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Abstract. In p-noisy coin-tossing, Alice and Bob obtain fair coins which
are of opposite values with probability p. Its Oblivious-Transfer (OT)
complexity refers to the least number of OTs required by a semi-honest
perfectly secure 2-party protocol for this task. We show a tight bound
of Θ(log 1/p) for the OT complexity of p-noisy coin-tossing. This is the
�rst instance of a lower bound for OT complexity that is independent of
the input/output length of the function.
We obtain our result by providing a general connection between the OT
complexity of randomized functions and the complexity of Secure Zero
Communication Reductions (SZCR), as recently de�ned by Narayanan
et al. (TCC 2020), and then showing a lower bound for the complexity of
an SZCR from noisy coin-tossing to (a predicate corresponding to) OT.

1 Introduction

Consider two parties trying to do a �p-noisy coin-toss� such that each one gets
a uniformly random bit, but with probability p < 1/2 the bits they obtain are
di�erent.4 They would like to do this with semi-honest information-theoretic
security (so that each one has no information about the other's bit, beyond
what it learns from its own bit), using as few instances of Oblivious Transfer
(OT) as possible.

An easy upper bound on the number of OTs needed is O(log 1/p), because
they can obtain the desired outputs by evaluating a boolean circuit with that
many binary gates on O(log 1/p) uniformly random bits from each party; the
upper bound follows from the semi-honest GMW protocol [13,14,15] (requiring
a couple of OTs for each non-linear gate). But it is a priori not at all clear if this
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is the only way to carry out this computation. In particular, a protocol can rely
on the semi-honest parties to sample non-uniform bits and use them as inputs in
a protocol, and more generally, employ a protocol that does not involve a circuit
evaluation at all.

Information-theoretic measures have been used to reason about the complex-
ity of randomized functions in cryptographic and non-cryptographic settings.
The most relevant technique to lower bound the OT complexity of general ran-
domized functions is to use the �tension� of the resulting correlation [24]. How-
ever, it only yields a lower bound of one OT for sampling a noisy coin. Further,
for the amortized setting, the lower bound on the rate degrades as the noise
decreases.

In this work, we present for the �rst time an OT complexity lower bound that
goes beyond the input/output length of a function, by showing that the number
of OTs required for noisy coin-tossing isΘ(log 1/p). Further, our lower bound also
has a �direct sum� version, showing that tossing n such coins has OT complex-
ity Θ(n log 1/p). Remarkably � and in contrast to the information-theoretically
derived lower bounds � our result shows that OT complexity increases as p de-
creases, although at the limit when p = 0, the OT complexity is 0. Indeed, an
information-theoretic complexity measure like tension is unlikely to uncover this
non-monotonic behavior of OT complexity.

Our main tool is Secure Zero Communication Reductions (SZCR) as de-
�ned recently in [23]. We extend the connection between SZCR complexity and
OT complexity to randomized functions (in [23] this was limited to determinis-
tic functions), and then show that the noisy coin-�ip functionality has a large
SZCR complexity of Ω(log 1/p). Along the way, we develop a relaxation of SZCR
complexity � which we term the balanced embedding complexity of a function �
which is easier to interpret (especially for randomized functions) and which is
su�cient to derive our lower bound.

OT Complexity and Randomized Functions. OT complexity of a (two-
input) function � namely, the minimum number of instances of OT that is re-
quired by an information-theoretically secure5 two-party computation protocol
for evaluating the function � is a fundamental complexity measure. It follows
from the results in the pioneering work in the 80's [13,15,14] that the OT com-
plexity is upper bounded by the circuit complexity of the function. More re-
cently, Beimel et al. [5] gave non-trivial upper bounds on OT complexity of all
functions based on Private Information Retrieval (PIR) protocols, which become
sub-exponential when instantiated using state-of-the art PIR results [11]. On the
other hand, the few lower bounds that we do have � in terms of communication
complexity [6] and �tension� [24] � are no larger than the (smaller) input and out-
put length. Making further progress on OT complexity lower bounds faces major
barriers, by implying lower bounds for circuit complexity (for explicit functions)
or PIR (even existentially). Showing an existential lower bound that is super
polynomial in the input length will imply super-logarithmic lower bounds for

5 Throughout this paper, we consider semi-honest and perfect security, which arguably
gives the cleanest notion of OT complexity.
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the client computational complexity of 2-server PIR [5], and consequently lower
bounds for codes on which PIR can be based. However, these barriers do not
apply to randomized functions, motivating the current work.

Unfortunately, secure computation of randomized functions is relatively less
well-understood, compared to deterministic functions. Indeed, even the charac-
terization of which randomized functions are trivial (i.e., have 0 OT complexity)
remains open.

While upper bounds on OT complexity of randomized functions can be ob-
tained via upper bounds on OT complexity of appropriate deterministic func-
tions (evaluated on randomized inputs), this connection does not apply to lower
bounds. As an illustrative example, we present an inputless randomized func-
tion f which corresponds to evaluating a deterministic function g on random
inputs, such that g has a positive OT complexity and f has 0 OT complexity!6

For x, y ∈ [3], let g(x, y) = Mx,y where M =

1 1 2
4 5 2
4 3 3

. One way to compute this

function would be for Alice and Bob to pick x and y respectively, and then use
secure function evaluation to compute g(x, y). Now, being an �undecomposable
function�, the function g cannot be securely computed without using any OTs
[21,3]. However, f has a protocol that uses no OTs at all: one party can sample
Mx,y (without sampling x, y) and send it to the other one; then, independently,
Alice samples x and Bob samples y conditioned on Mx,y.

Our result establishes, for the �rst time, a non-trivial lower bound technique
for OT complexity of randomized functions. While this possibility was alluded to
as a motivation in [23], the actual connection between SZCR and OT complexity
established there was restricted to deterministic functions.

Our Contributions. We summarize our contributions as follows:

� The main result of this work is to show, for the �rst time, that the OT com-
plexity of a randomized function can grow independent of the input/output
size of the function. Speci�cally, we show that the OT complexity of securely
sampling a noisy coin with �ip probability p is Θ(log 1/p). Further, this result
has a �direct sum� version, so that sampling n independent copies of such a
coin has OT complexity Θ(n log 1/p).

� While proving this, we develop a more generally applicable tool, which shows
that the complexity of an SZCR for a randomized function is a lower bound
on the OT complexity of that function (denoted as |f |szcr ≤ |f |OT). We do
this by carefully generalizing the analysis in [23] where the same result was
shown for deterministic functions.

� As a contribution towards facilitating future work on SZCR, we present a re-
laxation of SZCR complexity of randomized functions, namely, balanced em-
bedding complexity, so that our result can be summarized as

|f |emb ≤ |f |szcr . |f |OT,

6 This phenomenon occurs whenever g is undecomposable [21] but �simple� [22].
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where the balanced embedding complexity |f |emb is simpler to reason about.
Indeed, our tight result on noisy coin-tossing is obtained by establishing a
lower bound for balanced embedding complexity.

Related Work. There is a rich line of work in information-theoretic cryptog-
raphy that studies the complexity of functions through the lens of secure 2-party
computation. Starting with the seminal results in the 80's [20,21], complete and
trivial functionalities for 2-party computation have been thoroughly character-
ized, for various levels of security (semi-honest, standalone, UC-secure) (see [22]
for a survey). However, quantitative complexity results have been much sparser.
The question of OT complexity was explicitly discussed by [4]. [6] presented a
general lower bound in terms of the one-way communication complexity of the
function. Important upper bounds of OT complexity follow from the semi-honest
GMW protocol [13,14,15] and via PIR protocols [5]. Separate from the lower
bound arguments in [6], a long line of works used information-theoretic tools for
showing various complexity lower bounds for reductions in information-theoretic
cryptography [4,10,26,19,27,18,16,17,9,25,24]; however, we may not expect such
information-theoretic tools to uncover the non-monotonic behavior of OT com-
plexity that we report here.

A similar sounding concept, called Secure Non-Interactive Reduction (SNIR)
was introduced in [1] (also called Secure Non-Interactive Simulation or SNIS in
[2]). It is instructive to compare both SNIR and SZCR with the standard notion
of (semi-honest) secure reduction (SR) to a correlation like OT (i.e., the notion
of OT complexity). Roughly put,

SNIR⇒ SR⇒ SZCR

indicating that SNIR is a �stronger� primitive than SR, which is in turn stronger
than SZCR. While every function has an SR to the OT correlation (i.e., it is
a complete correlation), that is not the case for SNIR: Indeed, there are no
complete correlations for SNIR [1]. Both SNIR and SZCR are motivated by
approaching the notoriously hard lower bound questions for SR, but they do it
in di�erent ways.

� Lower bounds (or impossibility results) for SNIR are an �easier� target than
those for SR, and would provide a platform for nurturing new techniques; as
and when we completely settle a question for SNIR (as is done in [7]),we can
approach SR by relaxing the model (e.g., allow one-directional communica-
tion).

� Lower bounds for SZCR are formally (but not necessarily conceptually) harder
than those for SR. In this case, one seeks to develop new techniques by asking
simpler variants of the lower bound question: e.g., existential questions (a
la the �invertible rank conjecture� of [23]) or lower bounds for randomized
functions (as in this work) Also, the new perspective provided by SZCR may
lead to fresh approaches to the original hard lower bound problems of SR.
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2 Technical Overview

Our overall plan to obtain a lower bound on the OT complexity of a randomized
function is to show that |f |emb . |f |OT, where |f |emb is a new �balanced embed-
ding complexity� that we de�ne for functions, and then directly derive a lower
bound for |f |emb. The signi�cance of this connection is that, a priori, OT com-
plexity is di�cult to lower bound due to the complex possibilities in a protocol.
On the other hand, a balanced embedding has a relatively simple structure that
could allow us to easily derive a lower bound on |f |emb.

As such, the main technical contribution of this work is to de�ne |f |emb and
to show that |f |emb . |f |OT. This involves a few di�erent steps:

� De�ning balanced embedding.

� Obtaining an easy lower bound on |f |emb, where f is the p-noisy coin-tossing
functionality.

� Showing that |f |emb ≤ |f |szcr, where |f |szcr refers to the �SZCR complexity�
of f .

� The �nal (and main) technical challenge is to show |f |szcr . |f |OT.

Below, we expand on each of these steps.

Balanced Embedding. Identifying randomized functions as weighted bipartite
graphs, we de�ne a form of weighted embedding of one such graph into another.
The embedding is a �fuzzy� embedding that assigns weights relating how much
one node in one graph is associated with a node in the other graph. In fact, there
are two such weights (π and θ) which �balance� each other � hence the name
balanced embedding.

De�nition 1. Let G = (S, T ,ω) be a weighted bipartite graph, where S, T form
a bi-partition of the nodes of G and ω : S×T → R≥0 is the weight function. We
de�ne a balanced embedding of G into another bipartite graph H = (U ,V,φ)
as (π, θ) where π, θ : (U × S) ∪ (V × T ) → R≥0 are weight functions such that
the following hold, for all (α, β) ∈ S × T :∑

v∈V
π(v, β) ·φ(u, v) = θ(u, α) ·ω(α, β) ∀u ∈ U (1)∑

u∈U
π(u, α) ·φ(u, v) = θ(v, β) ·ω(α, β) ∀v ∈ V (2)∑

u∈U
π(u, α) · θ(u, α) = 1

∑
v∈V

π(v, β) · θ(v, β) = 1 if ω(α, β) > 0 (3)

Given a randomized function f : X ×Y → A×B, we de�ne its characteristic
bipartite graph as Gf = (X×A,Y×B,ω), whereω((x, a), (y, b)) = Pr[f(x, y) =
(a, b)]. We will be interested in the balanced embedding of Gf into the weighted
graph Hφ := (U ,V,φ), where φ : U ×V → {0, 1} is a predicate. In fact, we are
speci�cally interested in predicates that correspond to multiple copies of OT:

φm
OT((u1, . . . , um), (v1, . . . , vm)) =

m∧
i=1

φOT(ui, vi)
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where φOT(u, v) = 1 i� ∃(x0, x1, b) ∈ {0, 1}3 such that u = (x0, x1) and v =
(b, xb).

De�nition 2. The balanced embedding complexity of f , |f |emb is the smallest
m such that Gf has a balanced embedding into Hφm

OT
.

We remark that for our current result, the lower bound on the balanced em-
bedding complexity of noisy coin-toss (sketched below) does not need to fully
exploit all the conditions of a balanced embedding (e.g., in (3), = 1 can be
replaced by > 0). However, for facilitating potential applications to other func-
tions in the future, we retain the above version. For the sake of explicitness,
we detail two constructions of balanced embedding of any Boolean function to
OT predicate�from its truth table and from a Boolean circuit of the function�in
Appendix A.

A Lower Bound for a Balanced Embedding of Noisy Coin-Tossing. Be-
low we summarize the short argument to show that |f |emb = Ω(log 1/p), where
f is the p-noisy coin-toss functionality with p < 1

2 ; i.e., if Gf has a balanced
embedding into Hφm

OT
, then m = Ω(log 1/p).

LetGf = ({0A, 1A}, {0B , 1B},ω), whereω(bA, bB) = (1−p)/2 andω(bA, (1−
b)B) = p/2 for all b ∈ {0, 1}. Let Hφm

OT
= (U ,V,φm

OT). Suppose (π, θ) is a bal-
anced embedding of Gf to Hφm

OT
.

Now, we choose (u∗, α∗) ∈ U ×{0A, 1A} such that π(u∗, α∗) ≥ π(u, α) for all
(u, α). W.l.o.g, let α∗ = 0A (as the other case is symmetric). Using (1)-(3) we
can argue that for some v∗ ∈ V such that φm

OT(u
∗, v∗) = 1, θ(v∗, 1B) > 0. Then,

applying (2) to both (α, β) = (1A, 1B) and (0A, 1B), and taking their ratio, we
get ∑

u π(u, 1A) ·φm
OT(u, v

∗)∑
u π(u, 0A) ·φm

OT(u, v
∗)

=
ω(1A, 1B)

ω(0A, 1B)
=

1− p
p

.

Since π(u, 1A) ≤ π(u∗, 0A) for all u, and since φm
OT(u

∗, v∗) = 1,

|{u : φm
OT(u, v

∗)}| ≥
∑
u π(u, 1A) ·φm

OT(u, v
∗)∑

u π(u, 0A) ·φm
OT(u, v

∗)
=

1− p
p

.

Since |{u : φm
OT(u, v

∗)}| = 2m, we have m ≥ log(1/p)− 1.
Virtually the same argument holds for the case of n noisy coin-�ips, but with

the ratio of probabilities used to obtain the bound being
(

1−p
p

)n
, leading to a

bound of m = Ω(n log 1/p).

Recap of SZCR. We start with a quick recap of SZCR, as introduced in [23].
A µ-SZCR from a 2-party function f (which takes two inputs and produces two
outputs, possibly randomized) to a predicate φ, is a minimalistic computation
model, in which Alice and Bob, on being given respective inputs x and y, produce
respective outputs (a, u) and (b, v) without any communication, with the guaran-
tee that (a, b) is distributed as f(x, y) (or, in the case of deterministic functions,
(a, b) = f(x, y)) conditioned on φ(u, v) = 1. It is required that φ(u, v) = 1 with
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a �xed probability (irrespective of (x, y)) which is at least 2−µ. The security
condition captures the idea that Alice's view (which is considered to include the
predicate's outcome φ(u, v), as well as her input x and output (a, u)) reveals
nothing about Bob's input and output (y, b), beyond what is revealed by (x, a);
similarly, Bob's view reveals nothing more about (x, a) than (y, b) itself reveals.

SZCR leads to a pair of natural complexity measures associated with a (pos-
sibly randomized) function f : smallest possible µ and m for which there is a
µ-SZCR from f to φm

OT. In [23], the minimum such µ +m was suggested as a
convenient complexity measure of a function f . In this work, for simplicity, we
shall use the smallest m for which there is a µ-SZCR from f to φm

OT for any
(�nite) µ as the complexity measure |f |szcr.7

Balanced Embedding and SZCR. Given an SZCR that reduces f to φ, we
obtain a balanced embedding of Gf into Hφ. This amounts to assigning weights
π(u, α) and θ(u, α) for all u ∈ U and α ∈ X ×A, and π(v, β) and θ(v, β) for all
v ∈ V and β ∈ Y × B in a way that satis�es (1), (2), and (3). Let Θ(A,B) be
an SZCR from f to φ. For α = (x, a) and u, we choose π(u, α) ∝ PrA(u, a|x)
and θ(u, α) such that π(u, α) · θ(u, α) = PrŜA

(u|x, a,D = 1), where ŜA is the
simulator for Alice in the SZCR. For β = (y, a) and v, π(v, β) and θ(v, β) are
chosen analogously. Having chosen the product of π(u, α) and θ(u, α) in this
manner, ∑

u

π(u, α) · θ(u, α) =
∑
u

PrŜA
(u|x, a,D = 1) = 1,

ensuring (3). Since D = 1 whenever A and B choose u and v, respectively, such
that φ(u, v) = 1, with π de�ned as above, and α = (x, a) and β = (y, b),∑
v

π(v, β)φ(u, v) ∝ PrΘ(D = 1, b|y, x, a, u) = PrΘ(b|x, y, a)·
PrΘ(D = 1, u|x, y, a, b)

PrΘ(u|x, y, a, b)
.

Using the correctness of Θ conditioned on the event D = 1 and the fact that
(u, a) and (v, b) are sampled depending only on x and y, respectively,

PrΘ(b|x, y, a) ·
PrΘ(D = 1, u|x, y, a, b)

PrΘ(u|x, y, a, b)
∝ PrΘ(u|x, y, a, b,D = 1)Prf (a, b|x, y)

PrA(u, a|x)
.

At this point, noting that PrΘ(u|x, y, a, b,D = 1) = PrŜA
(u|x, a,D = 1) for all

(y, b) and choosing the proportionality constant to be
√

PrΘ(D = 1|x, y), we get
(1). (2) is shown analogously.

We remark that in translating an SZCR to a balanced embedding, we ignore
the SZCR security requirements related to the simulatability of views when the
computation is rejected by the predicate.

OT Complexity and SZCR. In [23], it was shown that a 2-party secure
function evaluation protocol ΠOT for a deterministic function f , using m OTs

7 Our connection between SZCR and OT-based 2-PC does extend to both µ and m.
But our formulation of balanced embedding complexity |f |emb omits µ, and lower
bounds on |f |emb yield lower bounds on m rather than only on m+ µ.
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can be transformed into a µ-SZCR from f to the predicate φOT corresponding
to m instances of OT,8 where µ = O(m). The high-level idea is for Alice and
Bob to sample candidate pairs of views in ΠOT such that conditioned on φOT

accepting the OTs in these views, these views are distributed correctly as in
the protocol. Also, it would be ensured that the acceptance probability of the
predicate is constant independent of x, y. Then the security guarantee of ΠOT

translates to the security requirement of SZCR.
Being able to carry out the rejection sampling of views using φOT relies on

the fact that protocols (secure or not) admit transcript factorization: i.e., the
probability of a transcript q occurring in an execution of ΠOT, given inputs (x, y)
and OT correlation (r, s) to the two parties respectively, can be written as

PrΠOT(q|x, y, r, s) = ρ(x, r, q) · σ(y, s, q),

for some functions ρ and σ. Given a particular transcript q (say, as a common
reference string),9 each of the two parties can locally sample its views from OTs
(r or s, respectively), conditioned on its own input and q, with probability pro-
portional to ρ(x, r, q) or σ(y, s, q), respectively with a proportionality constant
independent of x or y; then, the probability that the parties end up with a valid
joint view in the protocol (for which φOT(r, s) = 1, and where all such (r, s)
have the same probability) is proportional to that in the protocol, conditioned
on (x, y, q).

Above, using proportionality constants that are independent of x and y runs
into a problem since

∑
r ρ(x, r, q) and

∑
s σ(y, s, q) can depend on x, y. To resolve

this, the parties are allowed to output an invalid r or s with some probability
(implemented by setting u = (u0, r) and v = (v0, s), so that Alice or Bob can
unilaterally force φOT(u, v) = 0 by choosing a special value ⊥ for u0 or v0,
respectively).

To get a µ-SZCR, with µ = O(m), it is important to keep the probabil-
ity with which the parties force aborting bounded. A key aspect in ensuring
this turns out to be how the transcript q is chosen. As detailed in [23], if the
function is �common-information-free,��i.e., its characteristic bipartite graph is
connected� then a single �xed transcript can be used. But otherwise, if the graph
has multiple connected components, a transcript is chosen from among a small
set of transcripts q∗1 , · · · , q∗k, indexed by the di�erent values that the common
information can take. An additional rejection step is introduced (see below),
corresponding to rejecting a choice of this index that is not consistent with the
input-output pair. A somewhat lengthy analysis shows that with appropriately
chosen transcripts, the probability of the SZCR accepting is at least 2−O(m).

8 That is, φOT(u, v) = 1 i� u = (r1, · · · , rm), v = (s1, · · · , sm) and each (ri, si) is in
the support of the OT correlation. Looking ahead, φOT in fact uses m+1 instances
of OT, where the extra instance is used as an �abort switch.� Following the notation
in [23], later, we denote φOT as φsupp(OT+).

9 The general de�nition in [23] allowed a CRS, or even more general correlations in
an SZCR. For simplicity, we omit this from our adaptation, as we shall not need it
for our speci�c result.
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Extending to Randomized Functions. We �rst notice that the construc-
tion in [23] is no longer an SZCR when f is randomized and is not common-
information free. To see this, we need to recall more details of the rejection step
mentioned above for rejecting the wrong transcript index. Firstly, common in-
formation that Alice and Bob obtain when evaluating f(x, y) to obtain outputs
a and b respectively, corresponds to the connected component containing the
edge ((x, a), (y, b)) in a bipartite graph Gf representing f .10 Now, in the SZCR
of [23], given x and a common index `, Alice checks if there is at least one a′ such
that the node (x, a′) lies in the component speci�ed by `, and if so she samples r
as described above, and computes an output a using the protocol Π on the view
(x, r, q∗` ). (Otherwise, she sets u = (⊥, r) to force the predicate to fail.)

But when f is randomized, it is possible that the same transcript, and the
same pair of inputs (x, y), could correspond to two di�erent outputs (a1, b1) and
(a2, b2), such that the edges ((x, a1), (y, b1)) and ((x, a2), (y, b2)) are in two di�er-
ent connected components of Gf .

11 So when the parties sample (r, s) conditioned
on (x, y, q), it could correspond to either output. This breaks a crucial invariant
in the analysis that when the predicate accepts, the outputs produced (a, b) will
be such that ((x, a), (y, b)) is in the connected component corresponding to the
common index `.

To �x this, we make a subtle change in the SZCR: Alice and Bob will �rst
sample their respective outputs a and b (rather than computing them from r
and s), and then check that the nodes (x, a) and (y, b) are in the connected
component corresponding to the common index `. This restores the invariant
mentioned above, but necessitates a careful reanalysis. Our new analysis closely
follows the original analysis, but needs to accommodate the above modi�cation
in the protocol, as well as the fact that Gf can have multiple edges (possibly in
multiple connected components) of the form ((x, ·), (y, ·)) for the same (x, y).

Our new proof incorporates an additional minor re�nement. In [23], the SZCR
constructed used a CRS, as this was a part of the model. Here, motivated by
simplifying the (already minimalistic) SZCR model further, we restrict ourselves
to a version which does not involve a CRS. Instead, the two parties guess a value
of the CRS, and use the predicate φOT to check if their guesses match. This does
result in a slight quantitative degradation in the acceptance probability (when
there are multiple connected components in Gf ), but asymptotically, the result
remains unchanged.

Finally, we remark that our result (as well as the one in [23]) is not only for
an SZCR to OTs, but is shown for any �regular� complete correlation.

10 For randomized functions, Gf is a weighted bipartite graph with the weight of an
edge ((x, a), (y, b)) being Pr[f(x, y) = (a, b)].

11 Note that the common information that Alice and Bob obtain in an execution of the
protocol ΠOT is not solely determined by the transcript, but also by their views of
the OT correlation. Indeed, a protocol could use OTs to carry out an information-
theoretically secure secret-key agreement protocol, and then use the key as a one-
time pad for the rest of the transcript, so that the transcript by itself is distributed
identically for all input-output pairs.
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3 Preliminaries

Probability Notation. We adhere mostly to the notations used in [23]. In
general, we denote a �nite set by X ,Y, . . . and so on. A member of X is denoted
by x and a random variable taking values in X is denoted by X. The probability
assigned by a distributionD (or a probabilistic processD) to a value x is denoted
as PrD(x), or simply Pr(x), when the distribution is understood. Sampling x
according to the distribution D is denoted as x← D.

Functionalities and Correlations. A (potentially randomized) two party
functionality f : X × Y → A× B takes inputs x and y, respectively, from Alice
and Bob and returns a and b, respectively, to them, where (a, b) = f(x, y). We
write fA : X × Y → A to indicate the function obtained by projecting the
output of f to the �rst coordinate (i.e., retaining only Alice's output). Similarly,
fB : X × Y → B denotes the function obtained from f by retaining only Bob's
output.

A correlationψ over a domainR×S is a 2-party functionality without inputs,
i.e., ψ : {⊥}× {⊥} → R×S. The support of ψ is supp(ψ) = {(r, s)|Prψ(r, s) >
0}. A correlation is said to be regular if (1) ∀(r, s) ∈ supp(ψ), Prψ(r, s) =

1
|supp(ψ)| , (2) ∀r ∈ R,

∑
s∈S Prψ(r, s) =

1
|R| , and (3) ∀s ∈ S,

∑
r∈R Prψ(r, s) =

1
|S| . Common examples of regular correlations are those corresponding to Obliv-

ious Transfer (OT) and Oblivious Linear Function Evaluation (OLE), and their
n-fold repetitions. For t ∈ N, t independent copies of a correlation ψ is denoted
by ψt.

De�nition 3. For a randomized function f : X × Y → A × B we de�ne its
evaluation graph, Gf as the bipartite graph on vertices (X ×A) ∪ (Y × B) such
that the edge weight of an edge ((x, a), (y, b)) is Prf (a, b|x, y).

Two vertices u and v in Gf are said to be connected if there is a path from
u to v consisting of edges with non-zero edge weight. Let C ⊆ Gf be a connected
component of Gf ; we de�ne:

XC = {x : ∃a, y, b((x, a), (y, b)) ∈ C} YC = {y : ∃b, x, a((x, a), (y, b)) ∈ C}

Predicates. A predicate is any deterministic function φ : U × V → {0, 1}
with boolean output. The predicate φ(=l) takes a pair of l-bit strings u, v as
input and accepts if u = v. Given a correlation ψ over U × V, we de�ne the
predicate φsupp(ψ) so that φsupp(ψ)(u, v) = 1 i� (u, v) ∈ supp(ψ). The predicate
φsupp∗(ψ) is de�ned identically, except that we allow the domain of φsupp∗(ψ) to
be (U ∪ {⊥}) × (V ∪ {⊥}) where ⊥ is a symbol not in U ∪ V. Speci�cally, the
predicate φsupp(OTm) allows a domain of {0, 1}2m × {0, 1}2m and accepts u, v if
PrOTm(u, v) > 0 and rejects otherwise; whereas, φsupp∗(OTm) behaves the same
way but the input domain is now ({0, 1}2m ∪ {⊥})× ({0, 1}2m ∪ {⊥}).

Let φ : U × V → {0, 1} and φ′ : U ′ × V ′ → {0, 1} be two predicates. Their
product φ ·φ′ takes (u, u′) ∈ U × U ′ and (v, v′) ∈ V × V ′ as inputs and accepts
if φ(u, v) = 1 and φ′(u′, v′) = 1.



Oblivious-Transfer Complexity of Noisy Coin-Toss 11

Secure 2-party Communication Protocols A communication protocol be-
tween Alice and Bob using the correlationψ, denoted by Πψ, proceeds as follows:
Alice and Bob receive inputs x and y, respectively, and, additionally, they get r
and s, respectively, where (r, s)← ψ. They exchange messages in rounds (mes-
sage of a party in each round being a randomized function of their current view)
to generate a transcript q ∈ Q. Finally, Alice (resp. Bob) computes their output
a (resp. b) by applying a (randomized) map Πout

A (resp. Πout
B ) to their �nal view

(x, r, q) (resp. (y, s, q)). Thus, the outcome of an execution of Πψ on inputs (x, y)
is the joint distribution described by

PrΠψ(r, s, q, a, b|x, y)
= Prψ(r, s) · PrΠψ(q|x, y, r, s) · PrΠout

A
(a|x, r, q) · PrΠout

B
(b|y, s, q),∀r, s, q, a, b.

(4)

The protocol Πψ is said to compute the functionality f : X × Y → A× B with
perfect security if the distribution PrΠψ(r, s, q, a, b|x, y) described above satis�es
the following conditions:

Correctness: For all x, y,

PrΠψ(a, b|x, y) = Prf (a, b|x, y),∀a, b. (5)

Privacy against Alice: There exists a randomized simulator ŜA : X × A →
R×Q such that, for all a, x, y, such that fA(a|x, y) > 0,

PrΠψ(r, q|x, y, a) = PrŜA
(r, q|x, a),∀r, q. (6)

Privacy against Bob: There exists a randomized simulator ŜB : Y × B →
S ×Q such that, for all b, x, y, such that fB(b|x, y) > 0,

PrΠψ(s, q|x, y, b) = PrŜB
(s, q|y, b),∀s, q. (7)

Transcript Factorization. In any 2-party communication protocol Πψ, the
probability of generating the transcript, as a randomized function of the inputs
(x, y) and the correlation (r, s), can be factorized into separate functions of (x, r)
and (y, s). A transcript q = (m1, . . . ,mN ) is generated by the protocol if Alice
produces the message m1 given (x, r) in round 1, and then Bob produces m2

given (y, s,m1) in round 2, and so forth. That is,

PrΠψ(m1, . . . ,mN |x, y, r, s) = Pr(m1|x, r)× Pr(m2|y, s,m1)× . . .
× Pr(mi|y, s,m1, . . . ,mi−1)× . . . .

Hence, by collecting the products of odd factors as ρ(x, r,m1, . . . ,mN ) and even
factors as σ(y, s,m1, . . . ,mN ), we can write the transcript as a product of sepa-
rate functions of (x, r) and (y, s).
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Formally, there exist transcript factorization functions ρ : X ×R×Q → [0, 1]
and σ : Y × S ×Q → [0, 1], such that

PrΠψ(q|x, y, r, s) = ρ(x, r, q) · σ(y, s, q). (8)

It is worth noting that, for any x, y, r, s, functions ρ and σ by themselves are
not probability mass functions. We shall use this important and well-known
transcript factorization property (e.g., [8]) of a protocol in our constructions.

3.1 Zero-Communication Secure Reductions

A B

φ

x y

A B

U V

D

Fig. 1. The random variables involved in a szcr.

The zero-communication reduction Θ from a functionality f to predicate φ
is speci�ed by a pair of randomized algorithms (A,B). The random variables
involved in the reduction are illustrated in Figure 1. The reduction proceeds
as follows: Alice and Bob receive inputs x, y to the functionality f , respectively.
Alice samples (a, u)← A(x), where a is her proposed output for the functionality
f , and u is her input to the predicate φ. Similarly, Bob samples (b, v)← B(y).
On receiving u, v from Alice and Bob, respectively, the predicate outputs d =
φ(u, v). Thus, the outcome of an execution of Θ on inputs (x, y) is the joint
distribution described by

PrΘ(u, v, a, b, d|x, y) = PrA(u, a|x) · PrB(v, b|y) · Prφ(d|u, v). (9)

De�nition 4. Let f : X × Y → A× B and φ : U × V → {0, 1} be randomized
functions. For any µ ≥ 0, a µ-secure zero-communication reduction (µ-szcr)
Θ(A,B) from f to the predicate φ is a pair of probabilistic algorithms A : X →
U × A and B : Y → V × B such that the following holds for the distribution
described in (9).
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Non-Triviality and Weak Security ∃µ′ ≤ µ, ∀(x, y) ∈ X × Y,

PrΘ(D = 1|x, y) = 2−µ
′
. (10)

Correctness ∀x, y, a, b ∈ X × Y ×A× B,

PrΘ(a, b|x, y,D = 1) = Prf (a, b|x, y). (11)

Security against Alice There exists a randomized function SA : X × A ×
{0, 1} → U such that ∀x, y, a ∈ X × Y ×A such that PrfA(a|x, y) > 0,

PrΘ(u|x, y, a,D = 1) = PrSA
(u|x, a, 1). (12)

PrΘ(u|x, y,D = 0) =
∑
a

PrfA(a|x, y) · PrSA
(u|x, a, 0). (13)

Security against Bob There exists a randomized function SB : Y×B×{0, 1} →
V such that ∀x, y, b ∈ X × Y × B such that PrfB (b|x, y) > 0,

PrΘ(v|x, y, b,D = 1) = PrSB
(v|y, b, 1). (14)

PrΘ(v|x, y,D = 0) =
∑
b

PrfB (b|x, y) · PrSB
(v|y, b, 0). (15)

In other words, in a szcr, Alice and Bob compute �candidate outputs� a
and b, as well as two messages u and v, respectively, such that correctness (i.e.,
f(x, y) = (a, b)) is required only when φ �accepts� (u, v). To be non-trivial, we
require a lower bound 2−µ on the probability of φ accepting. Weak security
requires that an �eavesdropper� who gets to observe whether the predicate φ
accepts or not learns nothing about the inputs x, y. This is ensured by require
the probability of accepting to remain the same as the inputs are changed. Note
that as µ increases from 0 to ∞, the non-triviality and weak security constraint
gets relaxed.

Finally, the security condition corresponds to security against passive cor-
ruption of one of Alice and Bob in a secure computation protocol (using φ)
that realizes the following functionality fµ: After computing (a, b) ← f(x, y),
with probability 2−µ the functionality sends the respective outputs to the two
parties (�accepting� case); with the remaining probability, it sends the output
only to the corrupt party. In the above, (12) and (13) correspond to corrupting
Alice, with the �rst one being the accepting case. Note that in these cases the
adversary's view consists of U , in addition to the input x and the boolean vari-
able D (accepting or not), which are given to the environment as well. In the
accepting case, the environment also observes the outputs (a, b). In either case,
ŜA is given (x, fA(x, y), D) as inputs; in the accepting case, we naturally require
that the simulated view has the same output a as fA(x, y) given to ŜA. Security
conditions against Bob are interpreted analogously.

4 Balanced Embedding

For a randomized function f : X × Y → A × B and a deterministic predicate
φ : U × V → {0, 1}, we study the balanced embedding, de�ned in De�nition 1 in
Section 2 of the evaluation graph Gf into the evaluation graph Gφ.
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Theorem 1. If a randomized function f : X × Y → A × B has a szcr to
φ : U × V → {0, 1}, then there is a balanced embedding of the evaluation graph
Gf into the predicate graph Gφ.

Proof. For each α = (x, a) and β = (y, b), de�ne

π(u, α) =
PrA(u, a|x)√

PrΘ(D = 1|x, y)
and θ(u, α) =

PrSA
(u|x, a,D = 1)

π(u, α)
∀u ∈ U

π(v, β) =
PrB(v, b|y)√

PrΘ(D = 1|x, y)
and θ(v, β) =

PrSB
(v|y, b,D = 1)

π(v, β)
∀v ∈ V

Note that we set θ(u, α) = 0 whenever π(u, α) = 0 and θ(v, β) = 0 whenever
π(v, β) = 0 since Pr(u|x, a) and Pr(v|y, b) are going to be 0 in these cases.
For each u ∈ U , when β = (y, b), and α = (x, a) for any (x, a) such that
PrA(u, a|x) > 0,

∑
v∈V

π(v, β) ·φ(u, v)
(a)
=

∑
v:φ(u,v)=1 PrB(v|y, b)PrB(b|y)√

PrΘ(D = 1|x, y)
(b)
=

PrΘ(D = 1|y, b, x, a, u)PrB(b|y)√
PrΘ(D = 1|x, y)

(c)
=

PrΘ(u,D = 1|y, b, x, a)PrB(b|y)
PrA(u|x, a)

√
PrΘ(D = 1|x, y)

=
PrΘ(u|x, y, a, b,D = 1)PrΘ(D = 1|x, a, y, b)PrB(b|y)

PrA(u|x, a)
√
PrΘ(D = 1|x, y)

(d)
=

PrSA
(u|x, a,D = 1)PrΘ(D = 1, a, b|x, y)PrB(b|y)

PrA(u|x, a)PrΘ(a, b|x, y)
√
PrΘ(D = 1|x, y)

(e)
=

PrSA
(u|x, a,D = 1)PrΘ(D = 1|x, y)PrΘ(a, b|x, y,D = 1)

PrA(u|x, a)PrA(a|x)
√

PrΘ(D = 1|x, y)
(f)
=

PrSA
(u|x, a,D = 1)Prf (a, b|x, y)

π(u, α)

(g)
= θ(u, α) ·ω(α, β). (16)

Here, (a) used the de�nition of π(v, β); (b) used the fact that, for all (x, a) such
that PrA(u, a|x) > 0,

PrΘ(D = 1|y, b, x, a, u) =
∑

v:φ(u,v)=1

PrΘ(v|y, b, x, a, u) =
∑

v:φ(u,v)=1

PrB(v|y, b);

(c) used PrΘ(u|x, a, y, b) = PrA(u|x, a) as u is sampled locally by Alice in Θ;
(d) follows from the privacy condition (12); (e) used PrΘ(a, b|x, y) = PrA(a|x) ·
PrB(b|y); (f) follows from (11) - the correctness ofΘ, and the de�nition of π(u, α);
�nally, (g) follows from the de�nitions of θ(u, α) and ω(α, β).
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Similarly, ∑
u∈U

π(u, α) ·φ(u, v) = θ(v, β) ·ω(α, β) ∀v ∈ V (17)

And �nally, when ω(α, β) > 0,∑
u∈U

π(u, α) · θ(u, α) =
∑
u∈U

PrSA
(u|x, a,D = 1) = 1, and∑

v∈V
π(v, β) · θ(v, β) =

∑
v∈V

PrSB
(v|y, b,D = 1) = 1. (18)

Theorem follows from (16), (17) and (18).

Theorem 2. For the p-noisy coin-toss functionality f , the balanced embedding
complexity |f |emb = Ω(log 1/p), when p < 1

2 ; i.e., if Gf has a balanced embedding
into Hφm

OT
, then m = Ω(log 1/p).

Proof. Let Gf = (S, T ,ω), where S = {0A, 1A} and T = {0B , 1B}, and
ω(bA, bB) = (1 − p)/2 and ω(bA, (1 − b)B) = p/2 for all b ∈ {0, 1}. Let
Hφm

OT
= (U ,V,φm

OT). Suppose (π, θ) is a balanced embedding of Gf to Hφm
OT
.

De�ne (u∗, α∗) ∈ U × {0A, 1A} as

(u∗, α∗) = argmax
(u,α):θ(u,α)>0

π(u, α). (19)

Note that π(u∗, α∗) > 0 since otherwise π(u, α) · θ(u, α) = 0 for all (u, α), which
violates (3). W.l.o.g., let α∗ = 0A (the other case being symmetric).

Since θ(u∗, 0A) > 0 andω(0A, 1B) > 0, by (1), π(v∗, 1B) > 0 for some v∗ ∈ V
such that φm

OT(u
∗, v∗) = 1. Further, by (2), θ(v∗, 1B) > 0 since π(u∗, 0A) > 0

and φm
OT(u

∗, v∗) = 1. Applying (2) to both (α, β) = (1A, 1B) and (0A, 1B), and
taking their ratio, we get∑

u π(u, 1A) ·φm
OT(u, v

∗)∑
u π(u, 0A) ·φm

OT(u, v
∗)

=
ω(1A, 1B)

ω(0A, 1B)
=

1− p
p

.

By (1), for all u such that φm
OT(u, v

∗) = 1, θ(u, 1A) > 0 since π(v∗, 0B) >
0. But then, by (19), π(u, 1A) ≤ π(u∗, 0A) for all u. Therefore, noting that
φm

OT(u
∗, v∗) = 1,∑
u

π(u, 1A) ·φm
OT(u, v

∗) ≤ π(u∗, 0A)|{u : φm
OT(u, v

∗)}|

≤ |{u : φm
OT(u, v

∗)}|
∑
u

π(u, 0A) ·φm
OT(u, v

∗).

Hence,

|{u : φm
OT(u, v

∗)}| ≥
∑
u π(u, 1A) ·φm

OT(u, v
∗)∑

u π(u, 0A) ·φm
OT(u, v

∗)
=

1− p
p

.

Since |{u : φm
OT(u, v

∗)}| = 2m, we have m ≥ log(1/p)− 1.
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Virtually the same argument holds for the case of n noisy coin-�ips, but with

the ratio of probabilities used to obtain the bound being
(

1−p
p

)n
, leading to a

bound of m = Ω(n log 1/p).

5 SZCR from MPC protocols

In this section, we construct an szcr from a potentially randomized function
to OT check predicate from an MPC protocol for the function using OT; the
complexity of the constructed szcr coincides with the OT complexity of the
MPC protocol. We will use this connection to obtain randomized functions that
require super-linear OT complexity. The following theorem states more generally
for all regular correlations. This is a generalization of one of the main results in
[23] that proves this result for deterministic functions.

Theorem 3. If a protocol Πψ using a regular correlation ψ distributed over
R×S computes a randomised function f : X ×Y → A×B with perfect security,
then there exists a µ-szcr to φ(=dlog ke) · φsupp∗(ψ), where k is the number of

connected components in the evaluation graph Gf and µ ≤ log |R||S||X |
2|Y|2|A||B|

|supp(ψ)| .

This theorem is proved through Claim 1-Claim 6. In the following section,
we make some observations and de�ne some quantities that are used in the
construction and analysis of the szcr we construct.

Let Q be the set of all transcripts that can be produced in the protocol Πψ.
We observed that communication protocols admit transcript factorization; i.e.,
there exist functions ρ : X × R × Q → [0, 1] and σ : Y × S × Q → [0, 1] such
that, when x, y are the inputs to Alice and Bob, and (r, s) is the realization of
the correlation ψ, for any transcript q,

PrΠψ(q|x, y, r, s) = ρ(x, r, q)σ(y, s, q).

The following set of observations are about a protocol Πψ that uses a corre-
lation ψ and computes a given function f : X ×Y → A×B with perfect security.
We will exploit the perfect security of the protocol to establish how the protocol
behaves in each connected component of the evaluation graph Gf .

Lemma 1. For each connected component C of the evaluation graph Gf , if
((x1, a1), (y1, b1)) and ((x2, a2), (y2, b2)) belong to C, then

PrΠψ(q|x1, y1, a1, b1) = PrΠψ(q|x2, y2, a2, b2),∀q ∈ Q.

Proof. Since Πψ is perfectly secure, there exists simulators ŜA and ŜB such that,
for all x, y, a, b such that Prf (a, b|x, y) > 0,

PrΠψ(q, r|x, y, a, b) = PrŜA
(q, r|x, a) PrΠψ(q, s|x, y, a, b) = PrŜB

(q, s|y, b).

Hence, if edges ((x, a), (y, b)) and ((x, a), (y′, b′)) belong to C, then, for all q ∈ Q,

PrΠψ(q|x, y, a, b) =
∑
r

PrŜA
(q, r|x, a) = PrΠψ(q|x, y′, a, b′).
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A similar condition holds for edges ((x, a), (y, b)) and ((x′, a′), (y, b)) belonging
to C. Hence, if edges ((x1, a1), (y1, b1)), ((x2, a2), (y2, b2)) belong to C, then
applying the above two conditions alternatively along a path that begins with
the edge ((x1, a1), (y1, b1)) and ends with the edge ((x2, a2), (y2, b2)), we get the
statement of the lemma.

Lemma 2. If PrΠψ(a1, b1|x, y, r, s, q) > 0 and PrΠψ(a2, b2|x, y, r, s, q) > 0 then
((x, a1), (y, b1)) and ((x, a2), (y, b2)) belong to the same connected component of
Gf .

Proof. For all (a, b) ∈ {(a1, b1), (a2, b2)}, we have

PrΠout
A

(a|x, r, q) · PrΠout
B

(b|y, s, q) = PrΠψ(a, b|x, y, r, s, q) > 0.

Hence, PrΠout
A

(a|x, r, q) > 0 for a ∈ {a1, a2} and PrΠout
B

(b|y, s, q) > 0 for b ∈
{b1, b2}. Thus, by the perfect correctness of Πψ,

Pr(f(x, y) = (a2, b1)) > PrΠψ(a2, b1|x, y, r, s, q)
= PrΠout

A
(a2|x, r, q) · PrΠout

B
(b1|y, s, q) > 0.

This implies that ((x, a2), (y, b1)) has non-zero weight inGf , consequently, (x, a1)−
(y, b1)−(x, a2)−(y, b2) is a path in Gf , implying the statement of the lemma.

In Lemma 1, we showed that for all connected component C of the evaluation
graph Gf , and for all edges ((x1, a1), (y1, b1)) and ((x2, a2), (y2, b2)) belonging
to C,

PrΠψ(q|x1, y1, a1, b1) = PrΠψ(q|x2, y2, a2, b2).

By an abuse of notation, we denote PrΠψ(q|x, y, a, b) for all edges ((x, a), (y, b))
belonging to the connected component C by PrΠψ(q|C).

To present our szcr protocol Θ(A,B) from f to φ, that is constructed from
the secure computation protocol for f , we need the following quantities.

De�nition 5. For each connected component C in Gf , we de�ne the following
quantities:

ρ†C(q) = max
x∈XC

∑
r

ρ(x, r, q) σ†C(q) = max
y∈YC

∑
s

σ(v, s, q)

Lemma 3. For every connected component C in Gf , there exists q∗ ∈ Q such
that PrΠψ(q

∗|C) > 0 and

ρ†C(q
∗)σ†C(q

∗) ≤ |R||S||XC ||YC |PrΠψ(q∗|C)

Proof. De�ne ψ̃ to be the uniform distribution over R×S. Consider the protocol
Πψ̃ obtained by replacing the correlation ψ in Πψ with ψ̃. Hence,

Pr
Πψ̃

(q, r, s|x, y) = Pr
ψ̃
(r, s) · Pr

Πψ̃
(q|r, s, x, y) = ρ(x, r, q)σ(y, s, q)

|R||S|
(20)
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Note that ρ, σ induced by Πψ is well-de�ned for (x, r, q) ∈ X × R × Q and
(y, s, q) ∈ Y × S ×Q, respectively.

By imposing a distribution over the inputs, namely the uniform distribution
over XC × YC , for all q ∈ Q, de�ne:

Pr
Πψ̃

(q) =
∑

(x,y)∈XC×YC

∑
(r,s)∈R×S

Pr
Πψ̃

(q|x, y, r, s)
|XC ||YC ||R||S|

.

Since PrΠψ(q|C) and Pr
Πψ̃

(q) are distributions over Q, there exists q∗ ∈ Q such
that

PrΠψ(q
∗|C) ≥ Pr

Πψ̃
(q∗) > 0.

Hence,

PrΠψ(q
∗|C) ≥ Pr

Πψ̃
(q∗) =

∑
(x,y)∈XC×YC

∑
(r,s)∈R×S

Pr
Πψ̃

(q∗|x, y, r, s)
|XC ||YC ||R||S|

≥
∑

(r,s)∈R×S PrΠψ̃(q
∗|x, y, r, s)

|XC ||YC ||R||S|
,∀(x, y) ∈ XC × YC .

(21)

Choose (x∗, y∗) ∈ XC × YC such that

x∗ = argmax
x∈XC

∑
r

ρ(x, r, q∗) y∗ = argmax
y∈YC

∑
s

σ(y, s, q∗).

Then, by De�nition 5, ρ†C(q
∗) =

∑
r ρ(x

∗, r, q∗) and σ†C(q
∗) =

∑
s ρ(y

∗, s, q∗).
Hence,

ρ†C(q
∗)σ†C(q

∗) =
∑
r,s

ρ(x∗, r, q∗)σ(y∗, s, q∗)

(a)
= |R||S|

∑
r,s

Pr
Πψ̃

(q∗, r, s|x∗, y∗)

(b)

≤ |R||S||XC ||YC | · PrΠψ(q∗|C),

where (a) follows from (20) and (b) follows from (21). This concludes the proof.

De�nition 6. Let C1, . . . , Ck be the set of all connected components of the eval-
uation graph Gf . For each Ci, i ∈ [k], Lemma 3 guarantees that there exists
q?i ∈ Q such that PrΠψ(q

?
i |Ci) > 0 and

ρ†C(q
?
i )σ
†
C(q

?
i ) ≤ |R||S||XC ||YC |PrΠψ(q?i |C).

We de�ne the distribution λ over [k] as:

Prλ(i) =

√
ci∑

t∈[k]

√
ct
,where ci =

ρ†Ci
(q?i ) · σ

†
Ci
(q?i )

PrΠψ(q
?
i |Ci)

.
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Let C1, . . . , Ck be the connected components in the evaluation graph Gf . Let the inputs
to f be x ∈ X and y ∈ Y; for i ∈ [k], choose q?i as de�ned in De�nition 6 with respect
to the protocol Πψ; choose ρ†i = ρ†Ci

(q?i ) and σ
†
i = σ†

Ci
(q?i ) as de�ned in De�nition 5;

�nally, let the distribution λ over [k] be as de�ned in De�nition 6.

A(x): Sample i ← λ and r ∈ R with probability
ρ(x,r,q?i )

ρ
†
i

, and with remaining proba-

bility set r = ⊥. If r 6= ⊥, sample a← Πout
A (x, r, q?i ) and set A = a, otherwise A = ⊥.

If r 6= ⊥ and there exist y′, b′ such that ((x, a), (y′, b′)) ∈ Ci then set U = (I, R) to
(i, r), else to (i,⊥).

B(y): Sample j ← λ and s ∈ S with probability
σ(y,s,q?j )

σ
†
j

, and with remaining probabil-

ity set s = ⊥. If s 6= ⊥, sample b← Πout
B (y, s, q?j ) and set B = b, otherwise set B = ⊥.

If s 6= ⊥ and there exist x′, a′ such that ((x′, a′), (y, b)) ∈ Cj then set V = (J, S) to
(j, s), else to (j,⊥).

φ(=dlog ke) · φsupp∗(ψ): Returns D = 1 if φ(=dlog ke)(i, j) = 1 (i.e., j = i) and
φsupp∗(ψ)(r, s) = 1 (i.e., r ∼ s).

Fig. 2. An szcr protocol Θ(A,B) from f toφ constructed from the secure computation
protocol Πψ using the correlation ψ that computes f with perfect security.

Now we present our szcr protocol in Figure 2, which is analyzed below.

Proof of correctness. In the sequel, we will consider x, y, i, j, r, s as de�ned
in Figure 2. R,S, I, J are the random variables corresponding to r, s, i, j, respec-
tively. Recollect that, we shorten Pr(R = r, S = s, I = i, J = j) as Pr(r, s, i, j),
whenever there is no scope for confusion. We �rst make the following claims that
will be later used to prove the correctness in Claim 2.

Claim 1. If j 6= i or ((x, a), (y, b)) /∈ Ci, then PrΘ(a, b,D = 1|x, y, i, j) = 0.

Proof. Let E be the event (D = 1, A = a,B = b). If j 6= i, then φ(=dlog ke)(i, j) =
0, hence D = 0, hence we consider the case where j = i. Towards a contradiction,
suppose j = i and ((x, a), (y, b)) /∈ Ci and E occurs with non-zero probability.
Event E occurs only if there exist r, s such that r ∼ s, ρ(x, r, q?i ) > 0, σ(y, s, q?i ) >
0, PrΠout

A
(a|x, r, q?i ) > 0, and PrΠout

B
(b|y, s, q?i ) > 0.

PrΠψ(a, b|x, y)
≥ PrΠψ(q

?
i , a, b, r, s|x, y)

= Prψ(r, s) · PrΠψ(q?i |x, y, r, s) · PrΠψ(a, b|x, y, r, s, q?i )

=
ρ(x, r, q?i ) · σ(y, s, q?i ) · PrΠout

A
(a|x, r, q?i ) · PrΠout

B
(b|y, s, q?i )

|supp(ψ)|
> 0.

Thus, by the perfect correctness of Πψ, Prf (a, b|x, y) = PrΠψ(a, b|x, y) > 0.
Additionally, by the construction of Θ, E occurs only if there exist b′, y′ such
that ((x, a), (y′, b′)) ∈ Ci since, otherwise, Alice would have aborted by send-
ing ⊥ (instead of sending some u ∈ U). Hence, the edges ((x, a), (y, b)) and
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((x, a), (y′, b′)) have non-zero weights in Gf and ((x, a), (y′, b′)) ∈ Ci. But then,
((x, a), (y, b)) ∈ Ci, a contradiction. This proves the claim.

Claim 2. The probability of acceptance for any inputs x, y is independent of the
inputs, and is given by:

PrΘ(D = 1|x, y) = |supp(ψ)|( ∑
l∈[k]

√
cl

)2 (22)

Proof. Fix inputs x, y. We have,

PrΘ(D = 1|x, y) =
∑
i,j,a,b

PrΘ(D = 1, i, j, a, b|x, y)

=
∑
i,j,a,b

PrΘ(i, j|x, y) · PrΘ(D = 1, a, b|x, y, i, j).

If j 6= i, then D = 0, furthermore, PrΘ(i, j|x, y) = Prλ(i) · Prλ(j). Hence,

PrΘ(D = 1|x, y)

=
∑

i∈[k],j=i

∑
a,b

Prλ(i) · Prλ(j) · PrΘ(D = 1, a, b|x, y, i, j)

=
∑

i∈[k],j=i

Pr2λ(i)
∑
a,b

∑
r∼s

PrΘ(r, s|x, y, i, j) · PrΘ(a, b|x, y, i, j, r, s)

=
1( ∑

t∈[k]

√
ct

)2

∑
i∈[k]

ci
∑
a,b

∑
r∼s

PrΠout
A

(a|x, r, q?i ) · PrΠout
B

(b|y, s, q?i )
ρ(x, r, q?i ) · σ(y, s, q?i )

ρ†iσ
†
i

But, PrΠout
A

(a|x, r, q?i ) · PrΠout
B

(b|y, s, q?i ) = PrΠψ(a, b|x, y, q?i , r, s) and, by tran-
script factorization property, ρ(x, r, q?i ) ·σ(y, s, q?i ) = PrΠψ(q

?
i |x, y, r, s). Further-

more, ci =
ρ†iσ
†
i

Pr
Πψ

(q?i |Ci)
. Applying these observations to the RHS,

PrΘ(D = 1|x, y)

=
1( ∑

t∈[k]

√
ct

)2

∑
i∈[k]

ρ†iσ
†
i

PrΠψ(q
?
i |Ci)

∑
a,b

∑
r∼s

PrΠψ(a, b|x, y, q?i , r, s) · PrΠψ(q?i |x, y, r, s)
ρ†iσ
†
i

.

By Claim 1, PrΘ(D = 1, a, b|x, y, i, j) = 0 if ((x, a), (y, b)) is not an edge in Ci
(or j 6= i). Furthermore, by de�nition,

0 < PrΠψ(q
?
i |Ci) = PrΠψ(q

?
i |x, y, a, b), for all ((x, a), (y, b)) ∈ Ci.
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Applying both these facts to the RHS,

PrΘ(D = 1|x, y)

=
1( ∑

t∈[k]

√
ct

)2

∑
i∈[k]

∑
(a,b):((x,a),(y,b))∈Ci

∑
r∼s

PrΠψ(a, b, q
?
i |x, y, r, s)

PrΠψ(q
?
i |x, y, a, b)

=
1( ∑

t∈[k]

√
ct

)2

∑
i∈[k]

∑
(a,b):((x,a),(y,b))∈Ci

∑
r∼s

PrΠψ(a, b, q
?
i , r, s|x, y)

PrΠψ(q
?
i |x, y, a, b)PrΠψ(r, s|x, y)

For all r, s such that r ∼ s, Prψ(r, s) = 1
|supp(ψ)| . Applying this to the RHS,

PrΘ(D = 1|x, y) = |supp(ψ)|( ∑
t∈[k]

√
ct

)2

∑
i∈[k]

∑
(a,b):((x,a),(y,b))∈Ci

∑
r∼s

PrΠψ(a, b, q
?
i , r, s|x, y)

PrΠψ(q
?
i |x, y, a, b)

=
|supp(ψ)|( ∑
t∈[k]

√
ct

)2

∑
i∈[k]

∑
(a,b):((x,a),(y,b))∈Ci

PrΠψ(a, b, q
?
i |x, y)

PrΠψ(q
?
i |x, y, a, b)

=
|supp(ψ)|( ∑
t∈[k]

√
ct

)2

∑
i∈[k]

∑
(a,b):((x,a),(y,b))∈Ci

PrΠψ(a, b|x, y).

Since PrΠψ(a, b|x, y) = Prf (a, b|x, y) by perfect correctness, and⋃
i∈[k]

{(a, b) : ((x, a), (y, b)) ∈ Ci} = {(a, b) : Prf (a, b|x, y) > 0},

we get,

PrΘ(D = 1|x, y) = |supp(ψ)|( ∑
t∈[k]

√
ct

)2

∑
(a,b)

Prf (a, b|x, y) =
|supp(ψ)|( ∑
t∈[k]

√
ct

)2 .

This proves the claim.

Claim 3. The reduction Θ is perfectly correct; i.e.,

PrΘ(a, b|D = 1, x, y) = Prf (a, b|x, y)
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Proof. Consider (x, y, a, b) such that Prf (a, b|x, y) > 0. If ((x, a), (y, b)) ∈ C`, by
Claim 1, if i 6= ` or j 6= `, PrΘ(a, b,D = 1|x, y, i, j) = 0. Hence,

PrΘ(a, b,D = 1|x, y) =
∑
i,j∈[k]

PrΘ(a, b,D = 1, i, j|x, y)

= PrΘ(I = J = `|x, y) · PrΘ(a, b,D = 1|x, y, I = J = `)

= Pr2λ(`) · PrΘ(a, b,D = 1|x, y, I = J = `).

Expanding this, we get

PrΘ(a, b,D = 1|x, y) = Pr2λ(`)
∑
r∼s

PrΘ(r, s|x, y, I = J = `) · PrΘ(a, b|x, y, r, s, I = J = `)

= Pr2λ(`)
∑
r∼s

ρ(x, r, q?` )σ(y, s, q
?
` )

ρ†`σ
†
`

· PrΠψ(a, b|x, y, q?` , r, s)

= Pr2λ(`)
∑
r∼s

PrΠψ(q
?
` |x, y, r, s)
ρ†`σ
†
`

· PrΠψ(a, b|x, y, q?` , r, s)

=
∑
r∼s

Pr2λ(`)
PrΠψ(a, b, q

?
` |x, y, r, s)

ρ†`σ
†
`

.

Since Prψ(r, s) = 1
|supp(ψ)| , multiplying and dividing each term with Prψ(r, s),

and expanding Pr2λ(`),

PrΘ(a, b,D = 1|x, y) = |supp(ψ)| · Pr2λ(`) ·

∑
r∼s

PrΠψ(a, b, r, s, q
?
` |x, y)

ρ†`σ
†
`

=
|supp(ψ)| · ρ†`σ

†
`

PrΠψ(q
?
` |Ci)

( ∑
t∈[k]

√
ct

)2 ·
PrΠψ(a, b, q

?
` |x, y)

ρ†`σ
†
`

=
|supp(ψ)|( ∑
t∈[k]

√
ct

)2

PrΠψ(a, b|x, y) · PrΠψ(q?` |x, y, a, b)
PrΠψ(q

?
` |Ci)

=
|supp(ψ)|( ∑
t∈[k]

√
ct

)2Prf (a, b|x, y). (23)
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The �nal equality follows from the fact that PrΠψ(q
?
` |C`) = PrΠψ(q

?
` |x, y, a, b)

since ((x, y), (y, b)) ∈ C`. Hence,

PrΘ(a, b|D = 1, x, y) =
PrΘ(a, b,D = 1|x, y)
PrΘ(D = 1|x, y)

(a)
=

|supp(ψ)|( ∑
t∈[k]

√
ct

)2Prf (a, b|x, y) ·

( ∑
t∈[k]

√
ct

)2

|supp(ψ)|
= Prf (a, b|x, y),

(24)

where (a) follows from Claim 2. If Prf (a, b|x, y) = 0, then, by Claim 1, PrΠψ(a, b,D =
1|x, y) = 0, and hence PrΘ(a, b|D = 1, x, y) = 0. This concludes the proof.

Proof of security. To prove the security of Θ, we need to show that there exists
simulators S′A : X × A × {0, 1} → (R ∪ {⊥}) × [k] and S′B : Y × B × {0, 1} →
(S ∪ {⊥})× [k] such that if Prf (a, b|x, y) > 0,

PrΘ(r, i|x, y, a, b,D = 1) = PrS′A(r, i|x, a,D = 1),

PrΘ(s, j|x, y, a, b,D = 1) = PrS′B (s, j|y, b,D = 1),

and,

PrΘ(r, i|x, y,D = 0) =
∑
a

PrfA(a|x, y) · PrS′A(r, i|x, a,D = 0),

PrΘ(s, j|x, y,D = 0) =
∑
b

PrfB (b|x, y) · PrS′B (s, j|y, b,D = 0).

We prove the �rst two statements in Claim 4 and the last two in Claim 5.

Claim 4. There exists a randomized function S′A : X × A × {0, 1} → U × [k]
such that, if Prf (a, b|x, y) > 0,

PrΘ(r, i|x, y, a, b,D = 1) = PrS′A(r, i|x, a,D = 1).

Similarly, there exists a randomized function S′B : Y ×B×{0, 1} → V × [k] such
that, if Prf (a, b|x, y) > 0,

PrΘ(s, j|x, y, a, b,D = 1) = PrS′B (s, j|y, b,D = 1).

Proof. Consider (x, y, a, b) such that Prf (a, b|x, y) > 0; let ((x, a), (y, b)) ∈ C`.
By Claim 1,

PrΘ(r, i, a, b,D = 1|x, y) = 0 if i 6= ` or r = ⊥. (25)
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We focus on PrΘ(r, i, a, b,D = 1|x, y), when r 6= ⊥ and i = `. Noting that
PrΘ(D = 1, I 6= J |x, y) = 0,

PrΘ(r, I = `, a, b,D = 1|x, y)

=
∑
j∈[k]

∑
s:r∼s

PrΘ(r, s, I = `, j, a, b|x, y)

= PrΘ(I = J = `|x, y)
∑
s:r∼s

PrΘ(r, s|x, y, I = J = `) · PrΘ(a, b|x, y, r, s, I = J = `)

= Pr2λ(`)
∑
s:r∼s

PrΠψ(q
?
` |x, y, r, s)
ρ†iσ
†
i

PrΘ(a, b|x, y, r, s, I = J = `).

We have,

PrΘ(a, b|x, y, r, s, I = J = `) = PrΠout
A

(a|x, r, q?` )·PrΠout
B

(b|y, s, q?` ) = PrΠψ(a, b|x, y, r, s, q?` ).

Substituting for Prλ(`) from De�nition 6 and noting that PrΠψ(q
?
` |C`) = PrΠψ(q

?
` |x, y, a, b)

since ((x, a), (y, b)) ∈ C`,

PrΘ(r, I = `, a, b,D = 1|x, y) =
∑
s:r∼s

ρ†iσ
†
i

PrΠψ(q
?
` |C`)

( ∑
t∈[k]

√
ct

)2

PrΠψ(a, b, q
?
` |x, y, r, s)

ρ†iσ
†
i

=
∑
s:r∼s

PrΠψ(a, b, q
?
` |x, y, r, s)

PrΠψ(q
?
` |x, y, a, b)

( ∑
t∈[k]

√
ct

)2 .

Since Prψ(r, s) =
1

|supp(ψ)| , multiplying and dividing each term with Prψ(r, s),

PrΘ(r, I = `, a, b,D = 1|x, y) = |supp(ψ)|( ∑
t∈[k]

√
ct

)2

∑
s:r∼s

Prψ(r, s) · PrΠψ(a, b, q?` |x, y, r, s)
PrΠψ(q

?
` |x, y, a, b)

=
|supp(ψ)|( ∑
t∈[k]

√
ct

)2

PrΠψ(a, b, q
?
` , r|x, y)

PrΠψ(q
?
` |x, y, a, b)

=
|supp(ψ)|( ∑
t∈[k]

√
ct

)2PrΠψ(a, b|x, y)PrΠψ(r|x, y, a, b, q
?
` )

=
|supp(ψ)|( ∑
t∈[k]

√
ct

)2Prf (a, b|x, y)PrΠψ(r|x, y, a, b, q
?
` ).
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Hence, by (23),

PrΘ(r, I = `|a, b, x, y,D = 1) =
PrΘ(r, I = `, a, b,D = 1|x, y)

PrΘ(a, b,D = 1|x, y)
= PrΠψ(r|x, y, a, b, q?` ).

By perfect privacy of Πψ, there exists a simulator ŜA such that

PrΘ(r, I = `|a, b, x, y,D = 1) = PrΠψ(r|x, y, a, b, q?` ) = PrŜA
(r|x, a, q?` ).

Since C` is determined by (x, a), we can set PrS′A(x, a, 1) = PrŜA
(r|x, a, q?` ). The

�rst statement in the claim follows from this observation and (25). The second
statement can be proved analogously.

Claim 5. There exists a randomized function S′A : X × A × {0, 1} → (R ×
{⊥})× [k] such that

PrΘ(r, i|x, y,D = 0) =
∑
a

PrfA(a|x, y) · PrS′A(r, i|x, a,D = 0).

Similarly, there exists a randomized function S′B : Y ×B×{0, 1} → S × [k] such
that

PrΘ(s, j|x, y,D = 0) =
∑
b

PrfB (b|x, y) · PrS′B (s, j|y, b,D = 0).

Proof. When r = ⊥, the predicate always rejects (D = 0), hence, for all i,

PrΘ(R = ⊥, i,D = 0|x, y) = PrΘ(R = ⊥, i|x, y) = PrΘ(R = ⊥, i|x).

The predicate accepts (D = 1) if and only if Alice and Bob choose i, j and r, s,
respectively, such that i = j and r ∼ s. Hence,

PrΘ(r, i,D = 0|x, y)

= PrΘ(r, i|x, y)− PrΘ(i, J = i|x, y)
∑
s:r∼s

PrΘ(r, s|x, y, i, J = i)

= PrΘ(r, i|x, y)− PrΘ(i, J = i|x, y)
∑
s:r∼s

ρ(x, r, q?i ) · σ(y, s, q?i )
ρ†iσ
†
i

= PrΘ(r, i|x, y)− Pr2λ(i)
∑
s:r∼s

PrΠψ(q
?
i |x, y, r, s)
ρ†iσ
†
i

.
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We focus on the second term in the RHS. Expanding Pr2λ(i) using De�nition 6,

Pr2λ(i)
∑
s:r∼s

PrΠψ(q
?
i |x, y, r, s)
ρ†iσ
†
i

=
∑
s:r∼s

PrΠψ(q
?
i |x, y, r, s)

PrΠψ(q
?
i |Ci)

( ∑
t∈[k]

√
ct

)2

=
1

PrΠψ(q
?
i |Ci) ·

( ∑
t∈[k]

√
ct

)2

∑
s:r∼s

PrΠψ(q
?
i , r, s|x, y)

PrΠψ(r, s|x, y)

=
|supp(ψ)|

PrΠψ(q
?
i |Ci) ·

( ∑
t∈[k]

√
ct

)2PrΠψ(q
?
i , r|x, y)

The last equality used the fact that Prψ(r, s) = 1
|supp(ψ)| for all r ∼ s. Thus,

when ŜA is the simulator for Alice that witnesses the perfect security of Πψ,

PrΘ(r, i,D = 0|x, y)

= PrΘ(r, i|x)−
|supp(ψ)|

PrΠψ(q
?
i |Ci) ·

( ∑
t∈[k]

√
ct

)2

∑
a

PrΠψ(q
?
i , r|x, y, a) · PrΠψ(a|x, y)

(a)
= PrΘ(r, i|x)−

|supp(ψ)|

PrΠψ(q
?
i |Ci) ·

( ∑
t∈[k]

√
ct

)2

∑
a

PrΠψ(q
?
i , r|x, y, a) · PrfA(a|x, y)

(b)
= PrΘ(r, i|x)−

|supp(ψ)|

PrΠψ(q
?
i |Ci) ·

( ∑
t∈[k]

√
ct

)2

∑
a

PrŜA
(q?i , r|x, a) · PrfA(a|x, y).

Here, (a) and (b) follow from the perfect correctness and perfect security against
Alice, respectively. The �rst statement of the claim now follows from the fact
that PrΘ(D = 0|x, y) is the same non-zero value for all x, y as established in
Claim 2 The corresponding statement for Bob (second statement) can be shown
analogously.

We conclude the proof of security by noting that the properties in Claim 4
and Claim 5 can be satis�ed by the same S′A and S′B .

Bound on Accept Probability. It remains to upper bound the probability
with which the predicate accepts (D = 1) for all inputs x, y.

Claim 6. The protocol Θ accepts with probability 2−µ where µ ≤ log |R||S||X |
2|Y|2|A||B|

|supp(ψ)| .
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Proof. By Claim 2, PrΘ(D = 1|x, y) = |supp(ψ)|( ∑
t∈[k]

√
ct

)2 . By De�nition 6, ct =

ρ†tσ
†
t

PrΠ(q?t |Ct)
and q?t is chosen such that ρ†tσ

†
t ≤ |R||S||XCt ||YCt |PrΠψ(q?t |Ct) and

PrΠψ(q
?
t ) > 0, hence, ct ≤ |R||S||XC ||YC |. Using Cauchy-Schwartz,∑

t∈[k]

√
ct ≤

√∑
t∈[k]

ct ·
√
k ≤

√
k · |R||S|

∑
t∈[k]

|XCt
||YCt

| ≤
√
|R||S||A||B||X ||Y|

The �nal inequality used the fact that each (x, a) shows up in at most one of
the connected components; hence, k ≤

√
|X ||Y||A||B| and

∑
t∈[k] |XCt ||YCt | ≤

k · |XC ||YC | ≤ |X ||Y|
√
|A||B|.

PrΘ(D = 1|x, y) ≥ |supp(ψ)|
|R||S||X |2|Y|2|A||B|

⇒ µ ≤ log
|R||S||X |2|Y|2|A||B|

|supp(ψ)|
.

Corollary 1. Consider a randomised function f : X × Y → A × B with k

connected components in its evaluation graph Gf . If a protocol ΠOT`

using `
copies of OT correlation computes f with perfect security, then there exists a

µ-szcr to φsupp(OT`+dlog ke+1) such that µ ≤ log |R||S||X |
2|Y|2|A||B|

|supp(ψ)| .

Proof. By Theorem 3, f has a µ-szcr to φ(=dlog ke) ·φsupp∗(OTm). But, φ(=dlog ke)

can be realized using φsupp(OTdlog ke) (since 1-bit equality can be checked with
1 OT) and φsupp∗(OTm) can be realized using φsupp(OTm+1) (by encoding the
input symbol ⊥ in φsupp∗(OTm) using an extra OT). Consequently, the predicate
φ(=dlog ke) · φsupp∗(OTm) can be realized using φsupp(OTdlog ke) · φsupp(OTm+1) =
φsupp(OTdlog ke+m+1). This implies the corollary.
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A Basic Constructions

In this section, for the sake of explicitness, we detail two basic constructions of
Balanced Embedding from any function to the OT predicate � from a truth table
and from a boolean circuit of the function. The �rst construction is implied by
the second one, which in turn is implied by the general construction of balanced
embedding from SZCR.

A.1 Balanced Embedding from Truth Table

Theorem 4. For any deterministic function f : {0, 1}n × {0, 1}n → {0, 1} ×
{0, 1}, there exists a balanced embedding to φk

OT for k = 2n+1.

Proof. To de�ne the balanced embedding (π, θ) we will de�ne inputs uα and vβ
to φk

OT such that π(u, α) = θ(u, α) = 1 for u = uα and 0 for rest; and similarly
π(v, β) = θ(v, β) = 1 for v = vβ and 0 for rest. uα and vβ where α = (x, a) and
β = (y, b) are de�ned as follows:

� For 0 ≤ i ≤ 2n − 1, ui = (1, a), if i = x and ui = (0, 0) otherwise, whereas
vi = (0, fA(i, y)).

� For 2n ≤ i ≤ 2n+1 − 1, vi = (1, b), if i = 2n + y and vi = (0, 0) otherwise,
whereas ui = (0, fB(x, i)).

It is straight forward to see that this de�nition satis�es the conditions of a
balanced embedding as the only compatible u, v pairs correspond to correct
outputs being sampled at both the ends.

A.2 Constructing balanced embedding from circuit

Theorem 5. Given a circuit C with NAND gates that computes a function f ,

we can construct a balanced embedding to φ
2|C|
OT .

Proof. Let x and y be the inputs of Alice and Bob, respectively. For each wire
w in C, Alice and Bob sample wA and wB , respectively, as follows:

(i). If w is an input wire that reads xi, then wA = xi and wB = 0, and if w is an
input wire that reads yi, then wA = 0 and wB = yi

(ii). If w is the output wire computing fA(x, y), then wA ← {0, 1} and wB = 0, and
if w is the output wire computing fB(x, y), then wA = 0, and wB ← {0, 1}.

(iii). Otherwise, wA ← {0, 1} and wB ← {0, 1}.
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For each gate g in C, we denote the two input wires by In1g, In2g and the output
wire by Outg.

We de�ne sets Ux and Vy corresponding to inputs x, y. Elements of these sets
(ui ∈ {0, 1}2 : 1 ≤ i ≤ 2|C|) and (vi ∈ {0, 1}2 : 1 ≤ i ≤ 2|C|) are be sampled as
follows:
Enumerate the gates in C as g1, g2, . . . , g|C|; for 1 ≤ i ≤ 2|C|:

� Set u2i−1 = (αgiA , In1
gi
A ⊕ α

gi
A ) and u2i = (βgiA , In2

gi
A ⊕ β

gi
A ), where αgiA , β

gi
A are

sampled uniformly at random subject to:

αgiA ⊕ β
gi
A = OutgiA ⊕ (In1giA · In1

gi
A )⊕ 1. (26)

� Sets v2i−1 = (In2giB , α
gi
B ) and u2i = (In1giB , β

gi), where αgiB , β
gi
B are sampled

uniformly at random subject to:

αgiB ⊕ β
gi
B = OutgiB ⊕ (In1giB · In1

gi
B ). (27)

Finally, set candidate outputs a = ŵB , where ŵ is the wire that outputs fA(x, y)
in C, and b = w̃A, where w̃ is the wire that outputs fB(x, y) in C. We use
functions OA : U ×X → {0, 1} and OB : V × Y → {0, 1} to denote the a and b
values generated for speci�c u, x and y, b pairs respectively.

We then de�ne the embedding (π, θ) for α = (x, a) and β = (y, b) as π(u, α) =
θ(u, α) = 2−|C| if u ∈ Ux and a = OA(u, x) and 0 otherwise. Similarly, π(v, β) =
θ(v, β) = 2−|C| if v ∈ Vy and b = OB(v, y) and 0 otherwise. It is easy to check
that this construction is indeed correct, owing to the correctness of the circuit
C.
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