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Abstract. Continuous Group Key Agreement (CGKA) is the basis of
modern Secure Group Messaging (SGM) protocols. At a high level, a
CGKA protocol enables a group of users to continuously compute a
shared (evolving) secret while members of the group add new members,
remove other existing members, and perform state updates. The state
updates allow CGKA to offer desirable security features such as forward
secrecy and post-compromise security.

CGKA is regarded as a practical primitive in the real-world. Indeed,
there is an IETF Messaging Layer Security (MLS) working group de-
voted to developing a standard for SGM protocols, including the CGKA
protocol at their core. Though known CGKA protocols seem to perform
relatively well when considering natural sequences of performed group
operations, there are no formal guarantees on their efficiency, other than
the O(n) bound which can be achieved by trivial protocols, where n
is the number of group numbers. In this context, we ask the following
questions and provide negative answers.

1. Can we have CGKA protocols that are efficient in the worst case? We
start by answering this basic question in the negative. First, we show
that a natural primitive that we call Compact Key Exchange (CKE)
is at the core of CGKA, and thus tightly captures CGKA’s worst-case
communication cost. Intuitively, CKE requires that: first, n users
non-interactively generate key pairs and broadcast their public keys,
then, some other special user securely communicates to these n users
a shared key. Next, we show that CKE with communication cost o(n)
by the special user cannot be realized in a black-box manner from
public-key encryption, thus implying the same for CGKA, where n
is the corresponding number of group members.
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2. Can we realize one CGKA protocol that works as well as possible in
all cases? Here again, we present negative evidence showing that no
such protocol based on black-box use of public-key encryption exists.
Specifically, we show two distributions over sequences of group oper-
ations such that no CGKA protocol obtains optimal communication
costs on both sequences.

1 Introduction

Secure Group Messaging (SGM) platforms such as Signal Messenger, Facebook
Messenger, WhatsApp, etc., are used by billions of people worldwide. SGM has
received lots of attention recently, including from the IETF Messaging Layer
Security (MLS) working group [8], which is creating an eponymous standard for
SGM protocols. While these protocols’ security properties are well documented,
understanding their efficiency properties remains a central research question.

Continuous Group Key Agreement (CGKA) is at the core of SGM protocols.
First formalized in [3], CGKA allows a group of users to continuously compute a
shared (evolving) symmetric key. This shared group key is re-computed as users
asynchronously add (resp. remove) others to (resp. from) the group, as well as
execute periodic state refreshes. CGKA provides very robust security guaran-
tees: it not only requires privacy of group keys from non-members, including
the facilitating delivery server (which users send CGKA ciphertexts to, in case
other group members are offline), but much more. Even in the event of a state
compromise in which a user’s secret state is leaked to an adversary, group keys
should shortly become private again through ordinary protocol state refreshes.
Furthermore, in face of such a state compromise, past group keys should re-
main secure. The former security requirement is referred to as post-compromise
security (PCS), while the latter is referred to as forward secrecy (FS).

Ideally, for use in practice, CGKA protocols should use simple, well-established,
and efficient cryptographic primitives and have O(logn) communication per op-
eration (or at most sub-linear), where n is the number of group members. In-
deed, many CGKA protocols in the literature described below claim to have
“fair-weather” O(logn) communication, meaning that when conditions are good,
communication cost per operation is O(logn). Such informal claims have pleased
practitioners and supported their beliefs that CGKA can be used in the real-
world. However, no such formal efficiency guarantees, nor any non-trivial defini-
tions of such good conditions have ever been established. Indeed, as elaborated
upon below, there are no formal analyses showing that a CGKA protocol can
do any better than the trivial O(n) communication cost per operation, on any
non-trivial sequence of operations.

CGKA protocols in the literature. Many CGKA protocols have been introduced
in the literature to provide the above security properties. The largest portion
of these are based on a basic tree structure, as in the Asynchronous Ratchet
Tree (ART) protocol [21] and the TreeKEM family of protocols [3,9,6,5,4,11,1],
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the simplest of which is currently used in MLS [8]. Most of these tree-based
protocols are of the same approximate form (although they have slightly differ-
ent efficiency profiles; see [6] for a comparison based on simulations): each node
contains a Public Key Encryption (PKE) key pair, users are assigned to the
leaves and only store the secret keys on the path from their leaf to the root, and
the root is the group secret. When a user executes an operation, they refresh
the secret keys along the path(s) of one (or more) leaves to the root, encrypt-
ing these secrets to the siblings along the path(s). Thus, in very specific good
conditions, communication can easily be seen to be O(logn). However, due to
PCS requirements (elaborated on below), the trees in all of these protocols may
periodically degrade, resulting in £2(n) communication complexity in the worst
case, even amortized over many operations.

Instead of using a tree structure, Weidner et al. suggest using pairwise chan-
nels of the Continuous Key Agreement scheme derived from the famous two-
party Signal Secure Messaging protocol [32,26,2,20,28,14,18]. However, this triv-
ial construction of course requires {2(n) communication per operation.

In summary, all known CGKA protocols (based on public-key encryption)
achieve the same worst-case efficiency as the trivial protocol.

1.1 Owur Results

In this paper, we work towards understanding the possible efficiency guarantees
that any CGKA protocol can achieve in the worst-case, i.e., in cases when the
conditions are not good. We start by asking the following question:

Can we construct a CGKA protocol that does better than the trivial CGKA
protocol in the worst-case?

We provide a negative answer to the above question. In particular, we show
that every CGKA (from PKE) has large 2(n) worst-case communication cost.
Although one can hope that this worst-case will not occur often in practice,
until there are better, well-defined assumptions on the structure of operation
sequences under which practitioners hope that good efficiency bounds can be
proven, there is always a danger of bad efficiency in some cases. As the first step
of this lower bound, we show that a natural primitive which we call Compact
Key Exchange (CKE) is at the core of CGKA, and in fact tightly captures the
worst-case communication cost of CGKA. The heart of our negative result is
then a black-box separation showing that PKE are insufficient for efficiently
realizing CKE. Finally, using the above equivalence, we translate this result into
the aforementioned lower bound on CGKA.

Given that no CGKA protocol can be efficient in the worst case, we ask:

Can we realize one CGKA protocol that works as well as possible in all cases?

Here again, we present negative evidence showing that no such protocol based
on black-box use of PKE exists. Specifically, we show two distributions over se-
quences of group operations such that no single CGKA protocol making only



4 A. Bienstock, Y. Dodis, S. Garg, G. Grogan, M. Hajiabadi, P. Résler

black-box use of PKE obtains optimal communication costs on both sequences.
That is, any CGKA protocol which acts well on one distribution of operations
must have much worse {2(n) communication cost on the other distribution; oth-
erwise, it violates our CKE lower bound.

1.2 Compact Key Exchange

To prove our CGKA lower bound, we first isolate and define Compact Key Ez-
change (CKE), a novel primitive that captures one type of scenario that results
in large CGKA communication. CKE is related to Multi-Receiver Key Encapsu-
lation Mechanisms [30]. It involves n users who each non-interactively broadcasts
a public key, and another special user who sends those n users an encryption of a
symmetric key, which only the n users can decrypt. As explained below, we will
show that CKE is equivalent to CGKA, in terms of worst-case communication
complexity.

1.3 Standard Security of Continuous Group Key Agreement

Our CGKA lower bound focuses on the efficiency ramifications of post-compromise
security (PCS). The standard form of PCS required for CGKA in the litera-
ture [3,6,21,1] is in fact quite strong. Informally, it requires the following two
properties:

1. Double-join prevention. A malicious user may memorize randomness used in
operations they execute. If they are removed from the group at a later time,
they must be prevented from using this memorized randomness to re-join
the group without invitation.

2. Resilience to randomness leakage. An honest user’s malfunctioning device
may continuously leak randomness which the user samples for CGKA op-
erations (e.g., due to implementation flaws or an installed virus). Once the
leakage is stopped (due to updating the implementation or removing the
virus) and the user performs a state update, the adversary must be pre-
vented from using the previously leaked randomness to obtain future group
secrets.

Thus, once a user is removed, all group secrets should be independent of any
randomness sampled by them. Similarly, if a user executes a state refresh, all
new group secrets should be independent of any randomness previously sampled
by them.

We emphasize that while the two properties above are rather strong, weak-
ening PCS to exclude them (i.e., where we assume randomness is never leaked
and securely deleted after each operation) yields many trivial CGKA protocols
(from any PKE) with O(logn) worst-case communication. For example, one can
simply use Tainted TreeKEM (TTKEM) [6] without taints. In all these protocols
honest parties need to sample secrets for other parties, and are then trusted to
delete them once communicated (encrypted) to these other parties. Clearly, most
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real-world implementations should not be comfortable with this level of trust,
and should especially strive for property 1 above instead. Indeed, from very early
on in the MLS standardization initiative, requiring property 1 was deemed im-
portant' and ultimately prioritized over efficiency? in the version of TreeKEM
used by MLS [8, §13.1]. This protocol, as well as other existing protocols, such as
TTKEM, explicitly prevent double-joins (e.g., by sometimes blanking or tainting
nodes that are not on the path to the root from the leaf of a user that is exe-
cuting an operation) at great efficiency cost; £2(n) in the worst-case. Moreover,
even though property 2 may seem especially strong, all CGKA definitions in the
literature require both properties [3,6,21,1], and our lower bound holds for both
(in isolation). Nevertheless, we leave it as an interesting topic for future work
to study what kind of efficiency guarantees can be obtained in a more restricted
setting, where property 2 is not required.

1.4 Equivalence of CKE and CGKA Worst-Case Communication
Complexity

The first step in proving our £2(n) CGKA lower bound (from PKE) is showing
that CKE and CGKA with the standard PCS notion detailed above are equiva-
lent, both in terms of implication and worst-case communication complexity. It
is important to note that in all our definitions of CKE and CGKA, we specify
the weakest correctness and security requirements under which our lower bounds
hold. This only strengthens our lower bound. For example, we only consider non-
adaptive, passive adversaries.

CKE is at the Core of CGKA. In Section 3, we show that CGKA implies CKE
and furthermore that the worst-case communication complexity of CKE from
black-box PKE lower bounds that of CGKA from the same primitives. The
intuition is as follows. Consider a CGKA group with n members at a certain
time during its lifetime. To ensure that our lower bound is meaningful, we allow
for any sequence of operations to be executed up until this point. Now, consider
the situation in which user A adds k new users. If the CGKA protocol only uses
PKE, then each added user only stores secrets (besides their own) that were
generated by user A.% If user B removes user A as the next operation, then due

! First proposal of the TreeKEM design with a discussion about the
double-join problem: https://mailarchive.ietf.org/arch/msg/mls/
e3ZKNzPC7Gxrm3Wf0q96dsLZoD8/

Proposal to prevent double-joins in TreeKEM, resulting in linear com-

plexity in the worst-case: https://mailarchive.ietf.org/arch/msg/mls/

Zzw2tqZC1FCbVZA9LKERsSMIQXik/

3 Note: for any CGKA protocol, it could be that each of the added k users may share
secrets with all of the current group members, derived from non-interactive key
exchange using key-bundles stored on a server. However, these shared secrets are
only between pairs of users, and thus do not seem useful for establishing the group
secret (since secure communication between pairs of users can already be achieved
via PKE).


https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8/
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8/
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik/
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik/
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to PCS, every secret which the k& added users shared with any of the current
group members cannot be re-used; user A must have generated all of them and
thus could potentially (maliciously) re-join the group without being added if
one of the secrets is reused. Thus, as part of the remove operation, user B must
communicate the new group key to each of the other k added users, with only
the knowledge of their (independent) public keys. This is exactly the setting of
CKE. Indeed if k = £2(n), and additionally we can show that the ciphertext size
for CKE must be £2(n), then we can show the same for when user B removes
user A in CGKA above. Furthermore, if user C' then removes user B, we are in
the same situation again, and thus this ciphertext must also be {2(n). We can
repeat this scenario ad infinitum, where after a user executes a remove in the
sequence, they add a new user, such that even amortized over a long sequence of
operations, the communication cost is 2(n). We in fact further generalize this
result in Section 3 to intuitively show that if o users add the k£ new users then
execute £ rounds of sequential state refreshes, the combined communication cost
of each round is 2(k).

A bit more formally, we show how to construct CKE for k users from CGKA
in a manner such that if the CGKA ciphertext is small for the above operation
and the CGKA protocol only uses PKE in a black-box manner, then the cor-
responding CKE ciphertext is small, contradicting our lower bound for CKE,
discussed below.

Difference from lower bound of [11]. Tt is important to mention that our CGKA
communication complexity lower bound already holds for fully synchronous, non-
concurrent CGKA executions. Hence, the lower bound by Bienstock et al. [11]
that uses symbolic proof techniques to show a communication lower bound for
concurrently initiated operations in CGKA executions (with required fast PCS
recovery?) is entirely independent with respect to our employed methods and
resulting statement.

CKE tightly implies CGKA. For completeness, in the full version [10] we also
show that one can use CKE to construct a CGKA protocol where the worst-
case communication complexity of the CGKA protocol is proportional to that
of the used CKE protocol. The CGKA protocol simply lets the user, executing
a given CGKA operation, run the CKE algorithm of the special CKE user to
communicate a fresh group key to the public keys of all current CGKA group
members. Therefore, CGKA and CKE are surprisingly equivalent in terms of
both cryptographic strength and worst-case (communication) complexity; f one
could construct CKE efficiently, they could also construct CGKA efficiently, and
vice versa.

* Unlike in [1] who circumvent the [11] lower bound by allowing for slower PCS recov-
ery.
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1.5 Black-Box Compact Key Exchange Lower Bound

In order to prove the CGKA lower bounds discussed above, we need a lower
bound on the underlying CKE primitive. Therefore, in Section 4, we prove a
black-box separation showing that all CKE protocols that make black-box use
of public-key encryption (PKE) require the ciphertext sent from the special user
to the n users to have size 2(n), irrespective of the sizes of the public keys that
the n users have sent to the special user. Our impossibility holds even if the
scheme comes with a CRS, of arbitrary size. Ruling out schemes that allow for
a CRS will help us with our CGKA lower bounds.

Intuitively, since the n public keys are generated independently from each
other, our result implies that there is no non-trivial “compression” operation
that the special user can do to save over the trivial protocol: choosing a key and
separately encrypting the key to each user independently.

Relations to broadcast encryption. We note that the notion of CKE is incom-
parable to that of broadcast encryption, at least in an ostensible sense. Recall
that a broadcast encryption scheme is a type of attribute-based encryption that
allows for broadcasting a message to a subset of users, in a way that the result-
ing ciphertext is compact. One crucial difference between broadcast encryption
and CKE is that under CKE, users have independent secret keys, while under
broadcast encryption, user secret keys are correlated, all obtained via a master
secret key.

Relations to other black-box impossibility results. The work of Boneh et al. [15]
shows that identity-based encryption (IBE) is black-box impossible from trap-
door permutations (TDPs). A striking similarity between IBE and CKE is that
both deal with some form of compactness: that of public parameters (PP) for
IBE and of ciphertexts in CKE. The techniques of [15] crucially rely on the
number of identities being much larger than the number of queries required to
generate a public parameter. In our setting, this is no longer the case: the number
of queries made by the encryption algorithm to generate a compact ciphertext
may be much larger than n, and hence the techniques of [15] do not work in our
setting. In addition, we allow the CRS to grow with the number of identities.

Extensions and limitations of our impossibility results. We believe that out im-
possibility should extend quite naturally to separate CKE from trapdoor permu-
tations (TDPs), though we have not worked out the details. Our impossibility
results have no bearing on the base primitive being used in a non-black-box way,
and indeed by using strong tools such as indistinguishability obfuscation (which
inherently results in non-black-box constructions), one might be able to build
compact CKE.

Overview. Our impossibility result is proved relative to a random PKE oracle
O := (g,e,d). We give an attack against any CKE protocol (CRSGen, Init,
Comm, Derive) (Definition 7) instantiated with O. To give some intuition about
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the attack, suppose e is an encryption oracle, whose output length (i.e., the
ciphertext length) is sufficiently larger than its input length (i.e., the length of
(pk,m,r)). This in particular implies that in order to get a valid (pk,c¢)—one
under which there exists some m and r such that e(pk, m,r) = c—one has to call
the e oracle first. Now if a CKE ciphertext for n users has length o(n), this means
that one can “embed” at most o(n) valid e-ciphertexts into C. Say the ciphertexts
are ci,...,c; with corresponding public keys pky, ..., pk,, where ¢ € o(n). This
means that we need at most ¢ effective trapdoors (with respect to O) to decrypt
C, namely the trapdoors that correspond to (pkq,...,pk;). Also, since C' should
be decryptable by each user, the set of “effective” trapdoors for each user (those
required to decrypt C) should be a subset of all these ¢ trapdoors. Now since
t = o(n), there exists a user whose effective trapdoors are a subset of all other
users. But since the CKE secret keys for all users are generated independently
and with no correlations, if we run the CKE key generation algorithm many
times, we should be able to recover all the required trapdoors, for at least one
user. This is the main idea of the proof.

The above overview is overly simplistic, omitting many subtleties. For ex-
ample, an e-ciphertext that is decrypted may come from one of the public keys
PKy,...,PK, (which can be arbitrarily large), and not from C itself. Second,
the notion of “embedded ciphertexts” in C' is not clear. We will formalize all
these subtleties in Section 4 and will give a more detailed overview there, after
establishing some notation.

New techniques. Our proofs introduce some techniques that may be of indepen-
dent interest. Firstly, our proofs involve oracle sampling steps (a technique also
used in many other papers), but one novel thing in our proofs is that we need to
make sure that the sampled oracles do not contain a certain set of query/response
pairs. In comparison, prior oracle sampling techniques involve choosing oracles
that agree with a set of query/answer pairs. This technique of making certain
query /response pairs off-limits, and the implications proved, might find applica-
tions in proving other impossibility results. Moreover, our proofs use theorems
about non-uniform attacks against random oracles [22,19] to argue that an o(n)
CKE ciphertext cannot embed n ciphertexts; we find this connection novel.

In Section 4, we will give an overview (and the proof) for the restricted con-
struction setting in which oracle access is of the form (CRSGen®, Init®, Comm®,
Derived). This will capture most of the ideas that go into the full proof. We will
then give a proof for the general construction case in the full version [10].

1.6 No Single Optimal CGKA Protocol Exists

In Section 5, we present another negative result for CGKA protocols that make
black-box use of PKE. Naturally, CGKA protocols proceed in an online manner
such that users do not know which operations will be executed next. Therefore,
users have to make choices when executing operations that may result in un-
necessary communication. We leverage this situation to show that there does
not exist any single CGKA protocol that makes black-box use of PKE and that
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has optimal communication costs for every sequence that may be executed. More
specifically, for every CGKA protocol I, there exists some distribution of CGKA
operations Seq and some other CGKA protocol 1" such that M has much higher
communication costs than N’ when executing Seq.

Our driving example is as follows: suppose again that starting with a CGKA
group in arbitrary state, k users are added by user A and remain offline. Next,
a users (including user A) execute state refreshes. In this case, some protocols
might use a strategy which, through these state refreshes, create and commu-
nicate extra redundant secrets for the k added users, while others may use a
strategy which simply relies on those secrets communicated by user A. For the
former strategy, if the k added users afterwards come online and execute their
own state refreshes, then the communication of these extra secrets will have
been unnecessary, and a protocol which follows the latter strategy will have
much lower communication cost. However, for the latter strategy, if one of the
a — 1 users, user j, who only communicated a small amount (o(k)) in their state
refresh thereafter remains offline while the other av — 1 users execute rounds of
sequential state refreshes, then we know from what we prove in Section 3 that
each of the rounds will have £2(k) communication cost. This is intuitively be-
cause the k added users mostly share secrets with the @ — 1 users excluding
user j, and thus when these o — 1 users perform state refreshes, they must re-
communicate secrets to the k added users. On the other hand, a protocol that
follows the former strategy can have much lower communication cost if the state
refresh ciphertext of user j alone was large (£2(k)). This is intuitively because
the k added users still share enough secrets with user j, so that when the other
«a — 1 users execute their state refreshes, they do not need to communicate much
new to the added users.

1.7 Lessons Learned for Practice

Our results show that the execution of a CGKA protocol causes impractical
communication overhead amongst the group members if (1) the CGKA protocol
is built from PKE only, (2) the CGKA protocol achieves the weakest accepted
notion of security, and (3) group members of the protocol execution initiate cer-
tain non-trivial operation sequences. We note that, on an intuitive level, PKE
are essentially the only building blocks of all practical CGKA constructions.
Furthermore, all of the non-trivial operation sequences employed for our lower
bounds are legitimate, and could happen in practice. Consequently, impracti-
cal worst-case communication overheads seem to be inevitable. However, in or-
der to avoid such impractical communication overheads, one could (a) try to
find suitable practical building blocks other than PKE to circumvent the lower
bound, (b) lower the security requirements for CGKA (which we strongly advise
against!), or (c) identify all problematic operation sequences and then forbid
their execution. We believe that (a) finding better constructions and (c) iden-
tifying all such problematic operation sequences are interesting questions that
we leave open for future work. However, for (a), we emphasize that one would
ultimately need to circumvent our CKE lower bound. Although one may be able
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to do so using strong primitives such as indistinguishability obfuscation (as in
the multi-party non-interactive key exchange of [16]), we view it as a challenging
problem to do so from practical tools other than PKE.

We provide some further consequences of our lower bound in practice below.

CGKA with two administrators. Many real-world SGM systems in production
may impose membership policies on users. That is, it could be that there are only
a few “administrators” that are allowed to add and remove others from the group,
while everyone else can only update their state and send messages. As shown
by [12], for the setting in which there is only ever one administrator, CGKA boils
down to the classical setting of Multicast Encryption [31,33,24,17,25,29,13]. Since
there is only one administrator in Multicast, O(logn) communication complex-
ity is easily achieved even with security property 1 above [12] (however, security
property 2 already results in 2(n) complexity for the administrator in Multi-
cast). This is due to the fact that the sole administrator is never removed and
executes all operations; thus she can use a tree as in some of the aforementioned
CGKA protocols, and never allow it to degrade.

Therefore, a natural question is: In the setting of two administrators that
can replace one another with new administrators, and where only property 1,
but not property 2, is required for the administrators; can we retain O(logn)
communication?® One can observe that our above lower bound answers this
question in the negative. Indeed, there only ever need to be two administrators
in the group. If so, then as above, one administrator can add k users, then the
second administrator can replace the first with a new third administrator, then
the third administrator can replace the second administrator, and so on. Thus,
the jump from one to two administrators in the worst case requires communica-
tion to increase from O(logn) to £2(n) per operation, if security property 1 (and
not 2) is required.

MLS propose-and-commit framework. The latest MLS protocol draft (version
14) [8], uses the “propose-and-commit” framework for CGKA. In this frame-
work, users can publish many messages that propose different group operations
(adding/removing others or updating their state), and a new group key is not
established until some user subsequently publishes a commit message. The moti-
vation behind this design is to allow for greater concurrency of CGKA operations:
In prior drafts of MLS, users would attempt to establish a new group key with
each operation. If many users desired to execute an operation at the same time
and published corresponding CGKA ciphertexts, the delivery server would have
to choose one such ciphertext to deliver to all group members (and thus only
one of the group operations would be executed). With propose-and-commit, the
delivery server still has to choose between commit messages, but many proposed
group operations can be combined inside a single commit.

® If neither administrator is removed, of course O(logn) communication can be re-
tained if they share a multicast tree.
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‘We however observe that we can still apply our above CGKA lower bound to
this framework. Indeed, consider the scenario wherein one user (resp. adminis-
trator) A proposes to add k users, then publishes a commit for these additions.
Thereafter, some other user (resp. administrator) B can replace A in a new pro-
posal, then publish a commit for this replacement. Again, replacements can be
repeated ad infinitum, and it can easily be seen that each such commit will still
cost £2(n) communication. Hence, our result of Section 3 naturally holds in the
propose-and-commit framework.

2 Definitions

In this section, we define syntax and non-adaptive, one-way notions of security
for Continuous Group Key Agreement and Compact Key Exchange. First, we
introduce some notation.

Notation. For algorithm A, y + A(z;r) means that A on input z with random-
ness r outputs y. If r is not made explicit, it is assumed to be sampled uniformly
at random, and we use notation y <—g A(x). We will also use the notation x <—g X
to denote uniformly random sampling from set X. We will use dictionaries for our
CGKA security game. The value stored with key = in dictionary D is denoted
by D[xz]. The statement D[*] <— v initializes a dictionary D in which the default
value for each key is v.

2.1 Continuous Group Key Agreement

In the simple, restricted form that we consider here, Continuous Group Key
Agreement (CGKA) allows a dynamic set of users to continuously establish sym-
metric group keys. For participating in a group, a user first generates a public
key and a secret state via algorithm Gen. With the secret state, a user can add
or remove users to or from a group via algorithms Add and Rem. Furthermore,
each user can update the secrets in their state from time to time to recover
from adversarial state corruptions via algorithm Up. We call the latter three
actions group operations. After all users process a group operation via algorithm
Proc, they share the same group key. In order to analyze the most efficient form
of CGKA, we assume a central bulletin board B to which public information
on the current group structure is posted (initially empty). Thus, newly added
users can obtain the relevant information about the group (which intuitively
may be of size £2(n) anyway, where n is the current number of group members)
from B, instead of receiving it explicitly from the adding user. Note: the MLS
protocol specification indeed suggests the added user can obtain the group tree
of the protocol (size 2(n)) from a bulletin board (the delivery server) in this
manner [8].

In the following, the added user simply downloads the entire board. Of course,
in practice, this would be very inefficient, but this only strengthens our lower
bound on the amount of communication sent between current group members
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(as opposed to the amount of information retrieved from the bulletin board by
added users).

Definition 1. A Continuous Group Key Agreement scheme CGKA = (Gen,
Add, Rem, Up, Proc) consists of the following algorithms:®

— Gen is a PPT algorithm that outputs (ST, PK).

— Add is a PPT algorithm that takes in (ST, PK), where ST is the secret state
of the user invoking the algorithm and PK is the public key of the added
user, and outputs (ST', K,C), where ST’ is the updated secret state of the
invoking user, K is the new shared group key, and C' is the ciphertext that is
sent to (and then processed by) the group members. For efficiency purposes,
C = (Cqg,Cp) consists of a share Cg that is sent to all group members
directly and a share Cp that is posted to the central bulletin board B.

— Rem is a PPT algorithm that takes in (ST, PK), where ST is the secret state
of the user invoking the algorithm and PK is the public key of the removed
user, and outputs (ST', K,C) as above.

— Up is a PPT algorithm that takes in secret state ST of the user invoking the
algorithm and outputs (ST', K, C) as above.

— Proc is a deterministic, polynomial time algorithm that takes in (ST,Cg),
where ST is the secret state of the user invoking the algorithm and Cg is
the ciphertext directly received for an operation, and outputs updated state
and group key (ST', K). For users that were just added to the group, Proc
additionally takes in bulletin board B. If the operation communicated via C
removes the processing user from the group, K is set to a special symbol L.

Correctness and Security. We define correctness and security of CGKA via
games that are played by an adversary A, in which A controls an execution of
the CGKA protocol. For simplicity and clarity, we only consider a non-adaptive
protocol execution in a single group. The games are specified in Figure 1.
Before either game starts, the adversary specifies the sequence of queries to
the oracles Gen(), Add(), Rem(), Up(), and Corr() that will be executed.
Gen() allows the adversary to initialize a new user, from which it receives the
corresponding public key PK. The other oracles allow the adversary to execute
group operations, i.e., to add, remove, and update users, respectively. Addition-
ally, for the security game, the adversary beforehand specifies the epoch t which
it will attack, i.e., for which it will guess the group key. The game starts in epoch
t = 0, then increments ¢ each time a group operation oracle is queried. The game
forces the adversary to first query Add() to initialize the group. It keeps track of
group members for each epoch using dictionary G. For simplicity, in each group

5 For the sake of comprehensible communication analysis, we do not provide an ex-
plicit Create(ST,PKj,...,PK,) algorithm (for which in practice, £2(n) ciphertext
size could be tolerated). Instead, we require the group creator to one-by-one add
PKi,...PK,, which allows us to prove a more meaningful lower bound on just Add,
Rem, and Up operations.
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Initialization: Set (i) ¢ = 0; (ii) WeakEpochs, WeakUsers = ; and (iii)
G[*], Rand[«], ST[*], K[*] + L.

— Gen() executes (ST,PK) < Gen(), sets ST[PK] < ST, and returns PK.
— Add(PK, PK*) first aborts if (i) PK = PK*; (ii) t # 0 and PK ¢ G[t]; or (i)
PK* € G[t]. Otherwise it:

1. For randomly sampled 7, sets Rand[PK,t + 1] «+ r and executes
(ST[PK], K[t + 1, PK], (Cc, Cs)) « Add(ST[PK], PK*; 7).

2. Sets G[t + 1] + G[t]U {PK,PK"}.

3. For every PK' € GJt] \ {PK}, executes (ST[PK'|,K[t + 1,PK']) «
Proc(ST[PK'],Cc). Also executes (ST[PK*],K[t + 1,PK*]) «
Proc(ST[PK*],Cq, B).

4. If (WeakUsers N G[t + 1]) # 0, sets WeakEpochs «+ WeakEpochs U
{t +1}.

5. Increments t < t + 1 and returns (Cg, CR).

— Rem(PK, PK") first aborts if (i) ¢ = 0; (ii) PK = PK*; (iii) PK ¢ G[t]; or (iv)
PK* ¢ G[t]. Otherwise, it:

1. For randomly sampled r, sets Rand[PK,t + 1] <+ r and executes
(ST[PK], K[t + 1, PK], (Ca, Cs)) < Rem(ST[PK], PK*; 7).

2. Sets G[t + 1] « G[t] \ {PK*}.

3. For every PK' € GIt] \ {PK}, executes (ST[PK'|,K[t + 1,PK']) «+
Proc(ST[PK'], Cq).

4. If (WeakUsers N Gt + 1]) # 0, sets WeakEpochs + WeakEpochs U
{t +1}.

5. Increments ¢t + ¢ + 1 and returns (Cq, Cg).

— Up(PK) first aborts if (i) ¢t = 0; or (ii) PK ¢ GJt]. Otherwise, it:

1. For randomly sampled r, sets Rand[PK,t + 1] <+ r and executes
(ST[PK], K[t + 1, PK], (Ca, Cs)) « Up(ST[PK]; 7).

2. Sets G[t + 1] + GJt] and WeakUsers < WeakUsers \ {PK}.

3. For every PK' € G[t + 1] \ {PK}, executes (ST[PK'],K[t + 1,PK']) +
Proc(ST[PK'], Cg).

4. If (WeakUsers N Gt + 1]) # 0, sets WeakEpochs + WeakEpochs U
{t +1}.

5. Increments ¢t + ¢ + 1 and returns (Cq, Cg).

— Corr(PK) first sets WeakUsers <+  WeakUsers U {PK} and
WeakEpochs + WeakEpochs U {t' < ¢t : PK € GI[t/]}. Then it
returns ST[PK] and Rand|[PK,t'], for every t' < t.

Fig. 1. The CGKA correctness and security games.

operation query, the game immediately uses each current group member’s state
to process the resulting ciphertext directly sent to them, Cg, along with the
current bulletin board B, in the case of an added user. Dictionary K keeps track
of the group key that each user computes for each epoch. Each group operation
oracle returns C' = (Cg, Cp) to the adversary.



14 A. Bienstock, Y. Dodis, S. Garg, G. Grogan, M. Hajiabadi, P. Résler

Definition 2. A CGKA scheme CGKA is correct if for every adversary A against
the correctness game defined by Figure 1, and for all t and PK,PK' € GIt]:
Pr [K[t,PK] = K[t,PK']] = 1.

Our notion of security is slightly weakened compared to the standard defini-
tion in the CGKA literature, which only strengthens our lower bound. That is,
the corruption of a user may affect the security of those keys that were estab-
lished in the past while this user was a group member. Thus, forward secrecy is
not captured. Also, we do not consider authenticity.” However, our notion still
captures basic security requirements plus standard PCS requirement (mentioned
in the introduction), as explained below.

We first explain the importance of dictionary Rand, in addition to sets
WeakEpochs and WeakUsers, which allow the game to capture this security.
Rand keeps track of the randomness the users sample to execute the operations
of each epoch. Intuitively, WeakEpochs and WeakUsers keep track of those
epochs and users that are insecure, respectively. When the adversary queries
oracle Corr(PK), the game returns the corresponding user’s secret state, as well
as the randomness which she used to execute all of her past group operations.
Thus, the game adds PK to WeakUsers and since we do not require forward
secrecy, it also adds to WeakEpochs every past epoch in which the correspond-
ing user was in the group. Now, for every Up(PK) query, the game removes PK
from WeakUsers. This in part captures PCS: in every group operation query,
if there are still weak users in the group (i.e., (WeakUsers NGt +1]) # (), then
the game adds the new epoch ¢ + 1 to WeakEpochs. So, if there is a member
of the group that was corrupted and did not since update their state, the epoch
is deemed weak. Conversely, as soon as every group member updates their state
or is removed after a corruption, epochs are no longer deemed weak.

After receiving all return values of the pre-specified sequence’s queries to
these oracles, the adversary outputs a key K. This key K is a guess for the actual
group key established in epoch ¢, where ¢ is the pre-specified attack epoch. Note
that this recoverability definition is weaker than standard indistinguishability
definitions, which strengthens our lower bound.

Definition 3. A CGKA scheme CGKA is secure if for every PPT adversary
A = (A, As) against the security game defined by Figure 1:

Pr[K <3 As(w, Trans) : K = K[t, PK*]; ¢ ¢ WeakEpochs;
PK* € G[t]; (w, Seq, 1) 5 A1 (1) | < negl(}),

where Ay non-adaptively specifies the sequence of oracle queries Seq and the
attacked epoch t, and As guesses the attacked key when obtaining the transcript
of oracle return values Trans.

" Analyzing the effect of required authenticity under weak randomness [7] on (commu-
nication) complexity in the group setting [27], as well as of extended security goals
such as anonymity [23] remains an interesting open question.
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2.2 Compact Key Exchange

We can now define Compact Key Exchange with access to a common reference

string (CRS). Such protocols allow some users 1,...,7n to sample independent
(across users) key pairs (SK1,PKj), ..., (SK,,PK,), then publicly broadcast
PKy,...,PK,. Upon reception of these public keys, special user 0 generates a

key K and message C, and broadcasts C. Finally, upon reception of C, every
user 7 € [n] uses SK;, the set of public keys {PK;};¢c[n), and C to derive K.

Definition 4. A Compact Key Exchange scheme CKE = (CRSGen, Init, Comm,
Derive) in the standard model with common reference string CRS € CRS consists
of the following algorithms:

— Init is a PPT algorithm that takes in CRS <g CRSGen(1*) and outputs
(SK, PK).

— Comm is a PPT algorithm that takes in CRS and set {PK;};c},) and outputs
(K,C).

— Derive is a deterministic, polynomial time algorithm that takes in CRS, SK;,
where i € [n], set {PK;}jcpy, and C, and outputs K.

For correctness, we require that for any n, and for every i € [n]:

Pr [K < Derive (CRS, SK;, {PKj}je[n], C’) . (K, C) <3 Comm (CRS, {PKj}je[n]) ;
CRS +5 CRSGen(1Y)] = 1.

For security, we require that for every PPT adversary A that specifies n =
poly(\):

Pr [K 3 A (CRS, {PKi}ie[n]a C) : (K, C) g Comm (CRS, {PKz’}ie[n]) X
CRS 45 CRSGen(1")] < negl(\).

Ideally, |C| should be a small function (perhaps independent) of n.

Remark 1. Of course, there is a simple CKE protocol (without CRS) from PKE
scheme PKE = (Gen, Enc, Dec), where |C| = O(X - n): Init() simply samples
sk <—¢ {0,1}*, then computes pk < Gen(sk) and outputs (sk, pk). Comm({pk; };c[n])
samples K < {0,1}*, and for each i € [n] computes ¢; <—g Enc(pk;, K). It then
outputs (K, C), where C' = (cy,...,¢,). Finally, Derive(sk;, {pk; } je[n), C) com-
putes K < Dec(sk;, ¢;) and outputs K. Correctness and security follow trivially.

3 From CGKA to CKE Tightly

In this section, we show that CKE is at the core of CGKA, both in terms of
cryptographic strength and worst-case communication complexity, by providing
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a tight construction of the former from the latter. Due to space constraints, the
simpler counter direction—building CGKA from CKE, tightly—is provided in
the full version [10]. From these two reductions, we show that the worst-case
communication complexity of CGKA operations is asymptotically equivalent to
the size of CKE ciphertexts. That is, we show that the best possible size of
a CKE ciphertext implies 1. a lower bound on the worst-case communication
complexity of CGKA operations; and 2. an upper bound for the same. With
this result, we additionally prove that the communication overhead in a CGKA
group is necessarily increased if group members remain offline after they were
added to the group. Indeed, based on our {2(n) lower bound on CKE ciphertext
size for protocols that make black-box use of PKE from Section 4, we show that
worst-case communication overhead for CGKA protocols that make black-box
use of PKE is £2(k), where k is the number of added users who remain inactive
after being added to the group. Furthermore, we show that this holds even for
(unboundedly) many consecutive operations.

To illustrate our proof idea, consider the following execution of a CGKA
protocol: Let users A and B be members of an existing CGKA group. User
A adds k new users to this group before user B removes A from the group
and B finally conducts a state update. After A is removed and B updates his
state, the group must share a key that is secure even if A is corrupted after
he is removed or B was corrupted before his update, and there were no other
corruptions. (Note that these corruptions of A and B must be harmless w.r.t.
security because A was removed and B updated his state to recover according
to PCS.) We observe that the only information received by the k new users so
far were A’s add-ciphertexts and B’s remove- and update-ciphertexts. Since A
may have been corrupted (which reveals the randomness she used for adding the
k users), the add-ciphertexts may contain no confidential payload. Similarly, B
might have been corrupted until he updated his state. Hence, B’s ciphertext that
updates his state is the only input from which the k users can derive a secure
group key. This update ciphertext intuitively corresponds to a CKE ciphertext
that establishes a key with the k newly added users. In our proof, we generalize
this intuition to show that, as long as k new group members remain passive, a
recurring linear communication overhead in 2(k) cannot be avoided when active
group members repeatedly update the group’s key material.

3.1 Embedding CGKA Ciphertexts in CKE Ciphertexts

With our proof that CGKA implies CKE, we directly lift the communication-
cost lower bound for CKE from Section 4 to certain bad sequences in a CGKA
execution. That means, our proof implies that such bad sequences in a CGKA ex-
ecution lead to a linear communication overhead in the number of affected users.
For this, we build a CKE construction that embeds specific CGKA ciphertexts
in its CKE ciphertexts. Thus, a CGKA scheme that achieves sub-linear com-
munication costs in the number of affected group members for these embedded
ciphertexts results in a CKE with compact ciphertexts, which contradicts our
lower bound from Section 4.
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Components of Bad Sequences. Intuitively, a bad CGKA sequence is an oper-
ation sequence in a CGKA session during which k passive users are added to
the group that stay offline while (few) other members actively conduct CGKA
operations continuously. A CGKA session that contains such a sequence can be
split into (1) a pre-add phase that ends when the first of these k passive users
is added and (2) the subsequent bad sequence itself. The bad sequence contains
(2.a) the add operations due to which the passive users become group members
as well as (2.c) multiple, potentially overlapping, iterations of collective update
assistances. With these collective update assistances, the active users update key
material for the newly added passive users, which causes the communication
overhead in (k). From the perspective of each collective update assistance, the
remaining operations in a bad sequence can be categorized into (2.b) ineffec-
tive pre-assistance operations and (2.d) an irrelevant end. (The numbering in
the above enumeration reflects the order of these components within the bad
sequence)

Let sequence Seq = (Opy,...,0p,,) be the execution schedule of a CGKA
session, where each Op, is a tuple that refers to an executed group operation
with the following format: Op, = (Up, PK, L) means that PK updates their state;
Op, = (Add, PK, PK*) means that PK adds PK*; Op, = (Rem, PK, PK*) means
that PK removes PK*; see Section 2.1 for more details. Further, let PU, |PU| = k,
be the public key set of the k passive users, such that for every PK* € PU there
exists an operation (Add, -, PK*) but neither an operation (Rem, -, PK*) nor an
operation (-, PK*,-) in sequence Seq.

(1) The pre-add phase starts at the beginning of the entire sequence and ends
with the #{* — 1th operation, where Optf\ = (Add, -, PK") is the first operation
that adds a user PK* € PU to the group. (2.a) The add operations, starting
with operation Opt,fx, end with the last operation Optﬁ = (Add, -, PK*) that adds
a user PK* € PU to the group. (Also operations other than adding passive users
can be contained in this phase.)

(2.c) The first collective update assistance ends when all active users con-
ducted their first update after the add operations. During such a collective update
assistance, the active users both propagate new own key material but also col-
lectively establish and communicate new key material for the passive users. We
define AU~ as the public key set of users who are active between the #{' th and
t* th operation. That means PK* € AU,;- iff there exists at least one opera-
tion Op, = (-, PK*,-) but no operation Op, = (Rem, -, PK*) for ¢{! <t < t* in
sequence Seq. Every collective update assistance by active users in set AUy« is
determined by its final operation Op,.,t* > t?, for which it must hold that all
users PK* € AU conducted an update operation between the tﬁ—i—l th and t* th
operation. Such a collective update assistance consists of a set of effective opera-
tions EOy« from sequence Seq. These effective operations establish key material
with the passive users and, in total, have a communication overhead of £2(k) as
we will prove. (2.b) Operations executed prior to the ¢* th operation that are not
in set EOy are called ineffective pre-assistance operations. (2.d) The remain-
ing sequence after the ¢* th operation is the irrelevant end. In summary, a bad
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sequence from the perspective of one (out of potentially many) collective update
assistances is structured as follows: (2.a) add operations between the ¢! th and
t;? th operation, (2.b) ineffective pre-assistance operations between the t;? + 1th
and t* — 1 th operation, (2.c) effective operations between the t‘,? + 1th and t* th
operation that constitute this collective update assistance, and (2.d) irrelevant
end after the t* th operation.

The effective operations consist of all active users’ operations since their re-
spective most recent update operation. That means, for each active user public
key PK € AUy, the set of effective operations EOy in a collective update assis-
tance contains all operations Op,, = (-, PK, ) that were initiated since the most
recent update operation Op,, = (Up,PK,-) by user PK, where tpx < t' < t*
with maximal tpk, respectively.

Intuition for a Bad Sequence. Active users establish secret key material for pas-
sive users in collective update assistances. The communication overhead in £2(k)
that is induced by such a collective update assistance can be distributed among
all corresponding effective operations. That means, active users can trade the
work of establishing key material and the corresponding necessary communica-
tion overhead within each collective update assistance. However, it is important
to emphasize that operations only establish key material to passive users effec-
tively if the involved active users are not corrupted at that point. Hence, from
the perspective of a CGKA group key computed with the ¢* th operation, prior
operations only contribute effectively to its secure computation if the involved
users were able to recover from a potential earlier corruption. Such a recovery
from a corruption is achieved via an update operation. This is the reason why
the effective operations are defined as each active user’s last operations since
their most recent state update. During and after these state updates, the active
users collectively assist the passive users in securely deriving the same CGKA
group key in the t* th operation.

Based on the above terminology, we formulate our communication overhead
lower bound in the following theorem:

Theorem 1 (CGKA Lower Bound). Let Seq be an execution schedule of a
CGKA session during which k passive users are added to the group until the
t;? th operation. Let t* determine the last operation of any subsequent collective
update assistance such that all active users in set AUy conduct an update be-
tween the tﬁ + 1th and t* th operation. Finally, let EOy« be the corresponding
set of effective operations that consist of all active users’ most recent update
and subsequent operations until the t* th operation. The total size of ciphertexts
sent by operations in set EO;« is 2(k) for every CGKA construction that makes
black-box use of PKE.

The proof of Theorem 1 is provided in the full version [10].

In Corollary 1 we formulate a simpler, more specific variant of bad sequences
that is directly implied by Theorem 1. Consider a sequence Seq in which the
active users, after adding the passive users, only conduct state update operations.
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Then, the effective operations of each collective update assistance in sequence Seq
are simply the most recent state updates by each active user.

Corollary 1 (Effective Update Operations). Let Seq be an execution sched-
ule of a CGKA session during which k passive users are added to the group until
the t? th operation. Let t* determine the last operation of any subsequent collec-
tive update assistance such that all active users in set AU conduct an update
between the tf—kl th and t* th operation. If all operations after the t;? th operation
are state updates, then the total size of ciphertexts sent due to the most recent
updates by each active user in set AU is £2(k) for every CGKA construction
that makes black-box use of PKE, where |AU+| = |EOy-

Owerlapping Collective Update Assistances. We want to point out that effective
operations of different collective update assistances may overlap. For example,
an active user A may update their state during the sequence Seq precisely once
after the passive users were added. The remaining active users B and C may
repeatedly perform new updates until the end of the sequence. In this case,
the effective operations of all collective update assistances in sequence Seq will
include the single update operation by A and always the most recent operations
of B and C since their respective latest update in this sequence. As we will show
in Section 5, there exists no optimal strategy to exploit the fact that effective
operations of different collective update assistances can overlap. For example,
one cannot successfully predict which single effective operations are in several
collective update assistances and thus make these single operations have large
communication overhead, so that large costs are not repeated several times.

Continuous Update Assistances. We finally come back to our motivating ex-
ample CGKA execution schedule. In this schedule, only one user A adds the k
passive users, and another user B removes A thereafter. In order to show that
adding k passive users can induce a continuous communication overhead, we
extend this execution schedule: after adding the k passive users, [ active users
replace each other, one after another. More precisely, first a user A adds k users
as well as a second user B, then user B removes A and adds a new user C,
then C replaces user B by a new user D, and so on. Each of these active users
additionally performs a state update after replacing their predecessor. The ef-
fect of this cascade of replace-update sequences is that each contained update
operation constitutes a single eeHeetive update assistance, individually inducing
a communication overhead of §2(k).® As a result, the entire schedule induces a
communication overhead of £2(k - [). We formally define this CGKA execution
schedule in Definition 5 and give the corresponding Corollary 2.

Definition 5 (Continuous Update Assistance). Let Seq be an operation
schedule of a CGKA session during which user PKy adds k passive users to
the group until the t;? th operation. Schedule Seq contains a Continuous Update

8 We strike out “collective” because each update assistance is conducted by a single
active user in this execution schedule.
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Assistance of length | after the ti' th operation if Seq proceeds after the ti: th
operation with | repetitions of operation sequences (Op; 4,0p; g, Op; 1/),7 € [I],
where Op; 4 = (Add,PK;,PK;y1), Op; p = (Rem,PK;;1,PK;), and Op, ;, =
(Up, PKit1,1) for independent users PK;,j € [l +1].

Corollary 2 (Continuous Communication Overhead). For every CGKA
execution schedule Seq that contains a Continuous Update Assistance of length [
after the t’,? th operation, the total size of ciphertexts output by the 3l operations
after the t,? th operation is 2(k - 1) for every CGKA construction that makes
black-box use of PKE.

The proof of Corollary 2 is a direct application of Theorem 1 via a simple hy-
brid argument that considers each replace-update sequence in Seq as a eoHeetive
update assistance.

4 CKE Lower Bound from PKE

Before showing our lower bound for CKE from PKE, we need to define the model
in which we prove it.

Preliminaries. For a function f we write f(x) = y to indicate f(x) = y for
some input z. We generalize this notation for the case in which some part of the
input is fixed, writing f (a1, *) = y, interpreted in the natural way. Due to space
limitations, many other preliminaries are deferred to the full version [10].

CKE in the W-model. The model for our proof gives the protocol and adversary
access to an oracle distribution, defined as follows:

Definition 6. We define an oracle distribution ¥ that produces oracles (O, u, v),
where O = (g, e,d). The distribution is parameterized over a security parameter
A, but we keep it implicit for better readability.

— g: {0,1}* — {0,1}** is a random length-tripling function, mapping a secret
key to a public key.

—e: {0,133 x {0,1} x {0,1}* — {0,1}3*: is a random function satisfying the
following: for every pk € {0,1}3*, the function e(pk,-,-) is injective; i.e., if
(m,1) # ('), then e(pk, m, ) # e(pk,m',").

—d:{0,1}*x{0,1}** + {0, 1} is the decryption oracle, where d(sk, c) outputs
m € {0,1} if e(g(sk), m, x) = ¢; otherwise, d(sk,c) = L.

= v: {0,1}** x {0,1}3* — {1, T}, is a ciphertext-validity checking oracle:
v(pk,c) outputs T if ¢ is in the range of e(pk,-,-) (that is, c := e(pk, *, *) );
otherwise, it outputs 1.

—u: {0,113 x {0,1}3* — {0,1} U {L}, 4s an oracle that decrypts wrt in-
valid public keys; given (pk,c), if there exists sk such that g(sk) = pk, then
u(pk,c) = L; otherwise, if there exists a message m € {0,1} such that
e(pk,m, x) = ¢, return m; else, return L.
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Now, we can define CKE in the ¥-model.

Definition 7. A Compact Key Exchange scheme in the W-model is defined
equivalently as in Definition 4, except that each of the CKE algorithms and the
adversary additionally have access to the ¥ oracles. We denote such access using
¥ as a superscript in the corresponding algorithms, e.g., Initg'(CRS). All other
syntax and security requirements stay the same.

4.1 Proof Outline

Our lower bound is derived from the following two lemmas. The first lemma
shows a random (g, e, d) constitutes an ideally-secure PKE protocol, even against
adversaries that have access to the oracles (u, v), in addition to (g, e, d). The sec-
ond lemma shows that the security of any proposed CKE protocol (CRSGen, Init,
Comm, Derive), instantiated with a random O := (g, e,d), may be broken by
an adversary making at most a polynomial number of queries to (O, u,v). The
black-box separation will then follow.

Lemma 1 (O is secure against (O, u,v)). For any polynomial-query adver-
sary A:

Pr[ACuY(pk,c) = b] < 1/2 + #, where (g,e,d,u,v) +3 ¥, O := (g, e,d),
b g {0,1}, sk < {0,1}*, pk = g(sk), 7 <5 {0,1}* and c = e(pk, b; 7).

The following lemma shows how to break compact CKE constructions relative
to the PKE oracles. The lemma shows that even for encrypting single-bit keys
(i.e., |[K| = 1), a CKE ciphertext cannot be sub-linear in n.

Lemma 2 (Breaking CKE relative to (O, u,v)). Let (CRSGen, Init, Comm,

Derive) be a candidate black-box construction of CKE, where for any CKE ci-
3A(n—1)

phertext C, |C] < ==5—=. For any constant c, there exists a polynomial-query
adversary Brk®™Y such that Pr[Brk® ™V (PKy,...,PK,,C) = K] > 1 — =,

where (g,e,d,u,v) <5 ¥, O := (g,e,d), CRS <5 CRSGen®(1*), (PK;, %) s
it®(CRS) fori € [n], and (K, C) +g Comm®(CRS,PK1,...,PK,).

Roadmap. Lemma 1 is proved in a straightforward way (hence omitted), given
the random nature of the oracles. The proof of Lemma 2 is the main techni-
cal bulk of our paper, consisting of the description of an attacker and attack
analysis. We first describe the attacker for the case (Init®, Comm®, Derive?) in
Section 4.2, and will then describe an attack against general constructions in the
full version [10]. Lemma 2 will follow similarly from the below simpler attack. We
may now obtain the following from Lemmas 1,2, proved via standard black-box
separation techniques.

Theorem 2. There exists no fully-black-box construction of CKE schemes from
PKE schemes with CKE ciphertext size o(n)|c|, where |c| denotes the ciphertext
size of the base PKFE scheme.
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4.2 Attack for (CRSGenS, Init®, Comm®, Derive?)

We will show an attack for the case in which oracle access is of the form
(CRSGen®, Init®, Comm®, Derive?). This already captures the main ideas be-
hind the impossibility result. We will then show how to relax this assumption.

Attack overview. Let (PKy,...,PK,,C) be the public keys and the ciphertext.
We show an impossibility as long as |C| < w, where recall that 3\ is
the size of a base ciphertext as per oracles generated by ¥ (Definition 6). This
particular choice for the size of C' will ensure that C' can “embed” at most n — 1
base ciphertexts, in a sense we will later describe.

For simplicity, in this overview we assume that the scheme does not have a
CRS. The attack is based on the following high-level idea. During the generation
of each (PK;,SK;) <3 Init8(1?) a set of g-type query/answer pairs made. Let
KPair; = {(pk; 1,5ki,1); - - -, (Pk; ¢, Ski,¢)} be the set of public/secret key pairs pro-
duced during the generation of PK;. These public keys are in someway encoded
in PK;, and the ability to decrypt with respect to these base pk; ; public keys is
the only advantage that the ith party, who has SK;, has over an adversary.

Consider a random execution of (K, C) g Comm®(PKy,...,PK,), and let
Q = {(pky,bi,7ri,¢) | © € [f]} contain the set of all query/answer pairs, and
let Q. = {c1,...,¢s}. Since the ciphertext C is compact, C' can embed at most
(n—1) ciphertexts ¢; from the set Q.. By embedding we mean anyone, including
the legitimate users, given only C can extract at most n — 1 valid pairs (pk;, ¢;)
without querying e.

Now for each user consider its local decryption execution. Each user per-
forming decryption will need to decrypt pairs of the form (pk,c), in order to
recover a shared K. We focus on those pairs which are valid, meaning that c is
in the range of e(pk, -, ). Looking ahead, the reason for this is that for invalid
pairs for which the answer is 1, an adversary can already simulate the answer
by calling u. Let S} be the set of valid pairs that come up during decryption per-
formed by user 4. Since C' embeds at most n—1 valid pairs (pk, ¢), for some user h:
S, € S{U...S) . In other words, the set of base trapdoors needed to decrypt Sj,
is a subset of those for S{U... S} _,. Moreover, in order for any user to be able to
decrypt some (pk, ¢), the user should have observed a query/answer pair (pk, sk)
during its execution of Init®(1*). Thus, recalling KPairy, the set of base secret
keys needed to decrypt elements in S) is a subset of KPair; U ..., UKPairj,_;.
But each of these KPair; sets (for i € [n]) is obtained by running Init®(1*) on a
security parameter, and so if an adversary runs Init®(1*) many times and col-
lects all query/answer pairs in a set Freq, the adversary with high probability
will collect all the trapdoors needed to successfully decrypt for at least one user.

How to perform simulated decryption? So far, the discussion above says that an
adversary can collect a set Freq which with high probability contains all (pk, sk)
pairs needed to decrypt with respect to at least one user. But even given Freq, it
is unclear how to perform decryption for any user. The adversary cannot simply
“look at” Freq and somehow decrypt C' — the adversary will need a secret key
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SK to be able to run Derive(SK, -). The solution is to let the adversary sample a
“fake” secret keys for users, in a manner consistent with query-answer knowledge
of Freq.

We make the following assumption for the construction (CRSGen®, Init®,
Comm®, Derived) that we want to prove an impossibility for. The assumption
is made only for ease of exposition.

Assumption 3. We assume for any oracle (g,e,d) <g ¥ picked as in Def-
inition 6, each algorithm in (CRSGen®, Init®, Comm®, Derive?) makes only a
security parameter X number of queries.

Definition 8 (Partial oracles and consistency). We say a partial oracle Oy
(defined only on a subset of all points) is ¥-valid if for some Oy € Supp(¥): O1 C
O, where Supp denotes the support of a distribution. We say an oracle (g,e,d)
1s PKE-valid if it satisfies PKE completeness. A partial PKE-valid oracle is one
which is a subset of a PKFE-valid oracle. Note that any W-valid oracle is PKFE-
valid as well. We say a partial oracle Oy is consistent with a set of query/response

pairs S if O1 US is PKFE-valid.

We also need to define the notion of a partial oracle forbidding a set of
query /response pairs. This technique of forbidding a set of query/answer pairs
will be used extensively in our constructions, and to the best of our knowledge,
no previous impossibility results deal with this technique.

Definition 9 (Forbidding queries). Let Forbid consists of “wildcard” queries/
responses, of the form (¢ — %) or (x — u), where z € {g,e}. We say that a
z z

partial oracle O1 = (g, &) forbids Forbid if (a) for any (¢ — %) € Forbid the
oracle Z is not defined on input q and (b) for any (x — u) the oracle Z is not

defined on any input point with a corresponding output u (i.e., y is not in the
set of output points defined under Z).

The attacker will first perform many random executions of Init®(CRS) to col-
lect all likely query/response pairs: those that appear during a random execution
with a high-enough probability. This will allow the adversary to learn the secret
keys for all likely base pk’s that might be embedded to more than one user’s
CKE public key. Once this step is done, the attacker will sample partial oracles
that are consistent with the set of collected query/answer pairs. Recall that by
Assumption 3 any execution of Init®(CRS) makes exactly A queries. We say a
partial oracle O’ (defined only on a subset of points) is minimal for an execution
Tnit®’ (CRS; R), if the execution makes queries only to those points defined in O’,
and nothing else. This means in particular that O’ is defined only on A points.
In the definition below, we talk about sampling minimal partial oracles O’ that
agree with some set of query/answer pairs.

Definition 10 (Sampling partial oracles). We define the procedure ConsOrc.
In this definition we assume that the algorithm Init®° makes both g and e queries
(as opposed to g only), since this definition will also be used for the general
attack.
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— Input: (CRS, PK, Freq, Forbid): A CRS CRS, public key PK, and set of query/
answer pairs Freq and a set of query/answer pairs Forbid. The set Forbid
consists of “wildcard” forbidden queries/responses, of the form (¢ — x) or

(x = u), where z € {g,e}.

— Output: (SK,0’) or L, produced as follows. Sample a partial U-generated
O’ = (g',€') defined only on X queries (see Assumption 3), sample random-
ness R and a resultant SK uniformly at random subject to the conditions
that (a) O is consistent with Freq; (b) O’ forbids Forbid (Definition 9)
(c) InitOI(CRS;R) = (PK,SK) and (d) O' is R-minimal: the execution of
InitO,(CRS;R) makes only queries to those in O, and nothing else. If no
such (SK, Q') exists, output 1.%

In our attack, the adversary will try performing simulated decryptions for
different parties. The adversary will do so by sampling a simulated secret key
SK for that party, along with a partial oracle g’ relative to which SK is a secret
key for that party’s public key PK (i.e., (PK, SK) < Init® (CRS)). The adversary
will then perform decryption with respect to an oracle g’¢*O that is the result
of superimposing g’ on the real oracle O. We will define the superimposed oracle
below. Essentially, the superimposed oracle is defined in a way so that it agrees
with g’, it is a valid PKE oracle, and also agrees with the real oracle as much
as possible. In the definition below we define this superimposing process, but
note that we are not claiming that the output of g’¢*O on a given query can be
necessarily obtained by making a polynomial number of queries to O.

As notation we use (skp ? pky) to denote a query/answer pair of g-type.

We use similar notation for other types of queries. If L is a set of query/answer
pairs, we use Query(L) to denote the query parts of the elements of L.

Definition 11 (Composed Oracles ¢*). Let O := (g, e, d) be a ¥-valid oracle
(a possible output of ¥) and let
g = {(skq oy pky), -, (Ske g pk, )}

be a partial W-valid oracle consisting of only g-type queries. We define a composed
oracle g'0*0O := (g, e,d) as follows.

- g(): f0r a given sk, let g(sk) £ pk; if sk = sk; for i € [w]; otherwise,

(k) 2 g(sk). )

d(-,-): for a given pair (sk,c), define d(sk,c) as follows. Assuming pk =
g(sk), if there exists m € {0,1} such that ¢ = e(pk,m,*), return m; other-

wise, return 1.

In the definition above notice that the resulting oracle (g,e,&) is ¥-valid
(i.e., and hence a valid PKE oracle, satisfying PKE completeness) as long as O
and g’ are ¥-valid. Thus, we have the following lemma.

9 This can happen because of the presence of forbidding queries in Forbid.
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Lemma 3. Assuming O and g are ¥-valid, (g,e,a), obtained as in Defini-
tion 11, is ¥-valid, and hence PKE-valid.

Due to space limitations, we formally define and analyze the attack in the
full version [10].

5 No Single Optimal CGKA Protocol Exists

In this section, we will show that there is no single best CGKA protocol. More
precisely, for any CGKA protocol [, there is a distribution of CGKA sequences
and some other CGKA protocol I such that on sequences drawn from this
distribution, M’ has much lower expected amortized communication cost than
1. We make the same restriction on protocols that we have throughout the
paper: the protocols are only allowed to use PKE.

The main intuition behind this section is the following: As we saw from
Corollary 1 of Theorem 1, if starting with a group of n users with public keys
PKi,...PK, in any state (for example, every user has just executed an update),

1. k users are added to the group and then remain offline (i.e., do not execute
any operations),

2. Then the « users (w.l.o.g., users 1,. .., a with public keys PKj, ... PK,) that
have been online since the first of the above users was added all update,

the combined size of their ciphertexts must be (k). Now, consider the scenario
in which user 1 adds all of the k new users, then updates, and then users 2, ..., «
all execute updates. While adding the k& new users, user 1 may or may not
have built some structure for group members to communicate with them until
they come online (for example, in TTKEM user 1 would have sampled and
communicated key pairs for all nodes that are on the paths from the k users’
leaves to the root). The protocol M is then left with a choice regarding the
updates of users 2, ..., a. Roughly, either:

(a) Each of the users 2, ..., a rebuild complete structure themselves (say, sample
and communicate their own key pairs for nodes on the paths from the k users’
leaves to the root, as user 1 would have done when adding them in TTKEM)
to communicate with the k& newly added users; or

(b) At least one such user i does not (i.e., they only rebuild asymptotically
incomplete structure themselves) and thus relies on some asymptotically
non-trivial amount of structure created by the users that have executed
operations before them to communicate with the k added users.

We will however show that both (a) and (b) can be losing strategies; i.e.,
no matter if a protocol N chooses strategy (a) or (b) (or probabilistically fa-
vors one over the other), it can be starkly outperformed by another protocol
M’ when executing certain sequences (by the same amount in both cases). In
the case of (a), if after users 2,...,« execute their updates, the k added users
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come online and execute their own updates, then users 2,..., « all rebuilt com-
plete structure themselves unnecessarily — the k& added users can themselves
create structure which allows others to communicate with them thereafter using
O(logn) communication each (for example, in TTKEM, they would just sample
key pairs for their paths). Therefore if all subsequent operations are updates,
the communication of the protocol can easily stay low. So, if I chose (a) then
it communicated a factor of £2(k/logn) more than it had to during the updates
of Step 2; or 2(n/logn) if k = 2(n). In Section 5.1, we formally define the
distribution containing such sequences as ActiveBad and in Section 5.2 formally
prove the statement of the previous sentence. (Technically, for fairness reasons
when comparing with the result of the next paragraph, we also account for the
communication of a certain number of updates after Step 2. So the result, while
qualitatively the same, is quantitatively not as stark.)

In the case of (b) consider the scenario in which (i) one of the « active
users, user j, is randomly selected to become passive for the remainder of the
sequence, i.e., they never execute another operation, then (ii) the other a — 1
active users perform ¢ rounds of taking turns executing updates. If 1 chose
strategy (b) and user j is the one who only rebuilt asymptotically incomplete
structure themselves, then according to Corollary 1, each of the ¢ rounds of Step
(ii) will have high £2(k) communication each. However, if strategy (a) had been
chosen by N (and user 1 built complete structure as well) then the communication
of user j would allow for the ¢ rounds of Step (ii) to be executed with low
communication: O(alogn) (using TTKEM-like updates; we explain more later).
So if M chose (b) then in expectation, it communicated a factor of 2(¢k /(- (ka+
falogn))) more than it had to; or £2(n/logn) if k = 2(n), £ = O(n/logn), and
a = O(1). In Section 5.1, we formally define the distribution containing such
sequences as LazyBad and in Section 5.2 formally prove the statement of the
previous sentence (albeit with slightly different concrete parameters for k, ¢,
and «).

5.1 Bad Sequences of Operations

We first formally define the two distributions of sequences, LazyBad and ActiveBad,
such that for any CGKA protocol I, we can choose one of these distributions
and it will be the case that there is some N’ which has much lower expected
communication than T on that distribution. Both LazyBad and ActiveBad are
parameterized by:

— n: The number of users in the group before user 1 adds the new users;

— PreAddSeq: The operations of the pre-add phase, i.e., the sequence of valid
operations (the first operation is Add to create the group, only users that
are not in the group are added by users in the group, only users in the group
are removed by other users in the group, only users in the group can execute
an update, and at the end of Seq the group has n members) to be executed
before the k& adds and subsequent operations of ActiveBad or LazyBad.

— k: The number of users added by user 1;
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— «: the number of active users after the first of the k users is added; and

— {: For LazyBad, the number of rounds of updates in which one of the originally
active users is passive. We use /¢ in ActiveBad only to ensure that on input
the same parameters, the two types of sequences have the same length (for
fairness reasons).

We define both types of sequences as distributions, even though ActiveBad(n,
PreAddSeq, k, v, £) is just one sequence (i.e., that sequence is drawn from the
distribution ActiveBad(n, PreAddSeq, k, a, ¢) with probability 1). In the follow-
ing, we will assume that both n and k are powers of 2, for simplicity. Also,
we will often make the parameters n, k, «, and ¢ implicit and simply refer to
ActiveBad(n, PreAddSeq, k, o, /) as ActiveBad(PreAddSeq) and LazyBad(n,
PreAddSeq, k, «, £) as LazyBad(PreAddSeq). We first define LazyBad(PreAddSeq):

Definition 12. A sequence Seq of CGKA operations drawn from distribution
LazyBad(n, PreAddSeq,
k,a, €) consists of the following phases:

— Phase P0: The pre-add phase, i.e., the operations Op17...70pt{x71 of
PreAddSeq.

— Phase P1: For i € [k] operations Op, ; = (Add, PKy,PK,,1;). Then opera-
tion Opy j41 = (Up, PKy, 1).

— Phase P2: Fori € [a — 1] operations Op, ; = (Up, PKiy 1, 1).

— Phase P3: Let j <3 [a]. Then, for each m € [{]: for everyi < j (resp.i > j),
OP3, (m—1)(a=1)+i = (U, PK;, L) (resp. Ops (i_1)(a-1)+i—1 = (Up, PK;, L)),
where PK; is the most recent public key of user i.

Next, we define ActiveBad(PreAddSeq), which has the same phases 0 — 2 as
LazyBad(PreAddSeq), but differs in phase 3 as described above:

Definition 13. A sequence Seq of CGKA operations drawn from distribution
ActiveBad(n,
PreAddSeq, k, v, £) consists of the same phases P0-P2 as above then:

— Phase P3: Fori € [(- (a—1)]: Ops,; = (Up,PKy114(i mod a), L), where
PKy414( mod ) 15 the most recent public key of user n+ 1+ (i mod «).

Note that by Theorem 1, for every CGKA protocol it must be that update
Op; ;41 = (Up, PKy, 1) in Phase P1 of either distribution requires £2(k) commu-
nication, no matter what the operations of PreAddSeq were and what structure
the adds of user 1 in Phase P1 created. Since with O(k) communication, user 1
can in this update create full structure with which other users in the group can
communicate with the added PK, 11 ..., PK, 1, thereafter (as in TTKEM), it is
intuitively the best choice for a protocol to use this behavior for user 1. Thus,
since we aim to define these two distributions in a way that emphasizes the
different choices protocols can make to minimize communication, user 1’s first
update is included in Phase P1 and we define the communication complexity of
a protocol executing a sequence drawn from one of these two distributions to
include only the communication costs of the operations in Phase P2 and P3:
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Definition 14. Let Seq be a sequence of CGKA operations drawn from distribu-
tion

LazyBad(PreAddSeq) (resp. ActiveBad(PreAddSeq)) and CCn[Op] be the commu-
nication cost of a CGKA protocol I executing operation Op of Seq after executing
all preceding operations of Seq in order. Then:

1. The amortized communication complexity of a protocol 1 that executes Seq
is CCnlSeq] == (X opepaups CCn[OP))/((a — 1) - (£ + 1)), where P2 and P3
are the corresponding phases in Seq of LazyBad(PreAddSeq) (resp. ActiveBad(
PreAddSeq) ).

2. The expected amortized communication complexity of a protocol I on ran-
dom Seq drawn from LazyBad(PreAddSeq) (resp. ActiveBad(PreAddSeq)) is

CCr(LazyBad(PreAddSeq)) := EseqgLazyBad(PreAddseq) [CCn[Seq]]

(resp. CCn(ActiveBad(PreAddSeq)) := EseqegActiveBad(Preaddseq) [CCn[Seq]]),

where the randomness is over the choice of Seq and the random coins of I1.

5.2 Suboptimality of all CGKA Protocols

We now state and prove our Theorem showing that all CGKA protocols must
have suboptimal expected amortized communication complexity on either
LazyBad(PreAddSeq) or ActiveBad(PreAddSeq). First, we define a specific
PreAddSeq which intuitively leaves the CGKA group in a full state:

Definition 15. Valid sequence of CGKA operations Full,, contains the follow-
ing operations in order: (Add, PKy, PKs), (Add, PKy, PK3), ..., (Add, PKy, PK,,),
(Up, PKy, 1), (Up,PKy, 1),..., (Up, PK,, 1).

Theorem 4. Let ¢ = O(k/logn). Then for every CGKA protocol T and every
PreAddSeq, there exists some other protocol T such that either

CChp(LazyBad(PreAddSeq)) > CCr(LazyBad(Full,)) - 2(¢/a?), or
CCn(ActiveBad(PreAddSeq)) > CCry (ActiveBad(Full,)) - £2(k/¢logn).

Note that PreAddSeq can be any wvalid sequence that results in a group with
n members, including (but not limited to) Full,. As will be seen, our results
combine general lower bounds for the considered protocol N on any PreAddSeq,
with upper bounds for protocols N’ on specifically Full,,.

Before proving the Theorem, we separate CGKA protocols I1 into two classes
based on their expected behavior in phase P2 of a sequence drawn from LazyBad(
PreAddSeq) or ActiveBad(PreAddSeq). The first class of protocols are more likely
than not to have some lazy user in phase P2: i.e., a user whose update operation
Opy,; = (Up,PKiy1, L) in phase P2 has communication cost CCrn[Op] = o(k).
The other class of protocols are the opposite — they are more likely than not
to have only heavy users in phase P2: i.e., all users have update operations
Opy; = (Up, PK; 41, 1) in phase P2 with communication cost CCn[Op] = 2(k).
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Definition 16. CGKA protocol N is Lazy if Pr[3i € [a — 1] : CCnp[Opy;] =
o(k)] > 1/2. Otherwise, I is Active.

Proof of Theorem 4. The following lemmas, proved in the full version [10] due
to space limitations, and which intuitively follow from the descriptions of this
section, allow us to prove Theorem 4. O

Lemma 4. There is a protocol MNactive that has expected amortized communica-
tion cost CCn,,,.(LazyBad(Full,,)) = O(k/¢ +logn) on random Seq drawn from
LazyBad(n, Full,, k, «, £).

Lemma 5. For every protocol 11 that is Lazy and every PreAddSeq, the expected
total communication cost CCn(LazyBad(PreAddSeq)) = 2(k/a?) on random Seq
drawn from LazyBad(n, PreAddSeq, k, «, £).

Lemma 6. There is a protocol I,y that has expected total communication cost
CCn,,,, (ActiveBad(Full,)) = O(logn) on random Seq drawn from ActiveBad(n,
Full,, k, «, ).

Lemma 7. For every protocol 1 that is Active and every PreAddSeq, its expected
total communication cost CCr(ActiveBad(PreAddSeq)) = £2(k/¢) on random Seq
drawn from ActiveBad(n, PreAddSeq, k, a, £).

The following corollary thus easily follows:

Corollary 3. Let k = 2(n), £ = O(y/n), and o = O(y/logn). Then for every
protocol T, there exists some other protocol 1 such that either on a random
sequence drawn from ActiveBad(Full,), or from LazyBad(Full,), 1’ has a factor
of 2(y/n/logn) better amortized communication in expectation than N does.
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