
PPAD is as Hard as LWE and Iterated Squaring

Nir Bitansky1, Arka Rai Choudhuri2, Justin Holmgren3, Chethan Kamath1,
Alex Lombardi4, Omer Paneth1, and Ron D. Rothblum5

1 Tel Aviv University
nirbitan@tau.ac.il,ckamath@protonmail.com,omerpa@tauex.tau.ac.il

2 UC Berkeley arkarc@berkeley.edu
3 NTT Research justin.holmgren@ntt-research.com

4 MIT alexlombardi@alum.mit.edu
5 Technion rothblum@cs.technion.ac.il

Abstract. One of the most fundamental results in game theory is that
every finite strategic game has a Nash equilibrium, an assignment of
(randomized) strategies to players with the stability property that no
individual player can benefit from deviating from the assigned strategy.
It is not known how to efficiently compute such a Nash equilibrium —
the computational complexity of this task is characterized by the class
PPAD, but the relation of PPAD to other problems and well-known
complexity classes is not precisely understood. In recent years there has
been mounting evidence, based on cryptographic tools and techniques,
showing the hardness of PPAD.

We continue this line of research by showing that PPAD is as hard
as learning with errors (LWE) and the iterated squaring (IS) problem,
two standard problems in cryptography. Our work improves over prior
hardness results that relied either on (1) sub-exponential assumptions,
or (2) relied on “obfustopia,” which can currently be based on a particu-
lar combination of three assumptions. Our work additionally establishes
public-coin hardness for PPAD (computational hardness for a publicly
sampleable distribution of instances) that seems out of reach of the ob-
fustopia approach.

Following the work of Choudhuri et al. (STOC 2019) and subsequent
works, our hardness result is obtained by constructing an unambiguous
and incrementally-updateable succinct non-interactive argument for IS,
whose soundness relies on polynomial hardness of LWE. The result also
implies a verifiable delay function with unique proofs, which may be of
independent interest.

1 Introduction

The concept of a Nash equilibrium is fundamental to the modern understand-
ing of games: given a description of payoffs as a function of 𝑘 player strategies
(which take value in a finite domain), what are a collection of strategy distribu-
tions that cannot be locally improved? It is not a priori clear that such mixed
strategies should exist, but the seminal work of Nash [46] shows that they do. In

2 Bitansky, Choudhuri, Holmgren, Kamath, Lombardi, Paneth, Rothblum

the language of modern computational complexity, this implies that Nash equi-
librium is a total search problem, a search problem such that every instance of
the problem is guaranteed to have a solution. It turns out that computing (arbi-
trarily good approximate) solutions to this problem is in fact in the complexity
class TFNP [45], the class of total search problems with efficient verification.
In fact, it is complete for its subclass called PPAD [14, 21, 48], for which the
existence of solution is guaranteed via “polynomial parity argument on d irected
graphs”. Thus, understanding the computational complexity of PPAD exactly
corresponds to understanding the complexity of computing a Nash equilibrium.

Despite many decades of attention, we do not currently have polynomial-time
algorithms for Nash (or any PPAD-complete problem); indeed, it is widely be-
lieved that PPAD is computationally intractable. Understanding to what extent
this is the case, and why, has been a major line of research at the intersection of
game theory, computational complexity, and (perhaps surprisingly) cryptogra-
phy. In our work, we further explore this connection to cryptography and prove
new hardness results for PPAD under cryptographic assumptions.

Prior work. Before describing our results, we summarize the state of affairs
prior to our work. The goal of this line of work is to prove theorems of the
form “if PPAD can be solved in polynomial-time, then standard cryptography
is broken.” The usual notion of “cryptography is broken” is that there is a
probabilistic polynomial-time (PPT) algorithm solving a problem fundamental
to cryptography with non-negligible advantage or success probability. As we will
see, prior work, which fall into the two categories described below, falls somewhat
short of achieving this ideal.

– Specialized Proof Systems: Starting from [15], there has been a sequence
of works obtaining hardness in PPAD by building unambiguous, incremen-
tal, succinct non-interactive arguments [15, 16, 23, 39, 41, 43], which in turn
implies the hardness of PPAD. These works build such proof systems (and
therefby establish hardness of PPAD) based on (1) the hardness of break-
ing the Fiat-Shamir heuristic [15, 16, 23], (2) the subexponential hardness
of both iterated squaring (IS) and learning with errors (LWE) [43], (3) the
subexponential hardness only of LWE [39], or (4) the superpolynomial hard-
ness of a problem about bilinear groups [41] along with the exponential-time
hypothesis (ETH).
Unfortunately, none of these results achieve what we required above: a
polynomial-time reduction from breaking cryptography (in polynomial time)
to PPAD. In particular, these results leave open the possibility that there
is a polynomial-time algorithm for PPAD and yet all of these problems are
hard in the standard cryptographic sense.

– Obfustopia: Another sequence of works [4,29,34] show that PPAD is hard
in “obfustopia”, which is a world where indistinguishability obfuscation [3,28]
and functional encryption [7, 47] exist. Unlike the previous approach, this
line of work is capable of relying on polynomial hardness: in particular,
[29] showed that if PPAD is easy, then functional encryption cannot exist.

PPAD is as Hard as LWE and Iterated Squaring 3

Combined with the groundbreaking results of [36, 37], this in turn would
imply that one of three seemingly hard problems6 in cryptography must be
easy.
While the results of [36,37] are based on well-founded assumptions, they have
received less scrutiny than other cryptographic assumptions. Even more fun-
damentally, we do not want to base the hardness of such a central complexity
class such as PPAD only on the conjunction of three specific hardness as-
sumptions.

In our work, we ask whether it is possible for the first line of work – bas-
ing PPAD-hardness on unambiguous proof systems – to rely on standard,
polynomial-time hardness assumptions.

1.1 Our Results

Our first result shows that (average-case) PPAD hardness follows from the
polynomial-time hardness of iterated squaring in RSA groups and LWE. In fact,
as showed in [34], the same techniques imply hardness in the sub-class CLS ⊆
PPAD introduced in [22]. We further strengthen these hardness results to the
subclass UEOPL ⊆ CLS, which is one of the lowest known sub-classes of
TFNP [24].

Theorem 1 (Following Theorem 3 and Corollary 3, informally stated).
If there exists a PPT algorithm that solves PPAD with non-negligible probability,
then there exists a PPT algorithm that breaks either IS in RSA groups or LWE
with non-negligible probability.

Slightly more formally, for a complete problem 𝑃 in PPAD, we construct
a distribution 𝒟 on instances of 𝑃 with the following property: if there is a
polynomial-time algorithm A such that A(𝑥) is a solution to 𝑃 (𝑥) with non-
negligible probability when sampling 𝑥 ← 𝒟, then there is a polynomial-time
algorithm B that solves IS or solves LWE with non-negligible probability.

Public-coin PPAD hardness. Our hardness result is actually slightly stronger
than what is achieved by the obfustopia reductions. We show public-coin hard-
ness of 𝑃 : there is a sampling algorithm for 𝒟 such that the existence of such a
B is guaranteed even if A is given the random coins used in sampling 𝑥. To our
knowledge, this is the first hardness result for publicly sampleable distributions
in PPAD. Moreover, previous hardness results that were based on polynomially
falsifiable assumptions [4,29,34] seem inherently limited to secret-coin hardness
because their instance distributions contain obfuscated circuits (or functional
encryption ciphertexts that simulate the functionality of an obfuscated circuit).
We remark that our public-coin hardness result may be somewhat surprising
because the IS problem in an RSA modulus does not itself have a public-coin
sampler.

6 The problems, roughly, are to break an SXDH assumption, to break a large-field
LPN assumption, and to break a low-depth PRG.

4 Bitansky, Choudhuri, Holmgren, Kamath, Lombardi, Paneth, Rothblum

Unique VDFs from standard assumptions. Our techniques also yield new results
for verifiable delay functions (VDFs) [6]. We construct VDFs with unique proofs,
which we call unique VDFs, based on the standard LWE assumption and the
standard sequential hardness assumption regarding IS.

Theorem 2 (informally stated). If IS in RSA group is sequentially-hard and
LWE is polynomially-hard, then there exists a unique VDF.

Ours is the first construction of unique VDFs that is based on a polynomial
hardness assumption. Recently, Freitag, Pass and Sirkin [27], constructed VDFs
from polynomial hardness of LWE and any sequentially-hard function, but it
does not satisfy uniqueness. We view it as an interesting question whether such
VDFs have applications in cryptography.

The building block. Along the way (as in previous work) we construct an un-
ambiguous, incremental, succinct non-interactive argument system for IS. This
serves as the building block for all our results stated above. The soundness of
our argument system is based on LWE, and is established by instantiating the
Fiat-Shamir heuristic applied to a variant of Pietrzak’s interactive proof system
for IS. We also formulate an abstract protocol template (that we call “outline-
and-batch” protocols) that generically implies PPAD-hardness and captures
essentially all existing results as well as our new protocol.

1.2 Technical Overview

Toward the construction of hard PPAD instances, we resort to a common
paradigm in the literature, that of constructing mergeable and unambiguous
proofs [15,16,23,39,41,43]. In this paradigm, we consider some underlying com-
putation:

𝑥1 → 𝑥2 → · · · → 𝑥𝑇 ,

where each step 𝑥𝑡 → 𝑥𝑡+1, 1 ≤ 𝑡 < 𝑇 , is computable in fixed polynomial time,
but computing the last state 𝑥𝑇 cannot be done efficiently for large (super-
polynomial) 𝑇 . For concreteness, the reader may think of iterated squaring over

the RSA group Z×𝑁 where, for a (randomly sampled) 𝑔 ∈ Z×𝑁 , 𝑥𝑡 := 𝑔2
𝑡

mod 𝑁 ;
note that computing 𝑥𝑡 → 𝑥𝑡+1 can be carried out by one modular squaring, but
computing 𝑥𝑇 for a large 𝑇 is believed to be infeasible [53]. For 1 ≤ 𝑡 < 𝑡′ ≤ 𝑇 ,
the corresponding proof system should allow computing (non-interactive) proofs
𝜋𝑡→𝑡′ for statements of the form 𝑥𝑡 → 𝑥𝑡′ (i.e., the state 𝑥𝑡′ is reachable from
state 𝑥𝑡) and should satisfy the following requirements:

1. Soundness: it should be computationally hard to prove false statements.
2. Unambiguity: for any (true) statement 𝑥𝑡 → 𝑥𝑡′ , it should be computa-

tionally hard to find any accepting proof 𝜋*𝑡→𝑡′ other than the “prescribed”
proof 𝜋𝑡→𝑡′ computed by the efficient merging process.

3. Recursive proof-merging: given 𝑑 proofs 𝜋1→𝑡, 𝜋𝑡→2𝑡, . . . , 𝜋(𝑑−1)𝑡→𝑑𝑡, for
statements

𝑥1 → 𝑥𝑡, 𝑥𝑡 → 𝑥2𝑡, . . . , 𝑥(𝑑−1)𝑡 → 𝑥𝑑𝑡,

PPAD is as Hard as LWE and Iterated Squaring 5

computing a proof 𝜋1→𝑑𝑡 for the statement 𝑥1 → 𝑥𝑑𝑡, where 𝑑 ∈ N is some
fixed merging parameter, can be efficiently reduced to computing a single
proof 𝜋′1→𝑡 for some related statement 𝑥′1 → 𝑥′𝑡. In other words, the 𝑑 proofs
for statements of “size” 𝑡 can be merged into a proof for a statement of
“size” 𝑑𝑡 via a recursive call to compute an additional (related) proof of size
𝑡. In the concrete example of iterated squaring, the “size” of the statement
corresponds to the number of modular squaring operations required to go

from 𝑥𝑡 := 𝑔2
𝑡

to 𝑥𝑡′ := 𝑔2
𝑡′

.

Mergeable, Unambigous Proofs from Iterated Squaring and Fiat-Shamir. As men-
tioned, the mergeable unambiguous proofs paradigm has by now several instan-
tiations in the literature. Focusing on obtaining a polynomial reduction, we con-
sider one particular instantiation, based on Pietrzak’s protocol for the iterated
squaring (IS) problem [51]. The protocol is a public-coin interactive proof for

statements of the form “𝑔2
𝑇

equals ℎ modulo 𝑁”, where 𝑁 is a public modulus
whose factorization is known to neither the prover nor the verifier – we denote

such a statement by 𝑔
𝑇−→ ℎ. At the heart of Pietrzak’s protocol is a technique

for reducing a statement 𝑔
𝑇−→ ℎ to a related, new statement 𝑔′

𝑇/2−−→ ℎ′ that is
half the size.7 This is done by having the (honest) prover specify an integer 𝜇

such that the intermediate statements 𝑔
𝑇/2−−→ 𝜇 and 𝜇

𝑇/2−−→ ℎ hold (i.e., 𝜇 is the
“midpoint”), and then having the verifier reduce these two statements into one,
using its random challenge 𝑟 as follows:

𝑔′ := 𝑔𝑟𝜇 mod 𝑁 and ℎ′ := 𝜇𝑟ℎ mod 𝑁.

The above, “halving sub-protocol” is repeated for log(𝑇) rounds, at the end of

which the verifier ends up with a statement of the form 𝑔′′
2−→ ℎ′′, which it can,

itself, check by modular squaring. To make this proof system non-interactive,
previous works turn to the Fiat-Shamir paradigm [25] of applying an appropriate
hash function to the statement to derive the verifier’s challenge.

Instantiating Fiat-Shamir. Since Pietrzak’s protocol has statistical soundness,
the above approach already yields hard PPAD instances in the random oracle
model [16,23]. Our focus is of course on obtaining a construction without random
oracles. Indeed, a recent surge of results has successfully instantiated Fiat-Shamir
without random oracles in various scenarios [8, 11, 12, 17, 18, 19, 20, 32, 33, 35, 38,
39, 42, 43, 50]. This has, in fact, also yielded hard PPAD instances, but so far
none based on polynomial hardness assumptions. Especially relevant to us is
the work of Lombardi and Vaikuntanathan [43] who instantiate the Fiat-Shamir
transform for Pietrzak’s protocol, based on sub-exponential hardness of LWE.
At a high level, the sub-exponential loss in [43] comes from the difficulty of
computing (or successfully guessing) the so called bad verifier challenges in the
protocol — the precise quantitative complexity of this task turns out to crucially

7 Throughout this section, we assume for simplicity that the time parameter 𝑇 is a
power of 2.

6 Bitansky, Choudhuri, Holmgren, Kamath, Lombardi, Paneth, Rothblum

affect Fiat-Shamir instantiability. For the particular case of Pietrzak’s protocol,

a verifier challenge is bad if either of the intermediate statements 𝑔
𝑇/2−−→ 𝜇 or

𝜇
𝑇/2−−→ ℎ is false, but the new randomized statement 𝑔′

𝑇/2−−→ ℎ′ happens to be
true. As a part of the soundness argument, it was demonstrated in [51] that the
set of bad verifier challenges consists of at most a few elements, but it turns
out that computing them (even given the factorization of 𝑁) requires solving an
intractable discrete-log problem (see, e.g., [43] for a discussion).

Reduced Challenge Space and Soundness Amplification. A first observation to-
ward eliminating the subexponential loss is that bad challenges in Pietrzak’s
protocol are efficiently verifiable given the factorization of 𝑁 . In particular,
there is a straight-forward modification of Pietrzak’s protocol that uses a poly-
nomial size challenge space, which makes it trivial to find the bad challenges by
enumerating and testing every possibility (which can be done efficiently given
the above observation). However, this modification causes the protocol to have
inverse polynomial soundness error, so the resulting protocol cannot be made
interactive via Fiat-Shamir.

A natural attempt to resolve this is to repeat the small-challenge protocol
many times in parallel to reduce the soundness error. Indeed parallel repetition
reduces the soundness error and importantly, using a recent work of Holmgren,
Lombardi and Rothblum [33], we can even instantiate Fiat-Shamir for such a
protocol based on (polynomially secure) LWE.8 Their instantiation essentially
works for any parallel-repeated three-message proof, as long as the bad challenges
in each individual copy of the protocol are efficiently verifiable. (It also works
for protocols with more rounds provided a certain round-by-round soundness
requirement that is satisfied by Pietrzak’s protocol, further discussed below).
It turns out, however, that this approach falls short of our goal. The issue is
that the resulting proofs are not unambiguous. As noted in [52], while parallel
repetition amplifies soundness, it does not amplify unambiguity. The reason is
that a cheating prover that breaks unambiguity in a single copy of the base
protocol (out of many), can in particular obtain two accepting proofs for the
same statement, breaking the unambiguity of the whole protocol.

Amplifying Unambiguity. As described above, while parallel repetition has the
desired effect on soundness, unambiguity suffers from a single point of failure:
that is, it suffices to cheat in a single copy of the base protocol without affecting
the other copies. Instead we would like to start with a protocol that morally still
works with many copies (as in parallel repetition) but mixes these together so
that any deviations propagate across the entire protocol. Indeed such a protocol
was constructed by Block et al. [5], who construct an interactive proof system
for IS for a completely different purpose than considered here.9 Specifically, for

8 In fact, this yields a (non-unique) VDF based on the standard hardness of IS and
LWE. However, this is subsumed by the result from [27] mentioned in Section 1.1.
In Section 1.2, we will construct unique VDF from same assumptions.

9 The goal in [5] (also see [30]) was to construct a statistically-sound protocol that
works for IS in arbitrary groups. In comparison, Pietrzak’s protocol is statistically-

PPAD is as Hard as LWE and Iterated Squaring 7

an arbitrary group G, they consider 𝜆 (possibly-identical) statements(︁
𝑔1

𝑇−→ ℎ1, · · · , 𝑔𝜆
𝑇−→ ℎ𝜆

)︁
, (1)

where (in the honest case) ℎ𝑖 = 𝑔2
𝑇

𝑖 over G for all 𝑖 ∈ [1, 𝜆]. As in Pietrzak’s
protocol, the prover sends over a tuple of midpoints (𝜇1, · · · , 𝜇𝜆), for claimed

values 𝜇𝑖 = 𝑔2
𝑇/2

𝑖 . This results in 2𝜆 intermediate statements of the form(︁
𝑔1

𝑇/2−−→ 𝜇1, 𝜇1
𝑇/2−−→ ℎ1, · · · , 𝑔𝜆

𝑇/2−−→ 𝜇𝜆, 𝜇𝜆
𝑇/2−−→ ℎ𝜆

)︁
,

which we rewrite as (︁̃︀𝑔1 𝑇/2−−→ ̃︀ℎ1, · · · , ̃︀𝑔2𝜆 𝑇/2−−→ ̃︀ℎ2𝜆

)︁
. (2)

To recurse, 𝜆 new statements are derived by a 2𝜆-to-𝜆 (batch) reduction, where

the 𝑖-th new statement 𝑔′𝑖
𝑇/2−−→ ℎ′𝑖 is constructed by choosing a random subset 𝑆𝑖

of the 2𝜆 statements as follows:

𝑔′𝑖 =
∏︁
𝑗∈𝑆𝑖

̃︀𝑔𝑗 and ℎ′𝑖 =
∏︁
𝑗∈𝑆𝑖

̃︀ℎ𝑗 . (3)

Even if a single original statement in Eq. (1) is false, it was shown in [5] that each
new statement in Eq. (3) is true with probability at most 1/2 (over the choice
of 𝑆𝑖) : intuitively, in the (worst) case that the 𝑗*-th statement is the only false
statement in Eq. (1), then it is included in Eq. (4) with probability 1/2, rendering
the new statement false. Since there are 𝜆 new statements, constructed using
independent random subsets, the soundness of the resulting protocol is 1/2𝜆.
Unambiguity amplifies in an identical manner: a cheating prover deviating from
the prescribed honest prover strategy affects each new statement with probability
roughly 1/2, “propagating” false statements and, as a result, circumventing the
issue of a single point of failure we had previously discussed. By recursing, as
above, log(𝑇) times, the statement reduces to a statement which can be efficiently
checked by the verifier.

Applying [33]. Now that we have solved the issues with unambiguity in the
interactive protocol, we would like to make it non-interactive in the common
reference string (CRS) model by applying the Fiat-Shamir transform. Briefly,
the Fiat-Shamir transform for any public-coin interactive proof is defined with
respect to some hash function family ℋ, where a single hash function 𝐻 sampled
from this family is set to be the CRS. The round-collapse is due to the fact that
the verifier’s message for each round is simply computed to be the output of 𝐻
applied to the transcript of the protocol up to that point. The security of the
instantiated transform relies on correlation intractability of hash functions for

sound only in groups that are guaranteed to have no low-order elements, e.g., in the
group of signed quadratic residues [26, 31].

8 Bitansky, Choudhuri, Holmgren, Kamath, Lombardi, Paneth, Rothblum

bad challenges [13]. This is, in particular, true for random oracles when the bad
challenges are “sparse”.

As already stated, the Fiat-Shamir transform has been successfully instanti-
ated based on standard assumptions for several protocols. Of particular interest
to our work is a recent work of Holmgren, Lombardi and Rothblum [33]. We
illustrate their idea directly for the [5] protocol. Consider the 2𝜆 intermediate

statements from Eq. (2) and let 𝑗* ∈ [1, 2𝜆] be an index such that ̃︀𝑔2𝑇/2

𝑗* ̸= ̃︀ℎ𝑗* .
This can occur either due to the fact that one of the initial 𝜆 statements was in-
correct, or a cheating prover deviated from the prescribed prover strategy. Then,

the 𝑖-th new statement 𝑔′𝑖
𝑇/2−−→ ℎ′𝑖 is true if and only if∏︁

𝑗∈𝑆𝑖

(̃︀𝑔𝑗)2𝑇/2

=
∏︁
𝑗∈𝑆𝑖

̃︀ℎ𝑗 . (4)

Recall that the above only happens with probability at most 1/2 and, conse-
quently, the probability that at least one of the 𝜆 new statements is false is
1 − 1/2𝜆. We can now define the set of bad challenges, i.e., the bad set ℬ, that
results in all 𝜆 new statements to be true. To be precise,

ℬ = ℬ(𝑔1,··· ,𝑔2𝜆),(ℎ̃1,··· ,ℎ̃2𝜆),𝑇/2 :=
{︁
𝑆1, · · · , 𝑆𝜆 ⊆ [1, 2𝜆]⃒⃒⃒ ∏︁

𝑗∈𝑆𝑖

(𝑔𝑗)
2𝑇/2

=
∏︁
𝑗∈𝑆𝑖

ℎ̃𝑗 for all 𝑖 ∈ [1, 𝜆]
}︁
.

Note that ℬ10 can be represented as the product of 𝜆 sets, i.e.

ℬ = ℬ1 × · · · × ℬ𝜆, (5)

where each

ℬ𝑖 := {𝑆𝑖 ⊆ [1, 2𝜆] |
∏︁
𝑗∈𝑆𝑖

(̃︀𝑔𝑗)2𝑇/2

=
∏︁
𝑗∈𝑆𝑖

̃︀ℎ𝑗}. (6)

This product structure of ℬ shown in Eq. (5) is crucial for us to invoke [33] who
show, assuming polynomial hardness of LWE, that there exists a hash func-
tion family ℋ such that the Fiat-Shamir transform is sound whenever ℬ is a
product set such that each ℬ𝑖 is efficiently verifiable.11 Here the set ℬ𝑖 is said
to be efficiently verifiable if there is a polynomial-sized circuit C that on input
((𝑔1, · · · , 𝑔2𝜆), (ℎ̃1, · · · , ℎ̃2𝜆), 𝑖, 𝑆𝑖) that decides whether 𝑆𝑖 ∈ ℬ𝑖. In our setting,
C needs to check whether Eq. (4) holds, which can be done efficiently if C could

compute the product
∏︀

𝑗∈𝑆𝑖
(̃︀𝑔𝑗)2𝑇/2

in Eq. (6), even for super-polynomial 𝑇 . This

is possible, for instance, in any group of the form Z×𝑁 (including RSA groups) if
C has a trapdoor, viz., the factorization of the modulus 𝑁 , hardcoded in its de-
scription: C can first compute the intermediate value 𝑒 := 2𝑇/2 mod 𝜑(𝑁) using

10 We drop the subscript for the ℬ set for clarity when the subscript is clear from the
context.

11 We refer the reader to the technical section for full details on invoking [33].

PPAD is as Hard as LWE and Iterated Squaring 9

the trapdoor and then compute 𝑔𝑒 mod 𝑁 by a single modular exponentiation.
Thus, as long as we work in groups where one can efficiently verify each ℬ𝑖 (with
the help of a trapdoor), the Fiat-Shamir transform applied to the [5] protocol is
a secure non-interactive argument in the CRS model.

Additionally, in order for the resulting non-interactive argument to preserve
properties of the multi-round unambiguous interactive proof, the protocol needs
to satisfy the stronger property [10, 43] of unambiguous round-by-round sound-
ness. In the technical section, we show that the soundness and unambiguity
discussion of [5] earlier easily extend to satisfy this property.

Application to Unique VDFs Having constructed an unambiguous (succinct)
non-interactive argument system for IS, we essentially immediately obtain a VDF
family with unique proofs based on (1) the polynomial hardness of LWE, and
(2) the assumption that IS is an inherently sequential function. The only detail
that needs to be verified is that the computational complexity of the prover
is 𝑇 · (1 + 𝑜(1)) for 𝑇 sequential squarings. This can be proved following an
analogous argument in [51]: after applying 𝑇 + 1 sequential squaring operations

𝑔0 = 𝑔, 𝑔1 = 𝑔2, . . . , 𝑔𝑇 = 𝑔2
𝑇

,

it is possible to compute all prover messages with poly(𝜆) ·
√
𝑇 additional group

operations as follows.

– Compute all prover messages from round 1
2 log(𝑇) onwards with the naive

prover algorithm, incurring an additive computational overhead of poly(𝜆) ·√
𝑇 , and

– Compute all prover messages in the first 1
2 log(𝑇) rounds by storing

√
𝑇

of the computed 𝑔𝑖s, where each prover message is computed a product-
combinations of a (pre-determined) subset of these stored values. This incurs
a total additive overhead of poly(𝜆) ·

√
𝑇 .

Remark 1 (Comparison to the [43] VDF). The [43] VDF uses complexity lever-
aging in a way so that the honest prover is only efficient (relative to the squaring
computation) when the squaring parameter 𝑇 is subexponentially large in the
description of the RSA modulus. Relatedly, the protocol then only achieves a
slightly superpolynomial gap between the complexity of the honest prover and
the complexity of the cheating provers ruled out by soundness. In contrast, our
construction does not require complexity leveraging, resulting in a VDF with far
more standard efficiency parameters.

Applications to PPAD-Hardness For establishing hardness of PPAD, we
have to show that the non-interactive argument obtained above satisfies the
third requirement, i.e., recursive proof-merging. The two sets of intermediate
statements from Eq. (2) can be succinctly denoted as

(𝑔1, · · · , 𝑔𝜆)
𝑇/2−−→ (𝜇1, · · · , 𝜇𝜆) and (𝜇1, · · · , 𝜇𝜆)

𝑇/2−−→ (ℎ1, · · · , ℎ𝜆) (7)

10 Bitansky, Choudhuri, Holmgren, Kamath, Lombardi, Paneth, Rothblum

with corresponding [5] proofs

𝜋((𝑔1, · · · , 𝑔𝜆)
𝑇/2−−→ (𝜇1, · · · , 𝜇𝜆)) and 𝜋((𝜇1, · · · , 𝜇𝜆)

𝑇/2−−→ (ℎ1, · · · , ℎ𝜆)).

The proof for (𝑔1, · · · , 𝑔𝜆)
𝑇−→ (ℎ1, · · · , ℎ𝜆) can be computed as

𝜋((𝑔1, · · · , 𝑔𝜆)
𝑇−→ (ℎ1, · · · , ℎ𝜆)) :=

(︁
(𝜇1, · · · , 𝜇𝜆), 𝜋((𝑔

′
1, · · · , 𝑔′𝜆)

𝑇/2−−→ (ℎ′1, · · · , ℎ′𝜆))
)︁

where (𝑔′1, · · · , 𝑔′𝜆)
𝑇/2−−→ (ℎ′1, · · · , ℎ′𝜆) is derived via the 2𝜆-to-𝜆 (batch) reduction

from the statements in Eq. (7). Furthermore, the proof

𝜋((𝑔′1, · · · , 𝑔′𝜆)
𝑇/2−−→ (ℎ′1, · · · , ℎ′𝜆))

is generated by recursing on the statement (𝑔′1, · · · , 𝑔′𝜆)
𝑇/2−−→ (ℎ′1, · · · , ℎ′𝜆) to

compute its proof. Since the reduction is efficient, the non-interactive argument
satisfies recursive proof merging as desired. As shown in [15], this actually implies
hardness of the sub-class CLS ⊆ PPAD. We strengthen this result further
to show hardness in UEOPL ⊆ CLS, one of the lowest-lying sub-classes of
TFNP [24].

Remark 2 (Abstract protocol). While we have limited our discussion specifically
to the case of IS, in the technical sections (Sections 3 and 5) we describe an
abstract protocol template that we call “outline and batch.” We show that any
problem family admitting a downward self-reduction and a (randomized) batching
reduction (reducing 𝑘′ instances of the problem to sufficiently fewer 𝑘 < 𝑘′

instances) admits an unambiguous and incremental non-interactive argument
system that suffices for our hardness results. We refer the reader to the technical
sections for details.

Obtaining Public-Coin Hardness in PPAD. Finally, we discuss how to obtain
hard distributions of PPAD instances that are publicly samplable under the
same computational assumptions as before: the polynomial hardness of LWE
and IS over RSA group. It is a priori unclear why one should expect to obtain
public-coin hardness under these assumptions, since we don’t know a public-coin
algorithm for sampling an RSA modulus! Nevertheless, we obtain the result via
the following two ideas.

First, we observe that our Fiat-Shamir hash function ℋ can be sampled
from a public-coin distribution. In [33], the hash functions have a computation-
ally pseudorandom (and private-coin) description, but they can be switched to
uniformly random because even the adaptive unambiguous soundness of the pro-
tocol considered in our work is an efficiently verifiable property (given the group
order as a trapdoor). Put another way, the adaptive soundness of the protocol
follows from an efficiently falsifiable form of correlation intractability, which is
thus preserved under computational indistinguishability.

The more serious issue is how to handle the group (and group element)
description. We handle this by working over Z×𝑁 for a different value of 𝑁 (rather

PPAD is as Hard as LWE and Iterated Squaring 11

than an RSA modulus). A naive idea would be to work over a uniformly random
modulus 𝑁 ; unfortunately, the squaring problem mod a uniformly random 𝑁 is
not hard, because 𝑁 will be prime with inverse polynomial probability (by the
prime number theorem), in which case the group order 𝜑(𝑁) = 𝑁−1 is efficiently
computable. Our actual solution is as follows: consider 𝑁 = 𝑁1 · . . . ·𝑁poly(𝜆) for a
sufficiently large poly(𝜆), where all integers 𝑁𝑖 are public and uniformly random
in the range [1, 2𝜆]. First of all, we note that our techniques for constructing hard
PPAD instances from iterated squaring apply to this choice of modulus as well:
all that is required is that there is a way to efficiently sample (necessarily using
secret coins) the squaring problem description along with a trapdoor containing
the group order |Z×𝑁 | = 𝜑(𝑁) (this is captured by our generic construction).
This is possible using efficient algorithms for generating random factored integers
[2, 40].

This tells us that public-coin hardness in PPAD follows from the hardness
of LWE along with the polynomial hardness of IS modulo 𝑁 (given the coins for
sampling the IS instance). To complete the proof, we show that this follows from
the polynomial hardness of (secret-coin) IS in an RSA modulus. We prove this
by a direct reduction that embeds an RSA modulus IS problem instance into a
public-coin instance of this new IS problem; crucially, we use the fact that with
all but negligible probability over 𝑁1, . . . , 𝑁poly(𝜆), at least one 𝑁𝑖 is an RSA
modulus.

1.3 Organisation

We state definitions and provide background relevant to the paper in Section 2.
In Section 3, we describe the abstract ‘outline-and-batch’ protocol, prove its
unambiguous soundness and explain how existing protocols fit this abstraction.
In Section 4, we describe the unambiguous non-interactive argument for IS that
forms the basis of the results in this work. Hardness of the class PPAD is
shown in Section 5 by constructing hard instances of RSVL using the results
from Section 4. Due to a lack of space, we defer some details to the full version
of the paper.

2 Preliminaries

Notation. First, we list the notation that will be used throughout this paper.

1. For 𝑎, 𝑏 ∈ N, 𝑎 < 𝑏, by [𝑎, 𝑏] we denote the sequence of integers {𝑎, 𝑎 +
1, · · · , 𝑏}.

2. For an alphabet 𝛴 and 𝑛 ∈ N, we write 𝛴𝑛, 𝛴<𝑛 and 𝛴≤𝑛 to denote,
respectively, strings over 𝛴 with length equal to, less than, and less than or
equal to 𝑛. We use 𝜀 to denote the empty string. For strings 𝑎 and 𝑏 we use
𝑎𝑏 to denote string concatenation.

3. Vectors and tuples are in bold face. We parse a vector or a tuple 𝑥 ∈ 𝒳 𝑘 as
𝑥 =: (𝑥0, · · · , 𝑥𝑘−1); 𝑥 is said to be a 𝑘-vector. A subscripted vector 𝑥𝑣 ∈ 𝒳 𝑘

is parsed as 𝑥𝑣 =: (𝑥𝑣,0, · · · , 𝑥𝑣,𝑘−1).

12 Bitansky, Choudhuri, Holmgren, Kamath, Lombardi, Paneth, Rothblum

4. For 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴 and a function 𝑓 : 𝒳 → 𝒴, we write 𝑥
𝑓−→ 𝑦 to denote

the (true or false) statement “𝑦 equals 𝑓(𝑥)”. Sometimes, when the context

is clear, we will simplify the notation: e.g., for ℎ := 𝑔2
𝑇

mod 𝑁 , we simply

write 𝑔
𝑇−→ ℎ to denote

𝑔
(·)2

𝑇
mod 𝑁−−−−−−−→ ℎ.

We extend this notation to vectors: for 𝑥 ∈ 𝒳 𝑘 and 𝑦 ∈ 𝒴𝑘, we define

𝑓 = 𝑓𝑘 : 𝒳 𝑘 → 𝒴𝑘 as (𝑓(𝑥0), · · · , 𝑓(𝑥𝑘−1)) and therefore 𝑥
𝑓−→ 𝑦 denotes

statement that 𝑥𝑖
𝑓−→ 𝑦𝑖 for all 𝑖 ∈ [0, 𝑘 − 1].

5. For a statement 𝑥, we denote 𝜋(𝑥) to denote a non-interactive proof for 𝑥.

For example, for 𝑥, 𝑦 and 𝑓 as in Item 4, we write 𝜋(𝑥
𝑓−→ 𝑦) to denote a

non-interactive proof for the statement 𝑥
𝑓−→ 𝑦.

6. For 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴, we write 𝑦 := A(𝑥) (resp., 𝑦 ← A(𝑥)) to denote the
execution of a deterministic (resp., randomised) algorithm A on input 𝑥 to
output 𝑦. For 𝑘 ∈ N, vectors 𝑥 ∈ 𝒳 𝑘 and 𝑦 ∈ 𝒴𝑘, we denote repeated parallel
execution of A by 𝑦 := A(𝑥), i.e., 𝑦𝑖 := A(𝑥𝑖) for all 𝑖 ∈ [0, 𝑘 − 1].

2.1 Search Problems, TFNP, and Reductions

We define below search problems, and the relevant complexity classes needed for
our work. We start by defining search problems.

Definition 1 (Search Problems [1]). A search problem is a relation ℛ ⊆
{0, 1}* × {0, 1}*. Let ℛ(𝑥) denote {𝑦 : (𝑥, 𝑦) ∈ ℛ}. A function 𝑓 : {0, 1}* →
{0, 1}* ∪ {⊥} is said to solve ℛ if for every 𝑥 ∈ {0, 1}* satisfying ℛ(𝑥) ̸= ∅, it
holds that 𝑓(𝑥) ∈ ℛ(𝑥); and for all other 𝑥, 𝑓(𝑥) = ⊥.

Definition 2 (Total Relations). A relation ℛ is said to be total if for all
𝑥 ∈ {0, 1}*, there exists 𝑦 such that (𝑥, 𝑦) ∈ ℛ.

Definition 3 (Polynomially Balanced). A relation ℛ is said to be polyno-
mially balanced if there is a polynomial 𝑝 such that for any strings 𝑥, 𝑦 ∈ {0, 1}*,
if (𝑥, 𝑦) ∈ ℛ then |𝑦| ≤ 𝑝

(︀
|𝑥|

)︀
.

Definition 4 (FNP). The complexity class FNP consists of all polynomially
balanced search problems ℛ for which there is a polynomial-time algorithm that
on input (𝑥, 𝑦) outputs whether or not (𝑥, 𝑦) ∈ ℛ.

Definition 5 (TFNP). The complexity class TFNP consists of all total search
problems in FNP.

For further discussion of relevant sub-classes of TFNP, we refer the reader
to the full version of this work.

Definition 6 (Reductions). If 𝑃 and 𝑄 are search problems, a randomized
Karp reduction from 𝑃 to 𝑄 with error 𝜖(·) is a pair of p.p.t. machines (M,N) such

PPAD is as Hard as LWE and Iterated Squaring 13

that if 𝑓 is a function that solves 𝑄, then for any 𝑥 ∈ {0, 1}𝑛 with 𝑃 (𝑥) ̸= ∅, we
have

Pr
[︀
(𝑥, 𝑦) ∈ 𝑃

]︀
≥ 1− 𝜖(𝑛)

when sampling 𝑥′ ← M(𝑥), 𝑦 ← N (𝑓(𝑥′)).

Next, we consider the search problem RelaxedSinkOfVerifiableLine
(RSVL), which is relevant to the main result of this paper. We point out that
RSVL not a total problem since, looking ahead, there is no way to syntac-
tically guarantee that the successor and verifier circuits are well-behaved (see
Remark 3).

Definition 7 ([15]). RelaxedSinkOfVerifiableLine (RSVL)

– Instance.

1. Boolean circuit S : {0, 1}𝑚 → {0, 1}𝑚

2. Boolean circuit V : {0, 1}𝑚 × [0, 2𝑚 − 1]→ {accept, reject}
3. Integer 𝐿 ∈ [0, 2𝑚 − 1]
4. String 𝑣0 ∈ {0, 1}𝑚

– Promise. For every 𝑣 ∈ {0, 1}𝑚 and 𝑖 ∈ [0, 2𝑚 − 1], V(𝑣, 𝑖) = 1 if 𝑖 ≤ 𝐿 and
𝑣 = S𝑖(𝑣0).

– Solution. One of the following:

1. The sink: a vertex 𝑣 ∈ {0, 1}𝑚 such that V(𝑣, 𝐿) = 1; or
2. False positive: a pair (𝑣, 𝑖) ∈ {0, 1}𝑚× [0, 2𝑚 − 1] such that 𝑣 ̸= S𝑖(𝑣0)

and V(𝑣, 𝑖) = 1.

Remark 3. It seems likely thatRSVL is not in FNP, let alone in PPAD. Specif-
ically, checking that a pair (𝑣, 𝑖) constitutes a false positive is difficult because 𝑖
may be super-polynomial in the instance size.

Nevertheless, [15] constructed a (randomized) reduction fromRSVL toEOML
(which is a search problem complete for CLS ⊆ PPAD) with error that is in-
versely polynomially bounded away from 1. This error is somewhat large, and
allows for the possibility EOML is “slightly” easier than RSVL.

Still, the reduction suffices for establishing the standard cryptographic hard-
ness of EOML (i.e. that no polynomially bounded algorithm can succeed with
any non-negligible probability) based on analogous hardness for RSVL. In turn,
we establish the latter hardness based on LWE (Assumption 4) and the iterated
squaring assumption (Assumption 9).

Theorem 3 ([15]). There is a randomized Karp reduction from RSVL to
EOML with error probability 𝜖(𝑛) = 1− 𝑛−𝑂(1).

2.2 Learning with Errors

The following standard preliminaries about the Learning with Errors (LWE)
problem are based on [43,49].

14 Bitansky, Choudhuri, Holmgren, Kamath, Lombardi, Paneth, Rothblum

Definition 8 (LWE Distribution). For any s ∈ Z𝑛
𝑞 and any distribution 𝜒 ⊆

Z𝑞, the LWE distribution 𝐴s,𝜒 ∈ Z𝑛
𝑞 ×Z𝑞 is sampled by choosing a ∈ Z𝑛

𝑞 uniformly
at random, sampling 𝑒← 𝜒, and outputting (a, 𝑏 = ⟨s,a⟩+ 𝑒).

Assumption 4 (Decision LWE). Let 𝑚 = 𝑚(𝑛) ≥ 1, 𝑞 = 𝑞(𝑛) ≥ 2 be integers,
and let 𝜒(𝑛) be a probability distribution on Z𝑞(𝑛). The LWE𝑛,𝑚,𝑞,𝜒 problem,
parameterized by 𝑛, is to distinguish whether 𝑚(𝑛) independent samples are
drawn from 𝐴s,𝜒 (for s that is sampled uniformly at random) or are drawn from
the uniform distribution. The hardness assumption is that is hard for poly(𝑛)-
sized adversaries to decide the LWE𝑛,𝑚,𝑞,𝜒 problem.

2.3 Correlation-Intractable Hash Families

The following preliminaries are partially taken from [33,43].

Definition 9 (Hash family). For a pair of efficiently-computable functions
(𝑛(·),𝑚(·)), a hash family with input length 𝑛 and output length 𝑚 is a collection
ℋ = {𝐻𝜆 : {0, 1}𝑠(𝜆)×{0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆)}𝜆∈N of keyed hash functions, along
with a pair of p.p.t. algorithms:

– ℋ.Gen(1𝜆) outputs a hash key 𝑘 ∈ {0, 1}𝑠(𝜆).
– ℋ.Hash(𝑘, 𝑥) computes the function 𝐻𝜆(𝑘, 𝑥). We may use the notation

𝐻(𝑘, 𝑥) to denote hash evaluation when the hash family is clear from context.

As in prior works [11, 50] we consider the security notion of correlation in-
tractability [13] for single-input relations and its restriction to (single-input)
functions.

Definition 10 (Correlation Intractability). For a given relation ensemble
ℛ = {ℛ𝜆 ⊆ {0, 1}𝑛(𝜆) × {0, 1}𝑚(𝜆)}, a hash family ℋ = {𝐻𝜆 : {0, 1}𝑠(𝜆) ×
{0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆)} is said to be ℛ-correlation intractable with security (𝑠, 𝛿)
if for every 𝑠-size A = {A𝜆},

Pr
𝑘←ℋ.Gen(1𝜆)

𝑥←A(𝑘)

[︁(︀
𝑥,𝐻(𝑘, 𝑥)

)︀
∈ ℛ

]︁
= 𝑂(𝛿(𝜆)).

We say that ℋ is ℛ-correlation intractable with security 𝛿 if it is (𝜆𝑐, 𝛿)-correlation
intractable for all 𝑐 > 1. Finally, we say that ℋ is ℛ-correlation intractable if it
is (𝜆𝑐, 1/𝜆𝑐)-correlation intractable for all 𝑐 > 1.

We will use the recent result of [33] on correlation intractability for product
relations.

Definition 11 (Product Relation). We say that ℛ ⊆ 𝒳 × 𝒴𝑡 is a product
relation if for every 𝑥 ∈ 𝒳 , the set ℛ(𝑥) = {𝑦 : (𝑥, 𝑦) ∈ ℛ} ⊆ 𝒴𝑡 has a
decomposition

ℛ(𝑥) := ℬ1(𝑥)× ℬ2(𝑥)× . . .ℬ𝑡(𝑥)
(where each ℬ𝑖(𝑥) is a subset of 𝒴). We say that such an ℛ is efficiently product
verifiable if for some such choice of ℬ𝑖, there is a poly-size circuit C(𝑥, 𝑖, 𝑦𝑖) that
decides whether 𝑦𝑖 ∈ ℬ𝑖(𝑥).

PPAD is as Hard as LWE and Iterated Squaring 15

Theorem 5 ([33]). Assume the hardness of LWE. Then, for every size bound
𝑆(𝜆) = poly(𝜆), input length 𝑛(𝜆), and output length 𝑚(𝜆) · 𝑡(𝜆) such that 𝑡(𝜆) ≥
𝜆𝛺(1), there exists a correlation intractable hash family ℋ for product relations
ℛ that are (1) product verifiable by size 𝑆(𝜆) circuits, and (2) sparse in the sense
that for every 𝑥, 𝑖, we have that |ℬ𝑖(𝑥)| ≤ 1

2 · 2
𝑚(𝜆).

Remark 4. In [33], hash function keys have a computationally pseudorandom
distribution. However, for the purposes of Theorem 5, hash function keys may
be taken to be uniformly random strings (by invoking the pseudorandomness
property), because the security property in Theorem 5 is efficiently falsifiable.

2.4 Interactive Proofs and the Fiat-Shamir Heuristic

The following preliminaries are partially taken from [33,43]. We begin by recall-
ing the definitions of interactive proofs and arguments.

Definition 12 (Interactive proof and argument system). An interactive
proof (resp., interactive argument) for a promise problem ℒ = (ℒYES,ℒNO) is a
pair (P,V) of interactive algorithms satisfying:

– Completeness. For any 𝑥 ∈ ℒYES, when P and V interact on common
input 𝑥, the verifier V outputs 1 with probability 1.

– Soundness. For any 𝑥 ∈ ℒNO∩{0, 1}𝑛 and any unbounded (resp., polynomial-
time) interactive P*, when P* and V(𝑥) interact, the probability that V out-
puts 1 is a negligible function of 𝑛.

The protocol is public-coin if each of V’s messages is an independent uniformly
random string of some length (and the verifier’s decision to accept or reject does
not use any secret state). In this setting, we will denote prover messages by
(𝛼1, . . . , 𝛼ℓ) and verifier messages by (𝛽1, . . . , 𝛽ℓ−1) in a 2ℓ− 1-round protocol.

Definition 13 (Non-interactive argument system). A non-interactive ar-
gument scheme (in the CRS model) for a promise problem ℒ = (ℒYES,ℒNO) is
a triple (Setup,P,V) of non-interactive algorithms with the following properties:

– Setup(1𝑛) outputs a common reference string CRS.

– P(CRS, 𝑥) outputs a proof 𝜋.

– V(CRS, 𝑥, 𝜋) outputs a bit 𝑏 ∈ {0, 1}

It satisfies the notions of completeness and (computational) soundness as
above.

We next define the notion of unambiguous soundness [52]. For non-interactive
arguments, the soundness notion we consider is adaptive in that we allow the
prover P* to adaptively choose the statement 𝑥 after seeing the CRS.

16 Bitansky, Choudhuri, Holmgren, Kamath, Lombardi, Paneth, Rothblum

Definition 14 (Unambiguous Soundness [15, 52]). A public-coin interac-
tive proof system 𝛱 is unambiguously sound if (1) it is sound, and (2) for every
𝑥 ∈ ℒ and every (complete) collection of verifier messages (𝛽1, . . . , 𝛽ℓ−1), there
exists a distinguished proof 𝜋*(𝑥, 𝛽1, . . . , 𝛽ℓ−1) such that the following sound-
ness condition holds: For all 𝑥 ∈ ℒ and all cheating provers P*, the probability
that the transcript ⟨P*(𝑥),V(𝑥)⟩ contains a proof 𝜋 such that V(𝑥, 𝜋) = 1 and
𝜋 ̸= 𝜋*(𝑥, 𝛽1, . . . , 𝛽ℓ−1) is negligible.

Definition 15 (Adaptive Unambiguous Soundness).
A non-interactive argument system 𝛱 = (Setup,P,V) is adaptively unam-

biguously sound against (uniform or non-uniform) time 𝑇 adversaries if for
all instances 𝑥 ∈ ℒ and all common reference strings CRS, there exists a “dis-
tinguished proof” 𝜋*(CRS, 𝑥) such that the following soundness condition holds:
For all time 𝑇 cheating provers P*, the probability that P*(CRS) = (𝑥, 𝜋) where
V(𝑥, 𝜋) = 1 and either 𝑥 ̸∈ ℒ or 𝜋 ̸= 𝜋*(CRS, 𝑥) is negligible.

Our results proceed by constructing (unambiguously sound) interactive proof
systems and compiling them into non-interactive argument systems using the
Fiat-Shamir transform, which we describe next.

Definition 16 (Fiat-Shamir Transform). Let 𝛱 denote a public coin inter-
active proof (or argument) system 𝛱 that has ℓ prover messages and ℓ−1 verifier
messages of length 𝑚 = 𝑚(𝜆). Then, for a hash family

ℋ =

{︂{︁
𝐻𝑘 : {0, 1}* → {0, 1}𝑚(𝜆)

}︁
𝑘∈{0,1}𝜆

}︂
𝜆

,

we define the Fiat-Shamir non-interactive protocol 𝛱FS,ℋ = (Setup,PFS,VFS) as
follows:

– Setup(1𝜆): sample a hash key 𝑘 ← ℋ.Gen(1𝜆).
– PFS(𝑥): for 𝑖 ∈ {1, . . . , ℓ}, recursively compute the following pairs (𝛼𝑖, 𝛽𝑖):
∙ Compute 𝛼𝑖 = P(𝜏𝑖) for 𝜏𝑖 = (𝑥, 𝛼1, 𝛽1, . . . , 𝛼𝑖−1, 𝛽𝑖−1).
∙ Compute 𝛽𝑖 = 𝐻𝑘(𝜏𝑖−1, 𝛼𝑖).

Then, PFS(𝑥) outputs 𝜋 = (𝛼1, 𝛽1, . . . , 𝛼ℓ).
– VFS(CRS, 𝑥, 𝜋) parses 𝜋 = (𝛼1, 𝛽1, . . . , 𝛼ℓ) and verifies that:
∙ 𝛽𝑖 = 𝐻𝑘(𝜏𝑖−1, 𝛼𝑖) for all 1 ≤ 𝑖 ≤ ℓ− 1, and
∙ V(𝑥, 𝜋) = 1.

We note the following facts about 𝛱FS,ℋ

1. The honest prover complexity of 𝛱FS,ℋ is equal to the honest prover com-
plexity of 𝛱 with an additive overhead of computing ℓ− 1 hash values.

2. The verifier complexity of 𝛱FS,ℋ is equal to the verifier complexity of 𝛱 with
the same hashing additive overhead.

3. The protocol 𝛱FS,ℋ is not necessarily sound, even if 𝛱 is sound and ℋ is
a “strong cryptographic hash function”. As we will discuss later, soundness
is guaranteed when 𝛱 satisfies what is called “round-by-round soundness”,
defined next.

PPAD is as Hard as LWE and Iterated Squaring 17

Round-by-Round (Unambiguous) Soundness and Fiat-Shamir. Following [10,11,
15, 43], we consider the notion of round-by-round (unambiguous) soundness to
capture a particular kind of soundness analysis for super-constant round in-
teractive proofs. For these proof systems, it has been shown that correlation
intractability for an appropriate relation suffices for a hash family to instantiate
the Fiat-Shamir heuristic for unambiguously round-by-round sound interactive
proofs.

Definition 17 (Unambiguous Round-by-Round Soundness [10,15,43]).
Let 𝛱 = (P,V) be a 2ℓ − 1-message public coin interactive proof system for a
language ℒ.

We say that 𝛱 has unambiguous round-by-round soundness error 𝜖(·) if there
exist functions (State,NextMsg) with the following syntax.

– State is a deterministic (not necessarily efficiently computable) function that
takes as input an instance 𝑥 and a transcript prefix 𝜏 and outputs either
accept or reject.

– NextMsg is a deterministic (not necessarily efficiently computable) function
that takes as input an instance 𝑥 and a transcript prefix 𝜏 and outputs a
(possibly aborting) prover message 𝛼 ∈ {0, 1}* ∪ {⊥}.

We additionally require that the following properties hold.

1. If 𝑥 ̸∈ ℒ, then State(𝑥, ∅) = reject, where ∅ denotes the empty transcript.
2. If State(𝑥, 𝜏) = reject for a transcript prefix 𝜏 , then NextMsg(𝑥, 𝜏) = ⊥.

That is, NextMsg(𝑥, 𝜏) is only defined on accepting states.
3. For every input 𝑥 and partial transcript 𝜏 = 𝜏𝑖, then for every potential

prover message 𝛼𝑖+1 ̸= NextMsg(𝑥, 𝜏), it holds that

Pr
𝛽𝑖+1

[︁
State

(︀
𝑥, 𝜏 |𝛼𝑖+1|𝛽𝑖+1

)︀
= accept

]︁
≤ 𝜖(𝑛)

4. For any full12 transcript 𝜏 , if State(𝑥, 𝜏) = reject then V(𝑥, 𝜏) = 0.

We say that 𝛱 is unambiguously round-by-round sound if it has unambiguous
round-by-round soundness error 𝜖 for some 𝜖(𝑛) = negl(𝑛).

Next, we restate the result that specific forms of correlation intractability
suffice to instantiate the Fiat-Shamir transform for protocols satisfying unam-
biguous round-by-round soundness.

Theorem 6 ([10,43]). Suppose that 𝛱 = (P,V) is a 2ℓ−1-message public-coin
interactive proof for a language ℒ with perfect completeness and unambiguous
round-by-round soundness with corresponding functions (State,NextMsg). Let 𝒳𝑛

denote the set of partial transcripts (including the input and all messages sent)
and let 𝒴𝑛 denote the set of verifier messages when 𝛱 is executed on an input
of length 𝑛.

12 By a full transcript, we mean a transcript for which the verifier halts.

18 Bitansky, Choudhuri, Holmgren, Kamath, Lombardi, Paneth, Rothblum

Finally, define the relation ensemble ℛ = ℛState,NextMsg as follows:

ℛ(𝑛)
State,NextMsg :=

⎧⎪⎪⎨⎪⎪⎩
(︁(︀

𝑥, 𝜏 |𝛼
)︀
, 𝛽

)︁
:

𝑥 ∈ {0, 1}𝑛,
𝛼 ̸= NextMsg(𝑥, 𝜏)

and
State(𝑥, 𝜏 |𝛼|𝛽) = accept

⎫⎪⎪⎬⎪⎪⎭ .

If a hash family ℋ = {ℋ𝑛 : 𝒳𝑛 → 𝒴𝑛} is correlation intractable for ℛ, then the
round-reduced protocol 𝛱FS,ℋ is an adaptively unambiguously sound argument
system for ℒ.

3 The Outline-and-Batch Protocol

For 𝒳 ,𝒴 ⊆ {0, 1}*, let 𝑓 : 𝒳 → 𝒴 be a function and ‖ · ‖ : 𝒳 → N denote a “size
measure” for inputs to 𝑓 . Let 𝒳𝑛 denote {𝑥 ∈ 𝒳 : ‖𝑥‖ = 𝑛}, and let 𝑓𝑛 : 𝒳𝑛 → 𝒴
denote the restriction of 𝑓 to 𝒳𝑛. Recall from Section 2 that 𝑓𝑘

𝑛 : 𝒳 𝑘
𝑛 → 𝒴𝑘

denotes the function mapping (𝑥1, . . . , 𝑥𝑘) to (𝑓𝑛(𝑥1), . . . , 𝑓𝑛(𝑥𝑘)).

Definition 18 (Downwards self-reduction). A downwards self-reduction for
𝑓 is a deterministic oracle algorithm D such that for any 𝑛 and 𝑥 ∈ 𝒳𝑛,
D𝑓𝑛−1(𝑥) = 𝑓(𝑥). If on input 𝑥, D queries 𝑞1, . . . , 𝑞𝑑, then we say that D is
a 𝑑-query downwards self-reduction and we refer to ((𝑞1, 𝑓(𝑞1)) , . . . , (𝑞𝑘, 𝑓(𝑞𝑑)))
as an outline of the evaluation of 𝑓 on 𝑥.

Definition 19 (Batching reduction). A 𝑘′-to-𝑘 batching reduction for 𝑓 with
soundness error 𝜖 is a probabilistic algorithm B that on input {(𝑥′𝑖, 𝑦′𝑖) ∈ 𝒳𝑛 × 𝒴}𝑖∈[1,𝑘′]

outputs {(𝑥𝑖, 𝑦𝑖) ∈ 𝒳𝑛 × 𝒴}𝑖∈[1,𝑘] such that:

– (Completeness) If 𝑦′𝑖 = 𝑓(𝑥′𝑖) for all 𝑖 ∈ [1, 𝑘′], then with probability 1,
𝑦𝑖 = 𝑓(𝑥𝑖) for all 𝑖 ∈ [1, 𝑘].

– (Soundness) If 𝑦′𝑖 ̸= 𝑓(𝑥′𝑖) for some 𝑖 ∈ [1, 𝑘′], then with all but 𝜖 probability
over the randomness of B, 𝑦𝑖 ̸= 𝑓(𝑥𝑖) for some 𝑖 ∈ [1, 𝑘].

We remark that it may be useful to consider batching reductions that are in-
teractive, but for our purposes, non-interactive batching reductions suffice for our
instantiations. We leave discussion of abstract interactive batching reductions to
future work.

Theorem 7. If 𝑓 has a 𝑑-query downwards self reduction D and a 𝑑𝑘-to-𝑘-
batching reduction B with error 𝜖, then there is a public-coin interactive proof
for the language

ℒ𝑘
𝑓𝑛 := {((𝑥1, · · · , 𝑥𝑛), (𝑦1, , · · · , 𝑦𝑛)) ∈ 𝒳 𝑘 × 𝒴𝑘 : 𝑓𝑛(𝑥𝑖) = 𝑦𝑖 for all 𝑖 ∈ [1, 𝑘]}

with 𝑛−1 rounds of interaction and with unambiguous round-by-round soundness
error 𝜖.

PPAD is as Hard as LWE and Iterated Squaring 19

Remark 5. We remark that the hypotheses of Theorem 7 can be relaxed to
only require completeness and soundness for B when applied to inputs that
correspond to the queries of an evaluation of D. This relaxation captures the
classical sumcheck protocol [44] as a special case.

Proof of Theorem 7. The prover P and verifier V both take as input a statement
((𝑥1, . . . , 𝑥𝑘), (𝑦1, . . . , 𝑦𝑘)) ∈ 𝒳 𝑘

𝑛 × 𝒴𝑘
𝑛, and the protocol is defined recursively.

Base Case: If 𝑛 = 1, then no messages are sent (P does nothing), and V accepts
only if 𝑓1(𝑥𝑖) = 𝑦𝑖 for all 𝑖 ∈ [1, 𝑘].

Recursive Case: If 𝑛 > 1, then:

1. P computes D𝑓𝑛−1(𝑥𝑖) for each 𝑖 ∈ [1, 𝑘], recording the queries made by D
and answering queries according to 𝑓𝑛−1. Then P sends all 𝑘 corresponding
𝑑-tuples of query-answer pairs to V. Let ((�̃�′1, 𝑦

′
1), . . . , (�̃�

′
𝑑𝑘, 𝑦

′
𝑑𝑘)) denote the

concatenation of all 𝑘 𝑑-tuples of query-answer pairs received by V.
2. When V receives 𝑘 𝑑-tuples of query-answer pairs, V checks for each 𝑖 that

the 𝑖-th tuple is consistent with an execution of D13 on input 𝑥𝑖 (if not, then
V rejects). V then samples randomness 𝑟 for B and sends it to P.

3. Let ((�̃�′′1 , 𝑦
′′
1), . . . , (�̃�

′′
𝑘 , 𝑦
′′
𝑘)) denote B ((�̃�′1, 𝑦

′
1), . . . , (�̃�

′
𝑑𝑘, 𝑦

′
𝑑𝑘); 𝑟). P and V re-

cursively invoke the interactive proof for 𝑓𝑘 on ((�̃�′1, . . . , �̃�
′
𝑘), (𝑦

′
1, . . . , 𝑦

′
𝑘)).

We next describe how to give𝛱 the structure of an unambiguous round-by-round
sound protocol.

– At any step in the recursion, we have “current inputs” 𝑥1, . . . , 𝑥𝑘 as well as
outputs 𝑦1, . . . , 𝑦𝑘 claimed in the previous recursive step. At this execution
point, we define State to be accept if and only if 𝑓(𝑥𝑖) = 𝑦𝑖 for all 𝑖.

– After Step 1 in a recursive call, we define State to be accept iff 𝒱 has not
rejected and 𝑓(�̃�′) = 𝑦′ for every pair (�̃�′, 𝑦′) in the lists sent by the prover.

We define NextMsg(𝜏) to be the output of the honest prover algorithm in the
description of the recursion above, which means to:

– Compute B on its previous message and the verifier’s challenge 𝑟, and
– Compute the downwards self-reduction on the resulting tuple of inputs.

Given this description of (State,NextMsg), unambiguous round-by-round sound-
ness follows from the correctness of the downwards self-reduction and the sound-
ness of the batching reduction.

Finally, we discuss instantiating the Fiat-Shamir transform for the protocol
𝛱 in Theorem 7 by appealing to Theorem 6. Since the round-by-round State
function is fairly simple for our protocol 𝛱 (in that it does not depend on the
entire protocol history), we can rely on correlation intractability for relations
with a fairly simple description. By invoking Theorem 6, we obtain the following
corollary.

13 That is, V emulates an execution of D on each 𝑥𝑖, checking that for every 𝑗, the 𝑗th
oracle call in the sequence of 𝑘 executions is to �̃�′

𝑗 ; it then uses 𝑦′
𝑗 as the oracle’s

output in its emulation.

20 Bitansky, Choudhuri, Holmgren, Kamath, Lombardi, Paneth, Rothblum

Corollary 1. Under the hypotheses of Theorem 7 and additionally assuming
the existence of a hash family ℋ that is correlation intractable for the following
relation ℛ:

ℛ(𝑛)
State,NextMsg :=

⎧⎨⎩(︁
𝛼 = (𝑛, �̃�′1, 𝑦

′
1, . . . , �̃�

′
𝑑𝑘, 𝑦

′
𝑑𝑘), 𝑟

)︁
:
𝑦′𝑗 ̸= 𝑓𝑛−1(�̃�

′
𝑗) for some 𝑗

and
𝑦′′𝑖 = 𝑓𝑛−1(�̃�

′′
𝑖) for all 𝑖

⎫⎬⎭ ,

where {(�̃�′′𝑖 , 𝑦′′𝑖)}𝑖∈[1,𝑘] is the output of B on input {(�̃�′𝑗 , 𝑦′𝑗)}𝑗∈[1,𝑑𝑘] and random

coins 𝑟, there is a non-interactive argument system for ℒ𝑘
𝑓𝑛

with adaptive unam-
biguous soundness.

3.1 Instantiations of Outline-and-Batch

Appropriate instantiations of our outline-and-batch protocol (Theorem 7, Corol-
lary 1) can recover the interactive proof systems or non-interactive argument
systems constructed in the following works:

1. The [44] interactive proof system for #SAT and its Fiat-Shamir instantia-
tions [15,39]. The sumcheck protocol can be viewed as a composition of

(a) a (𝑑+1)-query downward self-reduction that reduces a statement about
the sum

∑︀
𝑥1,...,𝑥𝑛∈{0,1} 𝑝(𝑥1, . . . , 𝑥𝑛) of a 𝑑-degree, 𝑛-variate polynomial

𝑝 (over some finite field) to 𝑑+ 1 statements of the form
∑︀

𝑥2,...,𝑥𝑛
𝑝(𝛼,

𝑥2, . . . , 𝑥𝑛) (for hard-coded values of 𝛼); and

(b) a (𝑑+ 1)-to-1 batching reduction reducing these (𝑑+ 1) statements to a
single statement about

∑︀
𝑥2,...,𝑥𝑛

𝑝(𝑟, 𝑥2, . . . , 𝑥𝑛) for a uniformly random
𝑟.

2. The [16,51] interactive proof system for IS over the signed quadratic residue
group QR+

𝑁 and its Fiat-Shamir instantiation in the standard model [43].

Let 𝑥
𝑇−→ 𝑦 (now) denote the statement “𝑥2𝑇 equals 𝑦 over QR+

𝑁”. These
protocols consist of a 2-query downward self-reduction from a statement

𝑥
𝑇−→ 𝑦 to two statements of the form 𝑥𝑖

𝑇/2−−→ 𝑦𝑖 and a 2-to-1 batching
reduction that combines these two statements to a single such statement
using a random linear combination.

3. The [23] continuous VDF adapted to QR+
𝑁 . This protocol consists of a 𝑑-

query downward self-reduction from a statement 𝑥
𝑇−→ 𝑦 to 𝑑 statements of

the form 𝑥𝑖
𝑇/𝑑−−→ 𝑦𝑖 and a 𝑑-to-1 batching reduction from these 𝑑 statements

to a single such statement using, again, a random linear combination. The
parameter 𝑑 is set in their construction to 𝑂(𝜆), for the security parameter
𝜆.

4. The [5] interactive proof system for IS. In Section 4.3, we describe how
this protocol fits the “outline-and-batch” framework and then show how to
instantiate Fiat-Shamir for this protocol in the standard model.

PPAD is as Hard as LWE and Iterated Squaring 21

4 Non-Interactive Argument for Iterated Squaring in a
Trapdoor Group of Unknown Order

We first recall the iterated squaring (IS) problem modulo an integer 𝑁 and
discuss the hardness of IS. This includes a new hardness reduction showing that
certain public-coin variants of IS are as hard as the “traditional” IS problem in
the RSA group. Next, we consider a general IS problem over an arbitrary group
of unknown order and construct our unambiguous “outline-and-batch” argument
system in this setting.

4.1 Iterated Squaring modulo 𝑁

We first define IS and then recall the assumption of [53] on its sequential hardness
that our VDF is based on. Our hardness assumption on IS required for PPAD
hardness is a relaxation of this assumption.

Definition 20 ([9, 53]). IteratedSquaring (IS)

– Instance.

1. Integers 𝑁,𝑇 ∈ N
2. Group element 𝑔 ∈ Z*𝑁

– Solution. 𝑓(𝑁, 𝑔, 𝑇) := 𝑔2
𝑇

mod 𝑁

Assumption 8 (Sequential hardness of IS [53]). For a security parameter 𝜆 ∈ N,
let 𝑅𝑆𝐴 ∈ 𝜆𝑂(1) denote the size of RSA modulus that corresponds to 𝜆 bits of
security. Sample 𝑁 = 𝑝𝑞 as the product of two random 𝜆𝑅𝑆𝐴/2-bit primes and
𝑔 ← Z*𝑁 . Consider any time parameter 𝑇 = 2𝑜(𝜆). Any A that uses 2𝑜(𝜆) amount
of parallelism and computes 𝑓(𝑁, 𝑔, 𝑇) with a probability that is non-negligible
in 𝜆 requires sequential time 𝑇 (1− 𝑜(1)) group operations.

Assumption 9 (Standard hardness of IS [16]). For a security parameter 𝜆 ∈
N, let 𝑁 and 𝑔 be sampled as in Assumption 8. There exists an efficiently
computable function 𝑇 (1𝜆), such that no 𝜆𝑂(1)-time algorithm can compute
𝑓(𝑁, 𝑔, 𝑇) with a non-negligible probability.

Remark 6 (Assumption 9 vs. assumption in [16,51]). The hardness assumption
in [16,51] is slightly different from Assumption 9. Firstly, the modulus 𝑁 in [16,
51] is sampled a product of two random 𝜆𝑅𝑆𝐴/2-bit safe primes – the statistical
soundness of Pietrzak’s proof-of-exponentiation (PoE) is guaranteed only in such
moduli. Secondly, to attain unambiguity, [16,51] switch to the algebraic setting
of signed quadratic residues [26, 31]. In comparison, our assumption is made on
the conventional RSA modulus and this suffices since we rely the PoE from [5]
which achieves statistical soundness and (as we show) unambiguity for arbitrary
groups.

22 Bitansky, Choudhuri, Holmgren, Kamath, Lombardi, Paneth, Rothblum

4.2 Trapdoor Groups with Unknown Order

Definition 21 (Group of unknown order). A group sampler for a group of
unknown order consists of the following two functionalities:

– A setup algorithm Setup(1𝜆) that samples the description of a group G𝜆

of order at most 2𝜆. For our purposes, a group description consists of a
distinguished identity element idG and efficient membership testing algorithm
that takes as input an arbitrary string and decides whether the string is a
valid element of G𝜆.

– Efficient poly(𝜆)-time algorithms, given a description of G𝜆, for:
∙ Sampling a uniformly random group element,
∙ Computing the group law (𝑔, ℎ) ↦→ 𝑔ℎ ∈ G𝜆, and
∙ Computing the inverse map 𝑔 ↦→ 𝑔−1 ∈ G𝜆.

These efficient group operations generically imply that one can compute ex-
ponentiations 𝑔 ↦→ 𝑔𝑥 in time poly(𝜆) · log(𝑥) by repeated squaring. For example,

this implies that 𝑔 ↦→ 𝑔2
𝑇

can be computed in time 𝑇 · poly(𝜆) (or 𝑇 group
operations).

Note that if the order of G𝜆 is known, then the map 𝑔2
𝑇

can actually be
computed in time poly(𝜆, log 𝑇) by first reducing 2𝑇 modulo the order of the
group. However, when the order of the group is unknown, it is plausible that this
map requires time roughly 𝑇 group operations, as originally proposed by [53].
We formulate two flavors of this assumption, matching Assumptions 8 and 9 in
the case of RSA groups.

Assumption 10 ((𝑇, 𝑝)-Sequential Hardness). Given the description of G𝜆 and
a random group element 𝑔, any algorithm running in sequential time 𝑇 (1−𝑜(1))

with 𝑝(𝜆) parallelism outputs 𝑔2
𝑇

with only negligible probability.

Assumption 11 (Polynomial Hardness of Iterated Squaring). There exists an
efficiently computable function 𝑇 (1𝜆) such that, given the description of G𝜆 and

a random group element 𝑔, no algorithm running in time 𝜆𝑂(1) can output 𝑔2
𝑇

with non-negligible probability.

In order to prove the unambiguous soundness of our non-interactive argument
system for IS, we will make use of groups satisfying Assumption 11 that have
trapdoors allowing for efficient iterated squaring. We formalize this by requiring
that the group distribution G𝜆 could be sampled along with its order (using
secret coins).

Definition 22 (Trapdoor group with unknown order). A trapdoor group
with unknown order is a group with unknown order (Definition 21) equipped with
an additional setup algorithm TrapSetup(1𝜆) that outputs the description of a
group G𝜆 along with its order 𝑀 . We require that the distribution of groups out-
put by Setup(1𝜆) is statistically indistinguishable from the distribution of groups
output by TrapSetup(1𝜆) (where the order information is dropped).

RSA groups Z×𝑝𝑞 are naturally equipped with the required trapdoor structure,
because if 𝑁 = 𝑝𝑞 is sampled as the product of two known primes, then the order
of Z×𝑁 is equal to 𝜑(𝑝𝑞) = (𝑝− 1)(𝑞 − 1).

PPAD is as Hard as LWE and Iterated Squaring 23

4.3 Interactive Iterated Squaring Protocol

In this section, we recall the interactive proof system 𝛱 of [5] for IS and an-
alyze the Fiat-Shamir heuristic applied to 𝛱 using an appropriate correlation-
intractable hash family. Since the groups output by Setup(1𝜆) and TrapSetup(1𝜆)
are statistically indistinguishable, we assume that TrapSetup(1𝜆) is used for the
purposes of both the construction and its analysis.

Let G𝜆 ← Setup(1𝜆) denote a group (distribution) with unknown order and
associated generator 𝑔. For simplicity, we only consider 𝑇 of the form 𝑇 = 2𝑡.14

For 𝑇 of this form, we construct an interactive proof system for IS by having
the prover invoke the “outline and batch” protocol (Theorem 7) on 𝜆 identical

computations of 𝑔2
𝑇

, i.e., ((𝑔, · · · , 𝑔), (𝑔2𝑇 , · · · , 𝑔2𝑇)). By Theorem 7, it suffices

to show that the function 𝑓 : 𝑔 ↦→ 𝑔2
𝑇

has a 2-query downwards self reduction
(Definition 18) and a 2𝜆-to-𝜆 batching reduction (Definition 19).

– 2-Downwards Self-Reduction: Given an instance of the 𝑇 -IS problem
𝑓(𝑔, 𝑇), we can query 𝑓(𝑔, 𝑇/2) to obtain an intermediate group element 𝜇,

and then call 𝑓(𝜇, 𝑇/2) to obtain 𝜇2𝑇/2

= 𝑔2
𝑇

.
– 2𝜆-to-𝜆 Batching Reduction: Given 2𝜆 instances 𝑔1, . . . , 𝑔2𝜆 for 𝑓(·, 𝑇)

and 2𝜆 candidate outputs ℎ1, . . . , ℎ2𝜆, the batching reduction samples 𝜆
i.i.d. vectors 𝑟1, . . . , 𝑟𝜆 ← {0, 1}2𝜆. The reduction then outputs 𝜆 statements
about 𝑓(·, 𝑇):⎛⎝ 2𝜆∏︁

𝑗=1

𝑔
𝑟1,𝑗
𝑗

𝑇−→
2𝜆∏︁
𝑗=1

ℎ
𝑟1,𝑗
𝑗 , . . . ,

2𝜆∏︁
𝑗=1

𝑔
𝑟𝜆,𝑗

𝑗
𝑇−→

2𝜆∏︁
𝑗=1

ℎ
𝑟𝜆,𝑗

𝑗

⎞⎠ .

Completeness of the batching reduction is immediate by group axioms. For

soundness, suppose that 𝑔2
𝑇

𝑗 ̸= ℎ𝑗 for some 𝑗. The 𝑖-th statement output by
the reduction is true if and only if

2𝜆∏︁
𝑗=1

(𝑔2
𝑇

𝑗)𝑟𝑖,𝑗 =

2𝜆∏︁
𝑗=1

ℎ
𝑟𝑖,𝑗
𝑗 ,

which is equivalent to the equation

2𝜆∏︁
𝑗=1

(𝑔2
𝑇

𝑗 ℎ−1𝑗)𝑟𝑖,𝑗 = idG𝜆
.

For 𝑟𝑖 ← {0, 1}2𝜆, 𝑖 ∈ [1, 𝜆], this event occurs with probability at most 1/2
(see [5, Fact 8.1]). Thus, at least one of the 𝜆 resulting statements is false
except with probability 2−𝜆. In fact, this analysis gives a product set de-
scription for the “bad challenges” of the batching reduction. For a fixed 𝛼 =

14 A protocol for general 𝑇 can be obtained by dividing 𝑇 by computing a binary de-
composition of the resulting integer, and sequentially composing squaring protocols
for integers of the form 2𝑡.

24 Bitansky, Choudhuri, Holmgren, Kamath, Lombardi, Paneth, Rothblum

((𝑔1, ℎ1), . . . , (𝑔2𝜆, ℎ2𝜆)), the bad set ℛ𝛼 = ℬ(1)𝛼 × . . . × ℬ(𝜆)𝛼 ⊂ ({0, 1}2𝜆)𝜆,
where

ℬ(𝑖)𝛼 =

⎧⎨⎩𝑟 ∈ {0, 1}2𝜆 :

2𝜆∏︁
𝑗=1

(𝑔2
𝑇

𝑗)𝑟𝑗 =

2𝜆∏︁
𝑗=1

ℎ
𝑟𝑗
𝑗

⎫⎬⎭
(in fact, we have that each ℬ(𝑖)𝛼 = ℬ𝛼 for a fixed set ℬ𝛼). As mentioned

above, we have that |ℬ(𝑖)𝛼 | ≤ 22𝜆/2 for every 𝑗 and every false 𝛼. Thus, the
bad-challenge relation ℛ is a product relation with the appropriate sparsity,
where ℛ is defined as the set of pairs

(︀
𝛼, 𝛽 = (𝑟1, . . . , 𝑟𝜆)

)︀
for which at least

one of the 2𝜆 statements defined by 𝛼 is false but all of the 𝜆 statements
output by the reduction are true.
Finally, we observe that for (G𝜆,𝑀)← TrapSetup(1𝜆), the relation ℛ is also

efficiently product verifiable: to verify that 𝑣 ∈ ℬ(𝑖)𝛼 , it suffices to check the
equation

2𝜆∏︁
𝑗=1

(𝑔2
𝑇

𝑗)𝑟𝑗 =

2𝜆∏︁
𝑗=1

ℎ
𝑟𝑗
𝑗 .

This can be checked in time poly(𝜆, log 𝑇) given the order 𝑀 of G𝜆, by first
computing 2𝑇 modulo 𝑀 and then checking the equation above using the
group law and repeated squaring.

Thus, by Theorem 7 we conclude that there is a 𝑡 = log(𝑇)-round unambigu-
ous interactive proof system for the 𝑇 -IS problem with poly(𝜆) communication.
Moreover, by Corollary 1 this protocol can be round-collapsed to a computation-
ally unambiguous non-interactive argument system using a hash function family
that is correlation-intractable for the relation 𝑅 above (where we consider 𝑇 as
part of the input to the relation). Finally, by Theorem 5, such hash functions
can be built under the learning with errors assumption. This is captured by the
following corollary.

Corollary 2. For a security parameter 𝜆 ∈ N, let G𝜆 be a trapdoor group of
unknown defined in Definition 22. Assuming polynomial hardness of LWE (As-
sumption 4), 𝛱FS,ℋ is an adaptively unambiguously-sound non-interactive argu-
ment for the language

ℒ𝜆
G𝜆

:= {((𝑔1, · · · , 𝑔𝜆), (ℎ1, · · · , ℎ𝜆), 𝑇) ∈ G𝜆
𝜆×G𝜆

𝜆×N : ℎ𝑖 = 𝑔2
𝑇

for all 𝑖 ∈ [1, 𝜆]}.

5 PPAD Hardness

In this section, we construct a hard distribution of RSVL from any hard 𝑓 that
is downward self-reducible and batch-reducible, additionally assuming the unam-
biguous soundness of 𝛱FS,ℋ, the non-interactive “outline-and-batch” argument
system for ℒ𝑘

𝑓𝑛
(Corollary 1). By Theorem 3, this implies hardness of EOML,

which is complete for CLS; since CLS ⊆ PPAD, PPAD-hardness follows.

PPAD is as Hard as LWE and Iterated Squaring 25

Our construction follow the blueprint from [15, 16]. Further, since our con-
struction works with any 𝑓 that is downward self-reducible and batch-reducible,
it generalises the constructions of RSVL instance in [15,16] and the continuous
VDF in [23]. Indeed, as we saw in Section 3, both iterated squaring and the sum-
check problem satisfy downward self-reducibility and batch-reducibility. Due to
a lack of space, we only state below the relevant theorems and refer the reader
to the full version of the paper for the details.

Assumption 12 (Hardness of 𝑓). Let 𝑓 : 𝒳 → 𝒴 be a function as defined in
Section 3 and let X denote a sampler for 𝒳 . The function 𝑓 is (𝑠(𝜆), 𝜖(𝜆))-hard
with respect to X if for every 𝑠(𝜆)-sized adversary A = {A𝜆}𝜆∈N

Pr
𝑥←X(1𝜆)
𝑦←A(𝑥)

[𝑦 = 𝑓(𝑥)] = 𝑂(𝜖(𝜆)).

Theorem 13 (Hardness of RSVL from 𝑓 and 𝛱FS,ℋ). Let 𝑘, 𝑑 ∈ N be
parameters and 𝜆 ∈ N be a security parameter. Let

– 𝑓 : 𝒳 → 𝒴 be a 𝑑-query downwards self-reducible and 𝑑𝑘-to-𝑘 batch-reducible
function with sampler X; and

– 𝛱FS,ℋ = (Setup,P,V) denote the non-interactive outline-and-batch protocol
for ℒ𝑘

𝑓𝑛
from Corollary 1.

Furthermore, for 𝐻 ← 𝛱FS,ℋ.Setup(1
𝜆) and 𝑥← X(1𝜆), with 𝑛 := |𝑥|, define

𝑚 = 𝑚(𝑑, 𝑘, |𝑥|) ∈ poly(𝑑, 𝑘, |𝑥|) and 𝐿 = 𝐿(𝑑, 𝑘) := (𝑑+ 1)𝑛, (8)

there exists

S : {0, 1}𝑚 → {0, 1}𝑚 and V : {0, 1}𝑚 × [0, 2𝑚 − 1]→ {accept, reject}, (9)

hardwired with (𝑓,𝐻,D, ̃︀B, 𝑥,𝛱FS,ℋ.V). Such that if 𝑓 is hard with respect to
X and 𝛱FS,ℋ is (adaptively) unambiguously sound argument, then RSVL :=
(S,V, 𝐿, 𝑠0𝑛) constitutes a hard distribution of RSVL.

On instantiating 𝑓 with IS as sampled in Assumption 9 and 𝛱FS,ℋ with
non-interactive argument from Corollary 2, we get the following corollary to
Theorem 13.

Corollary 3 (Hardness of RSVL from IS and LWE). For a security pa-
rameter 𝜆 ∈ N, let (G𝜆, 𝑔, 𝑇) be sampled as in Assumption 11, which defines

𝑓𝑛(𝑔, 𝑇) := 𝑔2
𝑇

for 𝑛 := log(𝑇). Also, let 𝛱FS,ℋ = (Setup,P,V) denote the
non-interactive protocol for ℒ𝑘

G𝜆
from Corollary 2, which implies 𝑘 ∈ 𝜆𝑂(1) and

𝑑 = 2. Furthermore, for 𝐻 ← 𝛱FS,ℋ.Setup(1
𝜆), define

𝑚 = 𝑚(𝑛, 𝑘, 𝜆) := 𝑛2𝑘 · poly(𝜆) and 𝐿 = 𝐿(𝑛) = 3𝑛, (10)

there exists

S : {0, 1}𝑚 → {0, 1}𝑚 and V : {0, 1}𝑚 × [0, 2𝑚 − 1]→ {accept, reject}, (11)

hardwired with ((G𝜆, 𝑔, 𝑇), 𝐻,D, ̃︀B, 𝛱FS,ℋ.V). Such that if Assumption 11 and
Assumption 4 hold then RSVL := (S,V, 𝐿, 𝑠0𝑛) constitutes a hard distribution of
RSVL.

26 Bitansky, Choudhuri, Holmgren, Kamath, Lombardi, Paneth, Rothblum

6 Conclusion and Open Problems

In this work, we demonstrated hardness in the classPPAD assuming the polyno-
mial hardness of iterated squaring and LWE. Moreover, in the full version of this
paper, we (1) strengthened this result to show hardness in UEOPL ⊆ PPAD
(which is first cryptographic hardness shown for that class) and (2) constructed
a unique VDF based on similar assumptions.

We briefly mention two interesting open questions that are closely related to
this work:

– Can the iterated squaring hardness assumption be replaced by a weaker
assumption such as the hardness of factoring? This seems plausible since to
achieve PPAD hardness, it suffices for iterated squaring to be polynomially
hard for some efficiently computable iteration parameter. This question was
also posed in [16].

– Can we show PPAD-hardness solely from polynomial hardness of LWE,
and thus establish a (polynomially) tight hardness result for quantum algo-
rithms? Currently, only [39] demonstrates post-quantum hardness of PPAD
(under sub-exponential LWE).

Acknowledgements. Nir Bitansky is a member of the checkpoint institute of
information security and is supported by the European Research Council (ERC)
under the European Union’s Horizon Europe research and innovation programme
(grant agreement No. 101042417, acronym SPP), and by Len Blavatnik and the
Blavatnik Family Foundation.

Arka Rai Choudhuri is supported in part by DARPA under Agreement No.
HR00112020026, AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826,
and research grants by the Sloan Foundation, and Visa Inc. Any opinions, find-
ings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the United States
Government or DARPA.

Chethan Kamath is supported by Azrieli International Postdoctoral Fellow-
ship and ISF grants 484/18 and 1789/19. He thanks Alexandros Hollender and
Ninad Rajagopal for discussions on the class UEOPL and Krzysztof Pietrzak
for clarifications about unique VDFs.

Alex Lombardi is supported in part by DARPA under Agreement No.
HR00112020023, a grant from MIT-IBM Watson AI, a grant from Analog De-
vices, a Microsoft Trustworthy AI grant, the Thornton Family Faculty Research
Innovation Fellowship and a Charles M. Vest fellowship. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Govern-
ment or DARPA.

Omer Paneth is a member of the checkpoint institute of information secu-
rity and is supported by an Azrieli Faculty Fellowship, Len Blavatnik and the
Blavatnik Foundation, the Blavatnik Interdisciplinary Cyber Research Center at
Tel Aviv University, and ISF grant 1789/19.

PPAD is as Hard as LWE and Iterated Squaring 27

Ron Rothblum was funded by the European Union. Views and opinions ex-
pressed are however those of the author(s) only and do not necessarily reflect
those of the European Union or the European Research Council. Neither the
European Union nor the granting authority can be held responsible for them.

References

1. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge
University Press (2009) 12

2. Bach, E.: How to generate factored random numbers. SIAM Journal on Computing
17(2), 179–193 (1988) 11

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (Aug 2001).
https://doi.org/10.1007/3-540-44647-8_1 2

4. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding
a Nash equilibrium. In: Guruswami, V. (ed.) 56th FOCS. pp. 1480–1498. IEEE
Computer Society Press (Oct 2015). https://doi.org/10.1109/FOCS.2015.94 2,
3

5. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time- and space-
efficient arguments from groups of unknown order. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 123–152. Springer, Heidelberg,
Virtual Event (Aug 2021). https://doi.org/10.1007/978-3-030-84259-8_5 6,
7, 8, 9, 10, 20, 21, 23

6. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol.
10991, pp. 757–788. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/
978-3-319-96884-1_25 4

7. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(Mar 2011). https://doi.org/10.1007/978-3-642-19571-6_16 2

8. Brakerski, Z., Koppula, V., Mour, T.: NIZK from LPN and trapdoor hash via
correlation intractability for approximable relations. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 738–767. Springer,
Heidelberg (Aug 2020). https://doi.org/10.1007/978-3-030-56877-1_26 5

9. Cai, J.Y., Lipton, R.J., Sedgewick, R., Yao, A.C.: Towards uncheatable bench-
marks. In: [1993] Proceedings of the Eigth Annual Structure in Complexity Theory
Conference. pp. 2–11 (May 1993). https://doi.org/10.1109/SCT.1993.336546
21

10. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D.: Fiat-Shamir from simpler assumptions. Cryptology ePrint Archive, Report
2018/1004 (2018), https://eprint.iacr.org/2018/1004 9, 17

11. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D., Wichs, D.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen,
E. (eds.) 51st ACM STOC. pp. 1082–1090. ACM Press (Jun 2019). https://doi.
org/10.1145/3313276.3316380 5, 14, 17

12. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 91–122. Springer, Hei-
delberg (Apr / May 2018). https://doi.org/10.1007/978-3-319-78381-9_4 5

https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1109/FOCS.2015.94
https://doi.org/10.1109/FOCS.2015.94
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-030-56877-1_26
https://doi.org/10.1007/978-3-030-56877-1_26
https://doi.org/10.1109/SCT.1993.336546
https://doi.org/10.1109/SCT.1993.336546
https://eprint.iacr.org/2018/1004
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1007/978-3-319-78381-9_4
https://doi.org/10.1007/978-3-319-78381-9_4

28 Bitansky, Choudhuri, Holmgren, Kamath, Lombardi, Paneth, Rothblum

13. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC. pp. 209–218. ACM Press (May 1998).
https://doi.org/10.1145/276698.276741 8, 14

14. Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player
nash equilibria. Journal of the ACM (JACM) 56(3), 1–57 (2009) 2

15. Choudhuri, A.R., Hubácek, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum,
G.N.: Finding a nash equilibrium is no easier than breaking Fiat-Shamir. In:
Charikar, M., Cohen, E. (eds.) 51st ACM STOC. pp. 1103–1114. ACM Press (Jun
2019). https://doi.org/10.1145/3313276.3316400 2, 4, 10, 13, 16, 17, 20, 25

16. Choudhuri, A.R., Hubacek, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum,
G.N.: PPAD-hardness via iterated squaring modulo a composite. Cryptology ePrint
Archive, Report 2019/667 (2019), https://eprint.iacr.org/2019/667 2, 4, 5, 20,
21, 25, 26

17. Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive batch arguments for NP from
standard assumptions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV.
LNCS, vol. 12828, pp. 394–423. Springer, Heidelberg, Virtual Event (Aug 2021).
https://doi.org/10.1007/978-3-030-84259-8_14 5

18. Choudhuri, A.R., Jain, A., Jin, Z.: SNARGs for P from LWE. In: FOCS. pp. 68–79.
IEEE (2021) 5

19. Ciampi, M., Parisella, R., Venturi, D.: On adaptive security of delayed-input sigma
protocols and fiat-shamir NIZKs. In: Galdi, C., Kolesnikov, V. (eds.) SCN 20.
LNCS, vol. 12238, pp. 670–690. Springer, Heidelberg (Sep 2020). https://doi.
org/10.1007/978-3-030-57990-6_33 5

20. Couteau, G., Katsumata, S., Ursu, B.: Non-interactive zero-knowledge in pairing-
free groups from weaker assumptions. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part III. LNCS, vol. 12107, pp. 442–471. Springer, Heidelberg (May
2020). https://doi.org/10.1007/978-3-030-45727-3_15 5

21. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a nash equilibrium. SIAM Journal on Computing 39(1), 195–259 (2009) 2

22. Daskalakis, C., Papadimitriou, C.H.: Continuous local search. In: Randall, D. (ed.)
22nd SODA. pp. 790–804. ACM-SIAM (Jan 2011). https://doi.org/10.1137/1.
9781611973082.62 3

23. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay
functions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS,
vol. 12107, pp. 125–154. Springer, Heidelberg (May 2020). https://doi.org/10.
1007/978-3-030-45727-3_5 2, 4, 5, 20, 25

24. Fearnley, J., Gordon, S., Mehta, R., Savani, R.: Unique end of potential line.
In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) ICALP 2019.
LIPIcs, vol. 132, pp. 56:1–56:15. Schloss Dagstuhl (Jul 2019). https://doi.org/
10.4230/LIPIcs.ICALP.2019.56 3, 10

25. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identifi-
cation and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS,
vol. 263, pp. 186–194. Springer, Heidelberg (Aug 1987). https://doi.org/10.

1007/3-540-47721-7_12 5
26. Fischlin, R., Schnorr, C.P.: Stronger security proofs for RSA and Rabin bits.

Journal of Cryptology 13(2), 221–244 (Mar 2000). https://doi.org/10.1007/

s001459910008 7, 21
27. Freitag, C., Pass, R., Sirkin, N.: Parallelizable delegation from LWE. Cryptology

ePrint Archive, Report 2022/1025 (2022), https://eprint.iacr.org/2022/1025
4, 6

https://doi.org/10.1145/276698.276741
https://doi.org/10.1145/276698.276741
https://doi.org/10.1145/3313276.3316400
https://doi.org/10.1145/3313276.3316400
https://eprint.iacr.org/2019/667
https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.1007/978-3-030-57990-6_33
https://doi.org/10.1007/978-3-030-57990-6_33
https://doi.org/10.1007/978-3-030-57990-6_33
https://doi.org/10.1007/978-3-030-57990-6_33
https://doi.org/10.1007/978-3-030-45727-3_15
https://doi.org/10.1007/978-3-030-45727-3_15
https://doi.org/10.1137/1.9781611973082.62
https://doi.org/10.1137/1.9781611973082.62
https://doi.org/10.1137/1.9781611973082.62
https://doi.org/10.1137/1.9781611973082.62
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.4230/LIPIcs.ICALP.2019.56
https://doi.org/10.4230/LIPIcs.ICALP.2019.56
https://doi.org/10.4230/LIPIcs.ICALP.2019.56
https://doi.org/10.4230/LIPIcs.ICALP.2019.56
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/s001459910008
https://doi.org/10.1007/s001459910008
https://doi.org/10.1007/s001459910008
https://doi.org/10.1007/s001459910008
https://eprint.iacr.org/2022/1025

PPAD is as Hard as LWE and Iterated Squaring 29

28. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS. pp. 40–49. IEEE Computer Society Press (Oct 2013). https://doi.org/
10.1109/FOCS.2013.13 2

29. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of
finding a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II.
LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (Aug 2016). https://doi.org/
10.1007/978-3-662-53008-5_20 2, 3

30. Hoffmann, C., Hubáček, P., Kamath, C., Klein, K., Pietrzak, K.: Practical
statistically-sound proofs of exponentiation in any group. Cryptology ePrint
Archive, Report 2022/1021 (2022), https://eprint.iacr.org/2022/1021 6

31. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg
(Aug 2009). https://doi.org/10.1007/978-3-642-03356-8_37 7, 21

32. Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way functions
(or: One-way product functions and their applications). In: Thorup, M. (ed.) 59th
FOCS. pp. 850–858. IEEE Computer Society Press (Oct 2018). https://doi.org/
10.1109/FOCS.2018.00085 5

33. Holmgren, J., Lombardi, A., Rothblum, R.D.: Fiat-shamir via list-recoverable codes
(or: parallel repetition of GMW is not zero-knowledge). In: STOC. pp. 750–760.
ACM (2021) 5, 6, 7, 8, 10, 14, 15

34. Hubácek, P., Yogev, E.: Hardness of continuous local search: Query complexity
and cryptographic lower bounds. In: Klein, P.N. (ed.) 28th SODA. pp. 1352–1371.
ACM-SIAM (Jan 2017). https://doi.org/10.1137/1.9781611974782.88 2, 3

35. Hulett, J., Jawale, R., Khurana, D., Srinivasan, A.: SNARGs for P from
sub-exponential DDH and QR. In: EUROCRYPT 2022, Part II. pp. 520–
549. LNCS, Springer, Heidelberg (Jun 2022). https://doi.org/10.1007/

978-3-031-07085-3_18 5
36. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from LPN over 𝐹𝑝,

DLIN, and PRGs in NC0. Cryptology ePrint Archive, Report 2021/1334 (2021),
https://eprint.iacr.org/2021/1334 3

37. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing. pp. 60–73 (2021) 3

38. Jain, A., Jin, Z.: Non-interactive zero knowledge from sub-exponential DDH. In:
Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol.
12696, pp. 3–32. Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/

978-3-030-77870-5_1 5
39. Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.Y.: Snargs for bounded depth

computations and PPAD hardness from sub-exponential LWE. In: STOC. pp. 708–
721. ACM (2021) 2, 4, 5, 20, 26

40. Kalai, A.: Generating random factored numbers, easily. Journal of Cryptology
16(4), 287–289 (Sep 2003). https://doi.org/10.1007/s00145-003-0051-5 11

41. Kalai, Y.T., Paneth, O., Yang, L.: Delegation with updatable unambiguous proofs
and PPAD-hardness. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020,
Part III. LNCS, vol. 12172, pp. 652–673. Springer, Heidelberg (Aug 2020). https:
//doi.org/10.1007/978-3-030-56877-1_23 2, 4

42. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II.
LNCS, vol. 10402, pp. 224–251. Springer, Heidelberg (Aug 2017). https://doi.
org/10.1007/978-3-319-63715-0_8 5

https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20
https://eprint.iacr.org/2022/1021
https://doi.org/10.1007/978-3-642-03356-8_37
https://doi.org/10.1007/978-3-642-03356-8_37
https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1137/1.9781611974782.88
https://doi.org/10.1137/1.9781611974782.88
https://doi.org/10.1007/978-3-031-07085-3_18
https://doi.org/10.1007/978-3-031-07085-3_18
https://doi.org/10.1007/978-3-031-07085-3_18
https://doi.org/10.1007/978-3-031-07085-3_18
https://eprint.iacr.org/2021/1334
https://doi.org/10.1007/978-3-030-77870-5_1
https://doi.org/10.1007/978-3-030-77870-5_1
https://doi.org/10.1007/978-3-030-77870-5_1
https://doi.org/10.1007/978-3-030-77870-5_1
https://doi.org/10.1007/s00145-003-0051-5
https://doi.org/10.1007/s00145-003-0051-5
https://doi.org/10.1007/978-3-030-56877-1_23
https://doi.org/10.1007/978-3-030-56877-1_23
https://doi.org/10.1007/978-3-030-56877-1_23
https://doi.org/10.1007/978-3-030-56877-1_23
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8

30 Bitansky, Choudhuri, Holmgren, Kamath, Lombardi, Paneth, Rothblum

43. Lombardi, A., Vaikuntanathan, V.: Fiat-shamir for repeated squaring with appli-
cations to PPAD-hardness and VDFs. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 632–651. Springer, Heidelberg
(Aug 2020). https://doi.org/10.1007/978-3-030-56877-1_22 2, 4, 5, 6, 9, 13,
14, 15, 17, 20

44. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. In: 31st FOCS. pp. 2–10. IEEE Computer Society Press (Oct 1990).
https://doi.org/10.1109/FSCS.1990.89518 19, 20

45. Megiddo, N., Papadimitriou, C.H.: On total functions, existence theorems and
computational complexity. Theoretical Computer Science 81(2), 317–324 (1991) 2

46. Nash, J.: Non-cooperative games. Annals of mathematics pp. 286–295 (1951) 1
47. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,

Report 2010/556 (2010), https://eprint.iacr.org/2010/556 2
48. Papadimitriou, C.H.: On the complexity of the parity argument and other ineffi-

cient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994) 2
49. Peikert, C.: A decade of lattice cryptography. Foundations and Trends® in The-

oretical Computer Science 10(4), 283–424 (2016) 13
50. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain)

learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part I. LNCS, vol. 11692, pp. 89–114. Springer, Heidelberg (Aug 2019). https:
//doi.org/10.1007/978-3-030-26948-7_4 5, 14

51. Pietrzak, K.: Simple verifiable delay functions. In: Blum, A. (ed.) ITCS 2019.
vol. 124, pp. 60:1–60:15. LIPIcs (Jan 2019). https://doi.org/10.4230/LIPIcs.
ITCS.2019.60 5, 6, 9, 20, 21

52. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC.
pp. 49–62. ACM Press (Jun 2016). https://doi.org/10.1145/2897518.2897652
6, 15, 16

53. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Tech. rep., Cambridge, MA, USA (1996) 4, 21, 22

https://doi.org/10.1007/978-3-030-56877-1_22
https://doi.org/10.1007/978-3-030-56877-1_22
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1109/FSCS.1990.89518
https://eprint.iacr.org/2010/556
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.1145/2897518.2897652
https://doi.org/10.1145/2897518.2897652

	PPAD is as Hard as LWE and Iterated Squaring

