
Lower Bounds for the Number of Decryption

Updates in Registration-Based Encryption

Mohammad Mahmoody1⋆, Wei Qi1⋆⋆, and Ahmadreza Rahimi2⋆ ⋆ ⋆

1 University of Virginia, Charlottesville, VA, USA
2 Max Planck Institute for Security and Privacy, Bochum, Germany

Abstract. Registration-based encryption (Garg, Hajiabadi, Mahmoody,
Rahimi, TCC’18) aims to offer what identity-based encryption offers
without the key-escrow problem, which refers to the ability of the private-
key generator to obtain parties’ decryption keys at wish. In RBE, parties
generate their own secret and public keys and register their public keys
to the key curator (KC) who updates a compact public parameter after
each registration. The updated public parameter can then be used to
securely encrypt messages to registered identities.

A major drawback of RBE, compared with IBE, is that in order to
decrypt, parties might need to periodically request so-called decryption
updates from the KC. Current RBE schemes require Ω(log n) number
of updates after n registrations, while the public parameter is of length
poly(log n). Clearly, it would be highly desirable to have RBEs with only,
say, a constant number of updates. This leads to the following natural
question: are so many (logarithmic) updates necessary for RBE schemes,
or can we decrease the frequency of updates significantly?

In this paper, we prove an almost tight lower bound for the number of
updates in RBE schemes, as long as the times that parties receive updates
only depend on the registration time of the parties, which is a natural
property that holds for all known RBE constructions. More generally, we
prove a trade-off between the number of updates in RBEs and the length
of the public parameter for any scheme with fixed update times. Indeed,
we prove that for any such RBE scheme, if there are n ≥

(

k+d

d+1

)

identities
that receive at most d updates, the public parameter needs to be of length
Ω(k). As a corollary, we find that RBE systems with fixed update times
and public parameters of length poly(log n), require Ω(log n/ loglog n)
decryption updates, which is optimal up to a O(loglog n) factor.

⋆ mohammad@virginia.edu Supported by NSF grants CCF-1910681 and CNS1936799.
⋆⋆ wq4sr@virginia.edu Supported by NSF grants CNS1936799.

⋆ ⋆ ⋆ ahmadreza.rahimi@mpi-sp.org

Table of Contents

1 Introduction . 2
1.1 Technical overview . 4

Breaking RBEs with no updates: information theoretic tools. . . . 5
Breaking RBEs with single immediate updates. 6
Breaking RBEs with single updates arriving at arbitrary times. . 7

1.2 Related work . 10
2 Definitions and preliminaries . 10

2.1 Registration-based encryption . 10
2.2 Information-theoretic notation and the twig lemma 13

3 Skipping sequences in DAGs . 14
4 Breaking RBEs with few updates . 16

4.1 Defining good tuples and proving their existence 18
4.2 Non-uniform attacks using good tuples as advice 19
4.3 Efficient uniform attack without advice . 21
4.4 Extensions . 22

Allowing update times to depend on identities. 22
Allowing frequent updates for some identities. 22

A Completeness and security of RBE schemes . 26
B Information-theoretic notions and lemmas . 27
C Theorem 3.2 is Optimal . 29

1 Introduction

Identity-based encryption (IBE) [Sha84,BF01] is a powerful encryption primitive
that allows a large group of identities to have a single public parameter pp in
such a way that encryption to any identity id is possible solely based on the
public parameter and id. The main weakness of IBE is the so-called key-escrow
problem [Rog15,BF01,ARP03]. In particular, IBE schemes need a master secret
key msk that is needed to generate personalized decryption keys dkid for each
identity id, so that id can decrypt messages that are encrypted for them. This
means the holder of msk, called the “private-key generator” (PKG) can decrypt
all the messages, even the ones that are encrypted to parties who have not even
requested their decryption keys yet!

To address the key escrow problem with IBE, Garg et al. [GHMR18] in-
troduced a new primitive called Registration-based encryption (RBE). RBE is
indeed a hybrid of IBE and the more basic primitive of public-key encryption. In
RBE, every identity generates their own pair of public and secret keys (pkid, skid).
Then, if a party id decides to “register” (i.e. join the system), they can send a
request to a central party who manages the keys and is called the key curator
(KC). KC runs a deterministic and fully transparent algorithm and updates two
pieces of information: an auxiliary information auxn as well as a compact public

Lower Bounds for the Number of Decryption Updates in RBE 3

parameter ppn, where n shows how many people have registered in the system
so far. The public parameter ppn could be used like a public parameter of IBE
to encrypt messages to any of the n identities who have registered so far. The
auxiliary information auxn will be used to facilitate the next registration (and
another operation called update, which is discussed below). A key advantage of
RBE over IBE is that parties own their secret keys. However, they might some-
times need extra help from the KC to decrypt ciphertexts that are encrypted to
them, but perhaps using public parameters that are generated after the recipient
identity is registered in the system. However, these “decryption updates” shall
be needed rarely to make RBE useful.

Number of updates vs. compactness of public-parameters. If one puts no bound
on the length of the public parameter ppn, then a simple concatenation of all the
public keys of the registered parties ppn = {pk1, . . . , pkn} can be used to trivially
achieve RBE. Here the parties simply pick the public key of the receiver to en-
crypt their messages to them. This trivial scheme does not need any decryption
updates! Hence, RBE is only meaningfully useful, if |ppn| = o(n) grows sublin-
early. In [GHMR18], it was suggested to keep |ppn| = poly(κ, log n) as the default
level of compactness for the public parameter and keep the number of needed
decryption updates to be O(log n). The work of [GHMR18] also constructed such
schemes based on indistinguishability obfuscation [BGI+01,GGH+13,JLS21] and
somewhere-statistically binding hashing schemes [HW15].

At a very high level, the public parameter ppn in [GHMR18] is the root of a
Merkle tree that hashes all the public parameters of the registered identities, and
so it can also be viewed as a commitment to all those public keys. This makes
the job of the KC very similar to that of accumulators [BdM94,BP97,CL02].
The ciphertexts in [GHMR18] are obfuscations of programs that anticipate an
“opening” into the identity’s public key and output encryption of the message
under such public keys. Therefore, to decrypt a message an identity idi would
need to know the“decommitment” (opening) to its public key pki with respect to
the commitment message ppn. When the identities register, the Merkle tree grows
and decommitment needs to be updated as well. Therefore, when more parties
register, the previously registered parties need to request decryption updates to
keep their decommitments up to date. This approach led to Θ(log n) number of
updates. The work of Garg et al. [GHM+19] further improved the assumptions
needed for constructing RBE to more standard ones (such as CDH or LWE) by,
roughly speaking, substituting the obfuscation part with the powerful garbling
techniques of [DG17]. Furthermore, Goyal and Vusirikala [GV20] added efficient
verifiability mechanisms for membership and non-membership of identities.

All the RBE schemes so far have the same asymptotic efficiency barriers
built into them: they all use the same level of poly(κ, log n) compactness for the
public parameter and require Θ(log n) number of updates to guarantee successful
decryption. In this work, we revisit these bounds and ask the following question.

4 Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi

How many decryption updates are needed in RBEs with public parameters
of length poly(κ, log n)? More generally, what is the trade-off between the
number of updates and the length of the public parameter?

Our main result provides an answer to the question above by proving an
almost tight lower bound for the number of updates of any RBE schemes in which
the update times are fixed. We say an RBE scheme has fixed update times if for
every i ≤ j, it is known ahead of any actual registrations whether or not idi (i.e.,
the ith registered identity) needs a decryption update after the registration of
idj .

3 Interestingly, all known constructions of RBE [GHMR18,GHM+19,GV20]
have fixed update times, and it is indeed unclear whether the times for the
updates can be tied to the public keys and (and the CRS) in a meaningful way.4

See Remark 1.3 for more discussions on how fixed updates arise in the current
constructions naturally, and why they are a useful property to have on their
own. More generally, we prove a trade-off between the number of updates that
are needed and the size of the public parameter.

Theorem 1.1 (Main result). Let Π be any RBE scheme in which only d
decryption updates are needed for each identity when we limit the scheme to
only n identities. Further, suppose the times of the updates are only a function
of the time when a party registers and the total number of parties so far, and
that the length of the public parameter |ppn| is non-decreasing in n.5 Then,

(|ppn|+ d

d+ 1

)

≥ n.

In particular, for constant number of updates d = O(1), one needs public param-
eters of length |ppn| ≥ Ω(n1/(d+1)), and for public parameters of length at most
|ppn| ≤ poly(log n) one needs at least d ≥ Ω(log n/ loglog n) many updates.

See Theorem 4.1 and Corollary 4.2 for more details.
Our result leaves it open to either extend our lower bound to RBE schemes

with dynamic update times that depend on the public keys or to invent new RBE
schemes with dynamic update times that bypass our lower bound. In addition,
it remains open to close the rather small gap of 1/ loglog n factor between our
lower bound and the upper bounds of previously constructed RBE schemes.

1.1 Technical overview

We prove Theorem 1.1 by giving an explicit polynomial-time attack on any RBE
scheme that does not satisfy the stated trade-off between the public parameters’

3 More formally, there is an “update graph” G that is fixed and tells us if idi needs
an update after idj registers or not.

4 By “meaningful”, here we mean that the novel scheme cannot be trivially turned
into one with fixed update patterns, as it is not hard to come up with contrived
schemes whose update times depend on the public keys.

5 Notice that, one can always make |ppn| non-decreasing using simple padding (with
zeros) that prevents ppn from shrinking when n grows.

Lower Bounds for the Number of Decryption Updates in RBE 5

length and the number of updates. Below, we fix n to be the number of the parties
who register in the system. For simplicity, we work with registered identities
{id1 = 1, id2 = 2, . . .} who register in this exact order.

Good identity tuples for the attack. At a very high level, we show that for any
RBE scheme with n parties, d update at fixed times (independently of the keys),

and compact public parameter
(|ppn|+d

d+1

)

< n, there exists a tuple (i, k) ∈ [n]2, i ≤
k that is “good for the attacker” in the following sense. If one encrypts a message
m for idi = i using ppk (i.e., the public parameter right after idk registers), then
the adversary can successfully decrypt the ciphertext back into m, even though
it does not have the real secret key of idi. Note that we prove this, despite the
fact that the public parameter ppk could still be “linked” with the public and
secret keys of idi (through the algorithm used by the KC). Yet, we prove that
if compared to the number of updates the public parameter is not long enough,
there is always a tuple (i, k) that is good for the attacker to succeed.

Before proving the existence of good tuples and explaining how the adversary
actually uses them in its attack, we first outline the ideas that we develop to
achieve our goals. At a high level, we use two types of ideas as follows.

– Information theoretic ideas will rely on the length of the public parameter.
– Combinatorial tools will rely on the number of decryption updates.

In the following, we explain both of these ideas and how they play their role in our
attack and its analysis. In order to do that, we first go over the simplest form
of RBE schemes, in which no updates are allowed. This allows us to explain
information theoretic ideas more clearly. We then extend the attack and its
analysis to RBE schemes that allow one updates. Even this simple case will
be instructive to show the challenges that arise and the new (combinatorial)
tools that become necessary to overcome these challenges. The full poofs for the
general case can be found in Section 4. For simplicity of the presentation, we
ignore the existence of a CRS, but our proofs extend to having CRS as well.

Breaking RBEs with no updates: information theoretic tools. Suppose
an RBE scheme has no updates. This is not entirely impossible, as one can always
concatenate the public keys and store them as one giant public parameter that
grows linearly with the number of parties n. But is this linear dependence on n
necessary? Here we observe, using basic information theoretic tools, that this is
indeed the case. First, we define a notation for keys as random variables.

Notation. We use KEYi = (PKi, SKi) to denote the public/secret keys of idi, as
random variables. We also use PPk to denote ppk as a random variable.

Bounding the mutual information. If |ppn| ≤ ℓ, then the (Shannon) entropy of
PPn can be at most ℓ bits.6 Therefore, the mutual information I(KEY1,...,n;PPn)

6 See Definition 2.5 for the definition of entropy.

6 Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi

between PPn and concatenation of all the keys KEY1,...,n = (KEY1, . . . ,KEYn)
is also bounded by ℓ.7 Since the keys are generated independently for different
identities, the average mutual information between PPn and KEYi of a random
party i is bounded Ei←[n][I(KEYi;PPn)] ≤ ℓ/n. Therefore, there exists i ∈ [n],
such that I(KEYi;PPn) ≤ ℓ/n. Such pair (i, k = n) will be good for the attacker.

From bounded mutual information to independence. If I(KEYi;PPn) ≤ ℓ/n = ε
is sufficiently small (e.g., due to the small length of the public parameter), we
can use the Pinsker’s inequality (see Lemma B.5) to conclude that the two
distributions below are O(

√
ε)-statistically close

(KEYi,PPn) ≈O(
√
ε) (KEYi ⊗ PPn),

where in the left side (KEYi,PPn) is the jointly sampled pair of PPn and keys
KEYi for idi, while in the right side the ⊗ notation indicates that KEYi and PPn

are sampled from their corresponding true marginal distribution, but they are
sampled independently of each other.

From independence to successful attacks. The argument above shows that due
to the (almost) independence of the keys KEYi of idi and PPn, if the adversary
simply picks a fresh pair of fake keys (PK′i, SK

′
i) = KEY′i for idi and uses SK′i to

decrypt the messages encrypted for idi, it will succeed with probability ρ−O(
√
ε),

where ρ is the completeness of the scheme. The reason is that using the correct
keys would succeed with probability ρ, and switching to fake keys will affect this
probability by at most O(

√
ε).

The attack above on the simple RBE schemes with no updates crucially uses
the fact that no decryption updates are received by the parties at any time during
the course of the system. In fact, the information theoretic argument above
completely breaks down even if the registered parties receive just one update
right after they register! To see why suppose ui is the single decryption update
received by idi at some point after they register. Then, decrypting messages
that are encrypted to idi might require both ski and the update ui to succeed.
Therefore, we cannot simply rely on (KEYi,PPn) ≈O(

√
ε) (KEYi ⊗ PPn), and

e.g., stronger conditions that also involve ui might be necessary.

Breaking RBEs with single immediate updates. For the simpler case that
the update ui is generated right after the registration of idi, we can still use the
ideas for the no-update setting and slightly more powerful information theoretic
tools. First, note that the adversary needs to generate some form of (fake) u′i
to run the decryption. A natural way to do it is to generate this fake update
u′i using the fake keys KEY′i that it has generated for the vulnerable party idi
(where (i, n) is a good pair as explained above). A key point is that this update
u′i cannot be generated using KEY′i alone, and it also needs to use as input the
publicly available auxiliary information that is stored at the key curator. This

7 See Definition B.1 for the definition of mutual information.

Lower Bounds for the Number of Decryption Updates in RBE 7

public information is a function of (the CRS and) the registered public keys.
Hence, ui is a function of KEY′i and the previously registered public keys.

The above subtle point shows that the approximate independence of KEYi

and PPn is no longer sufficient for the attack’s success, and we need to also condi-
tion on the previously registered (public keys). Fortunately, this is not a problem,
as we can start from a stronger condition that still can be proven based on the
length of the public parameter: Ei←[n][I(KEYi;PPn|KEY1, . . . ,KEYi−1)] ≤ ℓ/n.
(Note that we are now conditioning on the previous keys). Therefore, there ex-
ists i ∈ [n], such that I(KEYi;PPn|KEY1, . . . ,KEYi−1) ≤ ℓ/n. Therefore, we can
again use a variant of Pinsker’s inequality and show that (KEYi,PPn) ≈O(

√
ε)

(KEYi ⊗ PPn), holds even conditioned on the previously registered keys. Such i
will again make the pair (i, k = n) a good pair for the attack.

Breaking RBEs with single updates arriving at arbitrary times. When
updates can arrive at arbitrary times, the simple information theoretic arguments
above break down, as we cannot simply use the fake keys of the party idi to
generate its needed decryption update. This means that we might need to go
a few steps further in time and even fake the keys of the parties idi+1, . . . to
be able to generate a useful update. But this will increase the length of the
random variables that we fake and that kills the small mutual information with
the public parameter. At a high level, we will group the identities in such a way
that different groups can be seen as “large identity” groups that can collectively
generate the needed update for the first identity in that group.

More formally, to attack RBEs with single updates that can arrive at any
moment after registration of idi, we define the notion of a good triple i ≤ j ≤ k
(for the attack) such that when the triple (i, j, k) is good, according to our
definition, then the pair (i, k) would be good (for the attacker) as described
above; namely, idi will become vulnerable to attacks after the kth registration.
The number j with i ≤ j ≤ k denotes how this attack will be done. In particular,
we call (i, j, k) a good triple if it has both of the following two properties.

1. Being useful in relation with updates. We require that idi will not receive
any updates during the registrations of idj+1, . . . , idk. This means that, if we
only use the updates generated for idi till the registration of idj , idi can still
decrypt messages that are encrypted till the registration of idk.

2. Being useful in relation with key independence. We require that the con-
catenation of the keys of the identities (KEYi,KEYi+1, . . . ,KEYj), as one
big random variable, is almost independent of PPk, and this holds when we
condition on the first i− 1 pair of keys (KEY1, . . . ,KEYi−1).

If the above two conditions hold for a triple (i, j, k), then one can still use an
almost identical attack to that of the simpler cases above on the target identity i
as follows. The adversary simply asks a message to be encrypted to idi using ppk.
Then, it re-samples fake keys {KEYi, . . . ,KEYj} for all parties {idi, . . . , idj}. It
then registers all these fake keys in its head starting from the auxiliary informa-
tion auxi−1 of the KC for the moment right before the registration of idi. During

8 Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi

these fake registrations, the adversary looks for any potential (fake) decryption
updates that might be generated for idi. The adversary uses all of these fake up-
dates and the fake secret key sk′i ← SK′i for idi and tries to decrypt the challenge
ciphertext. Therefore, all we need to do is to prove good triples exist. Below, we
sketch why good triples exist by relying on the fact that the public parameter
is small enough compared to the number of updates. For this, we would need to
introduce some useful graph theoretical notions.

DAGs of decryption update times. Let G be the following directed acyclic graph
(DAG) on nodes [n] in regard to an RBE scheme Π. Connect i to j, if idi receives
a decryption update right after idj registers. Note that the number of updates d
translates into an upper bound on the out-degree of the nodes in G. We refer to
G as the update graph of the RBE scheme Π.

Skipping sequences in DAGs. We now identify a special type of sub-graphs of
DAGs like G that can help an adversary break an RBE scheme whose graph
of update times is G. Let G be a DAG modeling the update times of our RBE
scheme as explained above over the vertices (identities) [n]. We call a sequence
S = {u1 < u2 < · · · < uℓ} ⊆ [n] a skipping sequence if for every t ≤ ℓ − 1 and
every edge (ut, v) ∈ G (denoting that the utth identity idut

gets an update when
the vth identity idv registers), it holds that v /∈ {ut+1, ut+1+1, . . . , uℓ}. In other
words, identity idut

will either get updates before time idut+1
registers, or after

time iduℓ
, but not in between.8 Intuitively, the sequence {u1 < u2 < · · · < uℓ}

allows us to group the identities into ℓ groups such that each group internally
generate the update needed for their first member.

Skipping sequences imply good triples. Here we show that if a skipping sequence
in the update graph G is long enough, it implies the existence of a good triple
(i, j, k). To see why, let S = {u1 < u2 < · · · < uℓ} ⊆ [n] be a skipping sequence.

– For all t ∈ [k], (i = ut, j = ut+1 − 1, k = uℓ) satisfies the first property
that a good triple needs. This is directly implied by the non-existence of
update edges going from ui to any of the vertices ut+1, ut+1 + 1, . . . , uℓ, as
guaranteed by the definition of skipping sequences.

– Partition the set of (pairs of) keys of the registered identities into bigger
random variables as follows. Put the keys KEYu of identity idu in group Kt

if ut ≤ u < ut+1. This partitions the set of all keys of parties corresponding
to the vertices {u1, . . . uℓ} into ℓ− 1 groups. Using the chain rule for mutual
information, we can again conclude that at least for one of these groups Kt,
it holds that the keys in the group Kt (jointly) have at most |ppk|/ℓ mutual
information with PPk, when we condition on the keys of all the parties who
registered prior to idut

. Therefore, we can again apply Pinsker’s inequality
and prove that the triple (i = ut, j = ut+1 − 1, k = uℓ) also satisfies the
second property needed for a triple to be good.

8 See Definition 3.1 for a formal definition.

Lower Bounds for the Number of Decryption Updates in RBE 9

DAGs of bounded out-degrees contain long skipping sequences. It remains to show
that any DAG with a “small” out degree contains a “large” skipping sequence.
Here we explain the proof for the simple case of out-degrees equal to 1. The idea,
however, can be extended to arbitrary (bounded) out-degrees (see Theorem 3.2).
We call a finite graph G a forward DAG if the vertices of G are [n] and all the
edges are of the form (i, j) for i ≤ j. We use deg+(u) to denote the out-degree
of u, which is the number of nodes like v where (u, v) is an edge in G.

Claim 1.2 (Long skipping sequence in forward DAGs of out-degree at most 1).
Let G = (VG = [n], EG) be a forward DAG of size n =

(

k+1
2

)

for k ∈ N, and that

deg+(G) ≤ 1. Then, there exists a skipping sequence in G of size k.

In the following, we prove this claim. Since n =
(

k+1
2

)

=
∑k

i=1 i, we divide the n
vertices into k groups {Gi}i∈[k] such that when we read the vertices in the order
1, . . . , n, the members of the group Gi are immediately after the vertices of group
Gi−1 and the ith group Gi has (k + 1− i) vertices.

We say an edge (u, v) lies in a group Gi if both u, v ∈ Gi. We say a group Gi
is green if there exists at least one vertex in Gi whose out-going edge lies in Gi
and we call any such vertex a representative of Gi. Otherwise, group Gi is red.

Now we do as follows to find a skipping sequence of the size we want:

1. If all k groups are green, then we select exactly one representative ri from
each group Gi and construct sequence S = {r1 < r2 < · · · < rk}. By con-
struction, for i < k the out-going edge (ri, v) must lie in Gi, which implies
that v < ri+1. Thus, S is a skipping sequence.

2. If red groups exist, let Gj be the red group with smallest j. We then construct
the sequence S = {r1 < r2 < · · · < rj−1} ∪ Gj of size k.

Where did we rely on the fixed update times? In the proof sketched above, we
partition the keys into groups based on the skipping sequence S that comes out of
the update graph G. We then argued that, because this sequence is long enough,
the mutual information between ppk and one of the groups of keys defined by S
is small. If we allow the graph G itself to be correlated with the public parameter
ppk, the graph itself can carry information. Alternatively, one might try to first
sample and fix the graph G based on the execution of the system. After all, it will
again be a low-out-degree graph and it will be guaranteed to have a long skipping
sequence S = {u1 < · · · < uℓ}. However, if we pick a triple (ut, ut+1 − 1, uℓ)
as a candidate good triple, even an adversary who has the real keys for the
identities corresponding to {ut, . . . , ut+1 − 1} might fail to decrypt the challenge
ciphertext! That is because when we change the keys, the update times might
change and now identity ut might need an update after time ut+1.

Remark 1.3 (How to interpret the assumption of fixed update times). As men-
tioned before, all known constructions of RBE have fixed update times. Here we
sketch the reason. Despite their differences, the RBE schemes so far consist of
two components: a data structure that serves as a commitment/accumulator for
identity-key pairs, and a “crypto” component that either employs IO or garbling

10 Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi

to achieve a form of “delayed encryption”. The first component in known con-
structions of RBE always consists of “subsets” whose sizes determine the update
times, while these sizes only depend on the number of identities registered so
far. Moreover, fixed update times seems like a meaningful feature on its own
to have for an RBE scheme, as it allows the parties in an RBE system to know
when they will need updates solely based on their registration time and the total
number of registered parties (without the need for failing in decryption to realize
that their credentials are outdated). In fact, if the RBE system is designed in
a (natural) way that KC itself takes on the role of pushing the updates then
having fixed update times would be even more natural, as the KC actually does
not have parties’ secret keys to even try any decryption. As it remains open to
potentially bypass our lower bound by leveraging on dynamic update times that
depend on the registered keys, we point out a success story that might have some
resemblance. Indeed, in the context of memory-hard functions, in which a DAG
is also built on top of the input data, provable barriers against memory-hard
functions have been overcome using data-dependent ones [BH22].

1.2 Related work

Here we review some further related work.
In addition to the works [GHMR18,GHM+19,GV20] that studied the feasi-

bility and asymptotic efficiency of RBE, Cong, Eldefrawy, and Smart [CES21]
studied the non-asymptotic practicality of implementing RBE schemes by esti-
mating the concrete communication and computation costs of RBE and further
optimizing it using alternative tools instead of Merkle trees.

Prior to RBE, other approaches have been pursued to address the key-escrow
problem with IBE. One approach proposed by [BF01] was to make the PKG de-
centralized and run by multiple parties. Goyal [Goy07,GLSW08] proposed an
after-the-fact approach of making PKG “accountable”, by hoping to catch an ir-
responsible PKG in case of misuse. The works of [CCV04,Cho09,WQT18] aimed
at (a related goal of) making it harder for the PKG to find out the receiver
identity by hiding it in a large set of identities. Chow [Cho09] also studied ways
to allow the users to interactively obtain secret keys without revealing their
identities, and Emura et al. [EKW19] further formalized this approach.

The work of [ARP03] pursued another approach to mix IBE and public-key
encryption by constructing “Certificateless” Public Key Cryptography. However,
we shall clarify that, since the key-escrow is inherent to IBE, none of these
approaches (including RBE) can really eliminate the key-escrow problem of IBE.

2 Definitions and preliminaries

2.1 Registration-based encryption

In this subsection, we first define the syntax of RBE. We then present new
definitions of security and completeness for RBEs that are used in our lower

Lower Bounds for the Number of Decryption Updates in RBE 11

bounds. Standard definitions can be found in Section A. Our security notion
is weaker than (and implied by) the standard RBE security definition; in our
definition, the adversary does not get any secret keys. Using this definition makes
a lower bound stronger. Our completeness is stronger than (and implies) the
standard completeness definition of RBEs; in our definition, the update times are
fixed. It remains open to extend our lower bounds to the standard completeness
definition of RBE or to find a new construction that bypasses our lower bound.

Definition 2.1 (Syntax of registration-based encryption). Five PPT al-
gorithms (Gen,Reg,Enc,Upd,Dec) form a registration-based encryption (RBE
for short) if they work together as follows.

– Generating CRS. A common random string crs of length poly(κ) is pub-
licly sampled at the beginning, for the security parameter κ.

– Key Generation. Gen(1κ)→ (pk, sk): The randomized algorithm Gen out-
puts a pair of public and secret keys (pk, sk). The key generation algorithm is
run by any honest party locally who wants to register itself into the system.

– Registration. Reg[aux](crs, pp, id, pk) → pp′: The deterministic algorithm
Reg takes as input the CRS crs, current public parameter pp, a registering
identity id and a public key pk (supposedly for the identity id), and it outputs
pp′ as the updated public parameters. The Reg algorithm uses read and write
access to auxiliary information aux which will be updated into aux′ during
the process of registration and helps with the efficiency of the registration
and updates (below). The system is initialized with pp, aux = ⊥.

– Encryption. Enc(crs, pp, id,m) → ct: The randomized algorithm Enc takes
as input the CRS crs, a public parameter pp, a recipient identity id, and a
plaintext message m, and it outputs a ciphertext ct.

– Update. Updaux(pp, id, pk) → u: The deterministic algorithm Upd takes as
input the current public parameter pp, an identity id, and a public key pk.
It has read only oracle access to aux and generates an update information u

that can help id to decrypt its messages.
– Decryption. Dec(sk, u, ct) → m: The deterministic decryption algorithm

Dec takes as input a secret key sk, an update information u, and a ciphertext
ct, and it outputs a message m ∈ {0, 1}∗ or in {⊥,GetUpd}. The symbol
⊥ indicates a syntax error while GetUpd indicates that more recent update
information (than u) might be needed for decryption.

The Reg and Upd algorithms are performed by the party called key curator, which
we call KC for short, and aux can be seen as the state held by the KC.

See Definitions A.1 and A.2 for the standard definitions of completeness and
security of RBEs. Below we present new definitions that are relevant to us.

We now introduce a generalization of the security of RBE called k-corruption
security. In the original security definition of RBE (see Definition A.2), the ad-
versary samples secret keys of all non-target identities. Here we only allow it
to sample the keys of up to k non-target identities. In the extreme case where
k = n − 1 (, meaning all but the target identity is corrupted,) the definition

12 Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi

matches Definition A.2. In the extreme case where k = 0, the adversary is es-
sentially an observer who is curious to decrypt messages sent to parties.

Definition 2.2 (k-corruption security for RBE). Let k be a positive integer.
For any interactive PPT adversary A, consider the following game Seck-cA (κ)
between A and a challenger C.
1. Initialization. C sets pp = ⊥, aux = ⊥, (the set of non-corrupted identities)
Dnc = ∅, (the set of corrupted identities) Dc = ∅, id∗ = ⊥, crs ← Upoly(κ)

and sends the sampled crs to A.
2. Till A continues (which is at most poly(κ) steps), proceed as follows. At

every iteration, A chooses exactly one of the actions below to perform.
(a) Registering a corrupted (non-target) identity. This step is allowed

only if |Dc| < k. A sends some id /∈ Dnc ∪ Dc and pk to C. C registers

(id, pk) by letting pp := Reg[aux](crs, pp, id, pk) and Dc := Dc ∪ {id}.
(b) Registering an uncorrupted (potentially target) identity. A sends

an id /∈ Dnc ∪ Dc to C. C samples (pk, sk) ← Gen(1κ), runs pp :=

Reg[aux](crs, pp, id, pk), Dnc := Dnc ∪ {id}, and sends pk to A.
3. Encrypting for a target identity. A first sends some id∗ /∈ Dc to C. (If

id∗ ∈ Dnc, then the adversary is targeting one of the registered uncorrupted
identities, otherwise it is targeting a non-registered identity). Next A sends
messages m0,m1 of equal lengths |m0| = |m1| to the adversary. Then, C
generates ct ← Enc(crs, pp, id∗,mb), where b ← {0, 1} is a random bit, and
sends ct to A. The adversary A outputs a bit b′ and wins if b = b′.

We call the scheme k-corruption secure, if for all PPT A, it holds that

P[Awins Seck-cA (κ)] <
1

2
+ negl(κ).

We now formally define RBE schemes with fixed update times. In such
schemes, when a person registers at time i, they already know the indices j > i
such that they would need an update when the jth identity registers. More for-
mally, we use the following game which is similar to the game of Definition A.1,
with the difference that the updates are generated as soon as they are required
by an “updates graph” (DAG) G.

Definition 2.3 (Forward DAGs). Let G = (VG, EG) be a directed acyclic
graph (DAG) with vertices VG = [n] (in case of being finite) or VG = N (in case
of being infinite). We write (i, j) ∈ G if (i, j) ∈ EG (i.e., there is an edge from i
to j in G). We call G a forward DAG, if for all (i, j) ∈ G, we have i ≤ j.

The definition below captures the property that by making the updates accord-
ing to the graph G, namely, by giving the update to person i whenever person
j registers and (i, j) ∈ G, then there will be no need for further updates. The
definition is written for the setting where an “adversary” targets a specific iden-
tity (and aims to make the updates insufficient for it). However, the definition
implies that even if there is more than one identity with honestly generated keys,
their updates would never be necessary outside what graph G instructs.

Lower Bounds for the Number of Decryption Updates in RBE 13

Definition 2.4 (Completeness of RBE with a fixed update times). Let G
be an infinite forward DAG. For an RBE scheme and any interactive computa-
tionally unbounded adversary A that still has a limited poly(κ) round complexity,
consider the game UpdTimesGA(κ) between A and a challenger C as follows.

1. Initialization. C sets pp = ⊥, aux = ⊥, u = ⊥, D = ∅, S = ∅, t = 0, and
crs← Upoly(κ), and sends the sampled crs to A.

2. Till A continues (which is at most poly(κ) steps), proceed as follows. At
every iteration, A chooses exactly one of the actions below to perform.
(a) Registering identities. A performs exactly one out of Step 2(a)i and

Step 2(a)ii below, but regardless of this choice, C will continue to send
the updates as described next.
i. Registering a corrupted non-target identity. A sends some id /∈
D and pk to C. C registers (id, pk) by letting pp := Reg[aux](crs, pp, id, pk)
and D := D ∪ {id}.

ii. Registering the target uncorrupted identity. This step is al-
lowed only if id∗ = ⊥. In that case, A sends some id∗ /∈ D to C. C then
samples (pk∗, sk∗) ← Gen(1κ), runs pp := Reg[aux](crs, pp, id∗, pk∗),
D := D ∪ {id∗}, and sends pk∗ to A.

Immediately updating the target identity, if required by G. This
step is allowed only if id∗ 6= ⊥ (otherwise this step is skipped). Suppose
id∗ was the ith registered identity, and let the identity registered in either
of Step 2(a)i Step or 2(a)ii be the jth identity.9 If (i, j) ∈ G (i.e., there
is an edge from i to j), then we update the decryption information u =
Updaux(pp, id∗) for the target identity.10

(b) Encrypting for the target identity. This step is allowed only if
id∗ 6= ⊥. In that case, C sets t = t + 1. A sends mt ∈ {0, 1}∗ to
C who then sets m′t := mt and sends back a corresponding ciphertext
ctt ← Enc(crs, pp, id∗,mt) to A.

(c) Decryption for the target identity. A sends j ∈ [t] to C who lets
m′j = Dec(sk∗, u, ctj).

The adversary A wins above, if there is some j ∈ [t] for which m′j 6= mj. This
particularly holds, e.g., if m′j = GetUpd. We say that G is an update graph
for the RBE scheme, if P[Awins] = negl(κ). In this case, we also say that the
completeness holds with fixed update graph G.

2.2 Information-theoretic notation and the twig lemma

Notation. We use capital letters to refer to random variables and usually use low-
ercase letters of the same type to refer to samples from those random variables.
x← X refers to sampling x from the random variable X. For jointly distributed
random variables X,Y , by XY or (X,Y) we refer to their joint samples, and
by X ⊗ Y , we refer to sampling X,Y from their marginals independently. For

9 Note that this registered identity itself could be id∗.
10 This update might not be really necessary, but we still run them as instructed.

14 Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi

jointly distributed XY and y ∈ Y , by X|y we refer to the random variable X
conditioned on the sampled y. By X|Y we emphasize that X is sampled jointly
with (and conditioned on) Y , even though X|Y only refers to a sample from
X. Using this notation (X|Y)Y means the same thing as XY . For distributed
X,Y, Z, by (X|Z ⊗ Y |Z)Z we refer to sampling z ← Z first, and then sampling
X|z, Y |z independently from their marginals. By X ≡ Y we mean that X,Y are
identically distributed. We write ≈ε to denote ε-closeness in statistical distance.
By Supp(X) we mean the support set of the random variable (or probability
distribution) X. When we use X as set, we refer to its support set. So, X ∪ Y
means Supp(X) ∪ Supp(Y). We let PX [x] = P[X = x]. log means logarithm in
base 2 and ln means logarithm in base e.

Definition 2.5 (Shannon entropy). The Shannon Entropy of a random vari-
able X is defined as H(X) =

∑

x∈X −PX [x] logPX [x]. The conditional Shannon
entropy H(X|Y) is defined as Ey←Y [H(X|y)]. The entropy chain rule states that
H(XY) = H(X) +H(Y |X) = H(Y) +H(X|Y).

Definition 2.6 (Statistical distance). Let X and Y be two random variables.
We define the statistical distance between these two distributions as:

SD(X,Y) =
∑

z∈X∪Y

|PX [z]− PY [z]|
2

We prove the following lemma in Section B.

Lemma 2.7 (The twig lemma). Let X0, . . . , Xℓ, Y be jointly distributed ran-
dom variables. Then,

E
i←[ℓ]

[SD(X0 . . . XiY,X0 . . . Xi−1X
′
iY)] ≤

√

H(Y) ln 2

2ℓ

in which Y Xi . . . X0 are sampled jointly, while Y X ′iXi−1, . . . , X0 is sampled
by first sampling x0 . . . , xi−1y ← X0 . . . Xi−1Y and then sampling X ′i from
Xi|x1...xi−1

by ignoring the sampled y.11 In particular, if the length of the samples
from Y are at most d, there exists i ∈ [ℓ] such that

SD(X0 . . . XiY,X0 . . . Xi−1X
′
iY) ≤

√

d ln 2

2ℓ
.

3 Skipping sequences in DAGs

In this section, we formally study skipping sequences in DAGs and prove that
they emerge when the out degrees are small. In Section C, we prove that the
bounds of this section are tight. This means that our approach of using skipping
sequences cannot improve our lower bound of log n/ loglog n updates in RBEs.
This leaves open to close the gap between our lower bound and the upper bound
of log n updates for future work.

11 Using our notation, that means Y X ′

iXi−1, . . . , X0 ≡ (Y |Z ⊗ Xi|Z)Z for Z =
Xi−1, . . . , X0.

Lower Bounds for the Number of Decryption Updates in RBE 15

Intuition for skipping sequence. Intuitively, we want to find a sequence of iden-
tities whose updates are relatively independent from the next identity in the
sequence. Namely, every identity (except the last one) should receive all her up-
dates before the next identity in the sequence joins. Looking forward, we will
attack an RBE scheme immediately after the last identity of the sequence joins,
so it is irrelevant whether the identities will potentially receive another update
after the last one joins. This intuition is formalized by the following definition.

Definition 3.1 (Skipping sequence). Let G be a forward DAG (see Defini-
tion 2.3). We call S = {u1 < u2 < · · · < uk} ⊆ VG a skipping sequence if for
every i ≤ k − 1 and every edge (ui, v) ∈ G, it holds that: either v < ui+1 or
v > uk (i.e., v /∈ {ui+1, ui+1 + 1, . . . , uk}).

See Figure 1 for examples.

1 2 3 4 5 6 7 . . .

Fig. 1. Example of a forward DAG G with deg+(G) = 1. {1, 3, 6} and {1, 3, 4} are
skipping sequences. {1, 3, 4, 6} is not a skipping sequence, because vertex 3 has an
outgoing edge to vertex 5 which is smaller than vertex 6 but larger than vertex 4.

We let deg+(u) = |{v | (u, v) ∈ G}| be the out-degree of u and deg+(G) =
max{deg+(u) | u ∈ [n]} to be the maximum out-degree in G.

Our main result in this subsection is the following theorem.

Theorem 3.2 (Skipping sequences from bounded out-degrees). Let G be
a forward DAG with at least

(

k+d
d+1

)

vertices (for k, d ∈ N) and that deg+(G) ≤ d.
Then, there exists a skipping sequence in G of size at least k.

1 2 3 4 5 6

Fig. 2. Above is a forward DAG G = ([6], EG) with out-degree deg+(G) = 1. Group G1

consists of vertices {1, 2, 3} and it is a green group because the only out-going edge
from vertex 2 is (2, 3) and vertex 3 also belongs to G1. Namely, edge (2, 3) lies in G1.
Vertex 2 is a representative of G1. Group G2 consists of vertices {4, 5} and it is a red
group because no edge lies in it.

16 Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi

In Theorem C.1 we prove that the bound of Theorem 3.2 is tight.

Proof (of Theorem 3.2). We prove Theorem 3.2 by induction. Without loss of
generality, we assume that G has exactly n =

(

k+d
d+1

)

vertices. We use induction
on the out-degree d. We first prove the base case for out-degree d = 0. In that
case, all the k vertices of a forward DAG G with out-degree deg+(G) = 0 form
a skipping sequence since none of the vertices has an out-going edge.

Assume the claim is true for forward DAGs of out-degree d−1. We now prove
that the claim is true for forward DAGs of out-degree d. To this end, consider an
arbitrary forward DAG G = (VG, EG) where |VG| = n =

(

k+d
d+1

)

and deg+(G) ≤ d.
From the hockey-stick identity we know

n =

(

k + d

d+ 1

)

=
k

∑

i=1

(

i+ d− 1

d

)

.

We divide the n vertices into k groups {Gi}i∈[k] such that when we read the
vertices 1, . . . , n, the members of the group Gi are exactly those after the vertices
of group Gi−1 and the i-th group Gi has

(

k+d−i
d

)

vertices.
We say an edge (u, v) lies in a group Gi if both u, v ∈ Gi. We say a group Gi

is green if there exists at least one vertex in Gi all of whose outgoing edges lie in
Gi and we call any such vertex a representative of Gi. Otherwise, group Gi is red.

1. If all k groups are green, then we select exactly one representative ri from
each group Gi for i ∈ [k] and construct a sequence S = {r1 < r2 < · · · < rk}.
In that case, we know that for i ∈ [k − 1] all out-going edges of ri lie in Gi.
Therefore, S is a skipping sequence.

2. If there is at least one red group, let Gj be the red group with the smallest j.
By the induction hypothesis, there is a skipping sequence S ′ of size k+1− j
in group Gj since it contains

(

k+d−j
d

)

vertices all of which have at most d−1
outgoing edges that lie in the group. We then construct our desired skipping
sequence as S = {r1 < r2 < · · · < rj−1} ∪ S ′ of size k.

⊓⊔

4 Breaking RBEs with few updates

In this section, we present a trade-off between the length of the public parameter
of RBEs with fixed update times and the number of such updates. At a high
level, we design an attack against any RBE scheme with fixed update times
assuming that the number of updates is “sufficiently small” compared to the
public parameter. The key technical result of this section is Theorem 4.1 below.
After stating Theorem 4.1, we first derive some corollaries about the number of
updates. We then define a notion of “good tuple” (i, j, k) that can serve as a
useful advice for breaking an RBE scheme. We then show how to break RBE
schemes given a good tuple. Then, we prove Theorem 4.1 by showing that good
tuples exist and how to find successful attacks without being given a good tuple.

Lower Bounds for the Number of Decryption Updates in RBE 17

Theorem 4.1 (Main result). Let Π be an RBE scheme with a fixed update
graph G (see Definition 2.4) and at most d updates for n registered identities;
namely, deg+(G) ≤ d when we limit the graph G to the first n nodes/identities.
Suppose the scheme has completeness probability ρ. If n ≥

(

ℓ+d
d+1

)

and |ppi| ≤ α
for all the first n registrations, then there is a 0-corruption (see Definition 2.2)
poly(κ)-time adversary who breaks Π with probability ρ−

√

α ln 2/(2ℓ)− δ (i.e.,

advantage ρ− 1/2−
√

α ln 2/(2ℓ)− δ) for arbitrarily small δ = 1/poly(κ).

Before proving Theorem 4.1, we derive a corollary for the extreme cases of
constant number of (e.g., one) updates, and poly-logarithmic public parameters.

Corollary 4.2. Let Π be an RBE scheme with a fixed update graph G and
secure against 0-corruption. Let αn = maxi∈[n] |ppi| be the maximum length of
the public parameter when n identities register.

1. If deg+(G) ≤ d for a constant d, then αn ≥ Ω(n1/(d+1)).

2. If deg+(G) ≤ c log n/ loglog n for a constant c, then |αn| ≥ Ω(log1/c n).
3. If |αn| ≤ poly(κ, log n) for security parameter n, then deg+(G) cannot be

o(log n/ loglog n). (I.e., there will be a constant c and an infinite sequence of
n for which deg+(G) ≥ c · log n/ loglog n.)

Proof (of Corollary 4.2 using Theorem 4.1). First observe that by Theorem 4.1,
if the scheme is complete ρ > 0.99, it holds that when n =

(

ℓ+d
d+1

)

, then αn ≥ ℓ/10,
as otherwise the scheme will not be secure.

1. If deg+(G) ≤ d = O(1): In this case, since we have n =
(

ℓ+d
d+1

)

= Θ(ℓd+1),

therefore we get αn ≥ Ω(ℓ) ≥ Ω(n1/(d+1)).
2. If deg+(G) ≤ d = c log n/ loglog n: Using the well-known upper bound on the

binomial coefficients we get n ≤
(

(ℓ+d)e
d+1

)d+1

. Taking logarithm, this implies

log n ≤ (c · (log n/ loglog n) + 1) · (log(eℓ+ ed)− log(d+ 1)).

It can be observed already that ℓ = Ω(log n) (for constant c), as other-
wise, the right hand side will be o(log n). Therefore, it holds that d = o(ℓ).
Therefore, we can simplify the above to the following for sufficiently large n

log n ≤
(

c · log n

loglog n
+ 1

)

· log((e+ o(1))ℓ) <

(

c · log n

loglog n
+ 1

)

· log(3ℓ),

which implies that loglog n ≤ c log(3ℓ), and so αn ≥ Ω(ℓ) ≥ Ω(log1/c n).
3. We use the previous item. Suppose αn = O(logs n) for (fixed κ and) constant

s, while deg+(G) = o(log n/ loglog n). Then, pick any (sufficiently small)
constant c such that 1/c > s. In this case, we still have deg+(G) ≤ c ·
log n/ loglog n, and αn ≥ Ω(log1/c n), contradicting αn = O(logs n).

⊓⊔

18 Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi

Proof of Theorem 4.1. In the rest of this section, we prove Theorem 4.1 in three
steps. We first define a notion of good tuple (i, j, k) and prove that good tuples
exist. We then show that the attack can be launched successfully if a good tuple
is given as advice. These two steps already show the existence of an efficient non-
uniform attack. Finally, we show how to make the attack uniform by, roughly
speaking, finding a good-enough advice efficiently.

4.1 Defining good tuples and proving their existence

We now define the notion of good tuples and prove that they actually exist
under certain conditions. These tuples later are shown to be useful, as advice to
an adversary, to break RBE schemes.

Definition 4.3 (Good tuples for forward DAGs). Let G be a forward DAG
with vertices [n]. For i, j, k ∈ [n] where i ≤ j ≤ k, we say the tuple (i, j, k) is a
good tuple for G, if the following holds:

6 ∃j′ ∈ V such that j < j′ ≤ k ∧ (i, j′) ∈ G.

In other words, the ith registered identity will not need any updates starting from
the (j + 1)th registration till right after the kth registration.

Notation. We use the notation defined in Section 1.1 and use sans serif font for
the random variables denoting the keys and public parameters. Using the same
style, we also use CRS to refer to the CRS as a random variable.

Definition 4.4 (Good tuples for RBE schemes). Let Π be any RBE scheme,
and fix the first n identities to be {1, . . . , n}. For i, j, k ∈ [n] where i ≤ j ≤ k we
say the tuple (i, j, k) is (1− ε)-good for Π if the following two distributions are
ε-close in statistical distance:

(CRS,KEY1 . . .KEYj ,PPk), and

(CRS,KEY1 . . .KEYi−1,KEY
′
i . . .KEY

′
j ,PPk)

where in the first distribution all components are sampled jointly from an honest
execution of the registration experiment in which the parties [n] are registered in
that order, while in the second distribution KEY′i . . .KEY

′
j are sampled indepen-

dently of the other components.12

Definition 4.5 (Good tuples). For an RBE scheme Π with fixed updates
graph G and ε < 1, we simply call (i, j, k) a (1− ε)-good tuple, if it is both good
for G and (1− ε)-good for Π.

12 Alternatively, one can pretend that there has been true values of KEYi . . .KEYj

that were sampled jointly with CRS,KEY1 . . .KEYi−1,PPk and were thrown out to
be replaced with fresh samples at the end.

Lower Bounds for the Number of Decryption Updates in RBE 19

In the next subsection, we will show that if a good tuple is given to the
attacker, it can successfully break RBEs. But to obtain such attacks, we need
to at least prove that good tuples exist to begin with. That is exactly what the
next lemma does.

Lemma 4.6. Let Π be an RBE scheme with a fixed update graph G. Suppose
deg+(G) ≤ d when limited to the first n identities, α ≥ maxi∈[n] |ppi|, and

n ≥
(

ℓ+d
d+1

)

. Then, there exists an (1− ε)-good tuple (i, j, k) for ε =
√

α ln 2
2ℓ .

Proof (of Lemma 4.6). From Theorem 3.2 we know that there is a skipping
sequence {s1 < s2 < · · · < sℓ} in G. Below, we show that there exists t ∈ [ℓ]
such that (st, st+1 − 1, sℓ) is both good for G and (1− ε)-good for Π. For t = ℓ,
we define sℓ+1 = sℓ + 1 for simplicity so that the selected tuple is well defined,
and it will be (sℓ, sℓ, sℓ). We now show that every such tuple is good for G, and
that at least one of them is (1− ε)-good for Π.

Good for G. By definition of skipping sequences, for all t ∈ [ℓ], any outgoing
edge (st, v) will either satisfy v < st+1 or v > sℓ. (This also holds for t = ℓ, as
this condition becomes always true in that case). Therefore (st, st+1 − 1, sℓ) is
good for G for all t ∈ [ℓ].

Good for Π. For i ∈ [ℓ− 1], define the random variable

X0 = (CRS,KEY1, . . . ,KEYs1−1),

Xi = (KEYsi ,KEYsi+1, . . . ,KEYsi+1−1),

Xℓ = KEYsℓ , Y = ppsℓ .

Now, by the branching lemma (Lemma 2.7),

E
t←[ℓ]

[SD(X0 . . . XtY,X0 . . . Xt−1X
′
tY)] ≤

√

H(Y) ln 2

2ℓ
≤

√

α ln 2

2ℓ

in which X ′t is sampled independently of Y . As a result, one can fix t ∈ [ℓ] in the
expectation above so that the inequality still holds. In our setting, this means

(st, st+1 − 1, sℓ) is (1− ε)-good for Π where ε =
√

α ln 2
2ℓ . ⊓⊔

4.2 Non-uniform attacks using good tuples as advice

We now present an attack that takes a tuple (i, j, k) that is guaranteed to be
(1 − ε)-good. (Namely, it is both good for G and (1 − ε)-good for Π, where

ε =
√

α ln 2
2ℓ). Looking ahead, we will later prove that a simple modification of

the attack will succeed even without the given advice.

Construction 4.7 (Attacking RBE with advice) Let Π be an RBE scheme
with update graph G. Suppose (i, j, k) is given as advice. The adversary A(i, j, k)
proceeds as the following.

20 Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi

1. Identities: The adversary registers identities 1, . . . , k, while none are cor-
rupted. Therefore, the adversary can reconstruct all the intermediate auxil-
iary information and the public parameters, including ppk.

13

2. Target identity: the adversary announces i to be the target identity.
3. The adversary simply picks messages m0 = 0,m1 = 1, one of which will be

encrypted to identity i under the public parameter ppk.
4. To guess which message was decrypted, the adversary does as follows.

(a) Re-sample fake keys sk′i, pk
′
i, . . . , pk

′
j for identities i, i+ 1, . . . , j.

(b) Use pk′i, . . . , pk
′
j to re-register all the identities i, . . . , j starting from

the auxiliary information auxi−1 that refers to the auxiliary information
of the system for the moment before identity i registers. As mentioned
above, auxi−1 is known to adversary, as it is a deterministic (efficiently
computable) function of crs, pk1, . . . , pki−1.

(c) Let u′ be the fake update that is generated for the identity i, while (fake)
registering identities i, . . . , j.

(d) Use sk′i and u′ and try to decrypt the challenge as m′ ← Dec(sk′i, u
′, ct).

(e) If m′ ∈ {0, 1}, then simply output m′.

The claim below is sufficient for proving Theorem 4.1, as explained above.

Claim 4.8. The adversary of Construction 4.7, once given an (1− ε)-good tuple

(i, j, k) where ε =
√

α ln 2
2ℓ , it succeeds in winning the security game of Defini-

tion 2.2 with probability ρ− ε.

Proof (of Claim 4.8). We will consider two worlds Real, Ideal.

1. Real: HERE the adversary A behaves as described in attack 4.7.
2. Ideal: This is the world where the adversary is given the real keys (including

the decryption key of the target identity).

Claim 4.8 directly follows from the following two Claims 4.9 and 4.10.

Claim 4.9. The adversary in Ideal wins with probability ≥ ρ, where ρ is the
completeness probability of the scheme.

Proof. Claim 4.9 directly follows from the ρ-completeness of the RBE scheme
and the fact that the given advice (i, j, k) is good for G. In particular, the fact
that (i, j, k) is good for G implies that the ith identity will not receive any
updates between the jth registration till end of kth registration. Therefore, all
the updates received before the jth registration would be enough for decrypting
a ciphertext that is encrypted using the kth public parameter. ⊓⊔

Claim 4.10. Let pR be the probability that the adversary successfully decrypts
m′ = mb in the world Real, and let PI be the corresponding probability in the
Ideal world. Then, |pR − pI | ≤ ε.

13 Note that the public keys and the CRS will still be given to the adversary.

Lower Bounds for the Number of Decryption Updates in RBE 21

Proof. Claim 4.10 directly follows from the fact that the given advice (i, j, k)
is (1 − ε)-good for Π. The key idea is that even though there are going to be
updates generated for the ith person till the encryption happens after the kth
registration, these updates are all functions of the keys of the first j parties.
More formally, Since (i, j, k) is (1 − ε)-good for Π, the following two random
variables DI ,DR stay ε-close, in which RE is the randomness for encryption and
M← {0, 1} is the random challenge bit to be encrypted:

DI ≡ (CRS,KEY1 . . .KEYj ,PPk,RE ,M),

DR ≡ (CRS,KEY1 . . .KEYi−1,KEY
′
i . . .KEY

′
j ,PPk,RE ,M)

Now, observe that actions of the adversary in the Real and Ideal followed by
encryption of the challenge bit b ← M and decrypting it only differs based on
whether we use DI or DR. In particular, all the updates generated for the ith
identity generated after jth registration and before (k + 1)st registration are
deterministic functions of the first k keys and the CRS (as KC is a deterministic
algorithm). By the data-processing inequality, the probability of successfully
decrypting back b ← M in the security game will not change by more than ε
across the experiments Real and Ideal. This finishes the proof of Claim 4.10. ⊓⊔

This finishes the proof of Claim 4.8. ⊓⊔

4.3 Efficient uniform attack without advice

Finally, we prove Theorem 4.1 using the results from the above subsections.

Proof (of Theorem 4.1). If one could test whether a given (i, j, k) is a good tuple,
there would be no need to have one explicitly given as in Construction 4.7, be-
cause the adversary could enumerate all (i ≤ j ≤ k) ∈ [n]3 cases. Unfortunately,
we do not know how to test being (1−ε)-good for Π, even if we could test being
good for G (e.g., due to knowing G explicitly). However, we can do as follows.

– Defining good tuples for attack. For fixed parameters (including ε) de-
fine (i, j, k) to be δ-good for attack, if by using (i, j, k) in Construction 4.7,
the adversary wins the attack with probability at least ρ−ε−δ. When δ = 0,
simply call (i, j, k) good for the attack.

– There are tuples that are good for the attack. Due to Claim 4.8, we
already know that there exist tuples that are both good for G and (1 − ε)-
good for the RBE scheme. Therefore, by Claim 4.8, there exists at least one
tuple that is good for the attack.

– Finding tuples that are good for the attack. Finally, we observe that,
even though one might not be able to directly test whether a given (i, j, k) is
good for G or Π, one can indeed find a tuple (i, j, k) that is guaranteed to be
δ-good for the attack in time poly(κ/δ). All the adversary does is to go over
all (i ≤ j ≤ k) ∈ [n]3 tuples, run the attack enough in its head for q = κ/δ
times to approximate its probability of success within ±δ with probability

22 Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi

1 − negl(κ). Finally, the adversary simply uses the tuple (i, j, k) that leads
to the maximum (estimated) probability of success. Since we already know
that there is at least one tuple that is good for the attack, the adversary can
always find a δ-good one this way.

Putting this together, the adversary first finds a (δ/2)-good tuple for the attack
with probability 1 − negl(κ), and then plugs it into Construction 4.7 and runs
the attack against the challenger. The overall probability of adversary’s success,
this way, will be at least ρ− ε− δ/2− negl(κ) ≥ ρ− ε− δ. ⊓⊔

4.4 Extensions

In this subsection, we show some extensions to our main result Theorem 4.1.

Allowing update times to depend on identities. We first observe that the
lower bound of Theorem 4.1 holds even if the update graph G of the scheme can
depend on the registered identities and the CRS (but not on the keys).

It is easier to see that the update graph G can depend on the name of the
registered identities, as the adversary simply picks the identities to be idi = i
and fixes them throughout the attack.

Allowing dependence on the CRS is slightly more subtle. In summary, this
dependence is allowed, because the CRS is sampled and fixed before the keys are
sampled. In more detail, the main observation is that for every crs ← CRS, the
following hold.

1. The update graph Gcrs is fixed (with bounded out-degree). Therefore, there
will be a skipping sequence in Gcrs, as proved in Theorem 3.2.

2. Definition 4.4 of (1− ε)-good can be adapted for any fixed crs.
3. Therefore, Lemma 4.6 can be stated and proved (using the same exact proof)

for the fixed crs, showing that a good tuple exists conditioned on crs.
4. Tuples that are good conditioned on the fixed crs can be used exactly as

before to break the RBE scheme.

Allowing frequent updates for some identities. Theorem 4.1 is stated for
schemes in which all parties receive up to d updates. However, a closer look at
the proof reveals that all we need is a fixed update graph14 such that there are
at least n ≥

(

ℓ+d
d+1

)

identities who receive at most d updates and that |ppi| ≤ α
for all the first i registrations. The conclusion of Theorem 4.1 holds as stated.

To see why the above mentioned extension holds, all we have to show is that
any update graph G with n ≥

(

ℓ+d
d+1

)

vertices of out-degree at most d has a tuple
that is (1 − ε)-good. In order to show such tuples exist, all we have to do is to
show that sufficiently large skipping sequences exist in DAGs with sufficiently
many nodes with bounded out-degrees. Although we can prove such a result by
adapting the proof of Theorem 3.2, we prove this extension through a black-box
use of Theorem Theorem 3.2.
14 As discussed before, this graph can depend on the identities and/or the CRS.

Lower Bounds for the Number of Decryption Updates in RBE 23

Theorem 4.11 (Skipping sequences from sufficiently many nodes of
bounded out-degrees). Let G be a forward DAG and there exists S ⊆ VG
such that: |S| =

(

k+d
d+1

)

(for k, d ∈ N) and deg+(u) ≤ d for all u ∈ S. Then, there
exists a skipping sequence in G of size at least k.

Proof. Let S = {v1 < v2 · · · < vn}. Construct a DAG GS as follows. GS has n
vertices. For the convenience of presentation, we keep the labels of the vertices of
GS as {v1 < v2 · · · < vn} and do not rename them to [n]. For any edge (vi, v) ∈ G,
let j ∈ [n] be the largest number such that vj ≤ v (note that j always exits and
it could be the same as i), and then add the edge (vi, vj) to GS .

Observe that the out-degrees GS remain at most d. That is because we
do not add any outgoing edges to any vertex (although we do add incoming
edges to some). Therefore, by Theorem 3.2, there is a skipping sequence U =
{u1 < · · · < uk} in the graph GS . We claim that the same sequence U is also
skipping in G. Below, we prove this by contradiction.

Suppose U is not skipping in G. This means that there is t ∈ [k − 1] and
an edge (ut, v) ∈ G such that ut+1 ≤ v ≤ uk. By the definition of GS , the
edge (ut, v) ∈ G will generate an edge (ut, vj) ∈ GS for ut+1 ≤ vj ≤ uk, which
contradicts the assumption that U is a skipping sequence in GS . ⊓⊔

Putting all the extensions above together, we obtain the following theorem.

Theorem 4.12 (Extension of the main result). Let Π be an RBE scheme
with completeness probability ρ whose update graph G is fixed for any fixed se-
quence id1, id2, . . . of identities and fixed CRS crs. Moreover, suppose the update
graph for the fixed crs and the fixed set of n identities has at least

(

ℓ+d
d+1

)

identi-
ties who receive at most d updates, and that |ppi| ≤ α for all the n registrations.
Then there is a 0-corruption poly(κ)-time adversary who breaks Π with proba-
bility ρ−

√

α ln 2/(2ℓ)− δ for arbitrarily small δ = 1/poly(κ).

Handling schemes with an amortized bound on the number of updates. The ex-
tension above allows us to use an amortized (i.e., average-case) upper bound on
the number of updates as well. For example, if the expected number of updates
is d among n registered parties, then by an averaging argument, for at least n/2
of the parties, the number of received updates is at most 2d. As a result, if the
public parameter remains at most α bits and n ≥ 2 ·

(

ℓ+2d
2d+1

)

, then the adversary

can break the RBE scheme with probability ρ−
√

α ln 2/(2ℓ)− δ.

Acknowledgements We thank Sanjam Garg, Mohammad Hajiabadi, and Saeed
Mahloujifar for useful discussions. We also thank the anonymous reviewers of
TCC 2022 for useful suggestions, including the extension of the main result
allowing some identities to receive frequent updates.

24 Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi

References

ARP03. Sattam S Al-Riyami and Kenneth G Paterson. Certificateless public key
cryptography. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 452–473. Springer, 2003. 2,
10

BdM94. Josh Benaloh and Michael de Mare. One-way accumulators: A decentral-
ized alternative to digital signatures. In Tor Helleseth, editor, Advances in
Cryptology — EUROCRYPT ’93, pages 274–285, Berlin, Heidelberg, 1994.
Springer Berlin Heidelberg. 3

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from
the Weil pairing. In Joe Kilian, editor, Advances in Cryptology –
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
213–229, Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidel-
berg, Germany. 2, 10

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 1–18, Santa Bar-
bara, CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany. 3

BH22. Jeremiah Blocki and Blake Holman. Sustained space and cumulative com-
plexity trade-offs for data-dependent memory-hard functions. Cryptology
ePrint Archive, Paper 2022/832, 2022. https://eprint.iacr.org/2022/832. 10

BP97. Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-
stop signature schemes without trees. In Walter Fumy, editor, Advances in
Cryptology — EUROCRYPT ’97, pages 480–494, Berlin, Heidelberg, 1997.
Springer Berlin Heidelberg. 3

CCV04. Zhaohui Cheng, Richard Comley, and Luminita Vasiu. Remove key escrow
from the identity-based encryption system. In Exploring New Frontiers of
Theoretical Informatics, pages 37–50. Springer, 2004. 10

CES21. Kelong Cong, Karim Eldefrawy, and Nigel P Smart. Optimizing registration
based encryption. In IMA International Conference on Cryptography and
Coding, pages 129–157. Springer, 2021. 10

Cho09. Sherman SM Chow. Removing escrow from identity-based encryption.
In International Workshop on Public Key Cryptography, pages 256–276.
Springer, 2009. 10

CL02. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and applica-
tion to efficient revocation of anonymous credentials. In Moti Yung, editor,
Advances in Cryptology — CRYPTO 2002, pages 61–76, Berlin, Heidelberg,
2002. Springer Berlin Heidelberg. 3

DG17. Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-
Hellman assumption. In Jonathan Katz and Hovav Shacham, editors, Ad-
vances in Cryptology – CRYPTO 2017, Part I, volume 10401 of Lecture
Notes in Computer Science, pages 537–569, Santa Barbara, CA, USA, Au-
gust 20–24, 2017. Springer, Heidelberg, Germany. 3

EKW19. Keita Emura, Shuichi Katsumata, and Yohei Watanabe. Identity-based en-
cryption with security against the KGC: a formal model and its instantia-
tion from lattices. In European symposium on research in computer security,
pages 113–133. Springer, 2019. 10

https://eprint.iacr.org/2022/832

Lower Bounds for the Number of Decryption Updates in RBE 25

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In 54th Annual Symposium on Founda-
tions of Computer Science, pages 40–49, Berkeley, CA, USA, October 26–29,
2013. IEEE Computer Society Press. 3

GHM+19. Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza
Rahimi, and Sruthi Sekar. Registration-based encryption from standard
assumptions. In Dongdai Lin and Kazue Sako, editors, PKC 2019: 22nd
International Conference on Theory and Practice of Public Key Cryptog-
raphy, Part II, volume 11443 of Lecture Notes in Computer Science, pages
63–93, Beijing, China, April 14–17, 2019. Springer, Heidelberg, Germany.
3, 4, 10

GHMR18. Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ah-
madreza Rahimi. Registration-based encryption: Removing private-key
generator from IBE. In Amos Beimel and Stefan Dziembowski, editors,
TCC 2018: 16th Theory of Cryptography Conference, Part I, volume 11239
of Lecture Notes in Computer Science, pages 689–718, Panaji, India, Novem-
ber 11–14, 2018. Springer, Heidelberg, Germany. 2, 3, 4, 10, 27

GLSW08. Vipul Goyal, Steve Lu, Amit Sahai, and Brent Waters. Black-box ac-
countable authority identity-based encryption. In Proceedings of the 15th
ACM conference on Computer and communications security, pages 427–436.
ACM, 2008. 10

Goy07. Vipul Goyal. Reducing trust in the PKG in identity based cryptosystems. In
Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume
4622 of Lecture Notes in Computer Science, pages 430–447, Santa Barbara,
CA, USA, August 19–23, 2007. Springer, Heidelberg, Germany. 10

GV20. Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based
encryption. In Daniele Micciancio and Thomas Ristenpart, editors, Ad-
vances in Cryptology – CRYPTO 2020, Part I, volume 12170 of Lecture
Notes in Computer Science, pages 621–651, Santa Barbara, CA, USA, Au-
gust 17–21, 2020. Springer, Heidelberg, Germany. 3, 4, 10

HW15. Pavel Hubacek and Daniel Wichs. On the communication complexity of
secure function evaluation with long output. In Tim Roughgarden, editor,
ITCS 2015: 6th Conference on Innovations in Theoretical Computer Sci-
ence, pages 163–172, Rehovot, Israel, January 11–13, 2015. Association for
Computing Machinery. 3

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from well-founded assumptions. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, pages 60–73, 2021. 3

Rog15. Phillip Rogaway. The moral character of cryptographic work. Cryptology
ePrint Archive, Report 2015/1162, 2015. https://eprint.iacr.org/2015/1162.
2

Sha84. Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R.
Blakley and David Chaum, editors, Advances in Cryptology – CRYPTO’84,
volume 196 of Lecture Notes in Computer Science, pages 47–53, Santa Bar-
bara, CA, USA, August 19–23, 1984. Springer, Heidelberg, Germany. 2

WQT18. Quanyun Wei, Fang Qi, and Zhe Tang. Remove key escrow from the BF
and Gentry identity-based encryption with non-interactive key generation.
Telecommunication Systems, pages 1–10, 2018. 10

https://eprint.iacr.org/2015/1162

26 Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi

Appendix

A Completeness and security of RBE schemes

Definition A.1 (Completeness, compactness, and efficiency of RBE).
Consider the following game CompA(κ) between a challenger C and an interactive
computationally unbounded adversary A who is yet limited to poly(κ) rounds
of interaction.

1. Initialization. C sets pp = ⊥, aux = ⊥, u = ⊥, D = ∅, id∗ = ⊥, t = 0, and
crs← Upoly(κ), and sends the sampled crs to A.

2. Till A continues (which is at most poly(κ) steps), proceed as follows. At
every iteration, A chooses exactly one of the actions below to perform.
(a) Registering a corrupted (non-target) identity. A sends some id /∈
D and pk to C. C registers (id, pk) by letting pp := Reg[aux](crs, pp, id, pk)
and D := D ∪ {id}.

(b) Registering the (uncorrupted) target identity. This step is allowed
only if id∗ = ⊥. In that case, A sends some id∗ /∈ D to C. C then
samples (pk∗, sk∗)← Gen(1κ), updates pp := Reg[aux](crs, pp, id∗, pk∗) and
D := D ∪ {id∗}, and sends pk∗ to A.

(c) Encrypting for the target identity. This step is allowed only if
id∗ 6= ⊥. In that case, C sets t = t + 1. A sends mt ∈ {0, 1}∗ to
C who then sets m′t := mt and sends back a corresponding ciphertext
ctt ← Enc(crs, pp, id∗,mt) to A.

(d) Decryption for the target identity. A sends a j ∈ [t] to C. C then
lets m′j = Dec(sk∗, u, ctj). If m′j = GetUpd, C gets u = Updaux(pp, id∗)
and then m′j = Dec(sk∗, u, ctj).

Let n = |D| be the number of identities registered when the adversary ends
the game. We require the following properties to hold for such A (as specified
above) in the game CompA(κ).

– Completeness. The adversary A wins, if there is some j ∈ [t] for which
m′j 6= mj. We require that P[AwinsCompA(κ)] = negl(κ).15

– Compactness and efficiency. For the following three properties, here we
state the default requirements for standard RBE; however, in this work, we
also consider the relaxed version of RBE in which these quantities could be
other parameters that are still sublinear in n (e.g., poly(κ) · √n) for com-
pactness and runtime efficiency. For number of updates, we also allow any
sublinear function of n to be a feasible number for RBE.

• Compactness. |pp|, |u| ≤ poly(κ, log(n)).
• Efficiency of runtime of registration and update. The running

time of each invocation of Reg and Upd is at most poly(κ, log(n)).
• Efficiency of the number of updates. The total number of invoca-
tions of Upd for identity id∗ in Step 2(d) of the game CompA(κ) is at
most O(log(n)).

15 For perfectly complete schemes we require this probability to be zero.

Lower Bounds for the Number of Decryption Updates in RBE 27

Definition A.2 (Security of RBE). For any interactive PPT adversary A,
consider the following game SecA(κ) between A and a challenger C.
1. Initialization. C sets pp = ⊥, aux = ⊥, D = ∅, id∗ = ⊥, crs ← Upoly(κ)

and sends the sampled crs to A.
2. Till A continues (which is at most poly(κ) steps), proceed as follows. At

every iteration, A chooses exactly one of the actions below to perform.
(a) Registering non-target identity. A sends some id /∈ D and pk to C.
C registers (id, pk) by pp := Reg[aux](crs, pp, id, pk) and D := D ∪ {id}.

(b) Registering the target identity. This step can be run only if id∗ = ⊥.
A sends some id∗ /∈ D to C. C then samples (pk∗, sk∗)← Gen(1κ), updates

pp := Reg[aux](crs, pp, id∗, pk∗), D := D ∪ {id∗}, and sends pk∗ to A.
3. Encrypting for the target identity. If id∗ = ⊥, then A first sends some

id∗ /∈ D to C (this is for modeling encryptions for non-registered target iden-
tities.) Next A sends two messages m0,m1 of the same length to C. Next, C
generates ct ← Enc(crs, pp, id∗,mb), where b ← {0, 1} is a random bit, and
sends ct to A.16

4. The adversary A outputs a bit b′ and wins the game if b = b′.

An RBE scheme is secure if for all PPT A, P[Awins SecA(κ)] <
1
2 + negl(κ).

B Information-theoretic notions and lemmas

Definition B.1 (Mutual information). The mutual information of two dis-
crete random variables X,Y is defined as

I(X;Y) = H(X) +H(Y)−H(XY) = H(X)−H(X|Y) = H(Y)−H(Y |X).

The conditional mutual information I(X;Y |Z) is defined as Ez←Z [I(X|z;Y |z)].
The chain rule for mutual information states that I(X;Y Z) = I(X;Y)+I(X;Z|Y).

Definition B.2 (Kullback–Leibler divergence). For any two random vari-
ables X and Y where X ⊆ Y , the he Kullback-Leibler (KL) divergence (in base
2) is defined as

DKL(X ‖ Y) =
∑

x∈X
P
X
[x] · log PX [x]

PY [x]
.

Lemma B.3 (Conditional mutual information vs. KL div). For any three
jointly distributed random variables X,Y, Z the following holds:

I(X;Y |Z) = DKL(XY Z ‖ (X|Z ⊗ Y |Z)Z).

In particular, when Z does not exist, we have I(X;Y) = DKL(XY ‖ X ⊗ Y).

16 In the original paper of [GHMR18], the scheme’s security was defined for bit encryp-
tion. Even though secure bit-encryption schemes can be extended for full-fledged
schemes by independently encrypting every bit, here we write the definition directly
for the resulting scheme.

28 Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi

We give a proof for completeness.

Proof. By definition, we know

I(X;Y |Z) = E
z←Z

[I(X|z;Y |z)] =
∑

z∈Z
P
Z
[z]I(X|z;Y |z).

Now, if we call P = X|z and Q = Y |z, then I(X|z;Y |z) = I(P ;Q) is equal to:

= H(P) +H(Q)−H(PQ)

= −
∑

x∈P
P
P
[x] logP

P
[x]−

∑

y∈Q
P
Q
[y] logP

Q
[y] +

∑

x∈P

∑

y∈Q
P
PQ

[x, y] log P
PQ

[x, y]

= −
∑

x∈P

∑

y∈Q
P
PQ

[x, y] logP
P
[x]−

∑

y∈Q

∑

x∈P
P
PQ

[x, y] logP
Q
[y]

+
∑

x∈P

∑

y∈Q
P
PQ

[x, y] log P
PQ

[x, y]

=
∑

x∈P

∑

y∈Q
P
PQ

[x, y] log
PPQ[x, y]

PP [x] · PQ[y]
.

Therefore, we get

I(X;Y |Z) =
∑

z∈Z

P
Z
[z]

∑

x∈X

∑

y∈Y
P

XY |z
[x, y] log

PXY |z[x, y]

PX|z[x] · PY |z[y]

=
∑

z∈Z

∑

x∈X

∑

y∈Y
P

XY Z
[x, y, z] log

PXY |z[x, y]

PX|z[x] · PY |z[y]

=
∑

z∈Z

∑

x∈X

∑

y∈Y
P

XY Z
[x, y, z] log

PXY |z[x, y] · PZ [z]

PX|z[x] · PY |z[y] · PZ [z]

=
∑

z∈Z

∑

x∈X

∑

y∈Y
P

XY Z
[x, y, z] log

PXY Z [x, y, z]

PX|z[x] · PY |z[y] · PZ [z]

= DKL(XY Z ‖ (X|Z ⊗ Y |Z)Z).

⊓⊔
Theorem B.4 (Pinsker’s inequality). For random variables X,Y we have

SD(X,Y) ≤
√

DKL(X ‖ Y) · ln 2
2

The following lemma follows from Lemma B.3 and Pinsker’s inequality.

Lemma B.5. For random variables X,Y, Z, it holds that

SD(XY Z, (X|Z ⊗ Y |Z)Z) ≤
√

I(X;Y |Z) · ln 2
2

.

In particular, when Z does not exist, we have SD(XY,X ⊗ Y) ≤
√

I(X;Y)·ln 2
2 .

Lower Bounds for the Number of Decryption Updates in RBE 29

We finally prove the twig lemma (i.e., Lemma 2.7).

Proof (of Lemma 2.7). Let I(Y ;X0 . . . Xℓ) = α and αi = I(Y ;Xi|Xi−1 . . . X0).
Firstly, we have α = H(Y)−H(Y |X0 . . . Xℓ) ≤ H(Y). By repeated applications
of the chain rule of mutual information,

H(Y) ≥ α = I(Y ;X0) +
∑

i∈[ℓ]
I(Y ;Xi|X0 . . . Xi−1) ≥ ℓ · E

i∈[ℓ]
[αi].

For each i ∈ [ℓ], we get αi = DKL(Y Xi . . . , X0 ‖ Y X ′iXi−1 . . . X0) by lettingX =
Xi, Z = X0 . . . Xi−1 in Lemma B.3. By applying Pinsker’s inequality through
Lemma B.5 we now get

SD(Y Xi . . . , X0, Y X ′iXi−1 . . . X0) ≤
√

αi ln 2

2
.

To conclude, we get

E
i←[ℓ]

[
√

αi ln 2

2

]

≤
√

Ei←[ℓ][αi ln 2]

2
≤

√

(α/ℓ) ln 2

2
≤

√

H(Y) ln 2

2ℓ
.

The first inequality is due to the concavity of
√·, and Jensen’s inequality. ⊓⊔

C Theorem 3.2 is Optimal

In this section, we show that the bound in Theorem 3.2 is tight. Namely, we
prove the following theorem.

Theorem C.1 (Optimality of Theorem 3.2). For all n =
(

k+d
d+1

)

− 1 where
integers k ≥ 1, d ≥ 0, there exists a forward DAG Gk,d of n vertices and
deg+(Gk,d) ≤ d that does not have any skipping sequence of size k.

We will use induction on d to prove Theorem C.1.

Construction C.2 (Construction of optimal DAG of out-degree d) Let
k ≥ 1, d ≥ 0 be integer. We construct a graph Gk,d recursively as follows.

1. If d = 0, Gk,0 has k − 1 vertices and no edges.17

2. If d ≥ 1, do the following.
(a) For i ∈ [k − 1] let Gi be a copy of Gk−i+1,d−1 followed by a new vertex

ui at the end. Moreover, in addition to the edges in Gk−i+1,d−1, for all
v ∈ Gi (including v = ui) add the edge (v, ui) to Gi.

(b) Divide the vertices of Gk,d into k − 1 groups, such that the i-th group is
a copy of Gi that comes right after Gi−1.

To prove Theorem C.1, it suffices to prove the following lemma.

17 For k = 1, this graph is the empty graph that has no vertices.

30 Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi

1 2 . . . u1

Group G1

u1 + 1 u1 + 2 . . . u2

Group G2

. . . uk−2 + 1 . . . uk−1

Group Gk−1

Fig. 3. Illustration of the construction of the optimal forward DAG Gk,d =
(VGk,d

, EGk,d
) where VGk,d

= [
(

k+d

d+1

)

− 1]. Group G1 has
(

k+d−1

d

)

vertices and each
vertex of G1 has an out-going edge to vertex u1 which is the last vertex of G1. Group
Gk−1 has

(

d+1

d

)

vertices and each vertex of Gk−1 has an out-going edge to vertex uk−1.

Lemma C.3. Graph Gk,d of Construction C.2 has n =
(

k+d
d+1

)

−1 vertices, degree
d and all of its skipping sequences are of size at most k − 1.

Note that by Theorem C.1 we already know that if k ≥ 1, then Gk,d has a
skipping sequence of size ≥ k−1; so by proving Lemma C.3 we actually conclude
that its maximum size of skipping sequences will be exactly k − 1.

Proof (of Lemma C.3). The proof is by induction. For d = 0, the proof is trivial.
Now suppose d ≥ 1. The number vertices of Gk,d by induction and the

hockey-stick identity will be

∑

i∈[k−1]
|VGk−i+1,d−1

|+ 1 =
∑

i∈[k−1]

(

k + d− i

d

)

=

(

k + d

d+ 1

)

−
(

d

d

)

.

Let S be any skipping sequence in Gk,d. Let j ∈ [k− 1] be the largest integer
such that there is a vertex from Gj in S. We first show that there can be at
most one vertex from each of the previous j−1 groups {Gi}i∈[j−1] in S. Assume
that there are two vertices u < v such that u, v ∈ S ∩ Gi. Let x ∈ Gj ∩ S. Then,
v < u < x will all be in S, while v has an outgoing edge to ui (the last vertex in
Gi) with u ≤ ui < x, but this contradicts the definition of skipping sequences.

Let S = S1∪S2, where S1 = S ∩ (∪i<jGi) and S2 = S ∩Gj . We already know
that |S1| ≤ j−1. It is sufficient to show that |S2| ≤ k− j. Firstly, note that if uj

(i.e., the last node in Gj) belongs to S, then no other vertex in Gj can belong to
S, as otherwise, it will contradict the definition of skipping sequences. Secondly,
note that if S is a skipping sequence, then its restriction S2 = S ∩ Gj shall be
skipping as well. Therefore, by induction |S2| ≤ max {1, k − j} = k − j, and so
|S| = |S1|+ |S2| ≤ j − 1 + k − j = k − 1. ⊓⊔

	Introduction
	Technical overview
	Breaking RBEs with no updates: information theoretic tools.
	Breaking RBEs with single immediate updates.
	Breaking RBEs with single updates arriving at arbitrary times.

	Related work

	Definitions and preliminaries
	Registration-based encryption
	Information-theoretic notation and the twig lemma

	Skipping sequences in DAGs
	Breaking RBEs with few updates
	Defining good tuples and proving their existence
	Non-uniform attacks using good tuples as advice
	Efficient uniform attack without advice
	Extensions
	Allowing update times to depend on identities.
	Allowing frequent updates for some identities.

	Completeness and security of RBE schemes
	Information-theoretic notions and lemmas
	Theorem 3.2 is Optimal

