
IBE with Incompressible Master Secret and
Small Identity Secrets
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Abstract. Side-stepping the protection provided by cryptography, exfil-
tration attacks are becoming a considerable real-world threat. With the
goal of mitigating the exfiltration of cryptographic keys, big-key cryp-
tosystems have been developed over the past few years. These systems
come with very large secret keys which are thus hard to exfiltrate. Typ-
ically, in such systems, the setup time must be large as it generates the
large secret key. However, subsequently, the encryption and decryption
operations, that must be performed repeatedly, are required to be effi-
cient. Specifically, the encryption uses only a small public key and the
decryption only accesses small ciphertext-dependent parts of the full se-
cret key. Nonetheless, these schemes require decryption to have access to
the entire secret key. Thus, using such big-key cryptosystems necessitate
that users carry around large secret-keys on their devices, which can be
a hassle and in some cases might also render exfiltration easy.

With the goal of removing this problem, in this work, we initiate the
study of big-key identity-based encryption (bk-IBE). In such a system,
the master secret-key is allowed to be large but we require that the
identity-based secret keys are short. This allows users to use the identity-
based short keys as the ephemeral secret keys that can be more easily
carried around and allow for decrypting ciphertexts matching a partic-
ular identity, e.g. messages that were encrypted on a particular date. In
particular:
– We build a new definitional framework for bk-IBE capturing a range

of applications. In the case when the exfiltration is small our defini-
tion promises stronger security — namely, an adversary can break se-
mantic security for only a few identities, proportional to the amount
of leakage it gets. In contrast, in the catastrophic case where a large
fraction of the master secret key has been ex-filtrated, we can still
resort to a guarantee that the ciphertexts generated for a randomly
chosen identity (or, an identity with enough entropy) remain pro-
tected. We demonstrate how this framework captures the best pos-
sible security guarantees.

– We show the first construction of such a bk-IBE offering strong secu-
rity properties. Our construction is based on standard assumptions
on groups with bilinear pairings and brings together techniques from
seemingly different contexts such as leakage resilient cryptography,
reusable two-round MPC, and laconic oblivious transfer. We expect
our techniques to be of independent interest.
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1 Introduction

Compromises of deployed cryptographic schemes by means of cryptanalysis are
becoming increasingly rare. Instead, real-world adversaries try to circumvent
the protection offered by cryptography via side-channel attacks. The most high-
value targets for such side-channel attacks are cryptographic secret keys, which,
if somehow exfiltrated, give the adversary unrestrained access to its victim’s
confidential communication. For advanced notions of public-key encryption such
as identity-based encryption (IBE), exfiltration of the long-term master secret
key is the single biggest risk coming with the adoption of such a system. This
risk can be somewhat mitigated by distributing the master secret across several
servers [BF01,Goy07,KG10,Cha12], but this comes with an additional overhead
of maintaining multiple servers with shares of the master key.

Big-Key Cryptography in Bounded-Retrieval Model. The pervasiveness of side-
channel attacks has motivated the development of cryptosystems that remain
secure even when the adversary may have the ability to leak secrets of honest
parties. One line of defense against such attacks, is to develop cryptosystems
that have very large secret keys, or what is called big-key cryptography (see
e.g., [Dzi06a,DLW06,CDD+07,ADW09,ADN+10,BKR16,MW20]). Big-key cryp-
tosystems are developed with huge secret keys with the intent of making it hard
to exfiltrate or leak on such keys. Furthermore, leakage of large amounts of data
from a device can often be easier to detect and mitigate, or the bandwidth of
any residual side-channels of such a device can be bounded conservatively4. Such
cryptosystems aim to provide appropriate security even when a large amount of
arbitrary leakage occurs on the big secret key. Prior works have focused on
constructing various big-key primitives in the bounded-retrieval model, includ-
ing symmetric-key encryption [BKR16], public-key encryption [ADN+10,MW20]
and authenticated key agreement [Dzi06b,CDD+07,ADW09].

In the symmetric key setting [BKR16], the big-key setup involves a procedure
to bound the adversary’s probability of predicting an optimal length sub-key
of the original exfiltrated big key, and using this to design an encapsulation
mechanism that can extract a random key (such a key encapsulation mechanism
directly gives an encryption scheme). Here, the encapsulation and decapsulation
procedures only make local access to the big-key, thus ensuring efficiency. The
key technique leveraged here is a primitive called “reusable locally-computable
computational extractors” [Dzi06b,CDD+07,BKR16].

On the other hand, in the public-key setting, only the secret key is big and
prone to exfiltration, while the public key is still short. The efficiency goals are
that the encryption and decryption running times do not grow with the size of
the big secret key. This naturally leads to the decryption procedure only making
a few local ciphertext-dependent access to the big secret key. The security goal
in this setting is typically to achieve semantic security, even when the adversary

4 Screaming Channels [CPM+18] are one such example, which optimistically transfers
at most 1 bit per second.
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can obtain arbitrary leakage on the big secret key. The security is only required
for fresh ciphertexts that are generated after the leakage by the adversary. In
contrast, no meaningful security can be offered for the old ciphertexts based on
which the leakage can be performed, e.g., the adversary might obtain leakage
corresponding to a few bits of the plaintext for a given ciphertext.

The use of big-keys in a big-key public-key encryption scheme limits their
usability and principal practicality. In particular, a user does not a priori know
what parts of a secret key it will need to decrypt a ciphertext on a particular
device. Thus, the user must carry around the entire large secret keys on all her
devices. This poses two challenges: (1) including large secret keys on a number
of devices can be a significant burden, e.g., wastage of limited storage space on
a mobile device; and (2) the replication of a large secret key across multiple
devices makes the user once again more susceptible to leakage based attacks,
e.g., the loss of a mobile device could leak the entire big key.

1.1 Leakage-Resilient Identity-Based Encryption: Our Approach
and Challenges

Motivated by these concerns, in this work, we will focus on the notion of identity-
based encryption (IBE) as a natural proxy for encryption schemes that allow the
delegation of decryption tokens. Recall that in an IBE scheme [BF01] a setup
algorithm generates a pair (mpk,msk) of master public and master secret keys.
The identity key generation algorithm takes the master secret key msk and an
identity string id and outputs an identity secret key skid. To encrypt a message
m, the encryption algorithm takes a master public key mpk and an identity
string id and produces a ciphertext c. Finally, the decryption algorithm takes an
identity secret key skid and a ciphertext c and returns a message m. In terms of
correctness, we require that if skid is a user secret key corresponding to an identity
id and a ciphertext c was encrypted to this same identity, then decrypting c with
skid returns the message that was encrypted.

Mapping our goal of designing a system with large long-term secrets but
succinct public keys, ephemeral keys, and ciphertexts to the notion of IBE, we
obtain the requirement that all system parameters except the master secret key
should be succinct. We refer to this notion as big-key identity-based encryption
(or bk-IBE for short).

Defining Security. In terms of security, the standard security notion for IBE
requires that a ciphertext c∗ encrypted to an identity id∗ should remain secure,
even if that adversary has access to any (polynomial number of) other secret
keys skid for id 6= id∗. Depending on whether the adversary has to specify the
challenge identity id∗ at the start of the experiment or is allowed to choose it
adaptively depending on the master public key and some identity secret keys,
we refer to selective or full security, respectively.

Now, when we consider (selective or full) security under leakage, the ad-
versary additionally gets a leakage, L(msk), on the master secret key. In the
bounded retrieval model [Dzi06a,DLW06], we only limit the number of bits that
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the function L outputs, but otherwise allow L to perform any (efficient) compu-
tation on msk, i.e., L may try to somehow compress L first before producing its
output. However, how does this notion of leakage resilience go along with our
goal of making all system parameters small except the master secret key?

A moment of reflection points to the following dilemma, even in the setting of
selective security: if the bit-length of the leakage function’s output is allowed to
be larger than the bit-length of an identity secret key, then the leakage function
may just compute the key generation algorithm for the challenge identity id∗

on msk and output the identity secret key skid∗ thus obtained. This makes the
adversary’s task of breaking the security of the challenge ciphertext c∗ essentially
trivial: the leakage skid∗ allows to recover the challenge message via the legitimate
decryption algorithm!

For this reason, all prior works which studied the notion of leakage re-
silient IBE thus restricted themselves to a setting where the identity secret
keys are large, and the master secret key is either large or permits no leak-
age [ADN+10,CDRW10,LRW11,HLWW13,CZLC16,NY19]. This brings us to the
following question:

How can we meaningfully reconcile our design goal of short public pa-
rameters, identity secret keys, and ciphertexts with security against large
amounts of master secret key leakage?

1.2 A New Security Notion and Construction for bk-IBE

From the above discussion, it is clear that we have to depart from the standard
security notion of IBE. One way of relaxing the IBE security to circumvent
the problem of exfiltration of the challenge identity key, described above, could
consist of choosing the challenge identity at random or from a distribution of
sufficiently high entropy, after the adversary has obtained his leakage.

While this indeed leads to a meaningful notion sufficient for certain use cases,
the requirement of the challenge identity to be entropic puts restrictions on
most of the use cases we envision. As an example, if the identities correspond
to calendar dates, then choosing the challenge identity from a high entropy
distribution would imply that the point in time corresponding to the challenge
message necessarily needs to be highly uncertain — something that may not
always be true.

However, we do expect exfiltration of a large portion of the already pretty
big master secret key to be hard, particularly while also avoiding detection. Note
that detection of leakage allows for alternative remedies such as revoking old keys
and replacing them with new ones. Thus, a natural way to think of the leakage
obtained by the adversary is as a budget of information about the master secret
key, which we expect to be relatively smaller than the size of the master secret
key. Of course, in a catastrophic event, a large fraction of the master secret key
may be leaked, in which case, we would like to revert to the weaker entropic
security guarantees.
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The main intuition behind our new definition is as follows: the adversary
may spend his exfiltration budget arbitrarily, and yet, he should not obtain more
information than what he could get via a trivial exfiltration attack– leaking the
identity secret keys of a number of challenge identities. Further, as mentioned
above, catastrophic leakage of a large fraction of the master secret key still
preserves entropic security.

In light of this, our security definition aims to capture how many identities
the adversary could break. In particular, suppose the adversary obtains an `-bit
leakage from the master secret key. We define our big-key IBE to be secure if
the adversary cannot break the security of ≥ `+ 1 number of identities. This is
nearly-optimal as the adversary could launch the trivial attack by leaking Θ(`/λ)
identity secret keys5 in the entirety and, hence, breaking Θ(`/λ) identities.

Observe that this security notion is sufficiently strong for our applications.
For instance, if the identities are the calendar dates, our security guarantees
that an adversary leaking ` bits cannot break the security for more than ` days.
Moreover, a random identity with sufficiently high entropy will also be secure
since an adversary can break at most polynomially many identities.

Our Construction. Given this new security definition, we construct the first bk-
IBE that achieves selective security based on the hardness of standard assump-
tions on groups with bilinear pairing. Our construction builds on seemingly very
different tools such as leakage-resilient encryption scheme [HLWW13], reusable
two-round MPC [BL20], and laconic OT [CDG+17].

Potential Extensions to ABE/HIBE. In the context of IBE, it is usual to also
consider stronger encryption systems such as attribute-based encryption and
hierarchical identity-based encryption, which typically offer a single small secret
key that can be used to decrypt large families of ciphertexts. This is at odds
with the goals of this paper, where we aim to not have a single short key that
can decrypt large families of circuits, as such a key could end up getting leaked.

1.3 Technical Outline

bk-PKE via random selection. We will start by discussing the existing paradigms
to construct bk-PKE and the challenges that arise when trying to adapt these
techniques to the bk-IBE setting. One of the core ideas in the construction of
bk-PKE [ADN+10,MW20] is random selection. For the sake of simplicity, let us
drop the requirement of a short public key for a moment. Then there is a natural
idea to construct bk-PKE via the following approach, as detailed in [ADN+10].
Let (KeyGen,Enc,Dec) be any public key encryption scheme, and consider the
following transformed scheme (KEY GEN,ENC,DEC). The KEY GEN algo-
rithm produces a pair of public key PK = (pk1, . . . , pk`) and a secret key SK =
(sk1, . . . , sk`) for a largeness parameter `, where each key-pair (pki, ski) has been

5 Without loss of generality, we define the length of the identity secret keys to be the
security parameter.
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independently generated. The encryption algorithm ENC takes the public key
PK and a message m and selects a random subset I = {i1, . . . , iλ} ⊆ [`] of size
(say) λ. Next, it computes a λ-out-of-λ secret sharing of s1, . . . , sλ of m (e.g.
via additive secret sharing), computes ciphertexts c1 = Enc(pki1 , s1), . . . , cλ =
Enc(pkiλ , sλ) and outputs the ciphertext C = (I, c1, . . . , cλ). To decrypt such a
ciphertext C, the decryption algorithm DEC retrieves the secret keys ski (for
i ∈ I) from SK, decrypts the ci and reconstructs the message m.

Note first, that the ciphertext C is small (i.e., of size poly(λ, log(`))) and
that both the encryption algorithm ENC and the decryption algorithm DEC
are local, in the sense that ENC only accesses PK in λ location and DEC
accesses SK in λ locations respectively.

Somewhat oversimplified, security is argued as follows, making critical use
of the random selection of the set I: Given any leakage L(SK) of size suffi-
ciently smaller than ` bits, many of the individual secret keys sk1, . . . , sk` will
be information-theoretically hidden from the adversary. As the set I is chosen
randomly after the leak L(SK) has been computed, with very high probability
over the choice of I, there is an index i ∈ I for which L(SK) contains essentially
no information about ski. Thus, one can argue that the ciphertext component
ci hides the share si, and therefore the message m is hidden.

Returning to the issue of large public keys, compressing the public key PK
while keeping the secret key SK incompressible was, in fact, the main technical
challenge in the original construction of [ADN+10]. This was achieved via the
notion of identity-based hash-proof-systems.

With more recently developed tools, namely laconic oblivious transfer, hash
functions with encryption or registration-based encryption [CDG+17,DG17b],
[DGHM18,DGGM19,GHMR18,GHM+19,MW20], there is a significant shortcut
to compress the public key PK. Instead of providing the public key PK in its
entirety, only a short hash H(PK) of PK is provided. This hash H(PK) then
allows the encrypter to delegate the computation of the ciphertexts c1, . . . , cλ to
the decrypter in a secure way. As a matter of fact, looking ahead, our construction
will rely on the same tools to compress the master public keys.

Challenges for extending to bk-IBE. To adapt this high level idea to the IBE
setting, one encounters several bottlenecks, which we highlight below.

Firstly, recall that in the case of bk-PKE, the random selection of the set
I, containing the indices of secret keys that will be accessed by the decryption,
needs to be crucially made at the encryption time. This leads to a critical prob-
lem in the bk-IBE setting: since our target is to keep the identity secret keys
(decryption keys) short, this information pertaining to selection of the identity
keys must be fixed independent of the random coins of the encryption.

Secondly, one might think the above issue is no longer relevant if the challenge
identity is picked randomly. For example, suppose every identity id implicitly
defines some subset Sid, and its identity secret-key corresponds to {ski : i ∈ Sid}.
Then, one might hope a similar argument will prove the security of a randomly-
selected identity. However, recall that the adversary is given unbounded access
to KEY GEN in IBE schemes, through which he could potentially learn all the
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ski’s, thus breaking the security. This challenge posed by an unbounded access
to KEY GEN queries does not exist in the bk-PKE schemes.

Thus, one might wonder if we could handle theKEY GEN queries by starting
with a leakage-resilient IBE scheme and amplifying the leakage tolerance on the
master secret key through the above parallel repetition idea. For such an amplifi-
cation, we must start with an IBE scheme that tolerates some bounded leakage,
say m-bits, on the master secret key, and the only known prior scheme allowing
that is [LRW11] (other schemes only tolerate bounded leakage on large identity
secret keys, and not on the master key itself). The new scheme is obtained by
generating ` independent instances of this underlying IBE scheme. Now, every
identity id is associated with a subset Sid ⊆ [`] and its identity secret key is
the identity secret keys for all the instances i ∈ Sid. It is plausible to conjecture
that a random identity is secure in this new scheme tolerating (approximately)
m · `-bit leakage. However, the only known techniques of proving such leakage
amplification (using parallel repetition) are based on information-theoretic ar-
guments [ADW09,ADN+10,BK12,HLWW13]. In particular, the security proof
requires that the ciphertext is indistinguishable from some simulated ciphertext,
which contains information-theoretic entropy in the adversary’s view.6 However,
no known leakage-resilience IBE supports such a proof structure (as no entropy
is left, given all the unbounded identity queries), and hence the parallel repeti-
tion does not give an amplification. In fact, there are works (e.g., [LW10,JP11])
which show that in general, parallel repetition of a leakage-resilient encryption
scheme does not amplify the leakage-resilience.

Our work precisely circumvents the problems listed above, and builds a
leakage-resilient IBE scheme from scratch, such that it supports such an information-
theoretic argument. In particular, we show that there is a way to simulate the
entire view of the adversary including all the secret key queries such that (1) the
adversary cannot distinguish the simulated view from the real view and (2) in
this simulated view, the challenge ciphertext retains information-theoretic en-
tropy, given the leakage. The key primitive that helps us achieve this is a big-key
pseudo-entropy function.

Our Ideas. We construct our bk-IBE scheme by anchoring the leakage resilience
properties from the corresponding properties of a simpler primitive, namely a
big-key pseudo-entropy function. A pseudo-entropy function (PEF) [BHK11] has
the property that its output at certain inputs are still unpredictable, even if the
distinguisher has obtained leakage about the PEF key (in addition to the output
of the PEF elsewhere). While ideally we would want to rely on pseudo-random
functions (PRFs), they cannot even tolerate a single bit of leakage.

In this work, we will focus on the selective security notion, both for IBE
and for PEFs. A pseudo-entropy function PEF is selectively secure for t inputs
against ` bits of leakage, if for any inputs x1, . . . , xt it holds that PEF (K,x1), . . . ,

6 Given such a proof structure, parallel repetition amplifies the total entropy of the
simulated ciphertexts and, hence, naturally amplifies the leakage-resilience of the
system as well.
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PEF (K,xt) is unpredictable given L(K), where L(·) is an `-bit leakage function.
For our construction, we will need a locally computable PEF, i.e., PEF (K,x)
will access the key K only in a few locations.7

Leakage Resilient Public-Key Encryption. Our big-key IBE scheme is conceptu-
ally built on the weak hash proof system framework of Hazay et al. [HLWW13].
This work constructs a leakage resilient key-encapsulation mechanism from any
(non-leakage resilient) public key encryption scheme. The main ideas of their
construction can roughly be summarized as follows. The public key PK of their
scheme consists of 2n pairs (pk1,0, pk1,1), . . . , (pkn,0, pkn,1) of public keys for an
underlying public key encryption scheme. The secret key SK on the other hand,
contains a random vector b = (b1, . . . , bn) and only contains one secret key ski,bi
for every index i. Key encapsulation proceeds as follows: To encapsulate a ran-
domly chosen key k = (k1, . . . , kn) ← {0, 1}n, compute ciphertexts ci,0 and ci,1
(for i = 1, . . . , n), where ci,0 encrypts ki under pki,0 and ci,1 encrypts ki under
pki,1. To decapsulate such a ciphertext, compute ki = Dec(ski,bi , ci,bi) for each
index i.

Leakage resilience of this encapsulation mechanism is established as follows:
Let c = ((c1,0, c1,1), . . . , (c1,n, c1,n)) be a challenge ciphertext. In the real CPA
experiment, both ci,0 and ci,1 encrypt the same bit ki for all i. Since for each
i the secret key corresponding to pki,1−bi is not part of the secret key SK, by
relying on the IND-CPA security of the underlying encryption scheme we can
switch each ci,1−bi to encrypt 1− ki instead of ki. Note that even an adversary
in possession of SK would not notice this switch. Now, since the bi are chosen
uniformly at random, the encapsulated key depends on the entropy of b (which is
part of the secret key). Specifically, decapsulating such a malformed ciphertext
produces a key k′ = k ⊕ b. But this means that unless the adversary knows the
vector b entirely, k′ has entropy from the adversary’s view. In other words, as
long as the adversary’s leakage is sufficiently shorter than n, the key encapsulated
in such a malformed ciphertext will be unpredictable from the adversary’s point
of view. Establishing a uniform key follows via standard randomness extraction
techniques in a post-processing step.

Towards Identity-Based Encryption. Alas, this idea does not translate directly
to the setting of identity-based encryption. For each identity secret key skid we
would need to argue that some part of skid, similar to the vector b above, must
retain entropy in the adversary’s view, even given leakage about the master
secret key msk. However, since msk is a compact representation of all identity
secret keys, msk will be used to compute both skid,i,0 and skid,i,1 (to stay with
the above notation). In other words, msk cannot just forget half of the secret
keys for each identity.

7 For technical reasons, we need that the locations in which K is queried do not depend
on K itself. For this reason, our actual PEF construction relies on an additional
common reference string.
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Anchoring Leakage resilience in PEFs. Our approach is to adapt the [HLWW13]
technique so as to push the entire entropy of the master secret key into the
key K of a pseudo-entropy function. Furthermore, we will not rely on pairs
of public keys pki,0, pki,1 as the construction of [HLWW13], but instead rely
on a special type of witness encryption scheme [BL20] which allows us to use
information relating to the PEF key K to decrypt. Looking ahead, for each
identity id the role of the random vector b in the construction of [HLWW13]
will be played by a function value PEF (K, id). We first describe a version of
our construction with non-succinct public parameters and later show how these
can be compressed into succinct public parameters via a laconic OT-based non-
interactive secure computation (NISC) [CDG+17,DG17b,DG17a]. The master
secret key msk of our scheme is simply the key K for a leakage resilient local
big-key PEF. Assume that K = (K1, . . . ,Kn), where the Ki are “short” blocks
of size poly(λ) (independent of the leakage bound `).

The public parameters pp consist of commitments to the blocks Ki of K, as
well as a common reference string crs for a special NIZK proof system. Both the
commitment scheme and the NIZK proof system need to be compatible with the
special witness encryption scheme of [BL20].

Identity secret keys in our scheme are generated as follows. First, the KeyGen
algorithm computes sid = PEF (K, id). Since PEF is local, this will only access
a small number of the blocks Ki. Further recall that the indices of these blocks
do not depend on K itself. The KeyGen algorithm now computes NIZK proofs
Πi, for each i = 1, · · · , λ, corresponding to the statements xi =“the i-th bit of
PEF (K, id) is sid,i” (where K relates to the commitments in the public parame-
ters pp). We stress that since PEF (K, id) only accesses a small number of blocks
of K, both the statements xi and the proofs Πi are succinct, i.e. independent
of `. The identity secret key skid now consists of sid, the statements xi and the
NIZK proofs Πi.

We will now describe the encapsulation and decapsulation algorithms. For
an identity id, we encapsulate a random key u = (u1, . . . , uλ) ← {0, 1}λ as
follows: for each index i we compute two ciphertexts ci,0 and ci,1 using the special
witness encryption scheme, both encrypting ui. The statement under which we
encrypt ci,0 is xi,0 =“the i-th bit of PEF (K, id) is 0”, whereas the corresponding
statement for ci,1 is xi,1 =“the i-th bit of PEF (K, id) is 1”. The ciphertext C
consists of (c1,0, c1,1), . . . , (cλ,0, cλ,1). To decapsulate such a ciphertext C using
an identity secret key skid, for each i ∈ {1, . . . , λ} we decrypt ci,sid,i using Πi as
a witness. Correctness follows routinely from the correctness of the components.

Security. We will establish security roughly following the blueprint of [HLWW13].
Specifically, assume we have challenge identities id1, . . . , idt and challenge cipher-
texts C1, . . . , Ct. Our first step of modification relies on the fact that, for each
pair of ciphertexts ci,0, ci,1, one of the statements xi,0 or xi,1 must be false. Con-
sequently, by the security of the witness encryption scheme we can flip one of
the encrypted bits, effectively pushing entropy from sid = PEF (K, id) into the
corresponding challenge ciphertext.
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In the second step, we use the simulation property of the NIZK to remove
the dependence of the proofs Πi’s (in the identity secret keys) on the PEF key
K. Likewise, we can replace the commitments in the public parameters with fake
commitments, which are generated independently of the PEF key K.

Now observe that, the only part of the identity secret key that still depends
on the key K is PEF (K, id). To handle this, our PEF comes with a puncture
mode, where, given a set of challenge identities id1, . . . , idt, the PEF samples a
punctured key K�, such that: (A) it satisfies correctness for all non-challenge
identities, i.e., PEF (K, id) = PEF (K�, id) for all id /∈ {∈ id1, . . . , idt}. This
ensures that we can answer all KeyGen queries using K�; (B) the PEF outputs
(PEF (K, id1), . . . , PEF (K, idt)) contain “high-enough” entropy, givenK�. This
property ensures that the challenge ciphertexts are unpredictable, given the ad-
versary’s view (which now does not depend on K, but only on K�).

Finally, we reduce the selective security to the security of the underlying
PEF. The above arguments help us to push all the entropy of the PEF (K, idi)
to the corresponding challenge ciphertexts. Hence, we now invoke the selective
leakage resilience of the PEF to information-theoretically show that for some
identity idi the adversary cannot have a non-trivial advantage in distinguishing
the corresponding challenge ciphertext.

1.4 Future Directions

Our work leaves open several exciting problems. We discuss a few of them below.
As in IBE schemes, there are two flavors of security one could imagine,

namely, selective and adaptive/full security. In this work, we achieve selective
security, where the adversary must select the challenge set, J , of `+ 1 identities
before the setup of the system, and succeeds only if she breaks all the identities
in J . In contrast, full security allows the adversary to adaptively pick this set,
i.e., she succeeds as long as she breaks the security of all the identities in any
set J of size `+ 1. We leave the problem of building a fully secure big-key IBE
as a fascinating open problem.

Secondly, having initiated the study of big-key IBE, the next natural step
towards making it truly practical would be to build it with only black-box use
of the underlying primitives. Another practically useful feature to add to our
big-key IBE would be to incorporate the updatability of the keys.

The third interesting problem that we leave open stems from the recent
technique [MW20] of making the secret keys “catalytic”, i.e., the large secret key
is no longer needed to be a completely random string (which the user doesn’t
utilize elsewhere), but is generated as a (randomized) encoding of some public
data (e.g., music library) that cannot be compressed further by the adversary.
Extending the study of such public-key encryption schemes with catalytic keys
to our big-key IBE setup would be another exciting problem to explore.

Finally, we note that typically, in IBE security definitions, the adversary is
given access to a KeyGen oracle, which outputs identity secret keys. The only
restriction is that the adversary cannot query the challenge identity id∗. In our
security definition, we do not allow the adversary to query KeyGen on any
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identity in the set of challenge identities J accordingly. While such a restriction
seems natural, one may wonder whether it is necessary. Consider a relaxation of
this assumption where the adversary is allowed to make KeyGen queries with
keys in the set J of challenge identities, which are subsequently removed from
J . We claim that any scheme with a deterministic KeyGen algorithm (as is the
case for most IBE constructions) would be immediately insecure. The reason is
that the leakage function L may leak a succinct parity information about the
keys of the challenge identities, e.g. leak =

⊕
id∈J skid. Given this leakage leak,

the adversary could query the KeyGen oracle on all but one of the identities in
J , say id∗, and then reconstruct skid∗ via skid∗ = leak⊕

⊕
id∈J\{id∗} skid. As the

question of achieving such a stronger security notion by relying on additional
randomization of the KeyGen procedure seems quite challenging and is beyond
the scope of this work, we leave it open for future work.

2 Preliminaries

Notations. We use λ to denote the security parameter. negl(·) denotes a negligible
function. For n ∈ Z, [n] denotes the set [n] = {1, · · · , n}. For a distribution X,
we use x← X to denote the process of sampling x from X. For a set X , we use
x← X to denote sampling x from X uniformly at random. We also use UX for
the uniform distribution over X . We define statistical difference as ∆(X;Y ) =
1/2

∑
a |Pr[X = a] − Pr[Y = a]|, and say that X and Y are statistically close

if their statistical difference is bounded by a negligible function of the security
parameter. We say that X and Y are computationally indistinguishable if for
any PPT adversary D, |Pr[D(X) = 1]− Pr[D(Y ) = 1]| ≤ negl(λ).

2.1 Min-Entropy

Let X be a random variable supported on a finite set X and let Z ∈ Z be
another random variable (possibly correlated with X). The min-entropy of X
is defined as H∞(X) = − log(maxx Pr[X = x]). The average conditional min-
entropy [DORS08] of X given Z is defined by

H̃∞(X|Z) = − log

(
Ez∼Z

[
max
x∈X

Pr[X = x|Z = z]

])
.

We use the following weak chain rule about average conditional min-entropy.

Lemma 1 (Weak Min-Entropy Chain Rule [DORS08]) Let X ∈ X and
Z ∈ Z be random variables. Then it holds that

H̃∞(X|Z) ≥ H∞(X)− log(|Z|).

Additionally, for any δ > 0, with probability at least 1− δ over z ← Z, we have

H∞(X|Z = z) ≥ H̃∞(X|Z)− log(1/δ).
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Further, our proof requires the following min-entropy splitting lemma, the proof
of which, essentially follows from recursively invoking [DFR+07, Lemma 4.2].

Lemma 2 (Min-Entropy Splitting Lemma) Let X1, . . . , Xκ be a sequence
of random variables such that H∞(X1, . . . , Xκ) ≥ α. There exists a random
variable C over [κ] s.t.

H∞(XC |C) ≥ α/κ− log κ.

Our construction also relies on a randomness extractor, which we recall below.

Definition 1 (Randomness Extractor). A function Ext : {0, 1}n×{0, 1}d →
{0, 1}m is called a (k, ε)-strong randomness extractor if, for all distributions X
over {0, 1}n such that H∞(X) ≥ k, we have

∆
( (

s,Ext(X, s)
)

;
(
U{0,1}d , U{0,1}m

) )
≤ ε,

where the seed s is chosen uniformly at random from {0, 1}d.

3 Puncturable Local Pseudo-Entropy Functions

In this section, we will provide definitions and construction of local pseudo-
entropy functions. Our target security notion is selective security, i.e., before
receiving leakage and getting access to the function, the adversary has to an-
nounce his challenge inputs.

Definition 2. Given a parameter `, a puncturable local pseudo-entropy function
is specified by a pair of PPT algorithms (Gen,PEF) with the following syntax.

– Gen(1λ, `): Outputs a pair (CRS,K), where CRS is a common reference
string of size poly(λ), and K = (K1, . . . ,Kn) is a key consisting of Ki ∈
{0, 1}poly(λ).8

– PEF(CRS,K, x): Takes as input CRS and x and gets RAM access to K, and
outputs a Y ∈ {0, 1}poly(λ).

We also require the existence of (Gen2,PEF2) with the following syntax.

– Gen2(1λ, `, x1, . . . , xκ): Outputs a tuple (CRS,K,K�).
– PEF2(CRS,K�, x): Takes as input CRS, K�, x, and outputs a Y .

We require the following properties to hold.

– Locality: PEF(CRS,K, ·) makes at most poly(λ) (independent of `) RAM ac-
cess to K = (K1, . . . ,Kn).

– Mode-Indistinguishability: Fix x1, . . . , xκ ∈ {0, 1}λ and let (CRS′,K ′,K�)←
Gen2(1λ, `, x1, . . . , xκ). Then (CRS′,K ′) is computationally indistinguishable
from (CRS,K)← Gen(1λ, `).

8 The length of CRS and every Ki do not depend on `, but n shall depend on `.
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– Punctured correctness: Fix x1, . . . , xκ ∈ {0, 1}λ and let (CRS,K,K�) ←
Gen2(1λ, `, x1, . . . , xκ). Then it holds for all x /∈ {x1, . . . , xκ} that PEF(CRS,K,
x) = PEF2(CRS,K�, x), except with negligible probability over the coins of
Gen2.

– k-Selective β-Pseudo-Entropy Security: Fix x1, . . . , xκ ∈ {0, 1}λ and let (CRS,
K,K�)← Gen2(1λ, `, x1, . . . , xκ). Then it holds that

H̃∞

(
PEF(CRS,K, x1), . . . ,PEF(CRS,K, xκ)

∣∣∣ CRS,K�) ≥ β.
Observe that, by the punctured correctness, one could use K� to correctly
evaluate PEF at all inputs x /∈ {x1, . . . , xκ}. Therefore, this property im-
plicitly states that, even if the adversary obtains PEF(x) at all inputs x /∈
{x1, . . . , xκ}, PEF(CRS,K, x1), . . . ,PEF(CRS,K, xκ) is still (information -
theoretically) unpredictable.

The notion of pseudo-entropy functions is first proposed by Braverman, Has-
sidim, and Kalai [BHK11]. Their definition supports puncturing at one input
and does not require locality. Let us recall their result.9

Theorem 1 ([BHK11] Thm. 4.1). Let δ > 0 be an arbitrary constant. Under
the decisional Diffie Hellman assumption, there exists a family of 1-selective
γ = (1− δ)α-pseudo-entropy functions, where α is the length of the secret key.

In other words, [BHK11] constructed a PEF such that, after puncturing at
one input x, PEF(CRS,K, x) preserves almost the entire entropy of the key K.

Remark 1. We make a few remarks about our definition.

– Leakage-resilience. The leakage-resilience of the PEF simply follows from
the min-entropy chain rule (Lemma 1). That is, given an m-bit leakage L(K)
of the key K, the entropy guarantee in the definition

H̃∞

(
PEF(CRS,K, x1), . . . ,PEF(CRS,K, xκ)

∣∣∣ CRS,K�) ≥ γ
implies

H̃∞

(
PEF(CRS,K, x1), . . . ,PEF(CRS,K, xκ)

∣∣∣ CRS,K�, L(K)
)
≥ γ −m.

Braverman et. al. [BHK11] choose to incorporate the leakage resilience in
their definition. Here, our definition simply states the min-entropy guarantee,
and we shall handle the leakage within corresponding proofs directly.

9 Their work predates the first mention of punctured PRFs [BGI14]. While they do
not use puncturing formalism, they implicitly define a punctured generation and
evaluation algorithm in their proof.
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– Parameters Setting. Looking ahead, we shall use our PEF to construct our
big-key IBE scheme. The big-key scheme first specifies a leakage parameter `
that it aims to achieve, which, in turn, determines the number κ of inputs our
PEF needs to puncture in order to obtain sufficiently high (e.g., ≥ `) min-
entropy guarantee. Finally, the number of inputs to be punctured determines
the number n of blocks we need to have in the key K = (K1, . . . ,Kn).

– CRS. We note that our definition includes a CRS. Intuitively, the locations
in K that one needs to access in order to evaluate PEF(CRS,K, x) must be
fixed and public, given the CRS and x. As it will become clear in our big-key
IBE construction, this ensures that the encryption algorithm is also local
(i.e., independent of `). We shall elaborate more on this later.
Finally, we note that the construction of [BHK11] does not have a CRS.
Hence, we omit the CRS when we use their PEF as a building block.

Finally, the following simple Lemma about random bipartite graphs shall be
useful to us, whose proof follows by a simple probabilistic argument.

Lemma 3 Let N,M > 0 be integers with N ≤ (1 − ε)M for a constant ε > 0
and d > 0 be an integer. Let L = [N ] and R = [M ]. Let Γ ⊆ L × R be a
random graph which is chosen as follows: For every vertex v ∈ L the neighborhood
Γ (v) is sampled by choosing w1, . . . , wd ← R uniformly at random and setting
Γ (v) = {w1, . . . , wd}. Let MATCH be the event that every vertex v ∈ L can
be matched with a unique vertext w ∈ R, i.e. for each v ∈ L there exists a
W (v) ∈ Γ (v) such that for v 6= v′ it holds that W (v) 6= W (v′). Then we have

Pr[MATCH] ≥ 1−N · (1− ε)d ≥ 1−N · e−ε·d.

Furthermore, one can efficiently find this matching except with probability N ·
(1− ε)d.10

We omit the proof due to space constraint and refer the reader to the full version.

3.1 Our Construction

We will now provide our construction of a local pseudo-entropy function. Our
construction will start from the PEF construction of [BHK11] which is not local,
and amplify this to a PEF which can be evaluated by a local algorithm.

Let (Gen′,PEF′) be the family of pseudo-entropy functions (without local
evaluation) from Theorem 1, and let PRF be a pseudorandom function which
takes as input an x ∈ {0, 1}λ and outputs a sequence of elements (i1, . . . , id) ∈
[`]d.

Gen(1λ, `) : For i = 1, . . . , n, compute Ki ← Gen′(1λ) and choose K∗ ← {0, 1}λ.
Output CRS = K∗ and K = (K1, . . . ,Kn).

PEF(CRS,K, x) :
– Parse CRS = K∗

10 Note that the failure probabilityis negligible for N = poly(λ) and ε · d ≥ ω(log(λ)).
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– Compute (i1, . . . , id)← PRF(K∗, x)
– Retrieve Ki1 , . . . ,Kid via oracle access to K
– Compute and output Y ← (PEF′(Ki1 , x), . . . ,PEF′(Kid , x))

First note that PEF is local, as it only accesses K at d = poly(λ) locations
i1, . . . , id. Moreover, the location it accesses is fixed by CRS and x.

Selective Security. We will first provide the punctured key generation and evalua-
tion algorithms. Let Gen′2(1λ, ·) and PEF′2(1λ, ·) be the punctured key generation
and evaluation algorithms for (Gen′,PEF′).

– Gen2(1λ, `, x1, . . . , xκ): Generate the key PRF key K∗ ← {0, 1}λ and set
CRS = K∗. Let MATCH be the event that for every index i ∈ [κ] that
there is an index ji such that ji appears in the list generated by PRF(K∗, xi),
but ji appears in no other list generated by PRF(K∗, xi′) for i′ 6= i. If
the event holds, compute such a matching. For each i = 1, . . . , κ, compute
(Kji ,K

�
ji

) ← Gen′2(1λ, xi). For all remaining indices i ∈ [n] \ {j1, . . . , jκ},
compute Ki via Ki ← Gen′(1λ) and set K�i = Ki. Set K = (K1, . . . ,Kn),
K� = (K�1 , . . . ,K

�
n ) and output (CRS,K,K�).

– PEF2(CRS,K�, x):
• Parse CRS = K∗

• Compute (i1, . . . , id)← PRF(K∗, x)
• Compute and output Y ← (PEF′(K�i1 , x), . . . ,PEF′(K�id , x)).

Theorem 2. Let δ > 0 be a constant, let κ = (1− δ)n and let γ = poly(λ). As-
sume that (Gen′,PEF′) is a family of 1-selective γ-pseudo-entropy functions and
PRF is a pseudo-random function. Then (Gen,PEF) has punctured correctness,
and satisfies the mode-indistinguishability and κ-selective (κ · γ)-pseudo-entropy
properties.

Remark 2. We stress that κ · γ can get arbitrary close to the entropy of the
PEF key K. Observe that the key K = (K1, . . . ,Kn) supports puncturing κ
inputs, which is nearly n since κ = (1 − δ)n. Additionally, for every input xi,
the γ entropy of PEF(crs,K, xi) is nearly the entire entropy of some block Kji

(by Theorem 1). Overall, the entropy of (PEF(crs,K, x1), . . . ,PEF(crs,K, xκ)) is
nearly the entire entropy of the key K. In other words, for an adversary who may
leak almost the entire key K, (PEF(crs,K, x1), . . . ,PEF(crs,K, xκ)) still contains
unpredictability.

Due to space constraint, we omit the proof and refer the reader to the full version.

4 Big-Key Identity-Based Key Encapsulation Mechanism

In this section, we define and build a big-key identity-based key encapsulation
mechanism (IB-KEM). This construction of IB-KEM will have a large public
parameter. Afterward, one can generically transform it into an IBE scheme with
a short public parameter by using Non-interactive Secure Computation (NISC)
from [CDG+17]. We refer the reader to the full version for this transformation.
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4.1 Definition

Syntactically, a big-key identity-based key encapsulation mechanism consists of
the following efficient algorithms. All algorithms (except for Setup) implicitly
take the public parameter pp as input. We omit it to avoid cluttering.

– (pp,msk) ← Setup(1λ) : This algorithm takes the security parameter as
input, and samples the public parameter pp and a master secret-key msk.

– skid ← KeyGen(msk, id) : This algorithm takes the master secret-key msk
and the identity id as inputs, and samples an identity secret-key skid. In
particular, KeyGen has RAM access to msk.11

– (ct, u) ← Encap(id) : This algorithm takes the identity id as input, and
samples a ciphertext ct and its associated encapsulated key u.

– u = Dec(id, ct, skid) : This algorithm takes the identity id, the ciphertext ct,
and the identity secret-key skid as inputs, and output a decapsulated key u.

Definition 3 (Selective Secure IB-KEM). We say that an IB-KEM (Setup,
KeyGen,Encap,Dec) is selectively secure under bounded leakage if it satisfies the
following correctness, efficiency and security properties.

– Correctness. For any identity id, it holds that

Pr

[
(pp,msk)← Setup(1λ), (ct, u)← Encap(id)

skid ← KeyGen(msk, id), u′ = Dec(id, ct, skid)
: u = u′

]
= 1.

– Efficiency. The running time of KeyGen, Encap, and Dec are independent
of the leakage parameter `. This implicitly mandates that the identity secret-
key skid is succinct (i.e., its length is independent of `). Additionally, the
length of the public parameter pp is also required to be succinct.12

– Selective Security under Bounded Leakage. Fix an ` > 0. We say that
an IB-KEM (Setup,KeyGen,Encap, Dec) is selectively secure, if for all PPT
adversaries A = (A1,A2,A3), for all non-negligible ε, it holds that

Pr
(msk,pp,J ,state,leak)

[
∀ id ∈ J ,Advid(msk, pp, state, leak) ≥ ε

]
= negl(λ),

where (msk, pp,J , state, leak) are sampled from the Phase I of INDblsKEM(1λ)
(refer to Figure 1) and the random variable Advid(msk, pp, state, leak) is de-
fined as follows.

Advid(msk, pp, state, leak) =

∣∣∣∣Pr[Expid(msk, pp, state, leak) = 1]− 1

2

∣∣∣∣
Here, the random variable Expid(msk, pp, state, leak) is as defined in Phase
II, and A3 is not allowed to query the KeyGen on J .

11 The length of the master secret-key msk depends on the leakage parameter, `, and
hence is long. However, the running time of KeyGen will be independent of `. That
is, it will only read a few bits of msk to create the short identity secret-key.

12 The running time of Setup and the length of the master secret-key msk, however,
will inevitably depend on the leakage parameter `.
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INDblsKEM(1λ) :

– Phase I. The system is set up as follows.
1. Let (J , state)← A1(1λ), where J is a set of identities of size `+ 1.
2. (msk, pp)← Setup(1λ).
3. f ← A2(state, pp), where the output length of f is (at most) `. Let

leak := f(msk).
– Phase II. For any id ∈ J , we define a security game Expid(msk, pp, state,

leak) as follows
1. (ct, u)← Encap(id).
2. Let u′ be an independent random string.
3. Sample b← {0, 1}.
4. If b = 0, let b′ = AKeyGen(msk,·)

3 (state, leak, pp, id, ct, u);

5. If b = 1, let b′ = AKeyGen(msk,·)
3 (state, leak, pp, id, ct, u′);

6. Output 1 if b = b′; otherwise, output 0.

Fig. 1: Selective security experiment for IB-KEMs

Remark 3. Note that, in the above definition, the adversary A2 does not get
access to the KeyGen oracle. This is not restrictive since the leakage function
f gets access to the entire secret key msk. Hence, any leakage function f with
access to KeyGen oracle can be transformed into a leakage function f ′ that does
not have access to KeyGen oracle.

4.2 Witness Encryption for NIZK of Commitment Scheme

As a crucial building block for our IBE scheme, we shall use a witness encryp-
tion scheme for NIZK of commitment scheme. This was recently introduced and
constructed by Benhamouda and Lin [BL20]. Let us start with the definition.

Definition 4 ([BL20]). A witness encryption for NIZK of commitment scheme
that supports a circuit class G consists of the following efficient algorithms.

– CRS Setup: crs← Setup(1λ) on input the security parameter λ, generates
a CRS crs.

– Commitment: c ← Com(crs, x; r) on input the CRS crs and a message
x, generates a commitment c. The decommitment is the message x and the
private randomness r.

– Language L: A language L is defined by the CRS crs as follows. A statement
st = (c,G, y), where c is a commitment and G ∈ G is a circuit, is in the
language L with witness (x, r) if it holds that (1) c = Com(crs, x; r); (2)
G(x) = y.

– NIZK Proof: π ← Prove(crs, c, G, (x, r)) on input the CRS crs, a commit-
ment c, a circuit G ∈ G, and a decommitment (x, r), generates a proof π
proving the statement (c,G,G(x)) ∈ L with witness (x, r).

– Witness Encryption: ct←WEnc(crs,msg, (c,G, y)) on input the CRS crs,
a message msg, and a statement (c,G, y), generates a ciphertext ct.
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– Witness Decryption: msg = WDec(crs, ct, (c,G, y), π) on input the CRS
crs, a ciphertext ct, a statement (c,G, y), and a NIZK proof π, computes a
message msg.

– Simulated CRS: (crs, τ) ← SimSetup(1λ) on input the security parameter
λ, generates a simulation CRS crs and its associated trapdoor τ .

– Simulated Commitment: (c, aux)← SimCom(crs), on input the CRS crs,
generates a simulated commitment c with its auxiliary information aux.

– Simulated Decommit: r = SimDecom(crs, τ, c, aux, x), on input the sim-
ulated CRS crs and its associated trapdoor τ , the simulated commitment c
and its associated auxilliary information aux, and any message x, generates
a decommitment r such that (x, r) is a valid decommitment of c with crs.

– Simulated Proof: π ← SimProve((crs, τ, aux), (c,G,G(x))) on input the
simulated CRS crs, its associated trapdoor τ , the auxiliary information aux
for the commitment c, and finally a statement (c,G,G(x)), generates a sim-
ulated proof π proving the statement (c,G,G(x)).

This set of algorithms satisfy the following guarantees.

– Perfect Correctness. For all input x, circuit G ∈ G, and message msg,
we have

Pr


crs← Setup(1λ), c = Com(crs, x; r)

ct←WEnc(crs,msg, (c,G,G(x)))

π ← Prove(crs, c, G, (x, r))

msg′ = WDec(crs, ct, (c,G,G(x)), π)

: msg = msg′

 = 1.

– Perfect binding using honest CRS. For an honest CRS, the commitment
is perfectly binding. That is, there do not exist (x, r) and (x′, r′) such that

Com(crs, x; r) = Com(crs, x′; r′),

where crs← Setup(1λ).

– (Perfect) Semantic Security. Let msg and msg′ be any two messages.
For all circuit G, input x, and y 6= G(x), it holds that

WEnc(crs,msg, (c,G, y)) ≡ WEnc(crs,msg′, (c,G, y)),

where crs← Setup(1λ) and c← Com(crs, x). That is, when the CRS crs and
commitment c are sampled honestly, then the witness encryption satisfies
perfect semantic security.
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– Zero-knowledge.13 For any PPT adversary (A1,A2), it holds that∣∣∣∣∣∣∣Pr

 crs← Setup(1λ)

(state, x)← A1(crs)

c = Com(crs, x; r)

: AO1(·)
2 (state, c, (x, r)) = 1

−

Pr


(crs, τ)← SimSetup(1λ)

(state, x)← A1(crs)

(c, aux) = SimCom(crs)

r = SimDecom(crs, τ, c, aux, x)

: AO2(·)
2 (state, c, (x, r)) = 1


∣∣∣∣∣∣∣∣∣ = negl(λ),

where O1(G) := Prove(crs, c, G, (x, r)) and O2(G) := SimProve((crs, τ, aux),
(c,G,G(x))). That is, the adversary could choose the message x, and is given
its commitment c with the decommitment (x, r). Still, given oracle access to
the proof of (c,G,G(x)), where the adversary chooses the circuit G arbitrar-
ily, it cannot distinguish the simulated proof from the honest proof.

Observe that these properties implicitly guarantee additional properties. For
example, the zero-knowledge property implies that the honest CRS and the
simulated CRS are computationally indistinguishable. Since our construction
does not explicitly use those properties, we do not state them explicitly here.
We will refer the readers to [BL20] for details.

Instantiation. We will use a witness encryption for NIZK of commitment scheme
that supports all polynomial-size circuits, recently constructed by [BL20] under
pairing assumptions.

Locality. The construction of Benhamouda and Lin [BL20] satisfies the following
local property. To commit to a message x = (x1, . . . , xN ), Com actually commits
to every xi independently. That is, Com(CRS, x; r) = (Com′(CRS, x1; r1), . . .,
Com′(CRS, xN ; rN )), where Com′ is some subroutine that commits a single group
element. Moreover, suppose G is a circuit that only depends on m coordi-
nates from x. Given RAM access to the commitment c = (c1, . . . , cN ), where
ci = Com′(CRS, xi; ri), the running times of both generating the NIZK proof
π of the statement (c,G,G(x)) and the witness encryption/decryption with((
c,G,G(x)

)
, π
)

depend only on the locality m. In particular, if G depends only

on xi1 , . . . , xim , then the statement st = (c,G,G(x)) can be expressed succinctly

13 Our definition is slightly different from the zero-knowledge definition in [BL20]. In
particular, in our definition, the adversary is additionally given the decommitment
r. Nonetheless, the construction of [BL20] satisfies our definition since the zero-
knowledge property holds for any circuit that the adversary queries. For example, the
adversary may query a circuit G defined to be G(x) = x1, where x = (x1, . . . , xN ).
In this case, the construction of [BL20] simply sends the decommitment of x1 as the
proof. Therefore, without loss of generality, we may assume that the adversary also
has the decommitment information.
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as st′ =
((
ci1 , . . . , cim

)
, G,G(xi1 , . . . , xim)

)
and the witness (xi1 , ri1 , . . . , xim , rim)

is succinct as well.
In summary, if the circuit G only depends on m coordinates of its input x,

then the encryption/decryption and NIZK proof process all enjoy locality m.

4.3 Construction of Big-key IB-KEM

Construction Overview. Our construction employs witness encryption for NIZK
of commitment scheme and a puncturable local pseudo-entropy function.

– Setup. Let ` > 0 be a fixed parameter (which we will use for the leakage
bound later). To set up a public parameter and a master public-key, we shall
first sample a CRS crspef , a key k for the PEF, and also a CRS crs for the
witness encryption for NIZK of commitment scheme. The (crspef , crs) and
the commitment c of the secret-key k shall be the public parameter. The
master secret-key shall be the secret-key k and the necessary decommitment
information (r1, . . . , rN ).

– Identity Secret-key. The identity secret-key skid consists of two parts. The
first part is the evaluation of the PEF, i.e., PEF(crspef , k, id) = (y1, . . . , yλ).
Second, for every index i ∈ [λ], we generate a proof πi proving the state-
ment that c is a commitment of the key k such that PEF(crspef , k, id)i = yi.
Therefore, the identity secret-key skid is {yi, πi}λi=1.

– Encapsulation. To sample a ciphertext encapsulating a key, we shall use the
witness encryption. In particular, we sample a random string v = (v1, . . . , vλ).
For every index i ∈ [λ], we encrypt vi twice as14

cti0 := WEnc
(
crs, vi,

(
c, (id, i), 0

))
and cti1 := WEnc

(
crs, vi,

(
c, (id, i), 1

))
.

That is, we encrypt vi using two different statements. The 0-statement is
that c is a commitment of k such that PEF(crspef , k, id)i = 0 and the 1-
statement is that c is a commitment of k such that PEF(crspef , k, id)i = 1.15

Finally, we ask the encryptor to sample an additional seed s, and we shall
apply the seeded extractor Ext(·, s) on the string v. That is, the ciphertext

is
({

cti0, ct
i
1

}λ
i=1

, s
)

and the encapsulated key is u = Ext(v, s).

Building Blocks:

1. (Setup′,Com,Prove,WEnc,WDec,SimSetup′,SimCom,SimDecom,SimProve)
be a witness encryption for NIZK of commitments (Definition 4).

2. (Gen,PEF) be a puncturable local pseudo-entropy function (Definition 2),
where given a crspef and key k generated by Gen, PEF(crspef , k, ·) : {0, 1}λ →
{0, 1}λ accesses at most m(λ) locations of the key k (locality). Fix the pa-
rameter ` > 0, taken as input by Gen.

14 We write (id, i) for a circuit. Refer to the figure for the definition of (id, i).
15 Note that only one of the statements will be in L by the perfect binding property.
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3. Let Ext : {0, 1}λ × {0, 1}µ → {0, 1}λ′ be a seeded randomness extractor.

Notation for circuits:

– For a fixed crspef , for brevity, we abuse notation and write (id, i) for a
circuit G : {0, 1}N → {0, 1} defined as

G(x) := PEF(crspef , x, id)i.

That is, given the input x, G(x) outputs the ith bit of the output PEF
with key x and input id.

The Construction:

– Setup(1λ) : Let (crspef , k)← Gen(1λ, `). crs← Setup′(1λ). Let k := (k1, . . .,
kN ). For i ∈ [N ], sample ri at random. For all i ∈ [λ], let ci = Com(crs, ki; ri).
Return msk := {ki, ri}Ni=1 and pp := (crspef , crs, c1, . . . , cN )

– KeyGen(msk, id) : Given the input id, let t1, t2, . . . , tm be the indices of the
key k that PEF(crspef , ·, id) depends on. Let yi = PEF(crspef , k, id)i. Let

statement sti :=
(

(ct1 , . . . , ctm), (id, i), yi
)
∈ L. Define and return

skid :=
{
yi,Prove

(
crs, sti,

{
ktj , rtj

}m
j=1

)}λ
i=1

.

– Encap(id) : For all i ∈ [λ], sample vi ← {0, 1}. Let v := (v1, v2, . . . , vλ).
Let s← {0, 1}µ. For all i ∈ [λ], define

cti0 := WEnc
(
crs, vi,

(
(ct1 , . . . , ctm), (id, i), 0

))
;

cti1 := WEnc
(
crs, vi,

(
(ct1 , . . . , ctm), (id, i), 1

))
.

Let ct :=
({

cti0, ct
i
1

}λ
i=1

, s
)

and u := Ext(v, s). Return (ct, u).

– Dec
(
id, ct =

({
cti0, ct

i
1

}λ
i=1

, s
)
, skid = {yi, πi}λi=1

)
: For all i ∈ [λ], de-

fine
vi := WDec

(
crs, ctiyi , sti, πi

)
.

Let v := (v1, . . . , vn) and u := Ext(v, s). Return u.

Auxiliary Algorithms for the Security Proof:

– SimSetup(1λ) : (crspef , k) ← Gen(1λ, `), (crs, τ) ← SimSetup′(1λ). Let
(ci, auxi) = SimCom(crs), k := (k1, . . ., kN ) and ri = SimDecom(crs, τ, ci,
auxi, ki). Return msk := {ki, ri}Ni=1 and pp := (crspef , crs, c1, . . . , cn).
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– SimKeyGen(msk, id) : Let (t1, . . . , tm), (y1, . . . , yλ), and (st1, . . . , stλ) be as
defined in KeyGen. Define and return

skid :=
{
yi,SimProve

(
(crs, τ, {auxtj}mj=1), sti

)}λ
i=1

.

– Encap∗(id) : For all i ∈ [λ], sample vi ← {0, 1}. Sample s← {0, 1}µ. Define

cti0 := WEnc
(
crs, vi,

(
(ct1 , . . . , ctm), (id, i), 0

))
cti1 := WEnc

(
crs, vi + 1,

(
(ct1 , . . . , ctm), (id, i), 1

))
Let ct :=

({
cti0, ct

i
1

}λ
i=1

, s
)

. Return ct.

Observe that Encap∗ does not output an associated key u. In particular,
the decryption of ct← Encap∗ will be Ext((v1 + y1, . . . , vλ + yλ), s).

Fig. 2: Our Big-key IB-KEM

Remark 4 (Need for a crspef). Note that the Encap algorithm above requires the
knowledge of the exact m locations of k that were accessed by the PEF. This
information is fixed and public, given the crspef and the input id. Thus having a
crspef is essential to ensure that the Encap algorithm remains efficient and local
(i.e., independent of `). This explains why our PEF construction has a CRS.

We will prove the selective security of the above construction, assuming the
selective security of the underlying PEF, along with the security guarantees of
the witness encryption scheme. We formally state the theorem below.

Theorem 3. Assuming that the pseudo-entropy function PEF satisfies the selec-
tive security (Definition 2) and assuming the security of the witness encryption
for NIZK of the commitment scheme (Definition 4), the IB-KEM construction
from Figure 2 is a big-key identity-based key encapsulation mechanism that sat-
isfies the selective security under bounded leakage (Definition 3). In particular,
we can instantiate the underlying schemes to get a leakage rate (i.e., `

|msk| , where

` is the size of the leakage allowed on msk) of 1/3.

The correctness of our construction follows from the correctness of the witness
encryption scheme. The efficiency property follows from the locality of both the
PEF, and the witness encryption for the NIZK of commitment scheme. We now
give a full proof of the selective security under bounded leakage.

4.4 Proof of Selective Security Under Bounded Leakage

Proof Overview. Our security proof mainly consists of the following steps.

– Switch to invalid ciphertext. We first define another encapsulation al-
gorithm Encap∗ that generates an invalid ciphertext ct. ct is invalid in that
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the two ciphertexts ct0i and ct1i encrypt two different messages. Our first
step is to switch from a valid ciphertext using Encap to an invalid cipher-
text using Encap∗. Since only one of the two statements (i.e., (c, (id, i), 0)
and (c, (id, i), 1)) is in the language, by the semantic security of the witness
encryption scheme, the two hybrids are indistinguishable.

– Switch to the simulation mode. Next, we define two auxiliary algorithms
SimSetup and SimKeyGen. In these two algorithms, instead of generates the
CRS and proof honestly, we switch to the simulation mode. That is, the
CRS and commitments are generated with trapdoors such that they are
equivocal. Then, all the proofs in the identity secret-key are given by the
simulated proof. By the zero-knowledge property of the witness encryption
for NIZK of commitment scheme, these two hybrids are indistinguishable.

– Switch to the punctured mode. In this step, we shall sample the key of
the PEF using the punctured mode. By invoking the mode-indistinguishability
of the PEF, the two hybrids are indistinguishable. Note that the key k sam-
pled in the punctured mode comes with a punctured key k�, where the iden-
tities {id ∈ J } are the punctured places. This allows us to sample identity
secret-keys for all identities but those from the challenge set J . Crucially,
this implies that the entire view of the adversary can be simulated using
only k�, without k.

– Invoke the security of PEF and the randomness extractor Ext. Fi-
nally, we argue that the adversary cannot distinguish the key encapsulated
inside the (invalid) ciphertext from a random string. We reduce this to
the security of the PEF. Intuitively, the output of the PEF at J , i.e.,
{PEF(crs, k, id) : id ∈ J }, guarantees sufficiently high entropy even con-
ditioned on the adversary’s view (which only depends on k�), and hence we
can use the extractor security.

Proof. Now, we will prove that our scheme from Figure 2 satisfies the selective
security under a bounded leakage from the master secret key, i.e., we show that
for any adversary A = (A1,A2,A3), trying to break the selective security game
INDblsKEM(1λ) (refer to Figure 1) under `-leakage, and for all non-negligible ε, it
holds that:

Pr
(msk,pp,J ,state,leak)

[
∀ id ∈ J ,Advid(msk, pp, state, leak) ≥ ε

]
= negl(λ),

where (msk, pp,J , state, leak) are sampled from the Phase I of INDblsKEM(1λ)
and the random variable Advid(msk, pp, state, leak) is defined as follows.

Advid(msk, pp, state, leak) =

∣∣∣∣Pr[Expid(msk, pp, state, leak) = 1]− 1

2

∣∣∣∣
Here, the random variable Expid(msk, pp, state, leak) is as defined in Phase II of
INDblsKEM(1λ), and A3 is not allowed to query the KeyGen on J .

We prove this using a sequence of indistinguishable hybrids described below.
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Hybrid 0: This hybrid is the real distribution INDblsKEM(1λ) (recall that A3 is
not allowed to query KeyGen on the challenge identities J ), defined as:

– Phase I. The system is set up as follows.
1. Let (J , state) ← A1(1λ), where J is a set of identities such that
|J | = `+ 1.

2. (msk, pp)← Setup(1λ).
3. f ← A2(state, pp), where the output length of f is (at most) `. Let

leak := f(msk).
– Phase II. For any id ∈ J , we define a security game Expid(msk, pp, state,

leak) as follows
1. (ct, u)← Encap(id).
2. Let u′ be an independent random string.
3. Sample b← {0, 1}.
4. If b = 0, let b′ = AKeyGen(msk,·)

3 (state, leak, pp, id, ct, u);

5. If b = 1, let b′ = AKeyGen(msk,·)
3 (state, leak, pp, id, ct, u′);

6. Output 1 if b = b′; otherwise, output 0.

Hybrid 1: This hybrid is identical to Hybrid 0, except that for each id ∈ J ,
instead of using Encap to generate the challenge ciphertext and the key, we use
Encap∗ to sample the invalid ciphertext and give its decryption to the adversary
when the choice bit b is 0.

– Phase I. The system is set up as follows.
1. Let (J , state) ← A1(1λ), where J is a set of identities such that
|J | = `+ 1.

2. (msk, pp)← Setup(1λ).
3. f ← A2(state, pp), where the output length of f is (at most) `. Let

leak := f(msk).
– Phase II. For any id ∈ J , we define a security game Expid(msk, pp, state,

leak) as follows
1. ct← Encap∗(id).
2. Let u′ be an independent random string.
3. Sample b← {0, 1}.
4. If b = 0, let b′ = AKeyGen(msk,·)

3 (state, leak, pp, id, ct,Dec(id, ct, skid));

5. If b = 1, let b′ = AKeyGen(msk,·)
3 (state, leak, pp, id, ct, u′);

6. Output 1 if b = b′; otherwise, output 0.

Claim 1 Hybrid 0 and Hybrid 1 are identically distributed.

This claim follows from the (perfect) semantics security of the WE scheme.
We omit the proof and refer the reader to the full version.

Hybrid 2: This hybrid is identical to Hybrid 1, except that we use the subroutines
SimSetup and SimKeyGen instead of using Setup and KeyGen. This switches the
actual NIZK proofs with the simulated ones.
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– Phase I. The system is set up as follows.
1. Let (J , state) ← A1(1λ), where J is a set of identities such that
|J | = `+ 1.

2. (msk, pp)← SimSetup(1λ).
3. f ← A2(state, pp), where the output length of f is (at most) `. Let

leak := f(msk).
– Phase II. For any id ∈ J , we define a security game Expid(msk, pp, state,

leak) as follows
1. ct← Encap∗(id).
2. Let u′ be an independent random string.
3. Sample b← {0, 1}.
4. If b = 0, let b′ = ASimKeyGen(msk,·)

3 (state, leak, pp, id, ct,Dec(id, ct, skid));

5. If b = 1, let b′ = ASimKeyGen(msk,·)
3 (state, leak, pp, id, ct, u′);

6. Output 1 if b = b′; otherwise, output 0.

Claim 2 Hybrid 1 and Hybrid 2 are computationally indistinguishable.

This claims follows from the zero-knowledge property of the NIZK scheme.
We omit the full proof and refer the reader to the full version.

Hybrid 3: This hybrid is identical to Hybrid 2, except that we will switch to using
the punctured key of the PEF (punctured at the points id ∈ J ) for answering all
the SimKeyGen queries.

– Phase I. The system is set up as follows.
1. Let (J , state) ← A1(1λ), where J is a set of identities such that
|J | = `+ 1.

2. (msk, pp)← SimSetup�(1λ). Here, SimSetup� first generates (crspef , k,
k�) ← Gen2(1λ, N , J ) and uses k in msk and pp, generated as in
SimSetup.

3. f ← A2(state, pp), where the output length of f is (at most) `. Let
leak := f(msk).

– Phase II. For any id ∈ J , we define a security game Expid(msk, pp, state,
leak) as follows
1. ct← Encap∗(id).
2. Let u′ be an independent random string.
3. Sample b← {0, 1}.
4. If b = 0, let b′ = ASimKeyGen�(msk,·)

3 (state, leak, pp, id, ct,Dec(id, ct, skid));

5. If b = 1, let b′ = ASimKeyGen�(msk,·)
3 (state, leak, pp, id, ct, u′);

Here, SimKeyGen� works exactly like SimKeyGen, except that it uses
PEF2(crspef , k

�, .) for the PEF evaluations.
6. Output 1 if b = b′; otherwise, output 0.

Claim 3 Hybrid 2 and Hybrid 3 are computationally indistinguishable.
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Proof. We use the mode indistinguishability of the PEF to prove the claim.
Particularly, if Hybrid 2 and Hybrid 3 were computationally distinguishable, we
can build an adversary B breaking the mode indistinguishability of the PEF.
B sends the challenge inputs J and receives the (crspef , k) from the mode

indistinguishability challenger, which either corresponds to the actual key gen-
eration or the punctured mode. Having this, B can simulate the entire hybrids,
while using k to answer the SimKeyGen or SimKeyGen�. Since the queries do not
contain the punctured points J , by the punctured correctness, the SimKeyGen�

responses will be same as the the PEF evaluations on k. Depending on whether
the challenger returns the actual PEF key or the one in the punctured mode, B
simulates Hybrid 2 or Hybrid 3. Thus, if the two hybrids are distinguishable, B
can break the mode indistinguishability of PEF. This completes the proof.

Observe that, in the case b = 0, in Hybrid 3, Dec(id, ct, skid) = Ext((v1 + y1, v2 +
y2, . . . , vλ + yλ), s), where (y1, · · · , yλ) = PEF(crspef , k, id), the PEF output on
the original key k. We will use this in completing the proof below.
Proving Selective Security: To finish proving the selective security, we need
to show that for all non-negligible ε, it holds that:

Pr
(msk,pp,J ,state,leak)

[
∀ id ∈ J ,Advid(msk, pp, state, leak) ≥ ε

]
= negl(λ), (1)

where (msk, pp,J , state, leak) are sampled from the Phase I of Hybrid 3 and the
random variable Advid(msk, pp, state, leak) is defined as follows.

Advid(msk, pp, state, leak) =

∣∣∣∣Pr[Expid(msk, pp, state, leak) = 1]− 1

2

∣∣∣∣ .
Here, the random variable Expid(msk, pp, state, leak) is as defined in Phase II
of Hybrid 3. By the |J |-selective, γ · |J |-pseudo-entropy security of the PEF
(Theorem 2), we have that

H̃∞

(
{PEF(crspef , k, id) : id ∈ J }

∣∣∣ crspef , k�) ≥ γ · |J |.
Here, note that the leakage f(msk) in Hybrid 4, takes as input k and (r1, · · · , rN ),
and depends on pp, which in turn depends on crspef . Hence, we can define the fol-

lowing function g on the PEF key k, by hardwiring the values (crspef , τ, {ci, auxi}λi=1):

g(k1, k2, . . . , kN ) :=

{
∀i, ri = SimDecom(crs, τ, ci, auxi, ki)

Output f((k1, r1), . . . , (kN , rN ))

}
.

Thus, f(msk) = g(k), in Hybrid 4. Now, by Lemma 1, in the presence of this
`-bit leakage on msk we get that

H̃∞

(
{PEF(crspef , k, id) : id ∈ J }

∣∣∣ crspef , k�, f(msk)
)
≥ γ · |J | − `.

Now, by Lemma 1, with overwhelming probability over the fixing of crspef , k
�, f(msk),

we have
H∞

(
{PEF(crspef , k, id) : id ∈ J }

)
≥ Θ(γ · |J | − `).
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Next, by Lemma 2, there exists a distribution I over the identities J such that

H̃∞(PEF(crspef , k, I)|I) ≥ Θ(γ · |J | − `)
|J |

− log |J | = Θ(γ)

(Recall |J | = `+ 1.)
In other words, with high probability (in particular, over the observed leakage
and I), there exists an id∗ ∈ J such that the min-entropy of PEF(crspef , k, id

∗) is
≥ text, where we set text = Θ(γ). Now, by the definition of randomness extractor,
we can send A3 a uniform string u′ irrespective of the choice of b in Hybrid 4,
making the output of Expid

∗
uniformly random (as b′ would be uncorrelated to

b).

The extractor security can be applied in Expid
∗
, because:

– The source PEF(crspef , k, id
∗) has high entropy, given crspef , k

� and f(msk).

– The view of the adversary in this game is state, leak, pp, id∗, ct =
({

cti0, ct
i
1

}λ
i=1

, s
)

,

where the seed s is uniformly random and independent from everything else in
the hybrid.

– (v1, v2, . . . , vλ) is independent of (crspef , f(msk), id∗, k�), but is correlated with
ct and, hence, the adversary’s view.

Thus, given the adversary’s view in Expid
∗
, it cannot distinguish

Ext
(

(v1 + y1, . . . , vλ + yλ), s
)
,

which is what A3 gets in Hybrid 3 when b = 0, from uniform since (y1, . . . , yλ) is
sampled from a high min-entropy distribution that is independent of (v1, . . . , vλ).

Hence, in Hybrid 3, with high probability, there exists id∗ ∈ J such that
Expid(msk, pp, state, leak) in Phase II, outputs 1 with probability 1/2 + negl(λ)
(where negl(λ) comes from the extractor security error), which implies that the
security as needed in Equation 1 holds.

The Claims 1, 2, and 3 and the above argument complete the security proof.

Instantiation and Parameters. We can instantiate our construction with the
PEF from Theorem 2, the witness encryption for NIZK of commitment scheme
from [BL20] (see Section 4.2) and any randomness extractor (e.g., left-over hash
from [HILL99]). We allow a leakage of ` bits from our msk. Now, our msk consists
of the PEF key k and additionally the randomness ri’s used in the commitment
scheme. The witness encryption from [BL20] uses 2 random group elements to
commit to a single group element (i.e., the ratio of ki (being committed) to
length of randomness ri is 1/2). Since the PEF gives a leakage rate of 1 (Remark
2), our big-key IB-KEM allows a leakage rate of 1/3.
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ADN+10. Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and
Daniel Wichs. Public-key encryption in the bounded-retrieval model.
In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 113–134. Springer, Heidelberg, May / June 2010. doi:10.1007/

978-3-642-13190-5_6.
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