(
C⊗`

)
(x,y)

> 0 for all y ∈ C⊗`. Consider any u such that
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P[A(x) = u] > 0 (indeed A is a deterministic protocol, but we do not need this
property). It is easy to see that, for all v in the image of B,

P(X,Y )∼C⊗` [A(X) = u,B(Y ) = v] > 0.

This contradicts our assumption about D. �

The above lemma implies that statistical SNIR of OLEF to SECpl is impossible
for all p ∈ (0, 1), l ∈ N and ring F. This follows from the fact that, when (X,Y )
is distributed according to the n-bit string erasure correlation, P(X,Y )[x,⊥] > 0
for all x ∈ {0, 1}n. Whereas, when (U, V ) is distributed according to SECpl , for
any (a, b) such that a · b 6= x+ y, P(U,V )[U = (a, b), V = (x, y)] = 0.

5 Generalized Junta Theorem

Kindler and Safra showed that if the energy of a function above degree d is small,
then it is close to a junta that only depends on O(d) many variables [21,20]. We
need a generalized version of this result, Theorem 2, which we will prove in this
section. The generalization is in terms of using a generalized Fourier transform
to define degree and energy for functions over a domain Ωn rather than {0, 1}n
(see Section 3). Our statement and proof closely follow the treatment by Filmus
[9], which itself gives a generalization of the original result in [21,20] (which was
restricted to functions with boolean outputs as well as inputs). The proofs of the
lemmas are provided in the full version of the paper [6].

5.1 Tools: Influence, Hypercontractivity and Invariance Principle

We will first present some definitions that will be used later in this section. Let
(Ω,π) be a finite probability space, |Ω| = m ≥ 2, in which every outcome has
probability at least λ.

Definition 12. For a function f ∈ L2(Ωn,π⊗n), and a position i ∈ [n], we
define the following:

E[f ] = E
x∼π⊗n

[f(x)], Var[f ] = ‖f − E[f ]‖2,

Eif = E
x′∼π

[f(x[n]\i||x′)] Lif = f − Eif ,

Infi[f ] = ‖Lif‖2 TotInf[f ] =

n∑
i=1

Infi[f ]

where x[n]\i||x′ denotes replacing xi by x′ in x. C

Note that Lif is a function associated with f , called its Laplacian, and
it captures the contribution of a particular coordinate i for each point in the
domain of f . Its energy Infi[f ], called the influence of a position i, is a quantity
that measures this contribution. The total influence TotInf[f ] simply sums up
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the influence from all coordinates. We also note that the expectation E (and
variance Var) for a function f w.r.t. a distribution over its domain are defined
as the expectation (and variance) of the random variable corresponding to the
output of f when evaluated on an input drawn from the given distribution; these
definitions extend to continuous domains as well.
Hypercontractivity. We will need a generalization of the Bonami Lemma
in the hypercontractivity type of results. The following version is obtained by
substituting q = 4 in Theorem 10.21 in [25]. Here we state this lemma restricted
to the case when all the variables are coming from the same domain Ω and are
distributed identically according to π.

Lemma 11 (Hypercontractivity [25]). Let (Ω,π) be a finite probability space,
|Ω| = m ≥ 2, in which every outcome has probability at least λ. Let f ∈
L2(Ωn,π⊗n) be a function of degree at most d, then

‖f2‖2 ≤ (9/λ)d ‖f‖4.

We will use the above lemma to prove a result that is a dichotomy (given
below), which will be used as a tool in the main proof. This has been taken
verbatim from [9], the only difference being that now we use the generalized
version of the Bonami lemma given above. Also, the expectations and probability
calculations will now be with respect to the probability distribution given by π⊗n
instead of the uniform distribution.

Lemma 12. Let S be a finite set and let d ≥ 1. If f ∈ L2(Ωn,π⊗n) is a S-valued
function satisfying ‖f>d‖2 = ε then either ‖f‖2 = O(ε) or ‖f≤d‖2 = Ω(1).

Invariance Principle. Given a function in f ∈ L2(Ωn,π⊗n), we define a
polynomial Pf with n(|Ω| − 1) variables, obtained by replacing the generalized
Fourier basis with a polynomial basis. More precisely, the polynomial Pf with
formal variables {Xi,α}i∈[n],α∈[|Ω|−1] is defined as

Pf(X1,1, . . . , Xn,|Ω|−1) =
∑

α∈J|Ω|Kn
f̂α

∏
i∈[n]:αi 6=0

Xi,αi .

We will be using the following variant of the invariance principle to complete
our proof of the generalized junta theorem, that is implicit in [25] (obtained from
Exercise 11.49(b) followed by an application of the technique used in the proof
of Corollary 11.67):

Lemma 13 (Invariance Principle [25]). Let (Ω,π) be a finite probability space,
|Ω| = m ≥ 2, in which every outcome has probability at least λ. Suppose f ∈
L2(Ωn,π⊗n) has degree at most d, with Var[f ] = 1,6 and Inft[f ] ≤ ε, for every
t ∈ [n]. Then for any ψ : R → R that has a continuous third derivative and
satisfies ‖ψ′′′‖∞ ≤ c, we have∣∣∣∣E[ψ ◦ f ]− E

w∼N(0,1)(m−1)n
[ψ(Pf(w))]

∣∣∣∣ ≤ 2c

3
(2
√

2/λ)dd
√
ε.

6 Actually, this lemma holds even when Var[f ] ≤ 1, but the unit variance case is
sufficient for us to be able to apply the Carbery-Wright theorem later.
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Following [25], we will use the above lemma along with Proposition 5 below
to get the desired version of the invariance principle, that compares probabilities
of the functions taking values less than some threshold.

Proposition 5 (Carbery-Wright Theorem.). Let p : R(m−1)n → R be a poly-
nomial of degree at most d, let w ∼ N(0, 1)(m−1)n, and assume E[p(w)2] = 1.
Then, for all ε > 0,

Pr[|p(w)| ≤ ε] ≤ O(dε1/d),

where the O(·) hides a universal constant.

The lemma given below will also be used in our proof of the invariance prin-
cipal. Its proof has been completed after following exercises 11.40 and 11.41(b)
from [25].

Lemma 14. Fix u ∈ R, let ψ(s) = 1s≤u, and 0 < η < 1/2. Then there exists a
smooth approximation ψ̃η of ψ that satisfies the following properties:

– ψ̃η is a non-increasing function which agrees with the indicator function ψ(s) =
1s≤u on the intervals (−∞, u− η] and [u+ η,∞).

– ψ̃η is smooth and satisfies ‖ψ̃(k)
η ‖∞ ≤ ck/η

k for each k ∈ N, where ck only
depends on k.

We prove the below lemma by following a line of reasoning in [25], similar
to the way this version is proved for the Berry-Esseen theorem (which considers
sums of random variables instead of multilinear polynomials). The smooth ap-
proximation function ψ̃η for the desired indicator function ψ(s) = 1s≤u has been
taken from Lemma 14. We first apply the basic invariance principle Lemma 13 to
this approximation and then use its properties to derive some basic inequalities,
concluding in the desired result.

Lemma 15. Let (Ω,π) be a finite probability space, |Ω| = m ≥ 2, in which every
outcome has probability at least λ. Suppose f ∈ L2(Ωn,π⊗n) has degree at most
d, with Var[f ] = 1, and Inft[f ] ≤ ε, for every t ∈ [n]. Then, for all u ∈ R,∣∣∣∣ Pr

x∼π⊗n
[f(x) ≤ u]− Pr

w∼N(0,1)(m−1)n
[Pf(w) ≤ u]

∣∣∣∣ ≤ O(dε
1

3d+1λ
−1
3 ).

5.2 Main Proof

In this section, we give our proof for the junta theorem. Lemma 16 states that
for every function whose high-degree energy is small, there is a set J of small
number of co-ordinates s.t. all other positions have low influence on the function
fz obtained by fixing these co-ordinates to the value z ∈ ΩJ . The remaining
lemmas then basically try to show that low influence implies low variance. To
this end, the invariance principle is used inside Lemma 18 to claim that the
function fz has low probability on every value in the domain. Lemma 19 then
shows that if we consider a restriction of the function f to J and average out the
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rest, we get a good approximation g for f . From there, one only needs to round
g to the nearest values in the set T to get the final approximation h. Most of the
following description has been taken verbatim from [9], with the expectations
and probabilities now being calculated w.r.t. the general distribution given by
products of π instead of a uniform distribution. Whenever not mentioned, the
variable α is coming from J|Ω|Kn.

There are some updates to the proof of the following lemma in the generalized
setting as compared to [9]. First, the Laplacian functions Lif , for i ∈ [n], have a
different range defined with respect to π, whereas it is a much simpler description
in the uniform setting. Secondly, the constant 2|J| in an inequality comparing
the conditional expectation of (Lif)2 when the input at positions J has been
set to z and the normal expectation of (Lif)2, must be replaced by (1/λ)|J|.

Lemma 16. Let T be a finite set and let d ≥ 1. If f ∈ L2(Ωn,π⊗n) is a T -valued
function such that ‖f>d‖2 = ε then we can find a set J of O(1) coordinates such
that for each z ∈ ΩJ , the function [fz] on ΩJ̄ obtained by substituting x|J = z
satisfies

Infi[fz] = O(ε) for every i ∈ J̄ .

There is a similar difference to the following lemma from the version in [9],
that the constant in an inequality comparing norms of fz and f must be replaced
from 2|J| to (1/λ)|J|.

Lemma 17. Assuming the setting of Lemma 16, then for every z ∈ ΩJ , either
Var[fz] = O(ε) or Var[fz] = Ω(1).

The following lemma finally concludes that variance of fz is small, for every
z ∈ ΩJ . The key ingredient used here is our variant of the generalized invariance
principle (Lemma 15) that we have proved earlier. This is used to first show that
the difference in the (appropriately-defined) probabilities that the functions g
and Pg take values in the set (u−γ, u] (for any u) is small, where g = fz/Var[fz].
Since the variable obtained by substituting a Gaussian distribution to Pg is
continuous, this probability goes to 0 as we take the limit γ going to 0.

Lemma 18. Assuming the setting of Lemma 16, for every z ∈ ΩJ , we have
Var[fz] = O(ε).

Lemma 19. Assuming the setting of Lemma 16, there is a function g ∈ L2(Ωn,π⊗n),
depending only on the co-ordinates in J, such that ‖f − g‖2 = O(ε).

We will now finish the proof of the generalized junta theorem.
Proof of Theorem 2: Lemma 19 gives a function g, depending on O(1) co-
ordinates, such that ‖f −g‖2 = O(ε). Let h(x) be obtained by rounding g(x) to
the closest element of T . For every x we have |h(x)− g(x)| ≤ |f(x)− g(x)| and
so |h(x)−f(x)| ≤ |h(x)− g(x)|+ |g(x)−f(x)| ≤ 2|f(x)− g(x)|. Consequently,
‖h− f‖2 ≤ 4‖g − f‖2 = O(ε).

Since f and h are both T -valued, for all x either f(x) = h(x) or |h(x) −
f(x)| = Ω(1). Consequently, Ex∼π⊗n [(h− f)2] = Ω(Pr[h 6= f ]), and so Pr[h 6=
f ] = O(‖h− f‖2) = O(ε).
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Finally, suppose that h does not have degree d. Then ĥα 6= 0 for some
|α| > d. Since h depends onM = O(1) coordinates, ĥα = E[h ·γα] is a non-zero
value which is the average of mM elements, and consequently (ĥα)2 = Ω(1),
implying that ‖h>d‖2 = Ω(1). On the other hand,

‖h>d‖2 ≤ 2‖f>d‖2+2‖h>d−f>d‖2 = 2ε+2‖(h−f)>d‖2 ≤ 2ε+‖h−f‖2 = O(ε).

This shows that ε = Ω(1). In such a setting, we can just ignore all the above
analysis and pick some constant function h as the approximation. This function
has degree 0, it depends on no co-ordinates, while the probability that it differs
from f is still less than 1, and hence O(ε). �
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