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Abstract. Verifiable random functions (VRFs) are a useful extension
of pseudorandom functions for which it is possible to generate a proof
that a certain image is indeed the correct function value (relative to
a public verification key). Due to their strong soundness requirements
on such proofs, VRFs are notoriously hard to construct, and existing
constructions suffer either from complex proofs (for function images), or
rely on complex and non-standard assumptions.
In this work, we attempt to explain this phenomenon. We first propose a
framework that captures a large class of pairing-based VRFs. We proceed
to show that in our framework, it is not possible to obtain short proofs
and a reduction to a simple assumption simultaneously. Since the class
of “consecutively verifiable” VRFs we consider contains in particular the
VRF of Lysyanskaya and that of Dodis-Yampolskiy, our results explain
the large proof size, resp. the complex assumption of these VRFs.

1 Introduction

Verifiable Random Functions. Pseudorandomness, and in particular pseudoran-
dom generators [6, 47] and pseudorandom functions (PRFs, [20]) have proven to
be immensely useful and universal cryptographic building blocks. A PRF takes
as input a short seed (or key) sk, and an input x, and outputs a function value
y = prfsk(x). The distinguishing feature of a PRF is that for a fixed but random
sk, oracle access to prfsk(·) cannot be distinguished from oracle access to a truly
random function. This allows to use prf as a compact drop-in replacement for a
truly random function.

In this work, we focus on a special class of PRFs whose image can be proven
to be correct (relative to a public key vk that fixes prf’s behavior). Indeed,
a verifiable random function (VRF [36]) vrf is a PRF for which it is possible
to generate proofs π (from a given sk and x) that show that a given y really
satisfies y = vrfsk(x). We want such proofs to be sound in a very strong sense: We
require that for any vk and x, no two y ̸= y′ can both be proven to be vrfsk(x).
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This property, dubbed “unique provability”, is crucial for most applications of
VRFs, and is the main reason why constructing VRFs is difficult. For instance,
unique provability cannot be achieved by using non-interactive zero-knowledge
proofs on a given PRF. (This would require a trusted common reference string,
which we cannot assume in the VRF setting.) We do note, however, that (non-
straightforward) solutions with non-interactive witness-indistinguishable (NIWI)
proofs are possible [5, 23].

VRFs have a number of interesting applications. These include signatures
with very strong verifiability guarantees [22], resettable zero-knowledge proofs [37],
lottery systems [38], transaction escrow schemes [27], updatable zero-knowledge
databases [33], and e-cash systems [2, 4].

Existing Constructions of VRFs. There are a variety of constructions of VRFs
already [1, 5, 8, 15, 16, 23–26, 30–32, 34, 36, 41, 43, 46]. These constructions
are diverse in the used techniques and the resulting features: For instance, some
constructions (such as Lysyanskaya’s VRF [34] and its variants [8, 24–26, 43]) are
based on the specific algebraic properties of the Naor-Reingold PRF [39], while
others (such as [5, 23]) are based on more generic primitives such as NIWI proofs.
However, none of the above VRF constructions achieves all of the following useful
features simultaneously:

– its input space is large (i.e., exponential in the security parameter),
– its proofs π are short (i.e., comprise a constant number of group elements),
– its security proof is based on a “simple” (i.e., non-interactive and compact1)

assumption.

We do note that some of the constructions come close: E.g., Kohl’s VRF [30]
achieves all of the above properties, except that proofs π comprise ω(1) group
elements. Conversely, the VRF of Dodis and Yampolskiy [16] enjoys very com-
pact proofs, but relies on a complex hardness assumption (with challenges as
large as the input space). While there exists work on the difficulty of achieving
VRFs (e.g., from trapdoor one-way functions [17], cf. [11], or in a tightly secure
way [41]), the proof size and necessary assumptions for VRFs are generally not
well-understood.

Our Contribution. In this work, we are concerned with the reason why it is
difficult, even after a plethora of different approaches and 20 years of research,
to construct useful and compact VRFs from standard assumptions. In order to
give a meaningful answer, we put forward a framework of VRF restrictions that
however covers many existing constructions. We proceed to show lower bounds
within this framework.

Specifically, we restrict ourselves to VRFs vrf in the standard model (i.e.,
that do not use random oracles or generic groups) that are algebraic over a
1 With a non-interactive and compact assumption, we mean one in which the adversary

gets a constant number of group elements as challenge and is then supposed to output
a solution (e.g., a decision bit).
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group, such that secret keys sk are comprised of exponents, and public keys vk,
images y, and proofs π are all comprised of group elements. We do allow pairings,
however, such that in particular images may be elements of a target group.

Furthermore, we require that verification (of a proof π for an image y) oper-
ates in a specific and “consecutive” way. We give more details on the conditions
on verification below in the technical overview. We stress, however, that we be-
lieve that this way to verify is natural, and in fact many existing VRFs support
consecutive verification, including Lysyanskaya’s VRF [34], the VRF of Dodis
and Yampolskiy [16], and many more (see Fig. 1). A convenient consequence of
this type of consecutive verification is that the function image y has a specific
form: We can deduce that y = vrfsk(x) is of the form gσx(

−→v )/ρx(
−→v ), where

– g is a fixed group generator,
– σx and ρx are multivariate polynomials (that depend in any efficiently com-

putable way on the preimage), and
– −→v is the vector of discrete logarithms of the verification key vk.

We finally assume a large (i.e., superpolynomial in the security parameter) input
space. Again, while this of course severely restricts the VRFs we consider, many
previous constructions fall into this class.2

For such algebraic VRFs with consecutive verification, we show necessary
relations between the size of proofs π and the “size” of the underlying assumption
(i.e., the size of the challenge in group elements in a non-interactive hardness
assumption). To develop and express these relations, it is useful to consider
what we call the evaluation degree of the VRF. Formally, this degree is simply
the maximum of the degrees of the (multivariate) polynomials σx and ρx from
the image y = gσx(

−→v )/ρx(
−→v ) above (and for this exposition, we assume that these

degrees do not depend on x).
We show that for any VRF vrf that matches all of our formal requirements,

(a) if the size of π (in group elements) is small, then so is the degree of vrf,
(b) if vrf’s degree is small, then vrf cannot be proven secure with a generic

reduction to a constant-size non-interactive hardness assumption. (We note
that almost all existing cryptographic reductions are generic.)

As an example, our results show that the VRF of Dodis and Yampolskiy can-
not be proven secure (at least not generically) from more traditional hardness
assumptions. Our results also show that the (comparatively large) proofs in
Lysyanskaya’s VRF are inherent, at least when relying on standard hardness
assumptions. Figure 1 lists more VRFs that fulfill our requirements (and whose
proof sizes and/or assumptions can hence be justified with our results).

2 A prominent verifiable unpredictable function (VUF, a weaker form of VRF) that
does not fall into this class is the one by Brakerski et al. [11]. This VUF takes group
elements as input, and hence does not quite fit our framework. We will discuss this
particular construction in Section 2.1, and argue that this approach is unlikely to
yield purely group-based VRFs.
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While our result (a) is a direct consequence of our requirement on consecutive
verifiability, we in fact give two versions of statement (b) that differ in exact
requirements and formalization. For instance, one version of (b) even excludes
algebraic reductions (i.e., is formalized within the algebraic group model [19])
from non-interactive assumptions of any polynomial size, but only applies to
VRFs whose verification keys depend on a single variable or from non-interactive
computational assumptions that depend on a single variable. This allows to
model Dodis and Yampolskiy’s VRF, but not Lysyanskaya’s. The other version
of (b) allows more general verification keys, but only excludes generic reductions
(i.e., is formalized within the generic group model [35, 40, 45]). In the next
section, we give a more technical overview over our results.

Discussion. While the formal requirements for our lower bounds seem restrictive,
their preconditions are met by most existing VRFs (see Fig. 1). In that sense,
they justify the limitations of existing constructions, resp. proofs. An obvious
question is thus: How can one circumvent our lower bounds (in order to construct
VRFs with short proofs from standard assumptions)?

First of all, one could of course circumvent our results by not (or at least
not completely) working over cyclic groups. However, while there are a few more
generic VRF constructions (e.g., [5, 23]) that do not rely on groups, it seems that
generic VRF constructions are less well-investigated than constructions based on
cyclic groups.

Second, one could try to circumvent the more specific requirements of our
lower bounds. In particular, our “consecutive verifiability” requirement seems like
a very specific requirement. An “interesting” (as opposed to a purely mechanical)
way to circumvent consecutive verifiability would be the following. Recall that
consecutive verifiability implies that VRF images consist of rational functions,
i.e., are of the form y = gσx(

−→v )/ρx(
−→v ). Jumping ahead, we will be interested in

small-degree polynomials σx, ρx. The following VRF candidate does not have
this property:

vk = e(g,g)s, y = g
3
√
s+x π = g( 3

√
s+x)2 .

Verification checks that e(y,y) = e(g, π) and e(π,y) = vk ·e(g,g)x. The security
of this VRF candidate seems unclear, but observe that we require 3 ̸ | (ord(g)−1)
both for uniqueness, and to be able to compute 3

√
s+ x mod ord(g).

More generally, our results do not exclude VRFs in which the image is an
active ingredient in intermediate verification computations, and not only con-
sidered in a final verification step (that involves previously computed and/or
verified proof elements). Of course, for constructions that use, e.g., roots of ex-
ponents (like the above candidate), it may be challenging to prove their security
from Diffie-Hellman-like assumptions.

1.1 High-level Technical Overview

The Evaluation Degree of a VRF. Our technical results rely on the “evaluation
degree” of a VRF vrf as a helpful technical notion that connects vrf’s proof sizes
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Reference CV degree |vk| |π| assumption remark
MRV99 [36] x — large large RSA tree-based
Lys02 [34] ✓ λ 2λ λ q-type
Dod03 [15] ✓ O(λ) O(λ) O(λ) ad-hoc
DY05 [16] ✓ 1 2 1 q-type small inputs
ACF09 [1] ✓ λ+ 2 2λ+ 2 λ+ 1 q-type
BCKL09 [4] x 1 3 O(1) q-type small inputs
BGRV09 [11] x — 1 1 gap-CDH weak security
BMR10 [8] ✓ λ+ 1 (λ+ 2) λ q-type small inputs
HW10 [25] ✓ λ+ 1 λ+ 3 λ+ 1 q-type
Jag15 [26] ✓ O(λ) O(λ) O(λ) q-type
LLC15 [32] ✓ λ+ 1 2λ+ 1 1 q-type multilinear maps
HJ16 [24] ✓ O(λ) O(λ) O(λ) DLIN
Bit17 [5] x — depends large depends generic/NIWI-based
GHKW17 [23] x — depends large depends generic/NIWI-based
Kat17 [28] ✓ ω(log(λ)2) ω(

√
λ log(λ)) ω(

√
λ) q-type

Yam17 [46] ✓ O(log(λ)2) O(λ log(λ)2) O(log(λ)2) q-type
Ros18 [43] ✓ O(λ) O(λ) O(λ) DLIN smaller π than [24]
Koh19 [30] ✓ κ poly(λ) κ DLIN κ ∈ ω(1) parameter
Nie21 [41] ✓ O(λ) ω(log(λ)) O(λ) q-type

Fig. 1. Existing VRF constructions. The “CV” column indicates whether the construc-
tion is consecutively verifiable in our sense. “Degree” denotes its evaluation degree
(where applicable), and |vk| and |π| denote its verification key size, resp. proof size in
group elements. When possible, we have chosen parameters such that the input size is
{0, 1}λ. For comparability, we classify assumptions with polynomially many challenge
elements as “q-type”, and other nonstandard assumptions as “ad-hoc”. “Small inputs”
(as a remark) means that the VRF only supports polynomially-small input spaces.
Theorem 1 applies to [11, 16], Theorem 2 applies to [16], Theorem 3 applies to [8,
11, 16] in the sense that these VUF/VRFs cannot have constant size proofs based on
standard assumptions.

and vrf’s underlying hardness assumption. Hence, let us first take a closer look
at this notion of degree.

First, we recall one of our restrictions on the VRFs we consider. We assume
that vk and π consist of group elements, and that verification operates in a “con-
secutive” way, in the following sense: Assume that verification wants to verify a
proof π (which consists of, say, κ group elements π1, . . . , πκ) for an alleged image
πκ+1 := y (which is a single group element). Then, we require that verification
proceeds in κ + 1 steps, and in the i-th step checks an a priori fixed system of
pairing product equations in variables π1, . . . , πi and vk. We also require that
in the equations for the check for πi, this element only occurs linearly (but not
quadratically, i.e., in both arguments of a pairing).

Verification succeeds if all these systems of equations hold. In other words,
proof elements (and eventually image y) are verified one at a time, each time
checking a quadratic equation in the corresponding exponents of this and all
previous elements and vk.



6 Nicholas Brandt, Dennis Hofheinz, Julia Kastner, Akin Ünal

This notion of consecutive verification sounds natural in a pairing setting, and
indeed many existing vrf constructions (including the ones from [16, 34]) have
a consecutive verification procedure in the above sense. Intuitively, consecutive
verification requires that “higher-degree” exponents in proof elements or image
must be verified using intermediate group elements with intermediate degrees.
Fortunately, as already outlined, consecutive verification also implies that images
y are of the form

vrfsk(x) = y = gσx(
−→v )/ρx(

−→v )

for multivariate polynomials σx and ρx (which both are efficiently computable
from x), and the component-wise discrete logarithm −→v of vk. Now we say that
the evaluation degree of vrf (or y) is simply the maximum of the polynomial
degrees of σx and ρx. The evaluation degree of the VRF is then simply the
maximal degree over all inputs x.

First Result: Proof Size Bounds Degree for VRFs with Consecutive Verification.
Our first result ((a) above, described in more detail in Section 2.1, and in full
detail in Section 4) shows that for VRFs vrf with consecutive verification (as
above), the size of proofs π imposes a limit on the vrf’s evaluation degree. Con-
cretely, we show that the evaluation degree of vrf is at most exponential in the
proof size κ. Hence, if its proof size is constant, then so is the evaluation degree
of vrf.

This result is not too surprising, since intuitively, each additional proof ele-
ment only raises the degree of computed exponents (as algebraic fractions in −→v )
by a factor of 2. In fact, our proof largely consists in keeping track of expressions
of all intermediate proof elements (and finally of y) as expressions in −→v . The
main technical work consists in maintaining a suitable canonical form of these
(rational) expressions at all times.

Interlude: the Case of Trivial Denominators. If function images are of the form
y = gσx(

−→v ) for a constant-degree (but multivariate) polynomial σx, already a
very simple linear algebra attack breaks the pseudorandomness of the given VRF.
In fact, for sufficiently many preimages xi, the polynomials σxi

must eventually
become linearly dependent (because the set of their monomials is polynomially
small). Hence, it is possible to linearly combine sufficiently many given images
to form the image of a fresh preimage. This breaks pseudorandomness, and we
detail this attack in the full version[12] for completeness. The case of rational
function images y = gσx(

−→v )/ρx(
−→v ) (with deg(ρx) ≥ 1) is hence not only more

general (and covers, e.g., the Dodis-Yampolskiy VRF), but also technically much
more interesting.

Second Result: Security of Polynomial-Degree VRFs Requires Complex Assump-
tions (for Univariate Verification Keys and in the Algebraic Group Model). Our
second result (first variant of (b) above, described in Section 2.2 more exten-
sively, and in Section 5 in full detail) shows that for any polynomial-degree VRF
vrf, we can rule out the existence of an “algebraic black-box” reduction to a class
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of non-interactive group-based computational assumptions. Here, an “algebraic
black-box” reduction B fulfills the following requirements:

– It is algebraic (in the sense of [19]): That means that whenever B outputs a
group element g∗, it also outputs (on a special channel) an explanation as
to how g∗ is computed from previously seen group elements.

– It uses the VRF adversary A only in a black-box way (i.e., it gets oracle
access to polynomially many instances of A).

Most existing reductions (in particular for VRFs) are simple in the above sense.
A non-interactive (group-based) computational assumption (NICA) states

that it is hard for any efficient adversary B to win the following game: B gets a
challenge (that is a vector of s group elements), and is then supposed to output
a solution to that challenge (which is an exponent related to s). The size of such
a NICA is simply the length (i.e., number of entries) of s.

We are now ready to state our result a bit more formally: Assume we are given
a polynomial-degree VRF vrf with verification key vk = gv. Furthermore, assume
that vrf enjoys a simple reduction B to a NICA. Then, we construct a meta-
reduction [13] that wins the NICA game without any external help. Our meta-
reductionM interacts with B (which gets a NICA challenge), and then attempts
to take the role of a successful VRF adversaryA. In order to do this,M can query
many VRF images yi, and use the algebraicity of B to obtain representations
of these yi in terms of the NICA challenge elements. Hence, eventually B will
find linear dependencies between the queried VRF images by making sufficiently
(but still polynomially) many queries. These linear dependencies can then be
used to compute the verification key’s exponent v. Using v, the meta-reduction
can predict any challenge image as gσx(v)/ρx(v). This allows A to win the VRF
security game, and hence M can use B to solve the NICA.

This intuition neglects a number of technical obstacles: For instance, the lin-
ear dependencies among the algebraic representations of VRF images linearly
connect the algebraic fractions σxi

(v)/ρxi
(v) of the corresponding images. To

construct a new image gσx∗ (v)/ρx∗ (v) from these, we need to distinguish the
cases when the polynomial fraction σx∗(X)/ρx∗(X) of the challenge can be ex-
pressed as a linear combination of the polynomial fractions σxi

(X)/ρxi
(X) of

the queries, and when this is not the case. In the first case, the corresponding
linear dependence immediately allows to compute gσx∗ (v)/ρx∗ (v). Note that this
is also possible for an adversary that does not get to see the algebraic represen-
tations because the linear dependence holds for the fractions, not only for the
representations.

In the second case, we have to develop a linear dependence among the alge-
braic representations (in the NICA challenge elements) of the σxi

(v)/ρxi
(v). In

this case, in fact the linear independence of the fractions σxi
(X)/ρxi

(X) guar-
antees that these linearly dependent algebraic representations allow to extract
the secret v.

In these observations, we crucially use that we deal with univariate polyno-
mials σxi

and ρxi
of small degree (which can be represented by short coefficient

vectors). In a separate result, we generalize this approach to multivariate σxi
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and ρxi where the underlying assumption only depends on a single variable with
polynomial degree.

Third Result: Security of Low-Degree VRFs Requires Complex Assumptions (in
the Generic Group Model). Our last result (second variant of (b) above, ex-
plained more extensively in Section 2.3, and in full detail in the full version[12]
is similar in spirit to our second result, but features different requirements on the
considered VRFs and reductions. Specifically, we prove that no generic reduction
(i.e., that treats the underlying group as generic in the sense of [45]) that is alge-
braic black-box (as outlined above) is able to show security of a constant-degree
VRF based on any “Uber-assumption” [7, 10] of arbitrary polynomial degree but
constant challenge size.

An “Uber-assumption” is a special class of a NICA in which an adversary
B is given a number of group elements gfi(

−→z ), where the fi are multivariate
polynomials specific to the concrete assumption, and −→z is a vector of secret
(and uniformly randomly chosen) exponents. Typically, the task of B is then
to compute a group element not in the linear span of the given group elements
(or to distinguish such an element from random). Here, we restrict ourselves to
Uber-assumptions in which the degree of the fi is at most polynomial in the
security parameter.

We again give a meta-reduction M that shows the following: Any simple
generic reduction B that shows the security of a constant-degree VRF under such
an Uber-assumption can be transformed into a successful Uber-solver. Again,M
takes the role of a VRF adversary that interacts with B. In the following, we
outline our technique for the specific case of the Dodis-Yampolskiy VRF, in which
vk = (vk1, vk2) = (h,hs), y = e(h,h)1/(s+x) (for a pairing e), and π = h1/(s+x).

Our meta-reductionM, when interacting with a reduction B in the role of a
VRF adversary A, first of all gets to see vk and an algebraic representation of vk
in terms of the NICA challenge. (In this work, we call an algorithm generic iff
it is generic in the sense of Shoup’s GGM and algebraic, cf. Definition 5.) This
representation of vk = (vk1, vk2) allowsM to write vki = ggi(

−→z ) for polynomials
gi in the Uber-assumption secrets −→z .

Now we distinguish two cases: First, if the polynomial g2 is a scalar multiple
of g1, (i.e., if g2 = s′ · g1 for a scalar s′), then we have found the VRF secret
key s = s′. This s can directly be used to break VRF security and allows M
to imitate a successful adversary for B (which in turn breaks the underlying
Uber-assumption). But in case g2 is not a scalar multiple of g1, such a simple
extraction of s is not possible.

The main technical work in our proof consists in showing that this second
case cannot, in fact, occur with non-negligible probability. Essentially, we do
so by observing that the representations of VRF proofs πi = h1/(s+xi) (i.e., of
(s+xi)-th roots of h = vk1) imply polynomial factors of g1. We prove that if g2 is
not a scalar multiple of g1, then these factors are coprime for different xi. Hence,
querying sufficiently many VRF proofs (for different xi) yields many non-trivial
coprime factors of g1. Since we assumed that the degree of g1 is polynomial (since
the Uber-assumption polynomials fi are of polynomial degree), this eventually
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yields a contradiction. Hence, g2 must be a scalar multiple of g1, and our meta-
reduction M can proceed as described above.

In the full version[12], we also show how to generalize this argument to a
broader class of constant-degree VRFs which we call parameterized rational.

Omitted Details. All the above explanations have omitted or simplified a few
details. For instance, we did not discuss the role of group parameters (that fix the
concrete group and pairing setting). For VRFs, such group parameters should
be certified [24] (i.e., reliably defining an actual group), and they can be an
additional part of vk or any public parameters. Since generic groups can be
viewed as “implicitly trusted”, we omit this certification in the generic group
model.

Furthermore, we have treated the VRF image always as a target group el-
ement. However, since we are in a pairing setting, this image can also (and in
fact without loss of generality) be an element of the source group of the pairing.
(This does not change any of the arguments above.) Finally, we mostly con-
sider verifiable unpredictable functions (VUFs), a relaxation of verifiable random
functions. Since we present lower bounds, this only makes our results stronger.

2 Detailed Technical Overview

2.1 First Result: Connecting the Proof Size with the Evaluation
Degree

Consecutively Verifiable VUFs/VRFs. To make the connection between the
number of group elements in the proof and the evaluation degree, we first define
a class of VUFs/VRFs that have a very straightforward verification algorithm.
We assume that the VUFs/VRFs in question operate over a symmetric3 pairing
group with pairing e : G×G→ GT :

– The verification key vk consists of group elements v1, . . . ,vn ∈ G ∪GT

– For each input x, the proof consist of group elements π1, . . . , πκ ∈ G ∪GT

– For each input x, the evaluation value is a group element y ∈ GT

Each possible input element x of the VUF/VRF defines a set of pairing equations
Ex that can be efficiently derived4 from the input x. By pairing equations we
mean a set of polynomial equations of degree 2 in the input variables. We make
the additional restriction that variables that represent elements from the target
group may appear only in monomials of degree 1. We require that the pairing
equations can be verified consecutively, that is, there is an ordering of the group
elements in the proof and subsets Ei,x of the sets of pairing equations such that
the following hold:
3 We note that our results can easily be transferred to asymmetric pairings, but for

simplicity we restrict ourselves to symmetric pairings.
4 We note that the weak VRF by Brakerski et al. [11] does not have this efficiency

property, as the inputs are group elements and the pairing equations can only be
derived from the discrete logarithm of the inputs.
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– in the pairing equation set Ei,x for the i-th proof element, only the veri-
fication key elements and proof elements up to the i-th occur, i.e., Ei,x ⊂
Zp[V1, . . . , Vn, P1, . . . Pi]

– in the pairing equation set Ei,x for the i-th proof element, there is at least one
equation where the i-th proof element occurs only linearly, i.e., there exist
polynomials ai ∈ Zp[V1, . . . , Vn, P1, . . . , Pi−1], bi ∈ Zp[V1, . . . , Vn, P1, . . . Pi]
such that ai · Pi + bi = 0 is an equation that occurs in Ei,x.

We further make a more technical requirement that the coefficient ai of the i-th
proof element in the equation where it occurs linearly cannot become zero. Let
the proof have κ many elements, then we consider the evaluation value to be the
κ + 1st proof element, i.e., it is the last group element to be “verified” in this
way.

This consecutive verification property on the one hand yields an efficient
pairing-based verification algorithm (for input x, first efficiently derive the pair-
ing equation sets Ei,x, then consecutively check them). On the other hand, the
linearity requirement actually implies that given the verification key and the
previous proof elements, each proof element is uniquely defined. As the evalua-
tion value is the last element to be verified, i.e., the κ + 1st “proof element”, it
is therefore also uniquely provable.

We note that this consecutive verification property applies to many known
VRFs, see Fig. 1 for a detailed overview.

We briefly sketch how the pairing equations look for the VRF of Dodis &
Yampolskiy [16]: Recall that the evaluation key is sk = s ∈ Zp and the verifica-
tion key is vk = hs for a publicly known group generator h of G. Evaluation at
value x computes y = e(h,h)

1
s+x as well as the proof π = h

1
s+x . We can consec-

utively verify this as follows: First verify the proof via E1,x = {(V + x) · P = 1}
where V represents the verification key, and P represents the group element.
That is, the verification algorithm checks e(vk ·hx, π) = e(h,h). Then, we verify
E2,x = {P · 1 = Y } where P is as before and Y represents the evaluation value,
that is the verification algorithm checks e(π,h) = y.

Remark 1 (Consecutive Verifiability of the VUF of Brakerski et al. [11]). As
we pointed out above, the weak VUF of Brakerski et al. [11], where evaluation
works by Evalvuf(sk,h) = hsk for sk ∈ Zp and vk = gsk and an input h ∈ G, and
verification accepts if e(h, vk) = e(y,g), is not consecutively verifiable in the
sense of this work. In fact, we would need to know the discrete logarithm of the
input h to efficiently compute a pairing equation for it. Therefore, the results of
this paper are not applicable to this VUF.

However, while this might seem to limit the class of VUFs we consider in
this work, we claim that weak VUFs that have group elements as inputs are –
for the pursuit of strong VRFs – not relevant, anyway. In fact, images of the
weak VUF of Brakerski et al. [11] can easily be predicted for adversially chosen
inputs. This observation can be extended to other weak VRF/VUF candidates
that operate in a similar algebraic manner, i.e., that take group elements as
inputs and interpret them as group elements only and use the group operations
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and pairing operations on them to compute the output. We show in the full
version[12] that these VRFs/VUFs become insecure by as their evaluation degree
is at most 2 in the inputs if the discrete logarithms of the input group elements
are known to the adversary.

Rational VUFs/VRFs. We want to show that the formerly mentioned class of
consecutively verifiable VUFs/VRFs has a particularly straightforward way to
describe their evaluation algorithm. To this end, we define rational VUFs. These
are VUFs whose evaluation value consists of a (publicly known) group generator
raised to a rational function evaluated on the exponents of the verification key.
More formally, for each input value x, there are polynomials ρx and σx such that
the output y evaluated at x is

y = g
σx(v1,...,vn)

ρx(v1,...,vn)

T

where v1, . . . , vn are the exponents of the group elements in the verification key
vk. We say that the total degree of the polynomials σx and ρx is the evaluation
degree of the VUF/VRF.

From Consecutive Verifiability to Rationality with Bounded Degree. We show,
using an inductive argument, that (a) consecutively verifiable pairing based
VUFs/VRFs are also rational VUFs/VRFs, and (b) that the evaluation degree
is at most exponential in the proof size – this implies that the proof size needs
to be at least logarithmic in the evaluation degree for consecutively verifiable
VUFs/VRFs. The proof uses induction to show that in fact all proof elements
can be expressed through rational functions in the exponent, i.e., there exist
σx,πi

and ρx,πi
, and that the degree of the i-th proof element is at most 4i. The

base case is easy to see: To obtain σx,π1
and ρx,π1

from the first set of pairing
equations, we use the pairing equation that contains P1 as a linear factor. This
equation can be expressed as a · P1 + b = 0 where a, b are polynomials (a has
degree at most 1 and b degree at most 2). We can therefore express P1 = b/− a.

For the inductive step it is again crucial that the i-th proof element occurs
only linearly in at least one pairing equation, as it can then be viewed as a
zero of a linear equation and expressed as a rational function of the previous
proof elements and the verification key. We replace the previous proof element
Pi−1 by its rational expression

σx,πi−1

ρx,πi−1
in the pairing equation set Ei,x to obtain

Pi · a′i + b′i = 0 where the a′i and b′i are rational functions in the verification key
elements. We then derive the rational expression for Pi = b′i/− a′i = σx,πi

/ρx,πi

where σx,πi and ρx,πi are polynomials. It remains to show that the resulting
polynomials have the degrees required by our statement which can be done
using some simple arguments.

Inductively replacing all proof elements by such rational expressions in the
verification key elements yields the result for the last element to be verified –
the evaluation value.
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2.2 Second Result: Security of Univariate Polynomial-Degree VRFs
Requires Complex Assumptions

In current pairing-based constructions of VRFs there seems to be a tradeoff
between the size/complexity of the underlying assumption and the size of the
proofs. Some constructions, like [16], achieve constant-sized proofs but require a
q-type assumption, while others [30] achieve proofs of any superconstant size un-
der a constant-sized assumption. Here, we consider VRF constructions based on
non-interactive (group-based) computational assumptions (NICA), i.e., search
problems as opposed to a decisional assumptions. These NICAs state that any
“efficient” algorithm only has a negligible probability of solving the correspond-
ing computational problem, e.g. finding some “secret” exponent. In particular,
we consider NICAs where the challenge elements’ exponents only depend on a
single variable with polynomial degree. These include for example the q-DLog-
assumption and the q-DHI-assumption. There the challenge is g,gα,gα2

, . . . ,gαq

and the secret exponent is α. We give two meta-reductions [14] (for slightly differ-
ent settings) that break the resp. underlying assumption if there is an algebraic
reduction from the assumption to the unpredictability (resp. pseudorandomness)
of the VUF (resp. VRF).

Theorem 1 (Informal Lower Bound for Univariate VUFs). Let vuf be
a rational VUF whose verification key exponents depend—with polynomial de-
gree—on a single common variable. Let NICA be any NICA of polynomial size.
If there exists an algebraic reduction that transforms an adversary for the weak
selective unpredictability of vuf into a solver for NICA, then NICA can be solved
in polynomial time with some noticable advantage.

Theorem 2 (Informal Lower Bound for Univariate NICAs). Let vrf
be a rational VRF. Let NICA be any NICA of polynomial size whose exponents
depend—with polynomial degree—on a single common variable (e.g. q-DLog or
q-DHI). If there exists an algebraic reduction that transforms an adversary for
the weak selective pseudorandomness into a solver for NICA, then NICA can be
solved in polynomial time with some noticable advantage.

Remark 2 (Separation between Decisional and Computational Assumptions). As
a theoretical sidenote, we observe that on the one hand non-interactive decisional
assumptions, like q-DDH, suffice for constructing VRFs [46], while on the other
hand (univariate) non-interactive computational assumptions, like the q-DLog or
q-DHI assumption, do not suffice via algebraic reductions. This yields in partic-
ular an algebraic separation between the q-DDH and the q-DLog assumption.

Remark 3 (No Algebraic GL Construction). One can transform a VUF (e.g. the
VUF of Dodis & Yampolskiy [16] based on the q-DHI assumption) into a VRF via
the construction of Goldreich & Levin [21]. While this seems like a contradiction
(because it gives a VRF based on the q-DHI assumption), it is actually consistent
with our results because the GL hardcore bit is not an algebraic technique5,
5 The GL construction uses the bits of the representation of the group elements.



The Price of Verifiability 13

hence the reduction from the q-DHI assumption to the pseudorandomness of the
resulting VRF is not an algebraic reduction. By contraposition, our results show
that there cannot be an algebraic analogue of the GL construction.

Our Technique. Both meta-reductions share the same core idea. In a nutshell,
the meta-reduction—when simulating an adversary towards the reduction—uses
the representation vectors6 of the received group elements to either (a) predict
the challenge image, e.g. as a linear combination of received representations, or
(b) construct a polynomial function over the exponent field Zp which has the
NICA’s secret exponent as a zero. Thus, in case (a) the meta-reduction could
successfully answer the reduction’s challenge while in case (b) the meta-reduction
can leverage the fact that polynomials over some finite field can be efficiently
factorized and solve its own challenge directly using the NICA’s secret exponent.
In both cases the meta-reduction relies on the facts that the VUF (resp. VRF)
has correctness and unique provability, and that the VUF (resp. VRF) is of
rational form, i.e., vrfsk(x) = gT

σx(
−→v )/ρx(

−→v ) where σx, ρx are of polynomial
degree and −→v is the vector of verification key exponents. Because the reduction
is algebraic, whenever it outputs a group element y ∈ GT it must also provide a
representation −→z ∈ ZL

p w.r.t. the NICA challenge elements s.t.

gT
σx(

−→v )/ρx(
−→v ) = y = gT

f1(s)z1+...+fL(s)zL (1)
⇐⇒ σx(

−→v )− (f1(s)z1 + . . .+ fL(s)zL)ρx(
−→v ) = 0 (2)

where g(f1(s),...,fL(s)) ∈ GL is the NICA challenge and s $← Zp is the secret ex-
ponent. Equation (2) is the basis for both meta-reductions. For Theorem 1 the
meta-reduction queries many preimages x1, . . . , xQ and challenge x0 uniformly
at random. We consider two cases (for simple exposition we assume that the
verification key only has one group element gv):
In the first case (a) the rational functions σxi(V )/ρxi(V ) are linearly dependent.
With this linear dependence the meta-reduction can predict the challenge image
by combining the representations of the queried images. 7

In the second case (b) although the rational functions σxi
(V )/ρxi

(V ) are lin-
early independent, by a counting argument there must exist a linear dependence
α ∈ ZQ

p among the representations of the queried preimages. The meta-reduction
computes the polynomial ψ(V ) := ρx1

(V ) · · · ρxQ
(V ) ·

∑Q
ℓ=1 αℓσℓ(V )/ρℓ(V ). Be-

cause σxi(V )/ρxi(V ) are linearly independent, the polynomial is non-zero yet it
contains the vk’s exponent v as a zero (due to

∑Q
ℓ=1 αℓσℓ(v)/ρℓ(v) = 0). Thus

the meta-reduction can factor the polynomial ψ to obtain the secret exponent
and predict the challenge image as gT

σx0
(v)/ρx0

(v).
For Theorem 2 we consider pseudorandomness, hence the meta-reduction

obtains a representation for each verification key element and a representation
6 Recall that we consider algebraic reductions here, so they have to output a vector

of representations with each group element.
7 If all σxi(V )/ρxi(V ) are linearly dependent, then with noticable probability the

challenge’s function σx0(V )/ρx0(V ) will be linearly dependent on the other rational
functions because all xi are independent and identitically distributed.
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−→z ∗ for the challenge image y∗. That is, the meta-reduction knows a function8

ξ : Zp → ZL
p that maps the NICA challenge’s secret key to the verification key

exponents −→v = ξ(s). Plugging ξ into Eq. (2) gives

σx(ξ(s))− (f1(s)z1 + . . .+ fL(s)zL)ρx(ξ(s)) = 0 . (3)

Now, for any representation −→z of the real challenge image the univariate poly-
nomial ψ−→z (S) := σx(ξ(S))− (f1(S)z1 + . . .+ fL(S)zL)ρx(ξ(S)) must vanish on
the secret exponent s due to Eq. (3).
If ψ−→z (S) ̸≡ 0 is non-zero for all −→z , then the meta-reduction can factorize ψ−→z ∗(S)
and find a list of polynomially many candidates for the NICA’s secret exponent.
If no candidate matches the NICA’s secret exponent, then the challenge image
y∗ must be random, otherwise the meta-reduction has trivially found the NICA’s
secret exponent.
On the other hand, if ψ−→z (S) ≡ 0 is zero for some −→z , then the meta-reduction
can efficiently find such a representation −→z . Due to Eq. (3) such a −→z must corre-
spond to the correct challenge image, hence the meta-reduction can distinguish
the given element from random.

2.3 Third Result: Security of Low-Degree VRFs Requires Complex
Assumptions

As explained before, Theorem 1 states that there is no algebraic reduction that
transforms an adversary for the unpredictability of a rational VUF with poly-
nomial evaluation degree to a solver for a hard polynomial size assumption.
However, this result has the caveat that the VUF in question needs to have uni-
variate verification keys, i.e., the verification key needs to be fully determined
by one secret variable.

In the remaining part of this work, we will circumvent this problem and show
lower bounds for another class of VUFs – the class of rational parametrized VUFs
(see the full version[12]) – which imposes no restrictions on the verification keys
of its VUFs. This class contains the candidates of Dodis & Yampolskiy [16] and
of Belenkiy et al. [4] and all other DY-inspired candidates.

However, this result comes at a cost: It only shows the impossibility of generic
reductions that transform adversaries for the unpredictability of parametrized
VUFs into solvers of extremely small – yet superconstant – Uber-assumptions.

Informally, our result states the following:

Theorem 3 (Informal Lower Bound for Rational Parametrized VUFs).
Let vuf be a parametrized rational VUF of constant evaluation degree, i.e., it is
rational and the numerators and denominators for evaluation depend polynomi-
ally on the input x ∈ Zp. Let NICA be an Uber-assumption of size

√
log log poly(λ).

Then, there is no generic reduction that transforms an adversary for the weak
selective unpredictability of vuf to a NICA solver.

8 For simplicity assume that all fi and hence ξ are polynomials.
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We want to emphasize the significance of Theorem 3 for the pursuit of pairing-
based VRFs with proofs of constant size. Theorem 3 shows that the security of
each VUF in the style of [16] with constant proofs cannot be generically based
on a constant-size Uber-assumption.

Now, we want to explain some details that appear in the statement of The-
orem 3 before we jump to a proof:

Uber-Assumptions. We demand that NICA is an Uber-assumption [10], i.e., its
challenges consist of group elements g,gf1(

−→z ), . . . ,gfq1 (
−→z ), gT

g1(
−→z ), . . . ,gT

gq2 (
−→z )

where −→z $← Zt
p has been sampled secretly and uniformly at random by the chal-

lenger and f1, . . . , fq1 , g1, . . . , gq2 ∈ Zp[Z1, . . . , Zt] are publicly known polynomi-
als.

Parametrized Rational VUFs. It is required that vuf is parametrized rational
of constant evaluation degree. Formally, this means there are constant-degree
polynomials σ, ρ ∈ Zp[V1, . . . , Vn, X] s.t. we have for each input x ∈ Zp and each
verification key vk and corresponding secret key sk

Evalvuf(sk, x) = gT

σ(x,−→v )

ρ(x,−→v )

where −→v denotes the vector of exponents of the group elements of vk.
We are now able to sketch a proof for Theorem 3:

Sketch of Proof, Part 1. Assume that Theorem 3 is false for some parametrized
VUF vuf and letR be a reduction that solves instances of some Uber-assumption
NICA when given access to an adversary for the unpredictability of vuf. To show a
contradiction we construct a meta-reductionM that takes the role of a successful
adversary in the weak selective unpredictability game with R.
R is given a challenge g,gf1(

−→z ), . . . ,gfq1 (
−→z ),gT

g1(
−→z ), . . . ,gT

gq2 (
−→z ) by the

NICA challenger and has to compute some solution from this tuple of group
elements while having oracle access toM. Since R is a generic algorithm, we can
apply a hybrid step and change the groups G,GT which encode elements of Zp

to groups GZ ,GZ
T that encode polynomials of Zp[Z1, . . . , Zt] without R noticing

the internal change of groups. Additionally, the NICA challenger will now give
the group elements g,gf1(

−→
Z ), . . . ,gfq1 (

−→
Z ),gT

g1(
−→
Z ), . . . ,gT

gq2 (
−→
Z ) as challenge to

R. Further, because of the genericness of R, the exponent of each target group
element it outputs must be a polynomial of the form

α+

q1∑
i=1

βi · fi(
−→
Z ) +

∑
i,j=1

γi,j · fi(
−→
Z ) · fj(

−→
Z ) +

q2∑
i=1

δi · gi(
−→
Z ) (4)

for scalars α, βi, γi,j , δi ∈ Zp. Let W denote the vector space of all polyno-
mials that can be expressed in the above way, i.e., W = spanZp

{1, (fi)i, (fi ·
fj)i,j , (gi)i} ⊂ Zp[Z]. The space W contains the exponents of all target group
elements that can be constructed by generic group operations and pairings from
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the elements of the NICA challenge. In particular, the exponent of each group
element outputted by R must lie in W .

Now, when R accesses M it sends a verification key vk, random inputs
x0, . . . , xQ, image values y1, . . . ,yQ and proofs π1, . . . , πQ to M. To win the
unpredictability game, M needs to return the evaluation y0 of vuf at x0 to R.
As stated above, the exponents of each group element of vk and of the image
values y1, . . . ,yQ must lie in W . Let v1(

−→
Z ), . . . , vn(

−→
Z ), y1(

−→
Z ), . . . , yQ(

−→
Z ) ∈W

be exponents of these group elements. Since R is generic, M can extract those
polynomials from R while playing the unpredictability game with R (we assume
in this work that genericness always implies algebraicity, cf. Definition 5). With
the help of π1, . . . , πQ the meta-reduction M can ensure that for each i ∈ [Q]
the equation

σ(xi, v1(
−→
Z ), . . . , vn(

−→
Z ))

ρ(xi, v1(
−→
Z ), . . . , vn(

−→
Z ))

= yi(
−→
Z ) (5)

holds.

Sketch of Proof, Part 2. In the first part of the proof, we showed that the
fractions σ(xi,

−→v (
−→
Z ))

ρ(xi,
−→v (

−→
Z ))

, i ∈ [Q], are not only polynomials, but additionally lie in
W . This is the point where we can spring our mathematical trap: we can show
if all fractions σ(x1,

−→v (
−→
Z ))

ρ(x1,
−→v (

−→
Z ))

, . . . ,
σ(xQ,−→v (

−→
Z ))

ρ(xQ,−→v (
−→
Z ))

lie in W for a large enough number Q

then, in fact, the fraction σ(x,−→v (
−→
Z ))

ρ(x,−→v (
−→
Z ))

must be an element of W for each x ∈ Zp.

In particular, the exponent σ(x0,
−→v (

−→
Z ))

ρ(x0,
−→v (

−→
Z ))

of y0 must be of this form and therefore

M can compute the element y0 = gT

σ(x0,−→v (
−→
Z ))

ρ(x0,−→v (
−→
Z )) from the group elements of the

NICA challenge on its own. Ergo, M can successfully answer the queries of R
for a large enough number of queries Q which gives rise to a generic PPT NICA
solver. A contradiction to the hardness of NICA!

2.4 Organization of this Work

In Section 3, we introduce notations and preliminaries. In Section 4, we define
consecutive verifiable and rational VUFs and show our first result: a consecutive
verifiable VUF is rational and its evaluation degree is exponentially bounded by
the size of its proofs. In Section 5, we show our second result: Theorem 1 and
Theorem 2, which state that the security of rational VUFs cannot be based by
an algebraic reduction on the hardness of a NICA, if either the verification key
of the VUF or the NICA is univariate. Finally, in Section 6, we introduce the
notion of parametrized rational VUFs and Uber-assumptions, state the formal
version of Theorem 3 and give a very high-level idea of its proof.
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3 Preliminaries

3.1 Notation

We denote the security parameter by λ. We denote vectors by −→x and group
elements by g. For a matrix M we denote by mi,j the entry in the i-th row
and the j-th column. For a finite set X we denote by x $← X that x is sampled
uniformly at random from X.

For a probabilistic algorithm Alg we denote by y $← Alg(x) that y is computed
by Alg on input x with a uniform random tape. Set further poly(λ) := {f : N→
N | ∃a, b ∈ N,∀n ∈ N : f(n) ≤ a + nb} and negl(λ) := {ε : N → R | ∀c ∈
N : limn→∞ nc · ε(n) = 0}. For any n ∈ N we set [n] := {1, . . . , n}. We call an
algorithm PPT iff it is probabilistic, and its time complexity lies in poly(λ).

3.2 Mathematical Foundations

Definition 1 (Rational Functions). For a prime p we define the field of ra-
tional functions over Zp in variables X1, . . . , Xn by

Zp(X1, . . . , Xn) :=

{
σ(X1, . . . , Xn)

ρ(X1, . . . , Xn)

∣∣∣∣σ, ρ ∈ Zp[X1, . . . , Xn], ρ ̸= 0

}
.

Given a rational function f ∈ Zp(X1, . . . , Xn), the degree of f is defined as

deg(f) := min{max(deg(σ),deg(ρ)) | σ, ρ ∈ Zp[X1, . . . , Xn], ρ ̸= 0, ρ · f = σ}

where deg(σ),deg(ρ) denote the total degrees of the polynomials σ, ρ.

We recall the following helpful lemma:

Lemma 1 (Schwartz-Zippel-Lemma, [44]). Let f ∈ Zp[X1, . . . , Xn] be a
non-zero polynomial over Zp. Denote by deg(f) the total degree of f . Then

Pr
r1,...,rn

$←Zp

[f(r1, . . . , rn) = 0] ≤ deg(f)

p
.

3.3 Cryptographic Groups

Definition 2 (Bilinear Group Generator, [24]). A bilinear group gen-
erator is a probabilistic polynomial-time algorithm GrpGen that takes as input a
security parameter λ (in unary) and outputs Π = (p, ppG, ppGT

, ◦, ◦T, e, ϕ(1)) $←
GrpGen(1λ) such that the following requirements are satisfied.

1. The parameter p is prime and log(p) ∈ Ω(λ).
2. G and GT as described by ppG and ppGT

are subsets of {0, 1}∗, defined by
algorithmic descriptions of maps ϕ : Zp → G and ϕT : Zp → GT .

3. ◦ and ◦T are algorithmic descriptions of efficiently computable (in λ) maps
◦ : G×G→ G and ◦T : GT ×GT → GT , such that
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(a) (G, ◦) and (GT , ◦T) form abstract groups and
(b) ϕ is a group isomorphism from (Zp,+) to (G, ◦) and
(c) ϕT is a group isomorphism from (Zp,+) to (GT , ◦T).

4. e is an algorithmic description of an efficiently computable (in λ) bilinear
map e : G×G → GT . We require that e is non-degenerate, i.e., x ̸= 0 =⇒
e(ϕ(x), ϕ(x)) ̸= ϕT(0).

Remark 4. For simplicity, we only consider symmetric pairings. However, while
our upcoming formulation of “consecutive verifiability” is easier to state with
symmetric pairings, our results do not depend on symmetry of the pairing.

Definition 3 (Certified Generator, [24]). We say a bilinear group generator
GrpGen is certified, if there exists a deterministic polynomial-time algorithm
GrpVfy with the following properties:

Parameter Validation. Given a string Π (which may not necessarily be gen-
erated by GrpGen), algorithm GrpVfy(Π) outputs 1 if and only if Π has the form
Π = (p, ppG, ppGT

, ◦, ◦T, e, ϕ(1)) and all requirements from Definition 2 are sat-
isfied.

Recognition and Unique Representation of Elements of G (GT ). Fur-
thermore, we require that each element in G (GT ) has a unique representa-
tion, which can be efficiently recognized. That is, on input two strings Π and s,
GrpVfy(Π, s) outputs 1 if and only if GrpVfy(Π) = 1 and it holds that s = ϕ(x)
(s = ϕT(x)) for some x ∈ Zp. Here ϕ : Zp → G (ϕT : Zp → GT ) denotes the fixed
group isomorphism contained in Π to specify the representation of elements of
G (of GT ) (see Definition 2).

We recall the definition of algebraic algorithms which was first used by [9,
42] in the context of meta-reductions. Our definition of algebraic algorithms is
closer to that of [3, 19].

Definition 4 (Algebraic Algorithms [3, 19]). Let ppG = (p, ppG, ppGT
,

◦G, ◦GT
, e, ϕG, ϕGT

) be as in Definition 2. Let A be an algorithm that receives as
input source group elements g1, . . . ,gs ∈ G, target group elements h1, . . . ,ht ∈
GT and some non-group-element input x.

We say that A is algebraic if, whenever A outputs a group element y, it
also outputs one of the following representations: If y ∈ G, a vector

−→z ∈ Zs
p s.t. y =

s∏
i=1

gzi
i

and if y ∈ GT , a vector and a matrix

−→z ∈ Zt
p,M = (mij)

s
i,j=1 ∈ Zs×s

p s.t. y =

t∏
i=1

hzi
i ·

 s∏
i,j=1

e(gi,gj)
mij
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Definition 5 (The Generic Group Model [40, 45]). An algorithm inter-
acting with a group (or pairing group) is called generic if it is algebraic in the
sense of Definition 4 and it suffices that the algorithm accesses the group only
through an oracle. More concretely, all group elements gi that the algorithm re-
ceives as input are represented by random strings σ(gi), called handles, and
whenever the algorithm wants to compute the product gi · gj resp. the exponen-
tiation gx, it passes (σ(gi), σ(gj)) resp. (σ(gi), x) to the corresponding group
operation oracle, and the oracle returns σ(gi · gj) resp. σ(gx

i ). In a pairing set-
ting the algorithm is given access to a second such group oracle for the target
group, as well as a pairing oracle that takes as input two handles σ(gi), σ(gj)
and outputs σ(e(gi,gj)) if both elements gi,gj are elements of the source group.

Remark 5. It has been shown recently – despite popular belief – that an algo-
rithm that only interacts with a group by oracles in Shoup’s GGM does not need
to be algebraic [29, 48]. To circumvent this problem, we require in the definition
of generic algorithms explicitly that a generic algorithm is algebraic.

Remark 6. It is not clear how to adapt the notion of a certified group generator
(Definition 3) to generic groups. Indeed, in the generic group model, there are
no group descriptions as in Definition 2, and instead all algorithms have access
to a group via group operation oracles. However, these oracles can be viewed as
“implicitly trusted”, in the sense that the properties from Definition 2 are always
guaranteed. Hence, we will not consider certified (bilinear) group generators in
the context of generic groups.

Definition 6 (Non-Interactive Computational Assumptions, NICAs [18]).
A non-interactive computational assumption NICA is defined by the fol-

lowing two oracles available to the adversary:

Setup Generates a challenge c $← D(1λ) from a challenge distribution D(1λ)
parameterized over the security parameter λ. Saves an internal state st.

Finalize On input of a candidate solution s and the internal state st, outputs
either 1 (indicating that s is a correct solution) or 0 (indicating that s is not
a correct solution).

We say that an adversary A (t, ϵ)-breaks the assumption if the adversary outputs
a correct solution with probability at least ϵ(λ) in time at most t(λ). We further
say the assumption is (t, ϵ)-hard if there exists no adversary A that (t, ϵ)-breaks
the assumption. If NICA is (t, 1r )-hard for all t, r ∈ poly(λ), r > 0, we call NICA
hard.

For a NICA in a group where the challenge consists of m group elements, we
call m the size of the NICA. If m is linear in a parameter q, we call NICA a
q-type assumption. If m is constant we call NICA a constant-size assump-
tion.

Definition 7 (Univariate Polynomial-Degree Assumptions). Let p =
p(λ) be a superpolynomial group order. Let l1, l2, dNICA ∈ poly(λ), let r1, . . . , rl1 ,
t1, . . . , tl2 ∈ Zp[S] be non-zero polynomials of degree at most dNICA. We say
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NICA is a univariate polynomial-degree assumption, iff it is an (l1 + l2)-type
NICA according to Definition 6 and if its challenge distribution9 is D(1λ) →
c = (Π,gr1(s), . . . ,grl1 (s),g1/t1(s), . . . ,g1/tl2 (s)) where s $← Zp is the secret ex-
ponent and Π = (p, ppG, ppGT

, ◦, ◦T, e, ϕ(1)) $← GrpGen(1λ) is a certified group
description.

Definition 8 (DLog-Hard Assumptions). Let l1, l2, dNICA ∈ poly(λ), let
r1, . . . , rl1 , t1, . . . , tl2 ∈ Zp[S] be non-zero polynomials of degree at most dNICA.
We say NICA is a DLog-hard assumption, iff it is an (l1 + l2)-type assump-
tion according to Definition 7 and if no polynomial-time algorithm has noticable
probability of solving the corresponding DLog problem, i.e., outputting the secret
exponent s ∈ Zp.

Remark 7. In particular the computational q-DHI assumption (Diffie-Hellman
inversion assumption) is a univariate polynomial-degree assumption for q ∈
poly(λ). The decisional variant is not univariate because of the last challenge
element.

3.4 Verifiable Unpredictable Functions

Definition 9 (Verifiable Unpredictable Functions, VUFs [36]). Let vuf =
(Genvuf ,Evalvuf ,Verifyvuf) be a tuple of algorithms of the following form:

– Genvuf(1
λ) outputs a secret key sk and a verification key vk.

– Evalvuf(sk, x) on input a secret key sk and x ∈ X = (Xλ)λ outputs an image
y ∈ Y = (Yλ)λ and a proof π. We assume that the input space Xλ has a
superpolynomial cardinality in the security parameter λ.

– Verifyvuf(vk, x, y, π) on input a verification key vk, a preimage x, an image y
and a proof π outputs a bit b ∈ {0, 1}.

We say that vuf is a (t, Q, ϵ)-verifiable unpredictable function (VUF) if the
following holds:

Statistical Correctness. There exists a negligible function µ ∈ negl(λ) s.t. for
all λ ∈ N and for all inputs x ∈ Xλ it holds that

Pr
(sk,vk)

$←Genvuf(1λ)

[Verifyvuf(vk, x, y, π) = 1 | (y, π)← Evalvuf(sk, x)] ≥ 1− µ(λ) .

Unique Provability. For all λ ∈ N and all possible vk (not necessarily gener-
ated by Genvuf), all x ∈ Xλ, all y1, y2 ∈ Yλ and all possible proofs π1, π2 it holds
that

Verifyvuf(vk, x, y1, π1) = 1 ∧ Verifyvuf(vk, x, y2, π2) = 1 =⇒ y1 = y2

9 For exposition, we assume all group element to be in the source group. Our technique
applies as well for assumptions with target group elements.
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Weak Q-Selective Unpredictability [11]. For any adversary A running in
time at most t(λ), we have∣∣∣∣∣∣∣∣∣∣

Pr

A(vk,−→x ,−→y ,−→π ) = y0

∣∣∣∣∣∣∣∣∣∣

−→x = (x0, . . . , xQ)
$← XQ+1

λ

(sk, vk) $← Genvrf(1
λ)

(yi, πi)← Evalvrf(sk, xi)−→y = (y1, . . . ,yQ)−→π = (π1, . . . , πQ)

− 1

|Yλ|

∣∣∣∣∣∣∣∣∣∣
≤ ϵ(λ) .

Remark 8. Our notion of weak selective unpredicability is even weaker than
the eponymous notion used by Niehues [41] with a loss of 1/Q by guessing the
adversary’s challenge index and reordering the preimages. However, our notion
has the advantage that it is a non-interactive game, in particular, no state has
to be transmitted between parts of the adversary (A1,A2) as in [41].

Remark 9. We note that we do not require perfect correctness as for some of
the VUFs we consider in this work this property does not hold perfectly (e.g. in
the case where Evalvuf(sk, x) is undefined for a small number of x ∈ X for some
secret key sk).

Remark 10. We consider pairing-based VUFs where y ∈ (G ∪ GT ) and π ∈
(G ∪ GT )

∗. W.l.o.g. we assume that a VUF’s image is an element of the target
group, i.e., Y = GT . Otherwise, we can modify the VUF by appending the
original (source group) image yS ∈ G to the proof elements, and set the new
image as yT := e(gS,yS) where gS is a designated generator of the source group
in the verification key. Obviously, the unpredictability of the former VUF can
be reduced to the unpredictability of latter, without any loss.

Definition 10 (Verifiable Random Functions, VRFs [36]). Let vrf = (Genvrf ,
Evalvrf ,Verifyvrf) be a VUF according to Definition 9. We say that vrf is a (t, ϵ)-
verifiable random function (VRF) if the following10 holds:

Weak Q-Selective Pseudorandomness. For any adversary A running in
time at most t(λ), we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


A(vk,−→x ,−→y b,−→π ) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−→x = (x0, . . . , xQ)
$← XQ+1

λ

(sk, vk) $← Genvrf(1
λ)

(yi, πi)← Evalvrf(sk, xi)
y′
0 ← GT−→y 0 = (y0,y1, . . . ,yQ)−→y 1 = (y′

0,y1, . . . ,yQ)−→π = (π1, . . . , πQ)
b← {0, 1}


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ ϵ(λ) .

10 To keep the definitions minimal, we choose to only present the 0-selective pseudo-
randomness property since it is the security notion considered in our results.
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3.5 Reductions

Definition 11. For a VUF vuf and a NICA NICA, we say a Turing machine B is
a (tB, ϵB, r,Q, ϵA)-reduction from breaking NICA to breaking the weak selective
unpredictability of vuf, if for any A that (tA, Q, ϵA)-breaks the weak selective
unpredicability of vuf, the TM BA (tB + rtA, ϵB)-breaks NICA making at most r
oracle queries11 to A.

4 Proof Size

4.1 Classes of VUFs over Pairing-Friendly Groups

In the following, we introduce the class of VUFs that we want to discuss. In-
formally speaking, we consider VUFs whose verification algorithm only verifies
group membership and pairing equations over the proof, evaluation value, and
verification key. We further require that the verification algorithm is consecutive,
i.e., it first verifies the first element of the proof, then the second, then the third,
and so on and at the end of its execution it verifies that the evaluation value is
correct. This class of VUFs covers many existing VUFs, we refer to Fig. 1 for an
overview of which VUFs are consecutively verifiable.

In this section, we want to show that the evaluation function of VUFs that
have such a natural verification algorithm can be expressed as a target group
element where the exponent is a rational function in the discrete logarithms
of the verification key element and that, informally speaking, the degree of the
rational function can be bounded as exponential in the size of the proof. We begin
by giving a formal definition of what we consider a set of pairing equations.

Definition 12 (Pairing Equations). Let E ⊂ Zp[X1, . . . , Xm]. We call E a
set of pairing equations for a pairing group G with public parameters Π =

(p, ppG, ppGT
, ◦, ◦T, e, ϕ(1)) $← GrpGen(1λ) over variables

−→
X = X1, . . . , Xm with

target indicator12 set T ⊂ {1, . . . ,m} if the following hold:

1. maxf∈E(deg f) ≤ 2,
2. for all i ∈ T and f ∈ E it holds that if Xi appears in a monomial m of f ,

then m = c ·Xi for some c ∈ Zp.

We describe the evaluation of a finite set of pairing equations E on input x1, . . . ,
xm as follows:

– We check that the input is a set of group elements (x1, . . .xm), i.e., xi ∈ G
or xi ∈ GT for all i, and output ⊥ if otherwise.

– For each i ∈ [m], we check if i ∈ T ⇐⇒ xi ∈ GT and output ⊥ if otherwise.
11 Because our weak selective unpredictability is a non-interactive game, there are no

concurrency issues.
12 This set indicates which verification key elements are in the target group. Hence,

their exponents should only occur linearly, while source group exponents can occur
quadratically.
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– For f =
(∑

m∈Mf
m
)
∈ E where Mf is the set of monomials of f , we

compute f(−→x ) :=
∏

m∈Mf
m(−→x ) where m(−→x ) are computed as follows:

• if m = c · Xi · Xj for some i, j /∈ T and c ∈ Zp, compute m(−→x ) :=
e(xi,xj)

c,
• if m = c ·Xi for some i /∈ T and some c ∈ Zp and if xi ∈ G, compute
m(−→x ) := e(xi,g)

c where g = ϕ(1) is the fixed generator of G as given
in the group parameters Π. If i ∈ T and xi ∈ GT compute m(−→x ) := xc

i ,
• if m = c for c ∈ Zp, compute m(−→x ) := e(g,g)c.

– We denote by E(−→x ) the function that outputs 1 if for all f ∈ E it holds that
f(−→x ) = e(g,g)0 (if E = ∅ this always holds) and otherwise outputs 0.

In the following we describe our class of VUFs that have a consecutive verification
algorithm.

Definition 13 (Consecutively Verifiable Pairing-Based VUFs). We say
a VUF vuf = (Genvuf ,Evalvuf ,Verifyvuf) with input space X is a consecutively
verifiable pairing-based VUF if the following hold:

1. Genvuf takes as input 1λ. It samples group parameters Π = (p, ppG, ppGT
, ◦,

◦T, e,g := ϕ(1)) $← GrpGen(1λ) and outputs a verification key vk = (Π,−→v )
such that −→v consists of elements of G and GT (plus a secret key sk for which
we make no further constraints).

2. All function values y consist of values in GT .
3. All proofs consist of κ values in G ∪GT .
4. For all x ∈ X and all i ∈ [κ + 1], there exists a set Ei,x of pairing equa-

tions that can be efficiently derived from x and the description of vuf. We
require that Ei,x ⊂ Zp[V1, . . . , Vn, P1, . . . , Pi] such that there is at least one
polynomial of the form ai,x · Pi + bi,x ∈ Ei,x where ai,x, bi,x ∈ Zp[V1, . . . , Vn,
P1, . . . , Pi−1]. (We note that since the set Ei,x consists of pairing equations
it holds that ai,x has degree at most 1 and bi,x has degree at most 2.)

5. We require that Verifyvuf on input (vk = (Π,−→v ), x,y =: πκ+1,
−→π ) outputs 1

if and only if the following hold: GrpVfy(Π) = 1, all vi, for i ∈ [n], and all
πi, for i ∈ [κ+ 1], are valid group elements w.r.t. Π, and for all i ∈ [κ+ 1]
we have Ei,x(

−→v , π1, . . . , πi) = 1.
6. We further require that the ideal (E1,x, . . . , Eκ+1,x, a1,x · . . . · aκ+1,x) (which

is generated by the elements of E1,x, . . . , Eκ+1,x and the polynomial a1,x · . . .
·aκ+1,x) contains the constant polynomial 1 (i.e., (E1,x, . . . , Eκ+1,x, a1,x · . . .
· aκ+1,x) = Zp[V1, . . . , Vk, P1, . . . , Pκ+1]).

Requirement 4 will be useful in Lemma 2, as it basically means there needs to be
at least one equation that contains the current proof element as a linear factor
only. This yields in particular that the proof element in question is not a (non-
unique) square root of other elements. The last requirement on a consecutively
verifiable pairing-based VUF might seem odd, however, as we will see later, it
makes sure that there is no tuple (vk, x,y, π) s.t. any of the ai can evaluate to
zero on the exponents of (vk, x,y, π).
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Remark 11 (On VRFs with multiple output group elements.). We restrict our
framework to VRFs with a single group element in the output. For VRFs with
δ elements in the output, we propose the following adaption of the definition
of consecutive verifiability: For each output element, we add a formal variable
Pi1 , . . . , Piδ to the polynomial ring. For consecutivity, we require a partial or-
dering of all κ + δ variables Pi, where the last element is required to be an
output value. We further require that the conditions of Definition 13 hold w.r.t.
the partial ordering. Such a consecutively verifiable multi-output VRF implies a
consecutively verifiable single-output VRF that uses the last output element as
its output and puts all other elements into the proof.

As our results apply to VRFs with a single output element, they also apply
to VRFs that are obtained from multi-output VRFs through the transformation
described above with the proof size adapted accordingly.

We now define the class of VUFs that evaluate a rational function in the expo-
nent. We will show later that a VUF that fulfills Definition 13 and where the
number of group elements in the proof is in O(log(λ)) also fulfills Definition 14.

Definition 14 (Rational VUFs). Let d, n ∈ poly(λ). We say that a VUF
vuf = (Genvuf ,Evalvuf ,Verifyvuf) is rational of evaluation degree d with n =
nS + nT verification key elements, if the verification key is of the form vk =
(Π,−→v ) where Π := (p, ppG, ppGT

, ◦, ◦T, e,g = ϕ(1)) $← GrpGen(1λ) is a cer-
tified group description according to Definition 3, and −→v := (gvS,1 , . . . ,gvS,nS ,
e(g,g)vT,1 , . . . , e(g,g)vT,nT ) ∈ GnS ×GnT

T .
Further, we require for a rational VUF of evaluation degree d that for each

x ∈ X there are coprime polynomials σx, ρx ∈ Zp[V1, . . . , Vn] of total degree at
most d s.t. we have for all vk, all π and all y ∈ GT

Verifyvuf(vk, x,y, π) = 1 =⇒ ρx(v1, . . . , vn) ̸= 0 and y = e(g,g)
σx(v1,...,vn)

ρx(v1,...,vn) (6)

where (v1, . . . , vn) = (vS,1, . . . , vS,nS
, vT,1, . . . , vT,nT

) are the exponents of vk.
We require that – given x and a description of vuf – one can efficiently

compute descriptions of σx and ρx, e.g. as coefficient vectors.

Definition 15 (Rational Univariate VUFs). Let d, n, df ∈ poly(λ) and let
f1, . . . , fn : Zp → Zp be n efficiently computable polynomials of degree at most df .
Let vuf = (Genvuf ,Evalvuf ,Verifyvuf) be a rational VUF evaluation degree d with
n = nS+nT verification key elements as in Definition 14. We say vuf is a rational
univariate VUF of internal degree df relative to f1, . . . , fn, iff for all vk, all
x ∈ X , all π and all y ∈ GT a successful verification Verifyvuf(vk, x,y, π) = 1
implies the existence of an “effective secret key” s, i.e.,

∃s ∈ Zp s.t. −→v = (gf1(s), . . . ,gfnS
(s), e(g,g)fnS+1(s), . . . , e(g,g)fn(s)) , (7)

thus y = e(g,g)
σx(f1(s),...,fn(s))

ρx(f1(s),...,fn(s)) = gσ̃x(s)/ρ̃x(s) where σx and ρx are defined in Def-
inition 14, and σ̃x(s) = σx(f1(s), . . . , fn(s)) and ρ̃x(s) = ρx(f1(s), . . . , fn(s)).
Note that deg(σ̃x),deg(ρ̃x) ≤ d · df .
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Remark 12. In particular, the popular VRF of Dodis & Yampolskiy [16] is a
rational univariate VUF with n = d = df = 1 (if extended by a certified group
description).

4.2 From Consecutively Verifiable Pairing-Based VUFs to Rational
VUFs

We now turn to proving that the evaluation outputs of consecutively verifiable
pairing-based VUFs can be expressed through rational functions in the expo-
nents.

Lemma 2. Let vuf = (Genvuf ,Evalvuf ,Verifyvuf) be a pairing-based consecutively
verifiable VUF with proofs of size κ and a verification key of size n.

Then, vuf is a rational VUF of evaluation degree at most 4κ+1 over n vari-
ables.

We refer the reader to the full version [12] for the proof.

5 Algebraic Attacks on Rational VUFs

In this section we prove that the unpredictability of rational univariate VUFs
cannot be based algebraically on some non-interactive computational assump-
tions. To this end, for any algebraic reduction from the NICA to the unpre-
dictability of the VUF, we give a meta-reduction that internally runs the reduc-
tion and supplies it with an adversary for the unpredictability of the VUF. This
meta-reduction finds a non-zero, low-degree, univariate target polynomial that
contains the reduction’s effective secret key as a root. Because the target polyno-
mial has low (polynomial) degree and is non-zero, the meta-reduction can simply
factor it and test each of its polynomially many roots against the reduction’s
verification key. Using the previously obtained secret key the meta-reduction can
predict the reduction’s challenge image.

Theorem 1. Let p be a superpolynomial group order. Let NICA be a non-interactive
computational assumption of size q ∈ poly(λ). Let n, d, df ∈ poly(λ) and let
f1, . . . , fn ∈ Zp[S] be some polynomials of degree at most df . Let vuf be a ratio-
nal univariate VUF of evaluation degree d and internal degree df over n variables
relative to the polynomials f1, . . . , fn.

If there exists an algebraic (tB, ϵB, r, Q, 1/(Q+1))-reduction B from NICA to
the weak Q-selective unpredictability of vuf s.t. Q ≥ q2+1 and r ∈ poly(λ), then
there exists an adversaryM that (tM, ϵM)-breaks NICA with ϵM ≥ ϵB−2−λ and
tM ≤ tB + poly(λ).

We refer the reader to the full version [12] for the proof.

Remark 13. Indeed, Theorem 1 can be applied if the input space X is only of
polynomial size for a suitable definition of weak selective unpredictiability. Here,
one has to make sure that the challenge preimage is not contained in the Q many
query preimages, otherwise the adversary could predict trivially.
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Corollary 1. If the reduction in Theorem 1 is efficient, then NICA is efficiently
solvable. In other words, tB/ϵB ∈ poly(λ) =⇒ tM/ϵM ∈ poly(λ).

We move on to our next result.

Theorem 2. Let p = p(λ) be a superpolynomial group order. Let NICA be some
univariate DLog-hard assumption according to Definition 7 with l1, l2, dNICA ∈
poly(λ), and polynomials r1, . . . , rl1 , t1, . . . , tl2 ∈ Zp[S] of degree at most dNICA.
Let n, d, r ∈ poly(λ). Let vrf be a rational VRF of evaluation degree d with n

verification key elements s.t. ∀x ∈ X : σx(
−→
V ) = V1.13

If there exists an algebraic (tB, ϵB, r, 0, 1)-reduction B (that forwards its group
description as part of the verification key) from NICA to the 0-selective pseudo-
randomness of vrf, then there exists an adversaryM that (tM, ϵM)-breaks NICA
with ϵM ≥ ϵB − 2−λ and tM ≤ tB + poly(l2, dNICA, d, log p, r) = tB + poly(λ).

We refer the reader to the full version [12] for the proof.

6 Generic Attacks on Parametrized Rational VUFs

Finally, we show the impossibility of algebraic and generic black-box reductions
of the hardness of Uber-assumptions to the security of parametrized rational
VUFs. Rational VUFs can be seen as a strong generalization of the VUFs of
Dodis & Yampolskiy [16].

Definition 16. A VUF vuf = (Genvuf ,Evalvuf ,Verifyvuf) is called parametrized
rational of evaluation degree dvuf = dvuf(λ), if there are polynomials σ, ρ ∈
Zp[VS,1, . . . , VS,n1 , VT,1, . . . , VT,n2 , X] of total degree dvuf s.t. the following things
hold:

1. The set of possible inputs of vuf is X = Zp.
2. For each generator h ∈ G and each tuple (vk, x,y, π) accepted by Verifyvuf

we have

ρ(−→vS ,−→vT , x) ̸= 0 and y = g
σ(−→vS ,−→vT ,x)/ρ(−→vS ,−→vT ,x)
T .

where −→vS resp. −→vT denote the exponents of the elements vkS,1, . . . , vkS,n1
resp.

vkT,1, . . . , vkT,n2
relative to the basis h resp. e(h,h).

We will now introduce our notion of Uber-assumptions, which is a generalization
of the notion of Boyen [10].

Definition 17 (Computational Uber-Assumptions). We call a non-interactive
computational assumption NICA an Uber-assumption if there is a polynomial
bound t = t(λ) and a set of sparse polynomials fA1

, . . . , fAq1
, fB1

, . . . , fBq2
∈

Zp[Z1, . . . , Zt] that can be computed efficiently s.t. the distributions of challenge

13 Essentially, the first verification key element h := v1 is the new generator relative
to which the VRF is evaluated.
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samples of NICA is identical to the output of the following algorithm:
1. draw a generator g of G
2. draw (z1, . . . , zt)

$← Zt
p

3. set a1 := fA1(z1, . . . , zt), . . . , aq1 := fAq1
(z1, . . . , zt)

4. set b1 := fB1
(z1, . . . , zt), . . . , bq2 := fBq2

(z1, . . . , zt)

5. return (g,ga1 , . . . ,gaq1 , e(g,g)b1 , . . . , e(g,g)bq2 )

Let dNICA = max{deg fA1
, . . . ,deg fAq1

,deg fB1
, . . . ,deg fBq2

}. We call dNICA the
degree of NICA and q = 1 + q1 + q2 the size of NICA.

We can now state the formal version of Theorem 3.

Theorem 3. Let vuf be a parametrized rational VUF of evaluation degree dvuf ∈
O(1). Let NICA be an Uber-assumption of degree dNICA ∈ poly(λ) and of size
q ≤

√
log log(w) for some w ∈ poly(λ).

If NICA is hard and Q > 2 · (1 + log logw) · w2 log(dvuf+1), then there is no
generic reduction that can transform an adversary for the weak Q-selective un-
predictability of vuf to a NICA solver.

A full and exhaustive proof of Theorem 3 is given in the full version of this paper
[12, Section 6].

In a nutshell, the idea of the proof is to see that, since the reduction is
algebraic and generic, the algebraic explanations of each group element give a
ring morphism that maps representations of group elements to polynomials in the
variables Z1, . . . , Zt of the Uber-Assumption NICA. For each x ∈ Zp queried by
the adversary, this ring morphism must be chosen in such a way by the reduction
s.t. a system Sx of polynomial equalities is fulfilled. Since vuf is parametrized of
constant degree, we have that Sx depends itself polynomially on x. Therefore, if
Sx is satisfiable for too many x ∈ Zp it must be satisfiable for each x ∈ Zp and a
solution for Sx0

can be computed by the meta-reduction by mere linear algebra.
Therefore, the meta-reduction can predict the image to the challenge query x0
on its own if it can ask for too many queries.
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