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Abstract. Onion routing is a popular approach towards anonymous
communication. Practical implementations are widely used (for example,
Tor has millions of users daily), but are vulnerable to various traffic cor-
relation attacks, and the theoretical foundations, despite recent progress,
still lag behind. In particular, all works that model onion routing proto-
cols and prove their security only address a single run, where each party
sends and receives a single message of fixed length, once. Moreover, they
all assume a static network setting, where the parties are stable through-
out the lifetime of the protocol. In contrast, real networks have a high
rate of churn (nodes joining and exiting the network), real users want to
send multiple messages, and realistic adversaries may observe multiple
runs of the protocol.

We initiate a formal treatment of onion routing in a setting with mul-
tiple runs over a dynamic network with churn. We provide definitions of
both security and anonymity in this setting, and constructions that sat-
isfy them. In particular, we define a new cryptographic primitive called
Poly Onions and show that it can be used to realize our definitions.

1 Introduction

Anonymous communication. Privacy is a fundamental human right, and it is
increasingly under threat. We need to be able to connect to our desired websites
and communicate with each other privately without being subject to scrutiny
and interference, and, in some cases – such as when dissidents are trying to help
each other in an oppressive regime – physical threats. While encryption provides
confidentiality of message content, much information can still be gleaned from
observed traffic patterns in a network, revealing such information as who is
communicating with whom, when, and for how long.

Our goal is to implement anonymous channels over a point-to-point network,
such as the Internet. Specifically, we want every user to be able to send a message
to another user so that an adversary monitoring the network and controlling
(passively or actively) a fraction of its nodes, possibly including the recipient of
the message, should not be able to tell who is communicating with whom. That
is, the scenario in which Alice sends a message to Bob should be indistinguishable
from the one in which she sends one to Carol, instead.
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How can we achieve such anonymous communication? A trivial solution is to
use a secure computation protocol among all parties, where each party inputs
their message and destination, and the functionality delivers the messages (where
the output of each party is the set of all messages sent to that party, in lexico-
graphic order). This solution is clearly not adequate: it is extremely inefficient
and involves massive communication among the parties, all of whom should be
available and interact back and forth throughout the protocol run. A few other
approaches towards achieving anonymity have been proposed, but the gap be-
tween what is needed and the existing solutions remains large. In this paper, we
focus on bridging this gap, working within the onion routing framework.

Onion routing. Onion routing [10, 15, 19] is a popular approach towards
achieving anonymity. The basic idea is that when Alice wants to send a message
to Bob, she chooses random intermediate nodes constituting a path from her to
Bob. She then prepares a cryptographic object called an “onion,” which consists
of layered ciphertexts, with one layer per node on the path. Alice then sends
the onion through the path, with each intermediate party “peeling” a layer of
the onion to discover the next node on the path until the onion reaches its
destination. When several onions are peeled by the same honest intermediary in
the same round, the adversary cannot correlate the incoming onions with the
outgoing ones; we refer to this as “mixing.” Thanks to mixing, it is possible
to expect anonymity with onion routing. Tor (“The onion router”) is the most
widely used anonymity network, consisting of thousands of routers and used by
millions of users daily [19]. While clearly practical, it is also vulnerable to traffic
correlation attacks [27,29,31].

Starting with [9], in recent years there have been several works attempting to
put onion routing on a solid theoretical foundation. For example, we know that
sufficiently shuffling the onions provides anonymity from the passive adversary [3]
and that a polylog (in the security parameter) number of rounds is both necessary
(e.g., [12,17,18]) and sufficient (e.g., [3, 28]) for this. Providing anonymity from
the active adversary is significantly more challenging than shuffling. Surprisingly,
a polylog number of rounds is still sufficient for achieving anonymity in the
active adversary setting with fault tolerance [3]. Exciting recent work considers
a relaxed notion of anonymity called differential obliviousness, shows that it
is useful in the shuffle model of differential privacy, and constructs an efficient
differentially oblivious onion routing protocol [21]. Several other works address
only onion construction without analyzing the onion routing protocol (e.g., [2,
23]).

However, the theoretical modeling, while solving important challenges, is still
quite far from what we need in practice. Perhaps the most glaring issue is the fact
that all the works that model and analyze onion routing protocols only address a
single instance of message routing for a restricted set of communication patterns.
Specifically, each party is instructed to send a (fixed length) message to another
party such that everyone sends a message and everyone receives a message, and
the protocol for communicating all messages only occurs once. This is in contrast
to real-world scenarios where parties send messages of varying lengths and many
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times without coordinating with other parties. An additional challenge for a
system that supports ongoing traffic is network churn: the nodes on the network
may go offline or join back. Realistic networks have high rates of churn, but this
has not been addressed by the above works. Other recent protocols addressing
anonymity [25, 32, 33] also operate only in the static network setting (without
any nodes joining or exiting the network).

Network churn. Onion routing schemes rely on communication through in-
termediate nodes, which should be known at the time the onion is created.
However, practical networks are dynamic, allowing for significant node churn.
For example, measurement studies of real-world P2P networks [20,30] show that
the churn rate is quite high: nearly 50% of peers in real-world networks can be
replaced within an hour.

Churn poses significant challenges for anonymous routing, even at the def-
initional level. One obvious issue is that in standard onion routing, the entire
route of an onion is chosen in advance when the onion is created. Thus, if only
just one of the parties on the route churns out and goes offline, the onion is lost.
We note that this is a problem not only with correctness and reliability, but also
with security/anonymity. Indeed, if an adversary observes an onion originating
with Alice and going to an offline node (hence dropped), and then sees that Bob
ended up receiving fewer onions than other parties, the adversary may conclude
that the dropped onion from Alice was likely intended for Bob.

Our contributions. In this work we initiate the formal treatment of onion
routing in a setting with multiple runs over a dynamic network with churn.

A natural idea towards overcoming churn is to construct an onion in a way
that allows for more than one option for each hop on the route. This way the
onion will not be dropped if one intermediate node is offline, and can instead
be routed to a backup intermediary. This idea was put forward by Iwanik,
Klonowski, and Kuty lowski [22], who suggested “duo onion” encryption as a
way to improve onion delivery rates when there is network churn. A duo onion
has two candidate intermediary servers for each onion layer. If the first candi-
date is offline, the onion can be sent to the second candidate. While Iwanik et
al. proposed a duo onion construction and did a back-of-the-envelope analysis of
its efficiency, they did not formalize duo onion routing nor prove the security of
this scheme. In fact, as we show in Section 6.1, duo onions are less secure than
regular onion routing because the adversary corrupting at least one candidate
in each hop (which is more likely with more candidates) can trace the onion
through the network.

Poly onion encryption definition. Our first contribution (Definitions 1 and 2)
is a formal definition of poly onion encryption. Poly onion encryption is inspired
by duo onion encryption described above, but it does not suffer from the same
security flaw.

Our definition introduces auxiliary parties, called helpers, for each hop in the
routing path. The helpers can ensure that an onion is routed to its backup inter-
mediary for the next hop only if the preferred one is offline. This fixes the flaw
in duo onions: a corrupted backup party must enlist the help of the committee
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in order to peel an onion, so an adversary corrupting only one candidate can
no longer necessarily peel the onion to trace its next hop. It also makes onion
encryption more complicated: processing a poly onion is an interactive proto-
col involving the current intermediate node, the candidates for where to send it
next, and the helpers. However, this complication seems necessary; we show in
Section 6.1 that natural simpler solutions are insufficient.

In part because of this interactivity, defining correctness and security for a
poly onion requires some care. Intuitively, correctness (Definition 1) captures the
requirement that the onion will reach its intended destination, and the intended
message will be recovered, as long as some condition holds (for standard onion
routing, the condition is that every intermediate party on the path behaves hon-
estly). Security (Definition 2) captures the requirement that the adversary will
not be able to correlate an input onion with one of several output onions coming
out of a processing party, as long as some condition holds (for standard onion
routing, the condition is that the processing party is honest). These conditions
can be complex, since they depend on who is online, and each hop involves many
potential parties (candidates and helpers). We capture these conditions through
correctness and security predicates. (Note that different poly onion encryption
schemes may be correct/secure with respect to different predicates.)

Poly onion encryption construction. Our second contribution is a construc-
tion of poly onions from standard cryptographic primitives: CCA secure public-
key encryption with tags [13,14], PRP, MAC, and secret sharing. Our construc-
tion, Poly Onion Encryption (Section 4), is parameterized in terms of the num-
ber of candidates κ, the size ν of the helper committee, and the secret sharing
reconstruction threshold α.

In our construction, the committee members are responsible for ensuring
that a processing party indeed sends its onion to the first online candidate in its
list. At a high level, an onion is valid only if it comes with a key header used
for processing it. An onion typically comes with a key header encrypted for the
first candidate in its next hop. If the first candidate is offline, the processing
party must enlist the help of the committee to construct this key header for
an alternate candidate. For this purpose, each onion comes with inputs for the
onion processing protocol. The processing party distributes these inputs to the
committee members, who check that the first candidate is indeed offline and
select the next online candidate in the list. The committee members return
secret shares; given at least α · ν shares the processing party reconstructs the
header for the alternate candidate.

We prove that our construction is correct and secure against an active adver-
sary, with respect to corresponding predicates that we define. The correctness
predicate for each step roughly requires that the processing party is honest and
online, and that at most α · ν members of the committee are corrupted. The se-
curity predicate roughly requires that there are no corrupted parties appearing
before the first honest and online party in the list of next candidates, and that
fewer than α · ν members of the committee are corrupted. This is analogous to
the condition for standard onions (where the processing party is required to be



Poly Onions: Achieving Anonymity in the Presence of Churn 5

honest), so our predicate is only minimally stronger than that of standard onion
encryption. As long as enough parties overall are honest, and committees are
chosen randomly, we can increase the committee size to boost the probability
that fewer than α · ν committee members are corrupted. These parameters can
be instantiated so that the predicates are satisfied with high enough probability
to achieve anonymity in the overall onion routing protocol, discussed below.

Anonymity definitions. Let us revisit why achieving anonymity in the pres-
ence of churn is difficult. As an illustrative example, consider the simple onion
routing protocol Πp [3]. In Πp, each sender routes an onion randomly through
a network of server nodes such that the onion mixes with a polylog number of
onions, a polylog number of times. It was shown that Πp is anonymous from
the passive adversary who corrupts up to a constant fraction of the servers (in
the static setting) just by shuffling the onions in this way. However, it is not
necessarily anonymous when we add churn to the equation: if the adversary ob-
serves that Alice’s onion churns out before it gets a chance to mix with too many
onions, then she may be able to infer who Alice’s recipient is by observing who
doesn’t receive an onion at the end of the protocol. Intuitively, Iwanik et al.’s
duo onion idea [22] is a partial solution to this problem; it is more difficult for
Alice’s onion to churn out if, at each hop, it can route to an alternative ran-
dom server if the preferred one is offline. However, duo onions (without helper
parties) don’t necessarily mix at honest servers. This is, in part, because an ad-
versarial intermediary Pi may behave honestly and route Alice’s onion to the
honest preferred next server P+

i+1 but still learn what the peeled onion looks like

if the alternative next server P−
i+1 is adversarial: in this case, Pi knows what the

alternative onion O−
i+1 for P−

i+1 looks like, and P−
i+1 knows how to peel it. A

similar, slightly more complicated attack works even for the passive adversary
and is described in Section 6.1. Naive solutions, such as adding more candidates,
somewhat mitigate the risk but have drawbacks, as we show in Section 6.1. How-
ever, helper parties, which we introduce in poly onions, do prevent this attack.
Thus, a natural question is: can we make Πp anonymous in the setting with
churn by using poly onions?

Before we could answer this question, it was necessary to first define what
it means for an onion routing protocol to be anonymous in the presence of
churn. Prior definitions of anonymity are defined only for a single protocol run
in the static setting, whereas most applications operate over multiple runs over
a long period of time, and so we should model them as operating (concurrently
with other runs) in a dynamic setting. For our third contribution, we present a
definition of anonymity for the multi-run setting with churn.

Our definition of anonymity (Definition 3) is roughly as follows. An onion
routing protocol is anonymous if the adversary cannot tell whether it is inter-
acting with the challenger over L runs on input vectors σ0

1 , . . . , σ
0
L or on input

vectors σ1
1 , . . . , σ

1
L. It is strongly anonymous if the adversary can query the chal-

lenger to peel onions before and after the L challenge runs. It is adaptively
anonymous if the adversary chooses the inputs and who is online/offline for the
ith run based on the prior i − 1 runs. The strongest definition that is most
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helpful in an operational setting is the strong multi-run adaptive version of the
definition, and that’s the one we aim to achieve.

From single-run to multi-run anonymity.Our fourth contribution is to show
(Theorem 2) that for a large class of onion routing protocols, which we call
simulatable, multi-run (strong, adaptive) anonymity is equivalent to single-run
(strong, adaptive) anonymity. This holds both for the static setting (no churn)
and dynamic setting (with churn), whether the adversary is passive or active.
Informally, a simulatable onion routing protocol (Definition 4) is one where the
adversary cannot tell whether it is interacting in the real setting in which the
challenger runs the protocol on behalf of honest parties using the honest parties’
secret keys, or in the ideal setting in which the challenger fakes the run without
knowledge of the honest parties’ secret keys. Since most onion routing protocols
are simulatable, including Πp, an immediate consequence is that practical onion
routing protocols that satisfy multi-run anonymity exist – albeit in the static
setting without churn.

Achieving anonymity in the presence of churn. Armed with a definition of
anonymity for the dynamic setting and Theorem 2, we answer our question about
Πp in the affirmative. For our final contribution, we present a new onion routing
protocol, Poly Πp, that uses Poly Onion Encryption instead of standard onion
encryption and prove that it satisfies (strong,adaptive) multi-run anonymity
when fewer than half of the parties can be offline or passively corrupted.

Open problems. Our work makes significant progress towards bridging the
gap between theoretical foundations of onion routing, and required anonymity
in realistic settings. Still, some important problems remain open.

First, can we achieve anonymous routing with churn against active adver-
saries? Note that Poly Πp already provides protection against some types of
active malicious behavior: poly onion encryption is secure against active adver-
saries, and Poly Πp is also secure against an adversary that decides the churn
schedule. However, anonymity breaks when an active adversary can selectively
drop onions in a more “adaptive” way, namely in the middle of a run. We also
note that in the static setting, the protocol Π▷◁ of Ando, Lysyanskaya and Up-
fal [4] achieves anonymity even against active adversaries. However, simply re-
placing their onions with our poly onions would still not yield a scheme that is
anonymous in the setting with churn, because used as is, their protocol would
equate churn with malicious activity and simply not work; an added complication
is that Π▷◁ is not simulatable.

A second open problem is to address more general communication patterns.
As in prior work [3,4,32,33], a single run of our protocol is also restricted to the
so called “Simple I/O” setting, where each party sends and receives exactly one
message of a fixed length. The fact that we address the multi-run case partially
mitigates the issue, as it provides a way to handle longer messages, by break-
ing them to several runs. Nonetheless, the assumption that the communication
pattern in each run is a permutation is still limiting. Defining what anonymity
should mean for more general communication patterns, which patterns can be
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efficiently supported anonymously, and how to construct such protocols, is a
challenging and interesting topic for future work.

Related work. To the best of our knowledge, all existing onion routing works
either (i) do not have any theoretical modeling or provable security, or deviate
from standard notions of indistinguishability [6–8,11,16,22,23]; (ii) address only
onion construction, without discussing or analyzing the routing algorithm [2, 9,
22–24]; (iii) consider routing only in the single run static network setting [3, 4,
25,28,32,33]; or (iv) focus on lower bounds [4, 12,17,18].

2 Modeling the problem

Here, we introduce the setting used for our formal definitions in Section 3 and
Section 5. Because our setting involves network churn, our model is more in-
volved than previous models used for analogous definitions in the static setting.
We base our treatment of churn on practical onion routing, namely Tor [19],
which consists of thousands of routers and is used by millions of users. Tor relies
on five to ten semi-trusted directory authorities to maintain up-to-date infor-
mation on relay nodes and their availabilities and capabilities including network
capacity. In the latest version (version 3) of Tor, routers periodically upload
“router descriptors” that list their keys, capabilities, etc. to the directory au-
thorities [1]. From these descriptors, the directory authorities update their view
of the routers every 12 to 18 hours. Tor users and routers download “diffs” of the
updated views from multiple directory authorities; these contain information on
the currently available routers. The bulletins in our model are loosely modeled
on this; like in Tor, at the start of every run, the parties obtain a global view of
who’s currently online. During a run, some parties may churn out; we allow the
adversary to control who these parties are and when the churn happens since
this corresponds to the most pessimistic scenario. Within a run, a party can Pj

check whether a party P ′
j is currently online by sending a message and waiting

for a response. An actively corrupted P ′
j may pretend to be offline.

Let λ be the security parameter and N be the number of parties.
Notation. For a natural number n, [n] is the set {1, . . . , n}. For a set Set, we

denote the cardinality of Set by |Set|, and item←$ Set is an item from Set chosen
uniformly at random. If Dist is a probability distribution over Set, item ← Dist
is an item sampled from Set according to Dist. For an algorithm Algo, output←
Algo(input) is the (possibly probabilistic) output from running Algo on input. A
function f(λ) of the security parameter λ is said to be negligible if it decays faster
than any inverse polynomial in λ. An event occurs with overwhelming probability
if its complement occurs with negligible probability.

Time. We assume the synchronous setting and model time as passing in
rounds, with some fixed number of rounds making up each larger run. Let
R1, ..., RL be a series of runs. Assume that L is bounded above by a polyno-
mial in λ.

Parties. Let P1, ..., PN be the N parties in our universe. Assume that N is
bounded above by a polynomial in λ. We assume that each party has a public



8 Megumi Ando, Miranda Christ, Anna Lysyanskaya, and Tal Malkin

key accessible to all. Let Bad ⊆ {P1, ..., PN} be the set of corrupted parties.
Corrupted parties are those that can be observed or controlled by the adversary,
depending on the adversary’s abilities, which we define later.

Churn bulletins. Let B1, ..., BL be the bulletins, which accurately indicate
which parties are online at the beginning of each run. More precisely, Bi ⊆
{P1, ..., PN}, and party Pj is online at the beginning of run Ri if and only if
Pj ∈ Bi.

Churn schedule. Let C1, ..., CL be the churn schedule for the runs. For each
i, Ci is a set of party-round pairs: Ci = {(Pi1 , r1), (Pi2 , r2), ...}, where a pair
(Pij , rj) indicates that in run Ri, party Pij goes offline at the beginning of
round rj of that run. All parties in the list Ci must be online at the start of the
run according to Bi. As a simplification, we allow parties to come online at the
start of a run but not during a run. Thus the churn schedule specifies only which
parties go offline and when. Since parties come online only at the start of a run,
this will be specified in the bulletins rather than in the churn schedule.

Churn limit. Let c(N), a function of N (e.g., N
2 ), be the churn limit [5]; that

is, at most c(N) parties can be offline at any point in time. We require that the
number of offline parties specified by the bulletins and churn schedule does not
exceed the churn limit c(N). More precisely, for every i, N − |Bi|+ |Ci| ≤ c(N)
since N−|Bi| parties are offline at the start of run Ri, and |Ci| additional parties
go offline during Ri.

Inputs. We represent an input for a run Ri as a vector σi = (σi,1, σi,2, ..., σi,N )
where σi,j is the input for party Pj . Each party’s input is either a recipient-
message pair (Pk,m) specifying that that party sends message m to party Pk,
or it is ⊥. An input of ⊥ indicates that that party sends no information in that
run (although that party can still send dummy messages in a protocol).

For run i, we say an input vector σi is valid if there exists some permutation
f : [Bi]→ [Bi] such that for each party Pj ∈ Bi, the input to Pj is (f(Pj),mj)
for some message mj . Furthermore, the input for each party Pj /∈ Bi is ⊥. Our
allowed inputs here are analogous to the “Simple I/O” setting in prior work
(e.g., [3, 4, 32,33]), adapted for churn.

For defining anonymity using a game-based approach, we allow the adversary
to choose a pair of inputs for an onion routing protocol, and its goal is to deter-
mine, by running the protocol, which of these inputs the challenger chose. If the
adversary can choose any two inputs without any constraints on its choices, then
it can trivially win, for example, by choosing two inputs that differ on a cor-
rupted party’s input. Thus, the adversary is constrained to choose the two inputs
from the same equivalence class [4]. We say two input vectors σ = (σ1, ..., σN )
and σ′ = (σ′

1, ..., σ
′
N ) are equivalent w.r.t. the set of corrupted parties Bad if for

all Pj ∈ Bad, σj = σ′
j , and the content of the honest messages for which Pj is

the recipient is the same in σ and σ′. We denote this equivalence σ ≡Bad σ
′.

We note that that the input specifies the messages that the parties would like
to send. However, a protocol might result in some parties receiving additional
dummy messages, or some parties receiving no messages (perhaps due to churn).
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Adversary model. The adversary can control the churn, observe the network
traffic, and choose which parties to corrupt (if any). We assume authenticated
communication, and we assume that the adversary can only drop messages sent
by corrupted parties or offline parties. In particular, the adversary cannot in-
terfere with communication between two honest and online parties. We define
three classes of adversaries of varying capabilities: the network adversary, the
passive adversary, and the active adversary. An adversary in any of these classes
can observe all of the network traffic. In particular, it can observe the traffic
on all communication links. The network adversary can control the churn, make
these observations, and no more. The passive adversary can additionally cor-
rupt a constant fraction of the parties and observe the computations and states
of these parties. It cannot control these parties to deviate from the protocol.
The active adversary can do all of the above and can also control the corrupted
parties to do anything, including deviating from the protocol.

3 Onion encryption for churn

In this section, we formalize a generalization of duo onion encryption [22], where
each onion has two candidate intermediary servers for each layer. As mentioned
by Iwanik et al. [22] if the processing party can choose which candidate to send to
next, then whenever possible, a corrupted party processing an onion can send to
a corrupted candidate. If a fraction c of the parties are corrupted, the probability
that at least one of a given list of k candidates is corrupted is 1− (1− c)k.

As discussed in the introduction, we address this issue by introducing aux-
iliary parties, called helpers. The helpers for an onion O in a hop i are parties
that are involved in some way in sending the peeled onion of O to its next inter-
mediary server. This prevents a corrupted party from choosing any candidate it
wishes for the next hop.

3.1 I/O syntax

Poly onion encryption is parameterized by the security parameter λ, the num-
ber of candidates κ, and the number of helpers ν and consists of algorithms
(KeyGen,FormOnion) and protocol ProcOnion, as follows:
– KeyGen takes as input the security parameter 1λ, and a party name Pi. It

outputs the public key pkPi
and the secret key skPi

for Pi.
– FormOnion takes as input a message m; a run number R (recall that a run

consists of a number of rounds; see Section 2); two ordered lists,
P1, . . . ,Pℓ,Pℓ+1 and Q1, . . . ,Qℓ such that for all i, |Pi| = κ and |Qi| = ν,
and the public keys for all the parties on these lists. Pi is the ordered list
of parties who are candidates for intermediaries for hop i. Qi is the list of
parties who will serve as helpers for hop i. The first party Pℓ+1,1 in Pℓ+1 is
the recipient.

The output is the list of lists of onions O1, . . . ,Oℓ+1. Each Oi corresponds
to the ith layer of this onion; each Oi consists of κ onions Oi,1, . . . Oi,κ. An
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onion Oi,j corresponds to the representation of the ith layer of the onion that
is suitable for processing by candidate Pi,j .

– ProcOnion is a protocol that Pi,j ∈ Pi can initiate on input Oi,j and its secret
key; the other participants in the protocol (if any) is the set of helpers Qi,
each helper takes its own secret key as input. As a result of the protocol,
Pi,j obtains output Oi+1,j′ ∈ Oi+1 and its intended recipient Pi+1,j′ ∈ Pi+1;
the helpers receive no output.

Remark 1. We fix κ and ν for convenience; while in practice they may vary,
fixing them does not lose much generality.

Remark 2. The list Pi = (Pi,1, . . . , Pi,κ) is ordered. For j > 1, Pi,j is not sup-
posed to serve as the intermediary for processing the onion unless for all u < j,
Pi,u is unavailable.

Remark 3. The candidate list Pℓ+1 may seem superfluous: only the recipient
Pℓ+1,1 is important. As we will see, requiring it as part of the input is helpful for
preventing adversarial helpers from learning whether the onion to be processed
has reached the end of the routing path, or not.

Remark 4. The recipient Pℓ+1,1 of the onion, upon receiving the onion Oℓ+1,1

should be able to process it, infer that he is the recipient, and obtain the origi-
nal message m. An alternate candidate Pℓ+1,j , upon receiving the onion Oℓ+1,j

should be able to process it, infer that he is not the recipient, and output ⊥.
Correctness, defined in the next section, will ensure that this is the case.

3.2 Correctness

A standard onion encryption [2,9,23] is correct if having each intermediary peel it
using the algorithm ProcOnion will get it to its destination and yield the original
message. In poly onions, we have a set of candidates for each layer rather than
a specific intermediary, and a set of helpers with which an intermediary can run
ProcOnion in order to peel the onion; that alone makes correctness somewhat
harder to pin down since now it is a protocol rather than an algorithm.

What makes it really complicated, however, is churn. A processing party may
change its behavior based on whether the candidates for the next hop are online.
In other words, processing an onion correctly depends on factors that cannot be
accounted for at the time that the onion was formed.

We introduce a correctness predicate ϕB,C that corresponds to the bulletin B
and churn schedule C. It takes as input the onion’s candidate lists P, the helper
lists Q, the pair of indices (i, j) where i is a hop in the routing path and j is
the index of the jth party Pi,j in Pi, a round r, and a number of rounds ∆.
∆ should be an upper bound on the number of rounds required to process an
onion. The correctness predicate ϕB,C(P,Q, (i, j), r,∆) accepts if Pi,j and (a
sufficient number of) helpers in Qi are online at round r according to B and C.
The definition of correctness is given with respect to this predicate (which, in
turn, dictates how many helpers are sufficient).
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In poly onion encryption, there is a set of onions rather than a single onion
corresponding to each hop in the evolution. The path the onion will take through
the network (i.e. which candidate will be picked for each hop) depends on which
parties are online and which are corrupted. Recalling that Pi+1 is a list of can-
didates in order of preference, Oi should not peel to an onion Oi+1,j for party
Pi+1,j ∈ Pi+1 if there is an honest and online party Pi+1,k ∈ Pi+1 where k < j.
Note that if Pi+1,k is online but corrupted, it may pretend to be offline, in which
case we can allow Oi to peel to Oi+1,j . More formally:

Definition 1 (Correctness with respect to predicate ϕ). Let Σ =
(KeyGen,FormOnion,ProcOnion) be a poly onion encryption scheme, with
ProcOnion taking at most ∆ rounds to run. Let Bad be the set of corrupted
parties. Let B be any bulletin. Let C be any churn schedule. Let m be any
message. Let R be the current run number. Let P = (P1, . . . ,Pℓ+1) =
((P1,1, . . . , P1,κ), . . . , (Pℓ+1,1, . . . , Pℓ+1,κ)) be any list of ℓ + 1 lists of κ candi-
dates. Let Q = (Q1, . . . ,Qℓ) = ((Q1,1, . . . , Q1,ν), . . . , (Qℓ,1, . . . , Qℓ,ν)) be any list
of ℓ lists of ν helpers. Let pkP∪Q denote the public keys of the parties in P ∪Q.

Let O = ((O1,1, . . . , O1,κ), . . . , (Oℓ+1,1, . . . , Oℓ+1,κ)) ←
FormOnion(m,R,P,Q, pkP∪Q) be an evolution of onions obtained from
running FormOnion on the above parameters.

Σ is correct w.r.t. the predicate ϕB,C if for any candidate location (i, j),
round r, and number of rounds ∆ such that ϕB,C(P,Q, (i, j), r,∆) = 1, the
following items are satisfied:
i. Let S ⊆ Pi+1 be the following set of parties. If Pi+1 contains an honest

party that is online in rounds r through r + ∆, S includes the first honest
and online party P ′ in Pi+1, along with any corrupted parties preceding P ′

in Pi+1.
ii. When ProcOnion is initiated by an intermediary party Pi,j ∈ Pi in round r,

and Pi,j follows the protocol (i.e., if it is adversarial, then it can only be
honest-but-curious), Pi,j’s output is (Pnext, Onext) where Pnext ∈ S ∪ {⊥}.
(The presence of ⊥ on this list of parties means that it is possible that after
the participants have processed the ith layer of the onion, the adversary can
drop this onion.)

iii. Onext = ⊥ if Pnext = ⊥. Otherwise, Onext = Oi+1,k is the onion layer for
party Pnext = Pi+1,k output by FormOnion.

iv. When ProcOnion is initiated by Pℓ+1,1 on input Oℓ+1,1, the output is (m,⊥).
When ProcOnion is initiated by Pℓ+1,j on input Oℓ+1,j, j > 1, the output is
(⊥,⊥).

Remark 5. The evolution of an onion includes a representation of every layer of
the onion, which is explicitly output by FormOnion. Implicitly, it also includes the
innermost layer, i.e., the message that will ultimately be output by the recipient.
Thus, we will sometimes think of an onion evolution with ℓ intermediaries as
consisting of ℓ + 2 onion layers. For 1 ≤ i ≤ ℓ, an honest intermediary Pi,j

receives a representation Oi,j of the ith layer of O and, upon processing it, sends
Oi+1,j′ to Pi+1,j′ . If the recipient Pℓ+1,1 is online, it will receive the onion Oℓ+1,1
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and, upon processing it, will output (m,⊥). Sometimes, by Oℓ+2,j we will denote
(m,⊥).

3.3 Security

On a high level, an onion scheme is secure if an adversary cannot correlate an
honest participant’s incoming onions with its outgoing onions. For poly onions,
this is captured via a security game, POSecurityGame described below.

One reason that this game is more complicated than the security game for
regular onions is that the adversary controlling the helpers obtains additional
information; what the adversary may learn also depends on the network churn.
We introduce a security predicate ψ to capture whether or not a particular set of
circumstances — who is processing an onion, at what round, with what helpers
— dictates whether the adversary should not be able to determine a correlation.

More precisely, the security predicate ψB,C is parameterized by
a bulletin B and churn schedule C. Let P = (P1, . . . ,Pℓ+1) =
((P1,1, . . . , P1,κ), . . . , (Pℓ+1,1, . . . , Pℓ+1,κ)) be any list of ℓ + 1 lists of κ candi-
dates. Let Q = (Q1, . . . ,Qℓ) = ((Q1,1, . . . , Q1,κ), . . . , (Qℓ,1, . . . , Qℓ,κ)) be any
list of ℓ lists of ν helpers. ψB,C takes as input P, Q, a hop number h, a round r,
and a number of rounds ∆.

For example, for regular onion routing, we would define ψ to be 1 if and only
if the (only) candidate in hop h, Ph, is honest. Here, we don’t need to refer to
the bulletin or churn, since with regular onion routing, the adversary should not
be able to peel an onion for honest Ph, regardless of whether or not Ph is online.

Consider another example, the original duo onion encryption [22] without
helpers. Here, a processing party Ph−1 in hop h−1 can choose which destination
in Ph to send the onion to; there are no helpers verifying that this destination
is the first candidate on the list Ph that is online. Here, we can define ψ to
be 1 if and only if all parties in Ph are honest. If all parties in Ph are honest,
the adversary should not be able to peel the onion since it does not know these
honest parties’ secret keys. On the other hand, if any party in Ph is corrupted,
a corrupted Ph−1 can choose to send to the corrupted party in Ph, allowing
the adversary to peel the onion in the following hop h. So the hop number h
corresponds to the onion layer that shouldn’t be “peelable” by the adversary.

POSecurityGame. The following game is between an adversary A and a chal-
lenger. It is parameterized by a security predicate ψB,C(P,Q, h, r,∆), where B
is a bulletin, C is a churn schedule, P = (P1, . . . ,Pℓ+1) is a list of ℓ+ 1 lists of
candidates, Q = (Q1, . . . ,Qℓ) is a list of ℓ lists of helpers, h is an index of a hop
in the path, r is a round, and ∆ is an upper bound on the number of rounds
that ProcOnion takes to complete.

i. A receives the public keys for all parties.
ii. A chooses the set of corrupted parties Bad, the bulletin B, the churn sched-

ule C restricted to the honest parties, and the public keys for Bad. A sends
all of these to the challenger.

iii. A can invoke the protocol ProcOnion in two ways, as follows.
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Honestly initiated A sends to the challenger an onion O to be processed,
an honest processing party P , and a round rO in which the processing of
O should begin. Next, the challenger acts on behalf of P as well as the
honest helpers in the protocol ProcOnion initiated by P on input O, while
A acts on behalf of the participants in Bad. Upon completing ProcOnion,
the challenger reveals P ’s output (O′, P ′) (if any) to A.

Adversarially initiated A initiates ProcOnion on behalf of a partici-
pant P ∈ Bad. Next, the challenger acts on behalf of the honest helpers
in the protocol ProcOnion initiated by P on input O, while A acts on
behalf of the participants in Bad (including P ).

iv. A chooses the parameters for the challenge onion. It chooses a routing path
length ℓ, a message m, a routing position 1 ≤ h ≤ ℓ+ 1, a round r, a series
of helper parties for each hop (Q1, . . . ,Qℓ), and a path consisting of a series
of alternate destinations for each hop (P1, . . . ,Pℓ+1). For the adversary’s
choices, it must hold that ψB,C(P,Q, h, r,∆) = 1.

v. The challenger samples a bit b ←$ {0, 1}. If b = 0, the challenger uses
FormOnion to create an onion O0 exactly as specified by the routing path
and helper parties. Let O0

1 be the list of outermost onion layers of this onion.
If b = 1, the challenger creates two lists of lists of onions. The chal-

lenger creates the first list of lists of onions O1 = (O1
1, . . . ,O1

h+1) by running
FormOnion with message⊥, candidates (P1, . . . ,Ph+1), helpers (Q1, . . . ,Qh),
and those parties’ public keys. The challenger creates the second list of lists of
onions O′ = (O′

h+1, . . . ,O′
ℓ+2) by running FormOnion with message m, can-

didates (Ph+1, . . . ,Pℓ+1), helpers (Qh+1, . . . ,Qℓ), and those parties’ public
keys. Let O1

1 = O1 as formed above. (Recall that O1
ℓ+2 consists of entries

Oℓ+2,j = (m,⊥) as explained in Remark 5.)
The challenger sends Ob

1 to A.
vi. A can again invoke the ProcOnion in two ways, with a slight modification if

honestly initiated.
Honestly initiated A can direct honest participants to invoke ProcOnion

as described in step iii. but with the following modification: onions Oj ∈
Ob

h can only be queried in round r. If b = 0 was chosen, the challenger
follows the protocol ProcOnion.

If b = 1, and A directed Pj ∈ Ph to invoke ProcOnion on input Oj ∈
O1

h, the challenger begins by faithfully following the protocol on behalf of
honest helpers and the honest Pj . Suppose that doing so produces output
Oh+1,j′ ∈ O1

h+1 and candidate Ph+1,j′ ∈ Ph+1. If h ≤ ℓ (i.e., Pj = Ph+1,j

is an intermediary) or (h, j) = (ℓ + 1, 1) (i.e., Pj = Ph,j is the onion’s
recipient), then instead of returning these to A, the challenger switches
the onion and returns Oh+1,j′ ∈ O′

h+1, Ph+1,j′ to A.
Adversarially initiated Behavior is the same as defined in step iii.

vii. A submits a guess b′ of b. See Figure 1 for a schematic of the poly onion
security game.
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Fig. 1. Schematic of the poly onion security game.

We say A wins POSecurityGame if b′ = b. A poly onion encryption scheme
is secure if no efficient adversary can win POSecurityGame with non-negligible
advantage; more formally:

Definition 2 (Poly Onion Security with respect to predicate ψ).
We say a poly onion encryption scheme Σ is poly onion secure with re-
spect to ψ against the class of adversaries A if for every adversary A ∈ A,∣∣Pr[A wins POSecurityGame(A, Σ, λ, κ, ν, ψ·,·)]− 1

2

∣∣ = negl(λ).

Remark 6. During the ProcOnion protocol, the adversary may see additional
information other than the oracle’s output, depending on the adversary’s capa-
bilities. For example, the network, passive, and active adversaries can see the
traffic across all links during the protocol.

4 Our poly onion encryption scheme

In this section, we construct an instance of poly onion encryption, define its
correctness and security predicates, and prove its correctness and security.
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Our construction, Poly Onion Encryption, has parameters κ (the number
of candidates per hop), ν (the number of helpers per hop), α (the fraction of
helpers needed to process an onion), and d (for bounding the length of the
routing path). We construct Poly Onion Encryption using the following crypto-
graphic primitives: CCA secure public-key encryption with tags [13,14], pseudo-
random permutations (or block ciphers), a message authentication code (MAC)
(Gen,Tag,Ver), and a (α · ν, ν) Secret Sharing scheme (Share,Recon). We denote
public-key encryption and decryption as Encpk(·) and Decsk(·) where pk and sk
are the public key and secret key, respectively. Following the work by Camenisch
and Lysyanskaya [9] and Ando and Lysyanskaya [2], we will continue the tradi-
tion of using “{·}k” to denote evaluating a PRP in the forward direction under
the symmetric key k, and “} · {k” to denote evaluating a PRP in the backward
direction.

Throughout this section, we describe our construction for κ = 2 candidates
per hop for ease of readability, although our construction generalizes to any
κ ∈ N. We explain how it generalizes in the full version of this paper.

For every hop of the routing path, let P+
i denote the preferred candidate for

the ith hop (this is the sender’s first choice), and let P−
i denote the alternate

candidate for the ith hop (the second choice). The idea is that (at the ith hop)
the onion should be routed to P+

i , unless P+
i is offline, in which case the onion

can be routed to P−
i instead. We sometimes refer to the party Pi for the ith hop

without specifying whether it is the preferred candidate or the alternate.

Forming an onion on input the message m, the candidate parties P =
((P+

i , P
−
i ))i∈[d], the helpers (committee members) Q = (Qi)i∈[d], and the pub-

lic keys pkP∪Q of the candidates and helpers, produces a list of lists of onions,
((O+

1 , O
−
1 ), . . . , (O+

d , O
−
d ))← FormOnion(m,P,Q, pkP∪Q), where each O+

i is the
onion to be processed by party P+

i , and each O−
i is the onion to be processed by

P−
i . If it is possible for the processing party Pi of an onion Oi to send an onion

to the preferred next candidate P+
i+1, Pi will produce an onion O+

i+1 and send it

to P+
i+1; otherwise, Pi enlists the help of the committee members Qi to produce

the alternate onion O−
i+1 to send to the alternate candidate P−

i+1 instead. The

point of this committee is to ensure that P−
i+1 can only process the onion if the

preferred candidate P+
i+1 is truly offline. Otherwise, a corrupted Pi could always

choose to send to the corrupted party among P+
i+1 and P−

i+1 if such a party
exists, thereby significantly increasing the effective corruption rate.

4.1 Overview of Poly Onion Encryption

Anatomy of an onion We describe at a high level the pertinent information
contained in each onion Oi = (Ki, Hi, Ui), where the index i denotes the hop
number in which this onion is processed. Oi contains many blocks containing
information for each hop in the routing path; we use the variable j to index the
blocks. A detailed description of how Oi is constructed is given in the full version
of this paper.
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Fig. 2. The structure of an onion Oi received by a processing party Pi.

– Ki contains d blocks, including a block for each hop j in the routing path.
The first block K1

i is a ciphertext under the processing party’s public key. It
contains a key ki, which will be used to decrypt the rest of the onion. K1

i also
contains the role of the party (whether it is an intermediary or a recipient),
and the identity P+

i+1 of the preferred candidate for the next hop. The rest
of the onion Oi (denoted Oi \ K1

i ), as well as the run/round number R,
serves as the tag for this ciphertext; in other words, the ciphertext K1

i will
not decrypt correctly unless the decryption occurs within the context of the
correct onion Oi in run/round R:

(ki, role(Pi), P
+
i+1)← DecskPi

(K1
i ;Oi \K1

i , R).

– Hi contains d blocks, including a block for each hop j in the routing
path. Each Hj

i is encrypted using a block cipher with key ki. The first
block H1

i contains the identities of the committee Qi and the set of inputs
Ii = {Ii,j}j∈[ν] for the committee to run the protocol.

(Qi, Ii)←}H1
i {ki

.

– The input Ii,j for the jth committee member Qi,j ∈ Qi is
EncpkQi,j

(P+
i+1, P

−
i+1, σi,j , Ti,j , R), where P+

i+1 is the preferred candidate for

the next hop, P−
i+1 is the alternate candidate for the next hop, σi,j is Qi,j ’s

share for reconstructing the alternate candidate’s version of the onion, Ti,j
is the authentication tag for σi,j , and R is the run/round number when the
ProcOnion protocol should take place. σi,j verifies under the MAC with the
tag Ti,j and key ki; that is, Verki

(σi,j , Ti,j) = “accept.”
– Ui contains the contents of the onion and is similar to the content in regular

onion encryption. Ui is encrypted using a block cipher with key ki.

Overview of processing an onion. Let Pi be the processing party for onion
Oi = (Ki, Hi, Ui). Note that Pi can decrypt K1

i only if the onion wasn’t modified
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en route; this is the purpose of using encryption with tags. Pi first decrypts K1
i

with its secret key skPi
, to obtain the symmetric key ki, learn its role role(Pi)

(whether it is an intermediary for the onion or the recipient), and learn the
identity of the preferred next destination P+

i+1. The symmetric key ki will allow
Pi to decrypt the rest of the onion.

If the preferred next candidate P+
i+1 is online, then Pi forms the “peeled”

onion O+
i+1 by decrypting the remaining blocks K2

i , . . . ,K
d
i , H

1
i , . . . ,H

d
i , Ui with

ki. Pi then shifts these blocks down so that, for example, K1
i+1 =}K2

i {ki . The
last blocks of Ki+1 and Hi+1 are Kd

i+1 =}11 . . . 1{ki+1 and Hd
i+1 =}00 . . . 0{ki+1 .

This shifted, decrypted onion is O+
i+1 = (K+

i+1, Hi+1, Ui+1), the onion for P+
i+1.

If the preferred next candidate P+
i+1 is offline, Pi enlists the help of the

committee Qi to help peel the onion. It first decrypts H1
i with ki to obtain Qi

(the set of committee members) and Ii (the set of inputs for Qi). Pi initiates
the protocol by sending each share Ii,j to its corresponding committee member
Qi,j in Qi. Each committee member Qi,j decrypts its input Ii,j to obtain P+

i+1,

P−
i+1, σi,j (a sharing of the key block necessary to construct O−

i+1), Ti,j (the
authentication tag for σi,j), and R (a run/round number). If R is not the current
run/round, Qi,j aborts and outputs ⊥. If Qi,j determines that P+

i+1 is offline and

P−
i+1 is online, it sends EncpkPi

(P−
i+1, σi,j , Ti,j) to Pi. Thus, if at least α fraction

of the committee members are honest and online, and P+
i+1 is offline and P−

i+1

is online, Pi will receive from the committee members, the identity of P−
i+1 and

at least α|Qi| shares that verify using the set of tags Ti and the key ki. Pi

uses these shares to reconstruct the alternate first key block (K1
i+1)−. Pi now

processes the rest of the onion as in the case where P+
i+1 is online, decrypting the

other blocks with ki and shifting them down, then again forming Kd
i+1 and Hd

i+1

as encryptions of 00 . . . 0 and 11 . . . 1 respectively. It then replaces the first key
block (K1

i+1)+ of K+
i+1 with the reconstructed key block (K1

i+1)− to obtain K−
i+1.

The resulting peeled onion is the alternate onion O−
i+1 = (K−

i+1, Hi+1, Ui+1). We
give a more detailed description of processing an onion in the full version of this
paper.

4.2 Analysis of Poly Onion Encrypion

Here, we analyze Poly Onion Encryption for κ = 2.

Correctness. We define the predicate function ϕpolyB,C,α(P,Q, (i, j), r,∆) to be
1 when Pi,j is honest and online in rounds r through r+∆, and fewer than α · ν
of the parties in Qi are corrupted.

Poly Onion Encryption is correct with respect to ϕpolyB,C,α(P,Q, (i, j), r,∆).
Suppose Pi,j is honest and initiates the ProcOnion protocol on an onion Oi,j

in round r. We break the scenario into the following cases and show that they
satisfy Definition 1:

P+
i+1 honest and online. Pi,j does not need the committee to process Oi,j .

Since Pi,j is honest, it will output (P+
i+1, O

+
i+1) as prescribed by correctness.



18 Megumi Ando, Miranda Christ, Anna Lysyanskaya, and Tal Malkin

P+
i+1 honest and offline. Pi,j will see that P+

i+1 is offline and will enlist the
help of the committee. The committee protocol returns either ⊥ or the key
block for O−

i+1. Thus, Pi,j will either output (P−
i+1, O

−
i+1) or ⊥.

P+
i+1 corrupted. Depending on whether P+

i+1 behaves as if it is online, Pi,j may

output (P+
i+1, O

+
i+1), (P−

i+1, O
−
i+1), or ⊥.

Security. Let ψpoly
B,C,α(P,Q, h, r,∆) be the predicate function that returns 1 if

and only if the following both hold: (i) no corrupted party precedes the first
honest party in Ph that is online in all rounds r through r + ∆; and (ii) fewer
than α · ν parties in Qh−1 are corrupted.

Recall that ν is the committee size and α is the number of committee mem-
bers’ shares required to reconstruct the onion for the alternate candidate. By the
above definition of ψpoly

B,C,α, if the first candidate in Ph+1 is honest and online,
and fewer than α · ν members in Qh are corrupted, the adversary cannot win
the security game with non-negligible advantage, i.e., the onion mixes in hop
h+ 1. As long as enough parties in our universe are honest, and committees are
chosen randomly, we can increase the committee size to boost the probability
that fewer than α · ν members in Qh are corrupted; we discuss this further in
Section 6. Given that fewer than α · ν members of Qh are corrupted, the onion
mixes in hop h + 1 if the first party in Ph+1 is honest and online. We show
later in Section 6 that ψpoly

B,C,α is indeed satisfied with high enough probability to
provide anonymity.

Theorem 1 (Security of construction). Poly Onion Encryption is poly

onion secure with respect to the security predicate ψpoly
B,C,α for 0 < α ≤ 1 and

ν ≥ 1
α assuming that all of the underlying standard primitives exist.

We prove that the scheme is secure using a hybrid argument that is similar
to the security proof of shallot encryption by Ando and Lysyanskaya [2]. We give
a proof sketch below and provide thee full proof in the full version of this paper.

Proof sketch. Let Experiment0 be the same as running the security game with
b = 0; this is when the challenger creates the challenge onion as usual. Let
Experiment1 be the same as running the security game with b = 1; this is when
the challenger creates two unrelated sets of onion layers O and O′, and the onion
O ∈ O peels to O′ ∈ O′ at the chosen server.

We construct the following hybrids that act as stepping stones from
Experiment0 to Experiment1. Let i = h − 1. The hybrids involve changing the
onion layers Oi+1. In all of the hybrids, the ProcOnion oracle behaves as if b = 1
in POSecurityGame. That is, when an onion Oj ∈ Oi+1 is queried, it returns
the onion in Oi+2 corresponding to the appropriate candidate. This behavior
is consistent with b = 0 in POSecurityGame for Experiment0 and with b = 1 in
POSecurityGame for Experiment1:

Experiment0: security game with b = 0.

↕ These are identically distributed.
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Hybrid1: since onions are layered encryption objects, we form challenge onion by
first forming O+

i+2 and then “wrapping” it in more layers of encryption to get
O1. We formally define wrapping in the full version of this paper.
↕ Indistinguishable by security of public key encryption.

Hybrid2: same as Hybrid1, except change the oracle so that in step 6 of
POSecurityGame, if it is queried with (O−

i+1)′ to be processed by P−
i+1, it in-

stead runs ProcOnion with O−
i+1.

↕ Indistinguishable by security of secret sharing/public key encryption.
Hybrid3: same as Hybrid2, except in block H1

i of Oi, change the share of
every member of committee Qi to a share of Encpk

P
−
i+1

(00 . . . 0) instead of

Encpk
P

−
i+1

(ki+1, role(P−
i+1), P+

i+2).

↕ Indistinguishable by security of public key encryption.
Hybrid4: same as Hybrid3, except in the key block K1

i+1 of Oi+1, change ki+1 to
00 . . . 0.
↕ Indistinguishable by security of the block cipher.

Hybrid5: same as Hybrid4, except change Oi+1 from a wrapping of O+
i+2 to the

output for hop (i+ 1) of FormOnion on the first segment of the routing path, up
to Pi+1.
↕ Indistinguishable by security of public key encryption.

Hybrid6: same as Hybrid5, except in the key block K1
i+1 of Oi+1, change the key

back from 00 . . . 0 to ki+1, and change the role of Pi+1 from intermediary to
recipient.
↕ Indistinguishable by security of secret sharing/public key encryption.

Hybrid7: same as Hybrid6, except in block H1
i of Oi, change all commit-

tee members’ shares back from shares of Encpk
P

−
i+1

(00 . . . 0) to shares of

Encpk
P

−
i+1

(ki+1, role(P−
i+1), P+

i+2)

↕ Indistinguishable by security of public key encryption.
Hybrid8: same as Hybrid7, except change the oracle so that it no longer treats
(O−

i+1)′ specially.
↕ These are identically distributed.

Experiment1: security game with b = 1. ⊓⊔

Remark 7. We remark that this construction can be generalized for any number
of candidates κ. That is, every onion has κ candidate processing parties per
hop. We can do so by modifying the committee members’ inputs so that each
input Ii,j contains the full list of candidates rather than just P+

i+1 and P−
i+1. We

also include κ− 1 shares σ2
i,j , . . . , σ

κ
i,j in Ii,j instead of just σi,j . Each share σc

i,j

is used to construct the version of the onion for candidate Pi+1,c ∈ Pi+1. The
processing party knows from the committee members’ responses which candidate
each committee member votes for. If enough committee members vote for one of
the candidates, the processing party can reconstruct that candidate’s version of
the onion. Correctness and security still hold with respect to the same predicates
ϕpolyB,C,α and ψpoly

B,C,α defined in Section 4.2. The proofs of correctness and security
are given in the full version of this paper.
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5 Anonymity in the setting with churn

So far we have explored new onion encryption techniques for handling network
churn, defining poly onion encryption, and constructing a scheme that satisfies
poly onion security. In this section, we turn our attention to the problem of
how to route onions such as those constructed using Poly Onion Encryption
through a dynamic network to achieve anonymity. To begin with, we must first
formally define what it means for an onion routing protocol to be anonymous
in a setting with network churn. Our new definitions of anonymity, including
multi-run anonymity, are provided in Section 5.1.

To establish that our proposed multi-run anonymity definition is a usable no-
tion, we must also show that it is achievable. In Section 5.3, we prove a general
theorem (Theorem 2) that states that for a class of onion routing protocols, which
we call “simulatable” protocols, single-run anonymity is equivalent to multi-run
anonymity. An implication of this is that all previously known simulatable proto-
cols that are single-run anonymous are also multi-run anonymous. These include
Πp [3]. However, these new multi-run results are for the static setting, without
network churn. In Section 6, we prove (again relying on Theorem 2) that Πp can
achieve multi-run anonymity in the presence of churn. Our formal definition of
the class of simulatable onion routing protocols is provided in Section 5.2.

5.1 Definitions of anonymity

Here, we define what it means for an onion routing protocol to achieve multi-
run anonymity. First, we define an anonymity game, StrongAnonGame, which we
then use in the formal definition of multi-run anonymity (Definition 3).

StrongAnonGame(A, Π, L, λ) is parameterized by the adversary A, the onion
routing protocol Π, the number of runs L, and the security parameter λ. The
game proceeds in three phases: (i) the setup phase where A has access to the
oracle for responding to queries for processing onions on behalf of honest parties,
(ii) the challenge phase where A and the challenger run the protocol Π, and
(iii) the final phase where A again has access to the oracle.

During setup, the adversary A first picks the set of corrupted parties Bad and
sends Bad to the challenger. The challenger generates the keys for the honest
parties according to Π and sends only the public portion of these keys to A.
A sends the corrupt parties’ public keys to the challenger. A can now submit
ProcOnion queries to the the challenger. For each ProcOnion query, A submits a
bulletin B and a churn schedule C such that the number of parties ever offline
is bounded above by the churn limit c(N), an onion O, an honest processing
party P for peeling O, and a round number r. The challenger receives only the
restriction of C to the honest parties. The challenger interacts with A to run
the ProcOnion protocol on O starting in round r, with the challenger acting on
behalf of the honest parties following the protocol and A controlling the behavior
of the corrupted parties.

In the challenge phase, A and the challenger run the protocol L times. To
begin with, the challenger picks the challenge bit b ∈ {0, 1}. For each of the
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L runs, A and the challenger repeat the same procedure. In run i, A picks a
bulletin Bi and a churn schedule Ci with at most c(N) parties offline during
that run. A also picks input vectors σi

0 and σi
1 that are both valid with respect

to Bi, i.e., σi
0 ≡Bad σ

i
1. A sends Bi, the restriction of Ci to the honest parties,

σi
0, and σi

1 to the challenger. A and the challenger interact in a protocol run of
σi
b with online parties specified by bulletin Bi and churn schedule Ci, and with

the challenger acting as the honest parties, and A acting as the corrupt parties.
After the challenge phase, in the final phase, A can again interact with the

challenger by submitting ProcOnion queries, with the additional restriction that
A cannot ask about onions formed by honest parties during the challenge phase.
That is, A picks a bulletin B and churn schedule C (such that the number of
offline parties is at most c(N)), an onion O (not observed during the challenge
phase), and a processing party P . A again sends C restricted to the honest
parties. Finally, A outputs a guess b′ of the challenge bit b. We say A wins
StrongAnonGame(A, Π, L, λ) if its guess b′ is equal to b. See Figure 3 for a
schematic of the strong anonymity game.

We now define several variants of strong anonymity using StrongAnonGame.

Definition 3 (Strong Anonymity). An onion routing protocol Π with se-
curity parameter λ is L-strongly anonymous against the class of adversaries A
if for every adversary A ∈ A,

∣∣Pr[A wins StrongAnonGame(A, Π, L, λ)]− 1
2

∣∣ =
negl(λ).

Note that when c(N) = 0, this is the static setting; when c(N) > 0, this is
the dynamic setting with network churn.

Multi-run vs. single-run. We say a protocol Π is multi-run anonymous if it is
anonymous for polynomially bounded L > 1 in the above definition. A protocol
Π is single-run anonymous if it is anonymous for L = 1.

Strong vs. weak. We say a protocol Π is weakly anonymous if it satisfies the
analogous definition for a modified anonymity game, where the adversary does
not have oracle access to the ProcOnion queries. We say a protocol Π is strongly
anonymous if it satisfies the definition using StrongAnonGame.

Adaptive vs. non-adaptive. In StrongAnonGame, the adversary is adaptive in
that it can choose the bulletin, the schedule, and the inputs before each run based
on prior history. We also define a weaker non-adaptive anonymity definition,
in which the adversary must choose all inputs, churn schedules, and bulletins
before observing any protocol runs. Using our terminology above, the standard
anonymity definition in prior papers (e.g., [2, 3, 25, 32, 33]) is weak single-run
non-adaptive anonymity in our new terms.

5.2 Simulatable onion routing protocols

Here, we formally define the class of simulatable onion routing protocols. As
we will show in Section 5.3, simulatability is a property that can reduce multi-
run anonymity to single-run anonymity. The idea is that if a simulatable onion
routing protocol is single-run anonymous, then we can prove that it is also multi-
run anonymous via a sequence of reductions that “simulate” extraneous runs
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Fig. 3. Schematic of the strong anonymity game.

for an adversary that expects to interact in multiple runs. (See our proof of
Theorem 2 in Section 5.3.)

Thus, what we mean by “simulatable” is that the reduction should be able
to recreate what the honest parties do in a run, using only information that
it has access to – namely, the public keys of all the parties, the bulletin, the
churn schedule, the run number, and the inputs for the honest parties. Consider
the following two settings: (i) the real setting, in which the challenger interacts
with the adversary by following the protocol and (ii) the ideal setting, in which
the challenger interacts with the adversary by using the algorithm GenOnions
that generates (from just the public parameters and the honest parties’ inputs)
all possible onions that the honest parties might send out during the run and
the algorithm ScheduleProcOnions that determines (from just the honest parties’
message buffers) if/when these onions are processed. An onion routing protocol
is simulatable if no (efficient) adversary can tell whether it is interacting in the
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real setting or the ideal one except with negligible advantage. We define these
concepts more concretely below.

The real setting. RealGame(A, Π, λ) is parametrized by the adver-
sary A, the onion routing protocol Π with onion encryption scheme
(KeyGen,FormOnion,ProcOnion), and the security parameter λ.

The game proceeds as follows. First, the adversary A chooses the adversarial
parties Bad, the bulletin B, the churn schedule C, the run number R, and the
keys for the parties in Bad. The public portions of these keys are relayed to the
challenger. The challenger generates the keys for the honest parties by running
KeyGen and relays the public portion of these keys to A. A picks the input
vector σ, and the inputs for the honest parties are relayed to the challenger.

The challenger and A interact in a run of Π on input σ, with the challenger
running Π on behalf of the honest parties, and A controlling the adversarial
parties. At the end of the run, A outputs a bit b.

The ideal setting. This setting is defined with respect to two algorithms:
– An onion generation algorithm GenOnions takes as input the security pa-

rameter 1λ, the public keys {pkPj
}Nj=1 of all the parties, the bulletin B,

the churn schedule C, the run number R, the identity Pi of an honest

party, and the input σi for Pi; and outputs a set O(1)
i of onions for Pi,

i.e., O(1)
i ← GenOnions(1λ, {pkPj

}Nj=1, B, C,R, Pi, σi).
– A scheduling algorithm ScheduleProcOnions takes as input the security pa-

rameter 1λ, the round number r, the identity Pi of an honest party, and the

state OnionBuffer
(r)
i of Pi at round r; and outputs a set O(r)

i of onions to

be processed starting at round r and an updated state OnionBuffer
(r+1)
i , i.e.,

(O(r)
i ,OnionBuffer

(r+1)
i )← ScheduleProcOnions(1λ, r, Pi,OnionBuffer

(r)
i ).

IdealGame(A,GenOnions,ScheduleProcOnions, λ) is parametrized by the adver-
sary A, the onion generation algorithm GenOnions, the scheduling algorithm
ScheduleProcOnions, and the security parameter λ.

The game proceeds as follows. Like in the real setting, the adversary first picks
Bad, B, C, R, and the keys {pkPj

}j∈Bad for the adversarial parties, while the
challenger runs KeyGen to generate the keys {pkPj

}j∈[N ]\Bad for honest parties;
and A determines the input vector σ = (σ1, . . . , σN ) for the run.

The challenger and A interact in a run of Π on input σ, with the challenger
acting as the honest parties, and A controlling the rest. In contrast to the real
setting, the challenger doesn’t run the protocol Π.

Instead, in the first round, for each honest party Pi, the chal-
lenger runs GenOnions(1λ, {pkPj

}Nj=1, B,C,R, Pi, σi) and sets Pi’s initial state

OnionBuffer
(1)
i to the output O(1)

i ← GenOnions(1λ, {pkPj
}Nj=1, B,C,R, Pi, σi).

Then, still within the first round, for each honest party Pi, the chal-

lenger runs ScheduleProcOnions(1λ, 1, Pi,OnionBuffer
(1)
i ) to obtain a set O(1)

i ⊆
OnionBuffer

(1)
i of onions to be processed and an updated state OnionBuffer

(2)
i .

The challenger updates Pi’s state to OnionBuffer
(2)
i . For each onion O ∈ O(1)

i , the
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challenger initiates ProcOnion with Pi as the processing party and O as the onion
to be processed and sends out the peeled onion O1,i→j to its next destination
P1,i→j (whenever ProcOnion terminates).

In each subsequent round r, and for each honest party Pi, the challenger first

adds the onions that Pi received in the previous round to OnionBuffer
(r)
i . Then,

the challenger runs ScheduleProcOnions(1λ, r, Pi,OnionBuffer
(r)
i ) to obtain O(r)

i

and OnionBuffer
(r+1)
i . The challenger updates Pi’s state to OnionBuffer

(r+1)
i . For

each O ∈ O(r)
i , the challenger initiates ProcOnion with Pi as the processing party

and O as the onion to be processed and sends out the peeled onion Or,i→j to its
next destination Pr,i→j (whenever ProcOnion terminates).

At the end of the run, A outputs a bit b.

Definition 4 (Simulatablity). An onion routing protocol Π is sim-
ulatable if for every p.p.t. adversary A there exist p.p.t. algorithms
(GenOnions,ScheduleProcOnions) such that A can distinguish between RealGame
and IdealGame with only negligible advantage, i.e.,

|Pr[1← RealGame(A, Π, λ)]

− Pr[1← IdealGame(A, Π,GenOnions,ScheduleProcOnions, λ)]| = negl(λ).

5.3 From single-run to multi-run anonymity

Theorem 2. Let Π be a simulatable onion routing protocol with security pa-
rameter λ. For any L = poly(λ), Π is L-strongly anonymous from the active
(resp. passive) adversary A with churn limit c(N) if and only if it is single-run
strongly anonymous from A.

Proof. It is evident that multi-run anonymity implies single-run anonymity since
the former holds for any (polynomially bounded) number of runs, including one.
Thus, to prove the theorem, it suffices to show that single-run anonymity implies
multi-run anonymity. We do this using a hybrid argument.

Let Π be an onion routing protocol with security parameter λ that is single-
run strongly anonymous against the active (resp. passive) adversary. Let A be
any p.p.t. adversary from the class of active (resp. passive) adversaries.

Let Experiment0 be the anonymity game StrongAnonGame(A, Π, L, λ) condi-
tioned on the challenge bit b equaling zero, i.e., b = 0. Let σ0 = (σ1

0 , . . . , σ
L
0 ) de-

note the sequence of input vectors that A chooses for the L runs in Experiment0;
that is, σi

0 is the input vector for the ith run.
Likewise, let Experiment1 be StrongAnonGame(A, Π, L, λ) when b = 1. Let

σ1 = (σ1
1 , . . . , σ

L
1 ) be the L input vectors in Experiment1.

We define a sequence of hybrids as follows. For all 1 ≤ i ≤ L+ 1, let Hybridi
be the experiment where the input vector for run j is σj

0 if j < i, and otherwise,

it is σj
1. Clearly, Experiment0 is the same as HybridL+1, and Experiment1 is the

same as Hybrid1.
To complete the hybrid argument that Π is multi-run anonymous, we show

that any two consecutive hybrids are distinguishable. To do so, we define another
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anonymity game, FlipAnonGame(A, Π, λ, L, i), that we use only in this proof.
This game is essentially the same as StrongAnonGame with the same parameters,
except the challenger runs Π on σ0 up to (but not necessarily including) run i
and runs Π on σ1 for the remaining runs when b = 1. The index i specifies where
this switch from σ0 to σ1 happens. The challenger chooses b ∈ {0, 1} uniformly
at random. If b = 0, the first run with input σ0 is run i. If b = 1, the first run
with input σ0 is run i + 1. The adversary A makes a guess b′ of whether the
challenger switched in run i or in run i+ 1 and wins if b′ = b.

To prove that consecutive hybrids are indistinguishable, we prove that
A wins FlipAnonGame(A, Π, λ, L, i) with only negligible advantage. Suppose
there exists an index i such that A wins FlipAnonGame(A, Π, λ, L, i) with non-
negligible advantage. Then, we can construct a reduction B that uses A to
“break” single-run strong anonymity. B goes between A and the challenger C
in StrongAnonGame(B, Π, λ, 1). We describe the interactions between A, B, and
C in terms of the phases in StrongAnonGame.

The setup phase. During setup, the reduction B serves as a channel be-
tween the adversary A (of FlipAnonGame) and the challenger (of the single-run
anonymity game). A sends the set of adversarial parties to the reduction B; B
relays this to C. C sends the honest parties’ public keys to B; B relays them to
A. A sends the adversarial parties’ public keys to B; B relays them to C. During
the first query phase, A can send ProcOnion queries to B. Whenever A sends a
ProcOnion query with a bulletin B and a churn schedule C (such that the num-
ber of offline parties is at most c(N)), an onion O, a processing party P , and a
round number r, B relays the query to C and replies to A with C’s response.

The challenge phase. Since (from the hypothesis) Π is simulatable, it follows
that there exist efficient algorithms (GenOnions,ScheduleProcOnions) such that
no efficient algorithm can tell whether B is running the protocol Π, or simu-
lating the run by running GenOnions and ScheduleProcOnions and submitting
ProcOnion queries to the challenger, instead.

For each run j of the challenge phase, A sends the run parameters
(Bj , Cj , σ

j
0, σ

j
1) to B. If j < i, B simulates a run of Π with parameters Bj ,

Cj , and σ0. If j > i, B simulates the run with parameters Bj , Cj , and σ1 in-
stead. The ith run is the challenge run in FlipAnonGame. In this run, B uses
these parameters in its challenge run, relaying them all to C and serving as a
channel between A and C in running Π on either σj=i

0 or σj=i
1 , depending on

the challenge bit b chosen by C.
The final phase. During the second query phase, A is again allowed to submit

ProcOnion queries. Whenever A sends a ProcOnion query with a bulletin B and
a churn schedule C (such that the number of offline parties is at most c(N)), an
onion O (where O was not produced by an honest party during the challenge
phase), a processing party P , and a round number r, B relays the query to C and
replies to A with C’s response. Finally, A makes its guess b′ for FlipAnonGame
and passes b′ to B. If A guesses b′ = 0, this means that A suspects that the
first run with input σ1 is run i. Thus if A’s guess is correct, the input in the
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challenge run i for StrongAnonGame was likely σ1, and B should output 1. Thus,
B outputs the opposite of b′ (i.e., 1 if b′ = 0 and 0 if b′ = 1).

Since B essentially wins whenever A wins, we conclude that no efficient ad-
versary can win FlipAnonGame with non-negligible advantage.

Corollary 1. If Π is a simulatable onion routing protocol, then, in the static
setting (i.e. for c(N) = 0), Π is multi-run strongly anonymous from the active
(resp. passive) adversary iff it is single-run strongly anonymous from the active
(resp. passive) adversary.

6 Multi-run strongly anonymous onion routing with
churn

Note that we can turn any weakly anonymous onion routing protocol strongly
anonymous by using a sufficiently secure onion encryption scheme (e.g., any
scheme that realizes Camenisch and Lysyanskaya’s onion ideal functionality [9]).
Thus from Corollary 1, in the static setting, any simulatable onion routing
protocol shown to be single-run anonymous is also anonymous over multiple
runs. For example, Ando, et al. [3] proved that their protocol Πp is anonymous
from the passive adversary in the static setting; we show that Πp is simulatable
(Lemma 2), implying that running Πp multiple times is still anonymous.

However, as we show below, Πp does not work in the dynamic setting; e.g.,
when the churn limit is linear in the number of participants, Πp either fails to
deliver any messages or is not anonymous (Theorem 3). Furthermore, Duo Onion
Encryption and naive modifications of it fail in the same way. In this section,
after demonstrating these problems with previous solutions, we show that we
can make Πp multi-run anonymous from the passive adversary with a linear
churn limit (a minority of churned or corrupted parties) if we use poly onion
encryption instead of regular onion encryption (Theorem 4).
The protocol Πp. Ando, Lysyanskaya, and Upfal [3] showed that the simple pro-
tocol Πp is weakly anonymous from the passive adversary in the (simple I/O)
static setting. For this protocol, there are N users that send and receive mes-
sages: P = P1, . . . , PN ; and n < N mix-servers that serve as intermediaries on
routing paths: S = S1, . . . , Sn. During the onion-forming phase of a protocol
execution, each user Pi forms an onion to carry the message mi→j to his re-
cipient Pj . Specifically, Pi first picks a random sample T1, . . . , Tℓ from the set
S of mix-servers (with replacement), i.e., T1, . . . , Tℓ ←$ S, then generates an
onion using the message mi→j , the path (T1, . . . , Tℓ, Pj), and the public keys
for all the parties on the path. During the first round of the execution phase,
the users send the generated onions to their first locations (i.e., first parties on
the paths). During all subsequent rounds, each party peels the onions from the
previous round and sends the peeled onions to their next locations or outputs
the received messages for the final round.

Ando et al. [3] proved that Πp is anonymous from the passive adversary that
corrupts up to a constant 0 ≤ β1 < 1 fraction of the servers when both the server
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load (the average number of onions per server per round) N
n and the number ℓ

of rounds are at least polylog in the security parameter λ. This result holds in
the static setting without any churn.

6.1 Insufficiencies of previous solutions

We show both that Πp fails in terms of either delivery rate or anonymity, and
duo onion encryption or natural modifications thereof do little to help. For all
the results below, let λ denote the security parameter and let polylog(λ) denote
any polylog function in λ. Additionally, we say a server is online when it is online
throughout the entire protocol run; otherwise, the server is offline.

Theorem 3. When the churn limit is c(N) = β2N where 0 < β2 ≤ 1 is any
positive constant, a single run of Πp either fails to deliver any message with
overwhelming probability, or else it is not (single-run weakly) anonymous.

Proof. Case 1: when the length of the routing path ℓ ≥ polylog(λ). Let Pi be
any sender. Let Ei be the event that the onion generated by Pi makes it to the
recipient of Pi. This is the event that all of the intermediaries T1, . . . , Tℓ that
Pi picks are online. Since each Tj is online with probability (1 − β2), Pr[Ei] =
(1−β2)ℓ ≤ (1−β2)polylog(λ). In other words, Ei occurs with negligible probability.
By a union bound, the probability that any of the ℓ = poly(λ) messages gets
through is also negligibly small. Thus, in this case, Πp fails to route any message.

Case 2: when the length of the routing path ℓ < polylog(λ). We know from
previous work [12, 17, 18] that with a passive adversary corrupting a constant
fraction of the parties, no onion routing protocol with fewer than polylog rounds
of mixing is anonymous.

We just demonstrated that the protocol Πp, using standard onion encryption,
doesn’t work when the churn limit is linear in the number of participants. Before
using Poly Onion Encryption, with its more complicated committee protocol, one
might hope to replace standard onion encryption with Duo Onion Encryption
instead. However, Duo Onion Encryption with two candidates yields only a small
improvement in effective churn rate: the probability that an onion is dropped in
a given round is now β2

2 , which is still a positive constant, and Theorem 3 still
holds. The same is true for any constant number of candidates.

At the other extreme, when the number of candidates is “large,” with
polylog(λ) candidates, the probability that an onion is dropped in a given hop

becomes β
polylog(λ)
2 , which is negligible if β2 is a constant. However, anonymity

becomes an issue here. Consider the following attack, where the adversary traces
an onion O back to its honest sender Pi.

Suppose that the passive adversary manages to corrupt some candidate in
every hop in the routing path of O. In Duo Onion Encryption, like in Poly Onion
Encryption, each onion layer Oi is encrypted with a symmetric key ki. Unlike
Poly Onion Encryption, which requires running the committee protocol to obtain
ki in the event that the first candidate is offline, Duo Onion Encryption includes
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in Oi an encryption of ki under each candidate’s public key. This allows the
adversary A to trace O through the network as follows. A observes Pi send O1

to its first intermediary P1. O1 contains EncpkP ′
1
(k1) for some corrupted party P ′

1,

since some candidate in every hop is corrupted. A silently decrypts this to obtain
k1, which it uses to peel the onion to get O2. A then sees the outgoing traffic from
P1, which includes P1 sending O2 to what A now knows is the next intermediary
P2. In this way, A continues peeling O in parallel with the network, observing
the network traffic and knowing in each round exactly where O is. A does this
until O reaches its recipient, allowing A to discover who Pi is communicating
with. Thus, mixing only occurs in a hop where all candidates are honest.

If a constant fraction β1 of the parties are corrupted and chosen uniformly
at random, the probability that all candidates are honest in a given hop is at
most (1 − β1)polylog(λ), which is negligible. By a union bound, given ℓ hops, the
probability that any of them has all honest candidates is at most ℓ ·negl(λ). That
is, with overwhelming probability, every hop has at least one corrupted candi-
date. Thus, for any polynomial length routing path, this shadow routing attack
succeeds with non-negligible probability, and the protocol is not anonymous.

While it may be possible to set κ between the two extremes and balance the
effective delivery and corruption rates, doing so is nontrivial. Furthermore, even
if such a value exists, previous proofs of anonymity such as that of Πp no longer
necessarily hold. We can instead achieve anonymous message delivery even with
a constant churn limit by modifying Πp so that it uses Poly Onion Encryption.

6.2 Poly Πp is multi-run anonymous in the presence of churn

Πp with Poly Onion Encryption. To generate a poly onion, each
sender Pi first randomly chooses κ candidates Ph = (Ph,1, . . . , Ph,κ)
for each intermediary hop h of the path and κ − 1 candidates
(Pℓ+1,2, . . . , Pℓ+1,κ) for the final (ℓ + 1)st hop. Pi then randomly chooses
ν helpers Qh = (Qh,1, . . . , Qh,ν) for each hop h of the path, i.e.,
P1,1, . . . , P1,κ, . . . , Pℓ+1,2, . . . , Pℓ+1,κ, Q1,1, . . . , Q1,ν , . . . , Qℓ,1, . . . , Qℓ,ν ←$ S. Pi

then forms an onion using the message m to her recipient Pℓ+1,1, the candi-
dates (P1, . . . ,Pℓ, (Pℓ+1,1, Pℓ+1,2, . . . , Pℓ+1,κ)), the helpers (Q1, . . . ,Qℓ), and all
the required public keys.

For the analysis below, we will make the simplifying assumption that
ProcOnion runs within a single round since making this assumption doesn’t
change the results. We use the committee threshold parameter α = 1

2 . By the
security of Poly Onion Encryption (Theorem 1), onions formed by honest parties
“mix” in hop h when the first online candidate in Ph is honest (event E3 in the
proof), and fewer than 1

2 of the members of Qh−1 are corrupted (event E4 in
the proof). Note that these conditions are stronger than what is required for
security to hold.

For all the results below, let Poly Πp be the protocol Πp modified to use Poly
Onion Encryption instead of regular onion encryption with the following param-
eter settings: security parameter λ, length of the routing path ℓ ≥ polylog(λ),
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and number of candidates per hop κ ≥ polylog(λ), and number of helpers per
hop ν ≥ polylog(λ).

Towards showing that Poly Πp is multi-run anonymous when the churn limit
is linear in the number of mix-servers, we now prove that Poly Πp is both
single-run anonymous in the setting with churn (Definition 3) and simulatable
(Definition 4).

Lemma 1. Poly Πp is single-run (strongly) anonymous from the passive adver-
sary who corrupts up to a constant 0 ≤ β1 < 1 fraction of the mix-servers, when
the churn limit is c(N) = β2N and 0 ≤ β1 + β2 <

1
2 is a constant. Moreover, it

delivers all messages with overwhelming probability.

Proof. An onion is dropped at an intermediary Ph,j ∈ Ph due to churn only if all
of the candidates Ph are offline (event E1), or at least ν

2 of the helpers Qh−1 are
offline (event E2). The probability of E1 is negligibly small since the probability
that each randomly chosen candidate is offline is bounded above by 1

2 . We can
show that the probability of E2 is also negligibly small by using a Chernoff
bound for Poisson trials [26, Corollary 4.6]; with overwhelming probability, the
fraction of offline parties in the committee is arbitrarily close to the expected
value, which is strictly less than ν

2 . Since E1 and E2 occur with only negligible
probabilities, this onion (layer) at Pi,j is not dropped. Since the total number
of onion layers is polynomially bounded in the security parameter, by a union
bound, it follows that with overwhelming probability, no onion is dropped.

Since no onions are dropped, we can apply the proof of weak anonymity of Πp

from Ando et al. [3], with a slight modification. In that proof, mixing occurs at an
intermediary server as long as that server is honest. This happens with constant
probability in Ando et al.’s construction. With Poly Onion Encryption, mixing
occurs when the first online candidate in Ph is honest (event E3), and fewer than
1
2 of the members of Qh−1 are corrupted (event E4). The probability that any
random party is both honest and online is at least 1− β1 − β2 > 1

2 since, in the
most pessimistic scenario, the adversary chooses the set of corrupted servers to
be disjoint from the set of offline servers. Thus, E3 happens with probability at
least 1

2 . Similar to the analysis of Ē2, from a Chernoff bound, E4 also occurs with
overwhelming probability. Thus, the proof of weak anonymity of Πp still holds
for Poly Πp, and all onions will be untraceable to their senders by the time they
reach their last intermediaries. An onion may be dropped in its final relay to its
recipient with non-negligible probability; however, it is already untraceable to its
sender at this point. This proves that Poly Πp is single-run weakly anonymous.
The protocol is also single-run strongly anonymous since it is constructed with
a sufficiently strong encryption scheme that is poly-onion secure.

Lemma 2. Poly Πp is simulatable.

Proof. We describe algorithms GenOnions and ScheduleProcOnions for which
Poly Πp is simulatable.

Defining GenOnions. Recall that GenOnions takes as input the security pa-
rameter 1λ, the public keys {pkPk

}Nk=1 of all the parties, the bulletin B, the
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churn schedule C, the run number R, the identity Pi of an honest party, and

the input σi for Pi; and outputs a set O(1)
i of onions for Pi, i.e., O(1)

i ←
GenOnions(1λ, {pkPk

}Nk=1, B,C,R, Pi, σi). Let Pj denote the recipient and let
m denote the message for that recipient included in σi. GenOnions first gener-
ates a list of candidate lists P1, . . . ,Pℓ,Pℓ+1, where Pℓ,1 = Pj , and all other
candidates is chosen independently and uniformly at random. GenOnions then
generates a list of committees Q1, . . . ,Qℓ, where each party in each list is
chosen independently and uniformly at random. Let {pkPk

}k∈P∪Q denote the
set of public keys of all parties in some candidate list Pj or some commit-
tee Qj . Each candidate list has length κ, and each committee has size ν,
where κ and ν are our chosen Poly Onion Encryption parameters. GenOnions
then runs FormOnion to obtain ((O1,1, . . . ,O1,κ), . . . , (Oℓ,1, . . . ,Oℓ,κ) ←
FormOnion(m,R, (P1, . . . ,Pℓ+1), (Q1, . . . ,Qℓ+1), {pkPk

}k∈P∪Q).

The output O(1)
i of GenOnions should be the singleton containing an onion O0

such that processing it right away has the same effect as the sender Pi sending the
first onion O1,u to the first available candidate P1,u ∈ P1 for the first hop. We can
construct O0 from the onion O1,1 for the preferred candidate P1,1 by “wrapping”
it with an extra layer of encryption using as parameters, the candidate lists
P0 = (Pi, . . . , Pi) and P1 and the helper list Q0 = P0 = (Pi, . . . , Pi).

Defining ScheduleProcOnions. Recall that ScheduleProcOnions takes as input
the security parameter 1λ, the round number r, the identity Pi of an honest party,

and the state OnionBuffer
(r)
i of Pi at round r; and outputs a set of onions O(r)

i to

be processed and sent out during round r and an updated state OnionBuffer
(r+1)
i .

We define ScheduleProcOnions for Πp to return all onions on OnionBuffer
(r)
i to

be processed immediately, and to return an empty buffer OnionBuffer
(r+1)
i for

the next round.
Simulatability. Πp is simulatable using GenOnions and ScheduleProcOnions

as defined here because they are defined identically to the honest parties’ be-
havior in the actual protocol. In Πp, each party sends its onion on the first
round, processes onions immediately when it receives them, and forwards onions
immediately when processed. Thus, RealGame is identical to IdealGame.

We just proved that Poly Πp is single-run (strongly) anonymous (Lemma 1)
and simulatable (Lemma 2). Thus, from Theorem 2, it follows that:

Theorem 4. Poly Πp is multi-run (strongly) anonymous from the passive ad-
versary who corrupts up to a constant 0 ≤ β1 < 1 fraction of the mix-servers,
when the churn limit is c(N) = β2N and 0 ≤ β1 + β2 <

1
2 is a constant. More-

over, it delivers all messages with overwhelming probability.
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