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Abstract. Concretely efficient interactive oracle proofs (IOPs) are of
interest due to their applications to scaling blockchains, their minimal
security assumptions, and their potential future-proof resistance to quan-
tum attacks.

Scalable IOPs, in which prover time scales quasilinearly with the com-
putation size and verifier time scales poly-logarithmically with it, have
been known to exist thus far only over a set of finite fields of negligible
density, namely, over “FFT-friendly” fields that contain a sub-group of
size 2k.

Our main result is to show that scalable IOPs can be constructed over
any sufficiently large finite field, of size that is at least quadratic in the
length of computation whose integrity is proved by the IOP. This result
has practical applications as well, because it reduces the proving and
verification complexity of cryptographic statements that are naturally
stated over pre-defined finite fields which are not “FFT-friendly”.

Prior state-of-the-art scalable IOPs relied heavily on arithmetization
via univariate polynomials and Reed–Solomon codes over FFT-friendly
fields. To prove our main result and extend scalability to all large finite
fields, we generalize the prior techniques and use new algebraic geome-
try codes evaluated on sub-groups of elliptic curves (elliptic curve codes).
We also show a new arithmetization scheme that uses the rich and well-
understood group structure of elliptic curves to reduce statements of
computational integrity to other statements about the proximity of func-
tions evaluated on the elliptic curve to the new family of elliptic curve
codes.

1 Introduction

Arithmetization was first used to construct interactive proofs in the seminal
work of Lund et al. [41] and shortly after played a key role in Shamir’s proof of
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IP = PSPACE [47]. Ever since, this invaluable tool has dominated the construc-
tion of interactive proofs (IP), multiprover interactive proofs (MIP), zero knowl-
edge proofs (ZK), probabilistically checkable proofs (PCP) and related protocols.
Arithmetization reduces statements about computational integrity, like

“I processed T = 10, 000 valid Ethereum transactions, leading to new
Ethereum state S”

to completely different statements, about low degree polynomials over a finite
field F, like

“I know polynomials A(X), B(X) over finite field F of degree at most T
that satisfy a set of polynomial constraints”.

The question studied in this paper is: Which finite fields F can be used to
create transparent3, scalable and concretely efficient proof systems? We start by
surveying the existing state of the art in this area.

To reach polynomial efficiency, any large finite field suffices. Early uses of arith-
metization, for example, in the seminal proofs of (i) MIP = NEXP [5], (ii) the
poly-logarithmic verification of NP [4] and (iii) the PCP Theorem [2,3], all work
with any sufficiently large finite field, of size at least poly(T), where T denotes the
length of the (nondeterministic) computation whose integrity is being proved;
in the case of the PCP Theorem, a field of size polylog(T) suffices. The commu-
nication complexity in all of these celebrated protocols is extremely efficient —
at most poly-logarithmic in T. However, none of these early constructions were
ever deployed in practice because their proofs, although of polynomial length in
T, were of impractical size, and the arithmetic complexity of both prover and
verifier were, concretely, prohibitively large.

Scalable proof systems over FFT-friendly fields. The situation changed dramati-
cally, in terms of both efficiency and field type, with the advent of scalable infor-
mation theoretic proof systems. A proof system is called scalable when both (i)
proving time4 scales quasilinearly in T and, simultaneously (ii) verification time
scales poly-logarithmically in T (and polynomially in the description of the com-
putation whose integrity is proved); see [7, Definition 3.3] for an exact definition.
Scalable PCP systems for any language in NEXP were presented by [20,18,13],
improving proving time from TO(1) to TpolylogT. However, these constructions
limited F to be FFT-friendly which means it must contain a sub-group of size 2k,
for integer k (the group can be multiplicative or additive)5. In spite of their im-
proved efficiency, scalable PCPs are not used in practice because the exponents

3 A proof system is transparent when all verifier messages are public random coins;
such systems are also called Arthur Merlin protocols.

4 Unless mentioned otherwise, throughout the paper running time is measured in
number of field operations, i.e., we assign unit cost to arithmetic operations over the
finite field.

5 More generally, scalable PCPs and IOPs can be constructed over any F which has a
sub-group of size that is a product of small primes, but prover and verifier running
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in the poly-log expressions for proving and verification time, and the amortized
soundness error per PCP-query, are still, practically speaking, too large.

The last and final step needed to create concretely efficient proof systems for
NEXP was taken within a relatively new computational model, the interactive
oracle proof (IOP) model [16,45] that generalizes both IP and PCP. From a
computational complexity point of view, IOP = MIP = PCP = NEXP (see [16]).
Within this model, proving time was reduced to O(T logT) and verification time
to O(logT), with relatively small asymptotic constants [7]. The requirement that
F be an FFT-friendly field remained.

To summarize, early IP,MIP and PCP constructions work over any sufficiently
large finite field, but scalable PCPs and IOPs required FFT-friendly ones. This
raises the question of whether FFT-friendliness is needed for scalability, and sets
the ground for our main result.

1.1 Main Results

The language most naturally suited for creating scalable IOPs is that of arith-
metic intermediate representations (AIR) [7,49]. Informally, an AIR instance of
complexity m and length T is defined over a finite field F by a set of low-degree
multivariate constraints, described by arithmetic circuits whose total sum (num-
ber of gates) is m, and by a cyclic group D of size T (see Definition 1). An AIR
witness is a tuple of functions f1, . . . , fw : D → F (see Definition 4), and the
AIR instance is satisfied by it if the application of the polynomial constraints to
the functions f1, . . . , fw and various cyclic shifts of them satisfy the polynomial
constraints of the AIR instance (see Definition 5).

From a concrete complexity point of view, the language of AIRs is used to
define computational integrity statements for scalable and transparent argument
of knowledge (STARK) systems, directly for specific computations like hashing
with ethSTARK [49], for domain specific languages like Winterfell, and for uni-
versal (Turing complete) virtual machines like Cairo [34]. In all these cases, the
computations and virtual machines are specified by AIRs. Systems written over
these machines, like StarkEx, have been used to process millions of transactions
and billions of dollars on Ethereum, underscoring their practical relevance.

From an asymptotic complexity point of view, the language of satisfiable
AIR instances is complete for NEXP. When restricting AIR to FFT-friendly
fields, the ensuing sub-language (FFT-friendly-AIR) remains NEXP-complete.
As mentioned earlier, prior to this work, it was known that the language of
FFT-friendly-AIR has a strictly scalable and transparent IOP [7]. By strictly
scalable we mean that (i) prover complexity is T · (O(logT) + poly(m)) and,
simultaneously, (ii) verifier complexity is O(logT)+ poly(m), i.e., the exponents
in all polylog expressions are 1.

The main result of this paper is to remove the FFT-friendly requirement
about fields, leading to the following statement.

time increase as the prime factors increase in number and size. For simplicity we stick
to interpreting an FFT-friendly field as one containing a multiplicative subgroup of
size 2k.

https://github.com/starkware-libs/ethSTARK
https://engineering.fb.com/2021/08/04/open-source/winterfell/
https://www.cairo-lang.org/
https://starkware.co/starkex/
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Theorem 1 (Main Theorem — Informal). For any finite field F and T ≤√
|F|, the satisfiability of AIR instances over F of size m and computation length

at most T can be verified by a strictly scalable and transparent IOP of knowledge
with advice6. In particular, there exist randomized procedures for proving and
verification that require T ·(O(logT) + poly(m)) arithmetic operations over F for
proving, and λ·(O(logT) + poly(m)) arithmetic operations over F for verification
with knowledge soundness error at most 2−λ.

We point out that our results apply to other NEXP complete languages for
succinct IOPs, such as the succinct R1CS systems used in [15]; due to the con-
crete considerations mentioned above, as well as space limitations, we focus only
on AIR.

Remark 1 (Zero Knowledge). The construction used in Theorem 1 can be aug-
mented to achieve perfect zero knowledge, just like the FFT-friendly version of
it (Theorem 3) can be augmented to an IOP with perfect zero knowledge [11].
We omit the addition of zero knowledge from this version due to space consid-
erations.

Remark 2 (Post-quantum security). A number of works have shown that ap-
plying the Kilian-Micali and/or the BCS transformation from IOPs to nonin-
teractive arguments are secure in the quantum random oracle model, and these
generic transformations apply to all our results, rendering them post-quantum
secure in this model [28,27,26].

Fast IOPs of Proximity for Reed–Solomon and Elliptic Curve codes A major
step, and bottleneck, in the construction of IOPs and PCPs is that of low-
degree testing. This is the sub-protocol that is given oracle access to a function
f : D′ → F and is charged with distinguishing between the case that f is a low-
degree polynomial, i.e., a Reed–Solomon (RS) codeword, and the case that f is
far, in Hamming distance, from the RS code. Strictly scalable IOPs use the Fast
RS IOPP (FRI) [6] protocol targeted for RS codes. For a function of blocklength
n = |D′|, the FRI protocol guarantees linear proving time (O(n) arithmetic op-
erations), strictly logarithmic verification time and query complexity (O(λ log n)
arithmetic operations, to reduce the soundness error to 2−λ).

One of the main reasons that until now scalable IOPs were limited to FFT-
friendly fields was the fact that the FRI protocol is tightly related to the FFT
algorithm, and can be described as “randomly folding” an FFT. As part of our
proof of Theorem 1 we also extend the FRI protocol from [6], and its analysis
from [8], to hold over all fields, provided |F| ≥ Ω(n2).

Theorem 2 (FRI over all fields, informal). For any finite field F of size q,
integer n a power of 2 satisfying n ≤ √

q, integer t and integer R, the following
holds.

6 The proving and verifying procedures depend on O(T log q) bits of advice that de-
pend only on |F| and T – furthermore, this advice can be generated by a randomized
algorithm in time O(Tpolylog(T · q)) with high probability.



Scalable and Transparent Proofs over All Large Fields, via Elliptic Curves 5

There exists a subset D′ ⊆ F, |D′| = n, such that the family of RS codes of
rate7 ρ = 2−R evaluated over D′ has an IOP of proximity with:

– O(n) proving complexity,
– O(t · log n) verification complexity,
– t · log n query complexity,
– the following soundness behavior: if f is δ-far in Hamming distance from the

code, the probability that f is accepted by the protocol is at most

(max {(1− δ),
√
ρ} − o(1))

t
.

See Section 2.3 for more details and a formal statement of the result above.
We point out that we also obtain (and need, to prove Theorem 1) an IOPP for

a more general family of codes – which comprises evaluations of functions over
certain carefully selected points on an elliptic curve E; the points of evaluation
are cosets of a cyclic group of size 2k inside the elliptic curve group. We call this
protocol an elliptic curve FRI, abbreviated EC-FRI, because the IOPP for this
family of elliptic curve codes works by “decomposing” a function on the elliptic
curve into a pair of RS codewords and applying Theorem 2 to this pair. See the
online version [10] for details.

Applications to concrete scalability We briefly argue why Theorem 1 is interest-
ing from the point of view of concrete (rather than asymptotic) complexity, in
applied cryptography settings. There are quite a few cryptographic primitives
used in practice that are naturally defined over specific, and non-FFT-friendly,
finite fields. Examples include the NIST Curve P-256 (used, e.g., on Apple smart-
phones) and the secp256k1 curve (used for Bitcoin signatures), both of which
are prime, non-FFT-friendly, fields. Consider a prover attempting to prove she
processed correctly a large batch of ECDSA signatures over either one of these
primes, denoting it by p. Today, the prover would need to arithmetize her state-
ment over some FFT-friendly field, and thus simulate the basic arithmetic op-
erations of the (non-FFT friendly) field Fp over some other field Fq, resulting in
significant overhead. For example, the implementation of secp256k1 and NIST
P-256 ECDSA in the Cairo programming language (which uses an IOP-based
STARK over a 254-bit, FFT-friendly, prime field Fq) requires roughly 128 arith-
metic operations over Fq to simulate a single Fp multiplication (this implemen-
tation uses various optimizations, the naive bit-wise multiplication would be far
costlier).

Using the construction of Theorem 1 one may do better. The statement for
each of these curves could be constructed over the native prime field Fp, meaning
that each multiplication gate in the computation of the ECDSA “costs” only one
constraint, and addition comes for free. When computing the tradeoff between

7 The rate parameter, defined as the ratio between a code’s dimension and its block-
length, can be picked to be any constant ρ < 1, and affects the soundness error and
proximity parameters; see [8] for state of the art soundness bounds as a function of
rate.

https://github.com/starkware-libs/cairo-examples/tree/master/secp
https://github.com/spartucus/nistp256-cairo
https://github.com/spartucus/nistp256-cairo
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using an FFT-friendly field Fq or our new construction over Fp, one should
carefully measure the difference resulting from the new construction (which, as
explained later, involves elliptic curves rather than plain polynomials). We leave
this interesting question for future work, but speculate that in most cases the
new Fp-native constructions will be far better, in terms of prover time, verifier
time, and proof length, than arithmetization over a different, yet FFT-friendly,
field.

Next we discuss the four parts in which FFT-friendliness was demanded in
prior scalable systems, and then explain how we get rid of this requirement.

1.2 Why do PCPs and IOPs require FFT-friendliness?

The very first step taken by a scalable PCP/IOP prover, when writing a proof
for the integrity of a computation of length T, is typically to view the execution
trace of the computation as a series of functions f1, . . . , fw : D → F for some
evaluation domain D ⊂ F, |D| = T, and then compute the low degree extension
of each fi by first interpolating the polynomial Pi(X),deg(Pi) < T that agrees
with fi, and then evaluating P1, . . . , Pw on a larger domain D′ ⊂ F, |D′| ≫ |D|,
leading to a new sequence f ′1, . . . , f

′
w : D′ → F that are submitted to the verifier

as the very first part of the PCP/IOP. The four reasons D needs to be a cyclic
group of size 2k are explained next. If we wish to create scalable IOPs over all
fields, including ones that do not contain such groups, we shall need to find other
ways to achieve these properties.

– Super-efficient Reed–Solomon encoding: The main asymptotic bottle-
neck of scalable IOPs on the prover side is the computation of the low degree
extensions of f1, . . . , fw from D to D′. When D is a subgroup of size 2k and D′

is a finite union of cosets of D, as used in all scalable PCP/IOP constructions,
the classical FFT algorithm can be used to solve the encoding problem in
time O(wT logT); the asymptotic constants hidden by O-notation are rather
small, which helps for concrete prover efficiency.

– Codewords are invariant to cyclic shifts: The algebraic constraints in
AIRs over the trace involve elements from previous timesteps, which corre-
spond to evaluations of f ′1, . . . , f

′
w at translated arguments. Thus we need

work not only with the codewords f ′1, . . . , f
′
w, but with words obtained by

cyclic shifts of their values (where the cyclic order is determined by the in-
dexing of the trace’s elements by D). To control the degree of the evaluated
constraints, it is necessary to know that these shifted words are also evalu-
ations of polynomials of degree < T, i.e. codewords. This is indeed the case
when D is a cyclic group generated by g, D′ is a finite union of its cosets,
and the rows are indexed according to the cyclic order: shifting the values
of f ′i(x) by t yields the function f ′i(g

tx), which has the same degree as f ′i(x)
(each coset of D undergoes the same cyclic shift).

– Polylogarithmic verification requires sparse domain polynomials:
To allow the verifier to check that the polynomial constraints arising out of
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the arithmetization reduction hold for each of the T steps of the computa-
tion, as claimed by the prover, the verifier needs to evaluate the “vanishing
polynomial” of D, denoted ZD(X), which is the degree-T monic polynomial
whose roots are D, as well as polynomials that vanish on certain subsets
D1, . . . , Ds ⊂ D, denoted ZDi

(X). To facilitate scalable (polylogarithmic)
verification, the verifier needs to evaluate ZD(X), ZD1(X), . . . , ZDs(X) all
in time polylogT. When D is a multiplicative group of size T we have
ZD(X) = XT − 1. This is a sparse polynomial that can be evaluated on
any x0 using O(logT) arithmetic operations. Likewise, when D1, . . . , Ds are
subgroups of D or, more generally, of “low-complexity” when expressed us-
ing subgroups (see Definition 3 for a definition of this term), then scalable
(poly-logarithmic) verification is possible.

– Low-degree testing: Soundness of scalable PCPs/IOPs requires a protocol
designed to verify that each of the functions f ′1, . . . , f

′
w : D′ → F submitted

by the prover is an RS codeword (or is close to it in Hamming distance). All
scalable protocols — from the quasilinear RS-PCP of Proximity (PCPP) of
[20] to the linear Fast RS IOP of Proximity (IOPP) protocol of [6] (abbre-
viated as FRI) — rely on the FFT-friendly structure of the domain D′ over
which functions are evaluated. In more detail, the fact that a cyclic group of
size 2k has a cyclic group of size 2k−1 as a quotient group plays a vital role
in the FRI protocol.

To summarize, there are four separate places in which FFT-friendliness is im-
portant in the construction of FRI-AIR STARK systems. RS encoding requires
quasilinear running time over any finite field but the best asymptotic running
time is obtained over multiplicative groups of order 2k, i.e., within FFT-friendly
fields. Expressing general constraints requires the RS codewords to be invariant
to cyclic shifts, which occurs when the domain is itself a cyclic group. Scalable
(poly-logarithmic) verification requires an evaluation domain that is represented
by a sparse polynomial, and any multiplicative subgroup could be used. Finally,
the low-degree testing protocol that lies at the heart of scalable PCP/IOP con-
structions requires an FFT-friendly domain.

1.3 Elliptic curves save the day, again

The virtues of elliptic curves in cryptography, computer science and mathe-
matics are well established [48,50,40]. Here we make novel use of their properties
— to create strictly scalable IOPs over any sufficiently large finite field, with
the same asymptotic and concrete arithmetic complexity as obtained over FFT-
friendly fields. A brief overview of some relevant standard facts and terms related
to elliptic curves may be found in the online version [10].

Our starting point is our recent work [9], that showed how to use elliptic curve
groups to enable an FFT-like computation over all finite fields, thus enabling fast
low degree extensions. This essentially gives us (with some small modifications)
the analogue of the first item from Section 1.2. Developing analogues of the
remaining three items is completely new to this paper, and it requires us to
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dig deeper than [9] into the elliptic curve group structure and properties of
Riemann–Roch spaces over elliptic curves.

Another contribution of this paper is a randomized near-linear time algo-
rithm for doing all the (one-time) precomputation required for the ECFFT and
the EC based IOP. Additionally, in this paper we also provide a more explicit
description of the curves and maps that appear in the isogeny chain, which in
turn give us more explicit formulas for the FFTs themselves. This allows for easy
implementation and easy determination of running time with concrete constants.
See the online version [10] for details.

Taking a 30,000-feet view, fix any finite field F of size q. The family of el-
liptic curves defined over F is a family of algebraic groups whose size range and
structure are well understood. Size-wise, nearly any number in the Hasse–Weil
bound [q+1±2

√
q] is the size of some elliptic curve over F (when q is prime then

every number in that range is the size of an elliptic curve). The group structure
of elliptic curves is somewhat more elaborate, but suffice to say that for any size
2k, there will exist some elliptic curve that contains a cyclic8 subgroup of size
2k, permitted that 2k is, roughly, at most

√
q.

Based on these observations, we shall replace the multiplicative subgroup
of size 2k (which may not exist inside F∗

q) with a cyclic subgroup of size 2k of
points of some elliptic curve E defined over Fq. Then, we shall use a novel arith-
metization scheme that reduces computational problems to problems regarding
“low-degree” functions defined over the points of the elliptic curve; formally,
these functions will be members of a low-degree Riemann–Roch (RR) space.
The choice of this Riemann–Roch space in a way that enables arithmetization
is the crux of our IOP construction, and we discuss this next.

Arithmetization and automorphisms One property of polynomials (in the
classical FFT-friendly field IOP setting) which is needed for efficient arithmeti-
zation is their invariance under certain linear transformations. In particular, if
G ⊂ Fq is a multiplicative group generated by g, and f : G→ Fq is an evaluation
of a polynomial of degree d, then f(g · x) is also a polynomial of degree d. In
other words, the space of functions of degree at most d is invariant under the
permutation that maps x to g · x.

Now suppose we wish to arithmetize using a cyclic group H that is gener-
ated by a point h on an elliptic curve (i.e, H is a sub-group of the curve). A
permutation that is natural in this context is given by x 7→ x + h (where x, h
are points on the curve and + is the curve’s group operand). We need a space
of functions that are invariant under this action, and this identifies a natural
candidate space – the Riemann–Roch space of functions that is supported in a
symmetric way on H, defined by the divisor

∑
z∈H [z].

Another way of viewing this generalization is as follows. The space of poly-
nomials of degree at most d in the projective space P1 is the Riemann–Roch

8 The need for cyclic subgroups of size 2k, as opposed to general subgroups of size 2k,
of elliptic curve groups is new to this paper in comparison to [9]. The cyclicity is
essential for arithmetization.
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space associated with the divisor D = d · [∞] and D is invariant under the action
[x] 7→ [g · x]. In the case of an elliptic curve group, ∞ ≠ h+∞ so we cannot use
D but rather need a different divisor, one that is invariant under the mapping
induced by h. The natural divisor is D′ :=

∑
z∈H [z] which is clearly invariant

under the action of h because H is cyclic.

Key ingredients for the new IOPs, and the relationship to ECFFT
Part I [9] Let us now see the elliptic curve analogues of the four ingredients
that go into IOPs in FFT-friendly fields. The first of these essentially comes
from [9].

– Super-efficient EC code encoding: This essentially comes from [9]. Here
we generalize the results slightly to extend low-degree functions evaluated
over D to evaluations over a constant number of other cosets of D, in time
O(T logT) and with small concrete asymptotic constants. See the online
version [10] for details.

– Invariance to cyclic shifts: This is where the choice of the Riemann–
Roch space is crucially used. It was specifically constructed to be invariant
to translation of the argument by any element of the cyclic subgroup of size
2k in E, similarly to the case of polynomials with bounded degree. Since D′

is a union of cosets of the cyclic subgroup, these translations correspond to
cyclic permutations of each coset in D′.

– Polylogarithmic evaluation of the “vanishing RR function” of D:
The verifier now needs to evaluate “low-degree” “vanishing RR functions”
(the analogue of a vanishing polynomial in the Riemann–Roch space) ẐD(P )
on an arbitrary point P = (x0, y0) of E, where ẐD is the RR function that
vanishes over D. It turns out that D can be constructed using a sequence of
k = logT rational functions and this implies that ẐD(P ) is computable using
O(logT) arithmetic operations, as before. Likewise, for subsets D1, . . . , Ds ⊂
D of “low complexity” (per Definition 3), the verifier can evaluate ẐDi

(P )
as efficiently for subsets of elliptic curves as was the case with subsets of
multiplicative groups.

– Low-degree testing: The FRI protocol can be described informally as
“random folding of an FFT”. Thus, once we have obtained a generalization
of the FFT algorithm to codes defined over elliptic curve groups, we also
generalize the FRI protocol to verify the proximity of functions to low-degree
RR functions.

1.4 Related work

Over the past decade we have experienced a Cambrian explosion in the field
of concretely efficient proof systems, with and without zero knowledge. These
systems are classified under various definitions including CS proofs [43], NIZKs
and succinct NIZKs [33], SNARGs, SNARKs, STARKs, and more. Realizations
in code include Pinocchio [44], C-SNARKs [14], PLONK [32], Halo [23], Frac-
tal [28], Marlin [25], Ligero [1], Sonic [42], Bulletproofs [24] and more.
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Nearly all of these systems involve arithmetization via polynomials (univari-
ate and multivariate) over large fields, of size at least poly(T), and thus when
efficiency (concrete and asymptotic) is of interest, FFT-friendliness is required,
along with proving time that is quasi-linear (or worse). An interesting research
question, not addressed here, is whether the techniques discussed in this paper
are relevant to some of these works. It seems likely to conjecture that many of the
works that are information theoretically secure, like the important lines of works
based on “interactive proofs for muggles” [35] and “MPC in the head” [38] may
be constructed with better efficiency over general large fields, using our results.

A class of concretely efficient and widely deployed ZK-SNARK systems is
based on knowledge-of-exponent assumptions and bi-linear pairings, starting
with the work of [44]. Several blockchain systems, including Zcash, Filecoin and
Tornado cash use the popular and efficient Groth16 ZK-SNARK [37]. The use
of bilinear pairings significantly limits the class of fields that can be arithme-
tized efficiently, requiring F to be a prime field with small embedding degree
and ruling out fields that are of prime power size9. Other constructions that
rely on number-theoretic assumptions but which do not require knowledge of
exponent assumptions, nor bilinear pairings (e.g., BulletProofs and Halo), may
be amenable to efficient constructions over non-FFT friendly, cryptographically
large primes/curves (but it seems unlikely they can be amended to allow native
arithmetization over fields of small characteristic).

An interesting and noteworthy recent line of works gives strictly linear prov-
ing time, thereby avoiding the need for FFTs [21,22,46,36] and large fields and
offering strictly better asymptotic proving time than mentioned above. However,
thus far this line of works has not produced scalable systems (per the definition
above) and requires super-polylogarithmic verification time which should be per-
formed either directly by the verifier or by a pre-processing entity trusted by it.
In particular, our main results (Theorems 1 and 2) do not imply these works
and vice versa.

Elliptic curves and FFT. This work is a direct continuation of our previous
paper on quasilinear time Elliptic Curve FFT [9] (cf. [31] for an earlier work on
using elliptic curves to compute an FFT-like transform, as well as the discussion
in [9] of that paper). Indeed, the sequence of isogenies used here is adapted from
that work, and the EC-FRI protocol relies on our FFT-like interpolation and
evaluation algorithms of that work. Although we made this paper self-contained,
reading our previous work should help the reader with intuition (and notation)
here. See Section 1.3 for a detailed discussion of what is new in this paper in
comparison to [9].

Algebraic Geometry codes and PCPs/IOPs A line of works used alge-
braic geometry codes to obtain PCPs and IOPs with extremely efficient proof

9 Arithmetization in the context of such SNARKs has as its output a system of R1CS
constraints defined over an elliptic curve subgroup of prime order p that has small
constant embedding degree.
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length and query complexity over constant size fields [19,12]. Those works are
incomparable to ours because the curves there are of much higher genus, and
the end results are not related to our goal of constructing scalable proof systems
over any finite field.

2 Main results

Our main result below is a scalable and transparent IOP of knowledge (abbre-
viated as STIK) for the language of satisfiable AIR instances defined over any
sufficiently large finite field. Thus, we start by defining this language (Defini-
tion 6). Then we state and discuss our main theorem (Theorem 4). We conclude
with a statement of the auxiliary results on FRI and EC-FRI over any finite
field.

2.1 The AIR Language and Relation

We recall the definition of an AIR instance from [7], using the more recent
formulation in [49, Section 5], generalizing it slightly by using an abstract cyclic
group instead of a multiplicative group10 of a finite field. As shown in that paper,
this language, even when restricted to FFT-friendly fields, is NEXP-complete. We
start with the notion of an AIR instance.

Definition 1 (AIR Instance). An Algebraic Intermediate Representation
(AIR) instance is a tuple A = (F,w, h, d, s,H0, g, I,Cset) where:

– F is a finite field
– w, h, d, s are integers indicating the following sizes:

• w is the number of columns in the trace
• h denotes the logarithm of the size of the trace domain
• d is the maximal degree of a constraint
• s is the size of the set of constraints

– H0 is a cyclic group of size 2h, and g is a generator of it. We write H0

multiplicatively, so that gj · y means applying gj (the j-length cyclic shift) to
y. We call H0 the trace domain.

– I ⊆ {0, 1, . . . , 2h − 1}× {1, . . . ,w} is a set of pairs known as the set of mask
indices. Let Z = {Zj,l : (j, l) ∈ I} be a set of formal variables, called the mask
variables, indexed by elements of I.

– Cset = {C1, . . . ,Cs} is a finite set of constraints, of size s. Each constraint
is an ordered pair Cα = (Qα,Hα) where:
• Qα ∈ F≤d[Z] is a multivariate polynomial over the mask variables, of
total degree at most d, called the α-th constraint polynomial.

• Hα ⊆ H0 is a subset of the group, called the α-th constraint enforcement
domain.

10 An AIR can also be defined using Hamiltonian paths in affine graphs, but restricting
to cyclic groups suffices for NEXP-completeness, see [7].
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The kind of result we will show is that the language of satisfiable AIRs over
every field has an efficient IOPP. The efficiency will be in terms of the complexity
of the constraints of the AIR, which we define next. Informally, the complexity
of the AIR constraints depend on two things. The first is the circuit complexity
of individual constraints, defined first (Definition 2). The second, less trivial,
component, is the specification of the domain on which different constraints
must be enforced (Definition 3).

Definition 2 (Complexity of Constraints of an AIR). Given an AIR
A = (F,w, h, d, s,H0, g, I,Cset), we define the complexity of the constraints of A,
denoted ∥Cset∥, as:

∥Cset∥ :=

s∑
α=1

(∥Qα∥+ ∥Hα∥),

where ∥Qα∥ is the arithmetic complexity of the circuit computing the polynomial
Qα, and ∥Hα∥ is the coset complexity of Hα (see definition below).

As motivation for the following definition, consider a linear computation in
which a constraint should be applied only to half of the timesteps. Informally, a
constraint applied periodically, every other step (on even-numbered time steps)
has lower complexity than a constraint that should be applied to a randomly
selected set of time steps. We define the set of relevant time steps using poly-
nomials and rational functions, and it turns out the the following measure is an
upper bound on their complexity as arithmetic circuits.

Definition 3 (Coset Complexity). For a subset S of a finite group H, we
define the coset complexity of S, denoted ∥S∥, to be the smallest value of∑

i

(log2(|Ji|) + 1),

over all ways of writing the indicator function 1S of S as a signed sum of indi-
cator functions:

1S =
∑
i

ϵi · 1Ji ,

where each Ji is a coset of a subgroup of H and ϵi = ±1.

Next, we recall the definition of an AIR witness.

Definition 4 (AIR witness and composition). An AIR witness is a se-

quence of functions f⃗ = (f1, . . . , fw), where each fl is a function from H0 to F.
The witness size is w · |H0|.

Given an AIR constraint polynomial Q ∈ F[Z], the composition of Q and the

witness f⃗ is the function
Q ◦ f⃗ : H0 → F,

where, for all y ∈ H0:

(Q ◦ f⃗)(y) = Q
((

fl(g
j · y)

)
j,l

)
.
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(On the right hand side, we replaced the variable Zj,l ∈ Z that appears in Q(Z)
with fl(g

j · y)).

We now define which witnesses are said to satisfy an instance. As motivation,
consider a typical way that an AIR can encode a computation. We could have a
machine with w Fq-registers, and ask that fl(g

j) represents the contents of the
l-th register at time j. Then we use the constraints to (1) capture the transition
rules between time step j and j + 1 for all j in the enforcement domain [0, T ],
and (2) enforce boundary constraints on the values of the registers at time 0 and
at time T .

Definition 5 (Satisfiability). We say that the AIR witness f⃗ = (f1, . . . , fw)
satisfies the AIR instance A = (F,w, h, d, s,H0, g, I,Cset) if and only if

∀α ∈ [s] : y ∈ Hα ⇒ (Qα ◦ f⃗)(y) = 0.

In words, f⃗ satisfies A iff for every constraint Cα = (Qα,Hα) ∈ Cset it holds that

Qα ◦ f⃗ vanishes on the α-th constraint enforcement domain Hα. We say that the
AIR A is satisfiable if there exists an AIR witness f⃗ that satisfies it.

We now reach the main definition of this subsection, that of the language,
and relation, corresponding to satisfiable AIRs over fields of quadratic size.

Definition 6 (AIR Language/Relation). The AIR relation RAIR is

RAIR = {(A, f⃗) | A = (F,w, h, d, s,H0, g, I,Cset) is an AIR,

f⃗ is a satisfying AIR witness for A,

|F| ≥ Ω(d2 · 22h)}.

The language of satisfiable AIRs is the projection of RAIR onto its first coordinate,

LAIR = {A | ∃⃗f (A, f⃗) ∈ RAIR}.

Remark 3 (Field size). The definition above requires |F| > (d|H0|)2. When
this is not the case one may embed F in a finite extension field K which is
sufficiently large, and apply our results to the AIR over K. This increases the
various complexity measures (proving time, verification time and query com-
plexity) by a multiplicative factor of at most M([K : F]), where M([K : F])
denotes the complexity of K-multiplication in terms of arithmetic operations
over F; notice that M(k) ≤ k2 for any K that is the degree k extension of
F. For instance, in the extremal case of the smallest possible field size, F2,
any AIR per Definition 1 over F2, using an (abstract) group H0 of size n,
would lead to using k = 2 log n+O(1), leading to total prover complexity of
O(n log n ·M([F22 log n+O(1) : F2]) ≤ O(n log3 n) measured in arithmetic opera-
tions over F2.
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2.2 A Scalable and Transparent IOP for LAIR

To state our main result we assume familiarity with the definition of an IOP,
and briefly recall its main parameters [16,45].

An Interactive Oracle Proof (IOP) for a language L is an interactive proof
system defined by a prover P and verifier V, in which the verifier need not read the
prover’s messages in full. Rather, the IOP model allows the verifier oracle access
to the prover’s messages. (The prover is assumed to read all verifier messages in
entirety.) The main parameters of interest are:

– query complexity q is the total number of symbols queried by the verifier
from the prover’s messages

– round complexity k is the number of rounds of interaction between the two
parties.

– prover complexity timeP and verifier complexity timeV, which, in this paper,
will assume unit cost for arithmetic operations over the ambient field

– proof length l is the sum of lengths of oracles sent by the prover throughout
the protocol.

– soundness error err is the probability of the verifier accepting a false state-
ment.

Main Result. It was shown by [7] that the sub-language of LAIR restricted to
FFT-friendly fields has a scalable and transparent IOP of knowledge. Formally,
let

LAIR,FFT = {A ∈ LAIR | A = (F,w, h, d, s,H0, g, I,Cset) satisfies 2
h | |F| − 1}.

The main theorem of [7] is:

Theorem 3 (STIK for LAIR,FFT – Prior state of art). There is an IOP
protocol for the language LAIR,FFT such that for A = (F,w, h, d, s,H0, g, I,Cset) of
witness size n = w · 2h and parameter t we have:

– Completeness, Proving time and Proof size: There is a Prover algo-
rithm that given f⃗ such that (A, f⃗) ∈ RAIR, makes the verifier accept with
probability 1. Prover running time is

O(n · (log n+ ∥Cset∥)),

and proof length l is O(n).
– Verifier runtime and query complexity: For all instances

A = (F,w, h, d, s,H0, g, I,Cset),

the verifier runs in time O(∥Cset∥+ t · h) and makes a total of of q ≤ t log n
queries

– Knowledge soundness and soundness: There exists an efficient extrac-
tor running in time poly(n) such that, given access to a Prover which satisfies

the verifier with probability greater than 2−t, outputs f⃗ such that (A, f⃗) ∈ RAIR.
In particular, if A ̸∈ LAIR then, for any Prover strategy, the verifier will reject
with probability at least 1− 2−t.
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Remark 4 (Soundness and knowledge soundness). Often in the analysis of in-
teractive proofs, the soundness error parameter is smaller than the knowledge
soundness parameter. In the theorem above we state the same parameter for both
because the state-of-the-art soundness analysis in our case is actually efficient,
and uses a witness extractor.

The first step of the above IOPP is to identify the cyclic group H0 with a
subgroup of the multiplicative group F∗

q , and to view satisfying AIR witnesses
fl : H0 → Fq as the values of a low degree univariate polynomial fl(Y ) ∈ Fq[Y ].
This then makes the AIR a collection of constraints on the values of low-degree
polynomials at certain points of the field Fq, and brings the tools of algebra into
play.

The FFT-friendliness is crucial for this approach — without it, there is no
suitable multiplicative subgroup in F∗

q to identify the cyclic group H0 with, and
the above approach fails to get off the ground (see Section 1.2).

Our main result, given below, removes the FFT-friendliness restriction, and
gives an IOPP for satisfiable AIRs over all finite fields with almost identical
guarantees as Theorem 3. The key ingredient is to identify the cyclic group H0

with a cyclic subgroup of an elliptic curve E over F, and to view satisfying AIR
witnesses fl : H0 → Fq as the values of low degree rational functions fl defined

11

on the curve E.

Theorem 4 (Scalable and Transparent IOPs of Knowledge over all
large fields). There is an IOP protocol for the language LAIR with properties
and parameters as stated in Theorem 3 above.

The complexity parameters of the theorem, along with completeness, are
argued along the lines of the proof of Theorem 3 (see [49, Section 5]). The most
delicate part is the soundness analysis (as is always the case with IOP systems).
The proof appears in the online version [10].

EC-STARKs Assuming the existence of a family of collision resistant hash func-
tions, and replacing the interactive oracles with Merkle commitment schemes a
la [39], one obtains an interactive Scalable Transparent ARgument of Knowl-
edge (STARK) as defined in [7]. Alternatively, working in the random oracle
model and applying the BCS reduction [16], one obtains a noninteractive STARK
(which is also, in particular, a transparent SNARK). Details of both reductions
are identical to prior STARKs and discussed elsewhere (e.g., [39,43,16,30,29]).
We point out that STARKs based on FFT-friendly fields (Theorem 3) are con-
cretely practical, as evidenced by the StarkEx system which implements them
to scale transactions on Ethereum. We conjecture that the new EC-based con-
struction of Theorem 1 will have practical applications in certain settings (as
discussed in Section 1.1).

11 To be precise, we work with a suitable Riemann–Roch space.

https://starkware.co/starkex/
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2.3 IOPs of Proximity (IOPPs) for RS codes over all large fields

In this section we state our auxiliary main result: FRI over all large finite
fields. We start with a few necessary definitions.

We use ∆ to denote relative Hamming distance between two vectors u, v ∈
Fn, defined as ∆(u, v) = 1

n | {i ∈ [n] | ui ̸= vi} |, and for a set V ⊂ Fn we let
∆(u, V ) = min {∆(u, v) | v ∈ V }. The agreement of u, v and u, V is defined to
be agree(u, v) = 1−∆(u, v), agree(u, V ) = 1−∆(u, V ).

Definition 7 (IOP of Proximity (IOPP)). Fix V ⊂ Fn. An IOP system
(P,V) is said to be an IOP of proximity (IOPP) for V with soundness error
function err : [0, 1] → [0, 1] (and additional complexity parameters as defined
for standard IOP systems above) if, assuming the verifier has oracle access to
v ∈ Fn, the following hold:

– There exists a prover P such that for v ∈ V ,

Pr [⟨Vv ↔ P(v)⟩ = accept] = 1

– If v ̸∈ V (so ∆(v, V ) > 0) then for any prover P∗ we have

Pr [⟨Vv ↔ P(v)⟩ = accept] ≤ err(∆(v, V ))

Reed Solomon Codes Let RS[Fq, L, ρ] denote the Reed–Solomon code over field
Fq, evaluation domain L and rate ρ:

RS[Fq, L, ρ] = {f : L→ Fq : deg(f) < ρ|L|}. (1)

Recall the previous state of the art with respect to IOPPs for Reed–Solomon
codes. We call a finite field F n-smooth if it contains a sub-group (additive or
multiplicative) of size n = 2k for integer k.

Theorem 5 (FRI over smooth fields [6,8]). Let F be an n-smooth finite
field. Then there is a subset L ⊆ F with size n such that for any rate parameter
ρ = 2−R (R ∈ N) and repetition parameter t, the Reed–Solomon code RS[F, L, ρ]
has an IOPP with:

– linear proving time timeP = O(n) and proof length l < n,
– logarithmic query complexity q = t · log(n) + O(1) and verification time

timeV = O(t log n)
– soundness error function err, where:

err(δ) = O

(
n2

q

)
+ (min(δ, 1−√

ρ)− o(1))
t
.

Our second main result shows essentially the same bounds over any finite
field, not just smooth ones.

Theorem 6 (FRI over all fields). Let F be the finite field of size q, a prime
power. Then for every n ≤ O(

√
q) there exists a set L ⊆ Fq of size Θ(n) such

that for any rate parameter ρ = 2−R (R ∈ N) and repetition parameter t the
Reed–Solomon code RS[F, L, ρ] has an IOPP with the complexity measures as
stated in Theorem 5.
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2.4 Fast IOPs of Proximity for Elliptic Curve Codes

We generalize Theorem 6 to certain algebraic geometry codes, evaluations
of functions in a low-degree Riemann–Roch space over FFT-friendly subgroups
of elliptic curves. To define the specific codes recall the definition of Algebraic
Geometry (or Goppa) codes.

Definition 8 (Algebraic Geometry Codes). Let X be a non-singular pro-
jective curve over a field F, let D = {x1, . . . , xn} be a set of F-rational points and
G be a divisor with support disjoint from D. Let L (G) be the Riemann–Roch
space defined by G. Then the algebraic geometry (AG) code (also known as a
Goppa code) C(D,G) is

C(D,G) := {f(x1), . . . , f(xn) | f ∈ L (G), xi ∈ D} (2)

Our next result is the following.

Theorem 7 (Fast Elliptic Curve Code IOPP). Let E be an elliptic curve
over F, let G ⊂ E be a cyclic group of size 2h and let D be a union of m nontrivial
and disjoint cosets of G, such that G∩D = ∅. Let [G] :=

∑
P∈G[P ] be the divisor

naturally associated with G . Then, for any repetition parameter t and setting
ρ = 1/m, the AG code C(D, [G]) has an IOPP with complexity parameters as in
Theorem 5.

3 Scalable IOPs for AIRs over any large field

In this section we prove our main theorem – Theorem 4, relying on certain
claims that are proved in later sections.

3.1 The ECFFT Infrastructure

The proof of Theorem 4 relies on delicately chosen elliptic curves, subgroups
of those curves, Riemann–Roch spaces and AG codes, and special “degree-
correction” functions on the curve. All of these are explained meticulously, and
the required properties proven formally, in later sections. The goal of this sec-
tion is to lay out, in a self-contained manner, all the results which are needed to
derive our main results regarding IOPs and IOPs of proximity (in Section 3.2).

Due to space constraints, we briefly copy some the information from those
sections so that we can describe our main IOP construction in the next section.

The EC backbone The backbone of all of the constructions in this paper is
the chain of 2-isogenies whose existence was shown in [9, Theorem 4.9], which
we quote here:
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Theorem 8. For any prime power q ≥ 7 and any 1 < K = 2k ≤ 2
√
q, there exist

elliptic curves E0, E1, . . . , Ek over Fq in extended Weierstrass form, a subgroup
G0 ⊆ E0 of size K, 2-isogenies φi : Ei → Ei+1 and rational functions ψi : P1 →
P1 of degree 2, such that the following diagram is commutative:

E0 E1 · · · Ek

P1 P1 · · · P1

φ0

π0

φ1

π1

φk−1

πk

ψ0 ψ1 ψk−1

(3)

where:

– πi are the projection maps to the x-coordinate of each curve;
– |φi−1 ◦ · · · ◦ φ0(G0)| = 1

2i |G0| = 2k−i.
– G0 has a coset C such that C ̸= −C (as elements of the quotient group
E0(Fq)/G0).

Note that this theorem is very abstract: It only establishes the existence of
these curves and maps, but says almost nothing about the form of the equations
defining Ei or of the isogenies φi and maps ψi, does not specify the structure of
G0, and does not show how to find such curves.

In this work we revisit this theorem, and strengthen and refine it for our
needs. First, we show a realization of the above curve sequence using elliptic
curves Ei of a simple form, and and obtain simple, explicit formulas for φi and
ψi. Next, we show how to get the above sequence with G0 being a cyclic group
(isomorphic to Z/2kZ) — this is crucial for doing efficient arithmetization of AIRs
(which are defined in terms of cyclic groups). Finally, we give a probabilistic
algorithm for finding such curves in nearly optimal O(2k polylog q) time. The
following statement summarizes these improvements to Theorem 8.

Theorem 9. There exists a randomized algorithm Find Curve, that on input
k and q ≥ max

{
7, 22(k−1)

}
, runs in time O(2k log2q log log q), and with high

probability finds elliptic curves Ei in Weierstrass form and maps φi, ψi as in
Theorem 8, such that G0 is a cyclic group of size 2k and the maps φi, ψi are
computable via O(1) operations in Fq.

The upper bound on the algorithm’s runtime can be improved by a Õ(log q)
factor assuming the Riemann Hypothesis, and we believe that it should be even
faster. See the online version [10] for details.

Function Spaces and Evaluation Domains We are now ready to explicitly
describe the setup we will need for our IOP for satisfiable AIRs. For analogues of
the FFT and IFFT algorithms and the FRI protocol, we will need to identify some
special functions and some special sets of evaluation points. These are captured
below.

Proposition 1 (Setup). For every q, k with q ≥ Ω(22k), there exists an elliptic
curve E/Fq such that E(Fq) contains a cyclic group G of size 2k.

Fixing such a curve E, we introduce some notation:
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– For each ℓ ≤ k, let G⟨ℓ⟩ be the cyclic subgroup of G of size 2ℓ.
– A basic subset S of E(Fq) at scale ℓ is a set S = C∪ (−C), where C ⊆ E(Fq)

is a coset of G⟨ℓ⟩ with C ̸= −C. Note that |S| = 2|C| = 2ℓ+1.
– An evaluation domain S of E(Fq) at scale ℓ is a union of disjoint basic

subsets of E(Fq) at scale ℓ.
– Let K⟨ℓ⟩ be the Fq-linear space L ([G⟨ℓ+1⟩]) of rational functions on E. By

the Riemann–Roch theorem, we have dim(K⟨ℓ⟩) = 2ℓ+1.

We now set up similar notions on the projective line, obtained by project-
ing down to the x-coordinate via the map π. The curve E is assumed to be in
Weierstrass form.

– A basic subset T of Fq at scale ℓ is the projection T = π(S) of a basic subset
of E(Fq) at scale ℓ. Note that |T | = 2ℓ.

– An evaluation domain of Fq at scale ℓ is a union of disjoint basic subsets of
Fq at scale ℓ. Equivalently, it is a set of the form T = π(S), where S is an
evaluation domain of E(Fq).

– Let M⟨ℓ⟩ denote the space of polynomials in Fq[X] of degree at most 2ℓ − 1.
Note that dim(M⟨ℓ⟩) = 2ℓ.

The K⟨ℓ⟩ and M⟨ℓ⟩ spaces above are related through a certain univariate
polynomial Ω⟨ℓ⟩(X) of degree exactly 2ℓ − 1 (see the online version [10] for an
explicit description). This shows that every rational function f(X,Y ) ∈ K⟨ℓ⟩ can
be written uniquely in the following form:

f(X,Y ) =
1

Ω⟨ℓ⟩(X)

(
f0(X) +

Y

X
f1(X)

)
, (4)

where f0(X), f1(X) ∈ M⟨ℓ⟩. We will sometimes write this as:

f(Z) =
1

Ω⟨ℓ⟩(π(Z))
(f0(π(Z) + ζ(Z)f1(π(Z))) ,

where Z = (X,Y ) is a pair of formal (related) variables representing a point on
the curve, π is the projection from E onto the x-coordinate, and ζ((X,Y )) = Y

X .
This representation will let us move between the space of rational functions

K⟨ℓ⟩ and the space of polynomials M⟨ℓ⟩.

FFT and IFFT The following theorems give the new FFT and IFFT transfor-
mations that we will need. The proofs of the following theorems appear in the
online version [10]. The bases that appear in the theorems are defined there.
Following the notation in [9], for a function f defined on an evaluation domain
S, we denote by ⟨f ≀ S⟩ the evaluation table of f on S. When f belongs in a
linear space spanned by a basis β, we denote by [f ]β the representation of f in
the basis.

Theorem 10 (FFT and IFFT- Elliptic Curve Version). For each ℓ, there

is a basis κ⟨ℓ⟩ = (κ
⟨ℓ⟩
j )2

ℓ+1−1
j=0 of K⟨ℓ⟩ such that for any basic set S at scale ℓ:
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– there is a O(ℓ · 2ℓ) time algorithm FFTS, that when given [f ]κ⟨ℓ⟩ as input,
computes

〈
f ≀ S

〉
.

– there is a O(ℓ · 2ℓ) time algorithm IFFTS, that when given
〈
f ≀ S

〉
as input

for some f ∈ K⟨ℓ⟩, computes [f ]κ⟨ℓ⟩ . (In particular, f ∈ K⟨ℓ⟩ is uniquely
specified by

〈
f ≀ S

〉
).

Theorem 11 (FFT and IFFT- Univariate Polynomial Version). For each

ℓ, there is a basis µ⟨ℓ⟩ = (µ
⟨ℓ⟩
j )2

ℓ−1
j=0 of M⟨ℓ⟩ such that for any basic subset T of

Fq at scale ℓ:

– there is a O(ℓ · 2ℓ) time algorithm FFTT , that when given [g]µ⟨ℓ⟩ as input,

computes
〈
g ≀ T

〉
.

– there is a O(ℓ · 2ℓ) time algorithm IFFTT , that when given
〈
g ≀ T

〉
as input

for some g ∈ M⟨ℓ⟩, computes [g]µ⟨ℓ⟩ . (In particular, g ∈ M⟨ℓ⟩ is uniquely

specified by
〈
g ≀ T

〉
).

FRI Our key tool is the FRI protocol for testing proximity to univariate polyno-
mials. Specifically, when the set of evaluation points T is an evaluation domain
in Fq, then the FFT infrastructure enables a version of the FRI protocol for
RS[Fq,T, ρ], stated below. The proof appears in the online version [10].

Theorem 12 (Basic FRI). Let q, k,E and the setup be as above. Let ℓ ≤ k. Let
R be a positive integer, and set ρ = 2−R. Let T ⊆ Fq be an evaluation domain
at scale ℓ with |T| = 1

ρ2
ℓ.

Given a repetition parameter t > 0, there is an IOPP protocol (FRI) with
prover P and verifier V for RS[Fq,T, ρ] with:

– Completeness: There exists a prover P such that for any f ∈ RS[Fq,T, ρ]
causes the verifier V to accept f with probability 1.

– Soundness: If f is δ far from RS[Fq,T, ρ] then for any prover P∗, we have

Pr [⟨V(f) ↔ P∗(f)⟩ = accept] ≤ (1−min {∆(f,RS[Fq,T, ρ]),
√
ρ}+ o(1))

t

– Prover runtime: O(|T|) arithmetic operations over Fq
– Verifier runtime: O(t log |T|) arithmetic operations over Fq
– Proof length: O(|T|) field elements in Fq.

From the proximity gap property of Reed–Solomon codes [8], this leads to
a protocol for simultaneously checking a batch of functions evaluated on an
evaluation domain in Fq are low-degree. The proof appears in the online version
[10].

Theorem 13 (Batched FRI). Let q, k,E and the setup be as above. Let ℓ ≤ k.
Let R be a positive integer, and set ρ = 2−R. Let T ⊆ Fq be an evaluation
domain at scale ℓ with |T| = 1

ρ2
ℓ.
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Let d1, . . . , dk be integers such that di ≤ ρ|T| for all i. Given a repetition
parameter t > 0 and oracle access to functions

g1, g2, . . . , gk : T → Fq,

there is an IOP protocol with the following behavior.

– Completeness: If for all i, gi is the evaluation of some polynomial in Fq[X]
of degree < di, then there is a prover strategy to make the verifier accept with
probability 1.

– Soundness: Suppose the protocol accepts with probability

p ≥ (ρ1/2 + ϵ)t +O

(
ρ2|T|2

ϵ7q

)
.

Then there exist polynomials G1(X), . . . , Gk(X) ∈ Fq[X], with deg(Gi) < di
and a set V ⊆ T such that:
1. |V | ≥ (ρ1/2 + ϵ)|T|,
2. gi(x) = Gi(x) for all x ∈ V , i ∈ [k].

– Prover runtime: O(k|T|) arithmetic operations over Fq
– Verifier runtime: O(t(k + log |T|)) arithmetic operations over Fq
– Proof length: O(|T|) field elements in Fq.

Note: The constants in O(·) in the last three items in both Theorems 12 and 13
are some explicit small constants that are each at most 10.

Vanishing detection The final tool that we need is a way to check that some
given rational function on E vanishes at a given set of points. See the online
version [10] for details.

Theorem 14 (Vanishing detection). Let I ⊆ E(Fq) be a subset which is

contained in a coset of G⟨ℓ⟩. There is a well-defined rational function ω
⟨ℓ⟩
I ∈

L ([G⟨ℓ+1⟩ \G⟨ℓ⟩]− [G⟨ℓ⟩] + [I]) on E with the following properties:

– For every f ∈ L (2[G⟨ℓ⟩]), we have:

f vanishes on I ⇔ ω
⟨ℓ⟩
I · f ∈ L ([G⟨ℓ+1⟩]).

– For almost every P ∈ E(Fq), excluding at most three cosets of G⟨ℓ+1⟩, ω
⟨ℓ⟩
I (P )

can be computed using O(∥I∥ + ℓ) Fq-operations (where ∥I∥ is the coset
complexity of I).

3.2 The IOP Protocol

In this section we describe an IOP for the satisfiable AIR language of Defi-
nition 6.

The crux of this protocol is for the prover to do a “low-degree extension” of
a satisfying AIR-witness f⃗ = (f1, . . . , fw), where each fl : H0 → Fq. This is not
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the standard univariate polynomial low-degree extension; instead it is an elliptic
curve variant. Indeed, we first identify H0 with a coset C of a cyclic subgroup
of size 2h of a suitable elliptic curve E over Fq. Thus we may view each fl as
a function defined at some points of E. Next, we consider the Riemann–Roch
space K⟨h⟩ of E, and the prover finds elements f̂l of K⟨h⟩ whose restrictions to
C agree with the values taken on H0 by the fl’s. Finally, the prover provides
evaluations of these rational functions f̂l’s at another set of points D ⊆ E(Fq).
These extended evaluations are at the core of the prover’s proof of satisfiability
of an AIR.

To describe the IOP for LAIR we need to fix some auxiliary parameters aux
that will be used by it. For simplicity and ease of exposition, we will only describe
the IOP for AIRs which have the constraint degree d = 2.

– The rate parameter ρ = 2−R for some integer R. In practical settings, ρ is
typically fixed to a small constant such as 1

16 (thus R = 4), and it may help
the reader to consider this setting on first reading.

– An elliptic curve E over Fq with a cyclic subgroup G of size 2k, for k =
h + R + 5. We then use the setup from Proposition 1 with respect to this
curve.

– A choice of a coset C of G⟨h⟩ such that C ̸= −C. We identify H0 with C
by first picking an arbitrary Q0 ∈ C, an arbitrary generator g of G⟨h⟩, and
identifying

gj ↔ Q0 + j · g.

With this identification, the constraint enforcement domains Hα ⊆ H0 get
identified with Uα ⊆ C using:

Uα = {Q0 + j · g | gj ∈ Hα}.

Note that C ∪ (−C) is a basic set at scale h.
– An evaluation domain S ⊆ E(Fq) at scale h of size 2k

′
= d · 1ρ ·2

h+1 = 2h+R+1,

which is disjoint from the trace domain H0. Thus S is the union of d
ρ = 2R+1

basic sets at scale h.
– The projection T ⊆ Fq of the evaluation domain S to the x-coordinate (recall

the curve is in Weierstrass form) — this is an evaluation domain of Fq at
scale h. Note that |T| = 1

ρ2
h+1 = 2h+R+1.

Later in the protocol, we shall represent functions f(x, y) : S → Fq as a pair
f0(x), f1(x) : T → Fq where T is the projection of S onto the x-coordinate,
using the decomposition of (4), i.e., defining

f(x, y) :=
1

Ω⟨ℓ⟩(x)

(
f0(x) +

y

x
· f1(x)

)
,

where f is (or is supposed to be) an evaluation of a function in K⟨ℓ⟩.

We shall also use the following notation:
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– For f : T → Fq and a function u : A → Fq, where A ∩T = ∅, we define the
quotient of f by u to be the function:

Quotient (f ;u) : T → Fq, Quotient (f ;u) (x) :=
f(x)− U(x)

ZA(x)
,

where:

• U(X) ∈ Fq[X] is the unique polynomial of degree at most |A| − 1 with
U |A = u,

• ZA(X) =
∏
a∈A(X − a) is the vanishing polynomial of A.

Description of the protocol The protocol starts with an AIR instance A =
(F,w, h, d, s,H0, g, I,Cset) and auxiliary IOP parameters aux = (E, G,C,S, k′, t)
given to both prover and verifier.

At the high level, the steps closely track the corresponding steps in the
STARK protocol given in [49]12, with rational functions and points on the curve
replacing univariate polynomials and points in Fq.

At some points, we represent rational functions on the elliptic curve by pairs
of univariate polynomials, and invoke results about univariate polynomials. A
more natural and clean version could have been given if we had analogues of (i)
the proximity gaps phenomenon [8], and (ii) the DEEP query and quotienting
method [17], for AG codes on elliptic curves. We believe that this approach
ought to work but have not pursued these here in the interest of the simplicity
of relying on previous results for RS codes.

We now give the description of the IOP protocol.

1. Execution trace oracle: The prover first finds an AIR witness f⃗ = (f1, . . . , fw)
that satisfies the AIR instance A according to Definition 5. Next, the prover
finds functions f̂1, . . . , f̂w ∈ K⟨h⟩ extending the fl’s. Specifically, f̂l is rational

function f̂l(X,Y ) ∈ K⟨h⟩ such that f̂l

∣∣∣
C
= fl|H0

.

Note that a function f̂l ∈ K⟨h⟩ can be specified by giving its values on the
entire basic set C∪(−C) (using the IFFT from Theorem 10); thus the prover

has many valid choices for f̂l, determined by the values of f̂l

∣∣∣
−C

.

The prover then expresses each f̂l(X,Y ) using a pair of univariate polyno-

mials f̂l,0(X), f̂l,1(X) ∈ Fq[X] of degree < 2h, via the decomposition of (4),
i.e.,

f̂l(X,Y ) :=
1

Ω⟨h⟩(X)

(
f̂l,0(X) +

Y

X
f̂l,1(X)

)
.

The prover then evaluates these 2w low-degree polynomials ⟨f̂l,0, f̂l,1 | l ∈
[w]⟩ at all the points of T.

12 Some optimizations from [49], which are important for practical considerations and
could also be done here, are omitted for clarity.
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Prover sends
〈
f̂l,m ≀T

〉
for each (l,m) ∈ [w]× {0, 1}.

Note that these are evaluations of degree 2h polynomials on a set T of size
1
ρ2

h+1, so they are all supposed to be codewords of RS(Fq,T, ρ) (and even

of RS(Fq,T, ρ/2)).
2. Constraint randomness:

Verifier samples uniform randomness r⃗ := (r1, . . . , rs) ∈ Fs
q, one field

element per constraint, and sends it to the prover.

We now explain the role of this step. These random field elements will be
coefficients for taking a “random linear combination of the constraints” –
and the prover will now try to convince the verifier that this random linear
combination of the constraints is satisfied by the witness underlying the f̂l,0’s

and the f̂l,1’s.
In more detail, constraint Cα asks that

Qα((fl(g
j · t))l,j) = 0,

for all t ∈ Hα.
If the f̂l ∈ K⟨h⟩ are truly such that f̂l|H0 = fl|C , then this is the same as:

Qα((f̂l(P + j · g))(l,j)∈I) = 0,

for all P ∈ Uα ⊂ E.
Since f̂l ∈ K⟨h⟩ = L ([G⟨h+1⟩]) and Qα has degree at most d = 2, we get that
the function Bα : E → Fq defined by:

Bα(P ) := Qα((f̂l(P + j · g))(l,j)∈I) ∀P ∈ E,

lies in L (2[G⟨h+1⟩]). Note that the verifier can simulate oracle access to Bα
at points in S using oracle access to evaluations of f̂l at points in S, which
themselves can be reconstituted from evaluations of f̂l,0 and f̂l,1 at points in
T.
Checking that Bα vanishes at all points in Hα is equivalent to checking that
the rational function

ωα ·Bα
lies in L ([G⟨h+2⟩] = K⟨h+1⟩, where ωα := ωHα is the degree adjustment
function for Uα.
Now we can explain where the randomness r⃗ is used — it is to check all the
above memberships of ωα ·Bα in K⟨h+1⟩ simultaneously. The prover will try
to convince the verifier that the random linear combination:

f̂ r⃗ =
∑
α

rαωαBα (5)

lies in K⟨h+1⟩. This is what the prover does next.
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3. Constraint trace oracle:
The Prover then represents the rational function f̂ r⃗ ∈ K⟨h+1⟩ as 2 univariate
polynomials:

f̂ r⃗(X,Y ) =
1

Ω⟨h+1⟩(X)

(
f̂ r⃗0(X) +

Y

X
f̂ r⃗1(X)

)
,

where f̂ r⃗m ∈ Mh+1 for m ∈ {0, 1}.
The prover then evaluates both univariate polynomials at the points of T.

Prover sends
〈
f̂ r⃗0 ≀T

〉
,
〈
f̂ r⃗1 ≀T

〉
.

Note that these are evaluations of univariate polynomials of degree < 2h+1

at 2h+R+1 points.
4. DEEP query:

Verifier samples DEEP query q = (x0, y0) uniformly at random from
E(Fq) \ (C ∪ S), where C = G⟨h+2⟩ ∪ (G⟨h+2⟩ + C) ∪ (G⟨h+2⟩ − C) is
a union of three cosets of G⟨h+2⟩.

5. DEEP answer:

Prover sends an answer sequence

answer = ⟨⟨αj,l,0, αj,l,1 : (j, l) ∈ I⟩, ⟨β0, β1⟩⟩ ∈ FI×{0,1}
q × F2

q.

The αj,l,m are supposed to be the evaluations f̂l,m(q+jg), and βm is supposed

to be the evaluation f̂ r⃗m(q). Following the DEEP philosophy [17], we can then

incorporate these claimed evaluations of f̂l,m and f̂ r⃗m by quotienting. This
will be taken into account in the next step of the protocol.
But first, the verifier has to do a basic sanity check on the claimed evalua-
tions. Letting

αj,l :=
1

Ω⟨h⟩(π(q+ j · g))
(αj,l,0 + ζ(q+ j · g) · αj,l,1)

β :=
1

Ω⟨h+1⟩(π(q))
(β0 + ζ(q)β1)

then supposedly αj,l = f̂l(q+ j · g) and β = f̂ r⃗(q).
We say the constraints Qα are validated by answer if the following equality
holds: ∑

α

rαωα(q)Qα
(
(αj,l)(j,l)∈I

)
= β, (6)

i.e., the answers are consistent with Eq. (5).
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6. FRI Protocol: This step verifies the low-degreeness of various functions
simultaneously. But first, we quotient out the functions f̂l,m and f̂ r⃗m by their
evaluations that the prover claimed in the previous step.

For l ∈ [w], define Al ⊆ Fq to be the set:

Al = {π(q+ j · g) | (j, l) ∈ I}

Define ul,m : Al → Fq to be:

ul,m(π(q+ j · g)) = αj,l,m.

For l ∈ [w] and m ∈ {0, 1}, define b̂l,m : T → Fq by:

b̂l,m(x) = Quotient
(
f̂l,m;ul,m

)
(x),

and degree parameter dl,m = 2h − 1− |Al|.
For m ∈ {0, 1}, define um : {π(q)} → Fq by

um(π(q)) = βm.

Now define b̂r⃗m : T → Fq by:

b̂r⃗m(x) = Quotient
(
f̂ r⃗m;um

)
(x),

and degree parameter dm = 2h+1 − 2.

Note that oracle access to these functions can be simulated by the verifier
from oracle access to f̂l,m and f̂ r⃗m on T.

Prover and Verifier now run the Batched FRI protocol from Theo-
rem 13 on all the b̂l,m and the b̂r⃗m with degree parameters dl,m and
dm, and repetition parameter t.

Observe that all the degree parameters are smaller than ρ|T| – thus the
soundness of this step is governed by ρ and t.

7. Decision:

Verifier accepts iff (i) the constraints Qα are validated by answer (i.e.,
equation (6) holds), and (ii) the FRI protocol accepts.

Due to space limitations of the conference version, full proofs are omitted.
Full details appear in the online version [10].
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