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Abstract. Trapdoor Claw-free Functions (TCFs) are two-to-one trapdoor func-
tions where it is computationally hard to find a claw, i.e., a colliding pair of inputs.
TCFs have recently seen a surge of renewed interest due to new applications to
quantum cryptography: as an example, TCFs enable a classical machine to verify
that some quantum computation has been performed correctly. In this work, we
propose a new family of (almost two-to-one) TCFs based on conjectured hard
problems on isogeny-based group actions. This is the first candidate construc-
tion that is not based on lattice-related problems and the first scheme (from any
plausible post-quantum assumption) with a deterministic evaluation algorithm.
To demonstrate the usefulness of our construction, we show that our TCF family
can be used to devise a computational test of a qubit, which is the basic building
block used in the general verification of quantum computations.

1 Introduction

Trapdoor claw-free functions (TCFs) consist of pairs of functions (f0, f1) : X → Y
that are easy to evaluate in the forward direction, but the knowledge of a trapdoor is re-
quired in order to efficiently invert such functions. Furthermore, for any y in the image
of these two functions, there are exactly two pre-images (x0, x1) such that f0(x0) =
f1(x1) = y and the pair (x0, x1) is referred to as a claw. Claws are guaranteed to exist,
though they are computationally hard to find, without the knowledge of the trapdoor.
TCFs have been a central object in the theory of cryptography, and they have recently
seen a surge of interest with a newly established connection with quantum cryptogra-
phy. TCFs are the main cryptographic building block that enabled a series of recent
breakthroughs in the area of quantum computation. To mention a few applications:
the first protocol for testing the randomness of a single quantum device [BCM+18],
classical verification of quantum computation [Mah18b], quantum fully homomorphic
encryption [Mah18a], verifiable test of quantumness [BKVV20], remote state prepara-
tion [GV19], and deniable encryption [CGV22].
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gemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy -
EXC 2092 CASA - 390781972.
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At present, there is a single family of (noisy) TCFs [BCM+18] known to satisfy all
of the properties needed for the above applications, whose security is based on the
(quantum) hardness of the learning with errors (LWE) problem. While we have no
reasons to cast doubts on the validity of this assumption, we believe that this situation is
unsatisfactory and reflects our lack of understanding of cryptographic primitives useful
for constructing protocols in the quantum regime.

This work aims to progress on this point and to place the security of the above
protocols on broader cryptographic foundations. Towards this end, we turn our attention
to alternative proposals for quantum-safe cryptographic schemes: Alongside lattices,
another notable class of assumptions that enable advanced cryptographic applications
(such as key exchange) is isogeny-based assumptions, including recent proposals based
on group actions [CLM+18,BKV19]. Thus, we ask the following question:

Can we construct TCFs (or relaxations thereof) from isogeny-based group
actions?

1.1 Our Results

We propose the first candidate construction of an “almost” TCF family from a class
of isogeny-based assumptions, where by almost we mean that for all but an inverse
polynomial fraction of inputs x ∈ X , there is an x′ ∈ X such that f0(x) = f1(x

′). We
later formalize this notion as a weak TCF (wTCF) family.

We show the security of our construction assuming an extended version of the linear
hidden shift (LHS) problem (which plausibly holds over the isogeny-based group ac-
tion of [BKV19]), introduced in [ADMP20]. A noteworthy aspect of our scheme is that
the evaluation of the function is deterministic, which is in contrast with LWE-based
schemes, where the function maps to a probability distribution. Thus, strictly speak-
ing, our scheme is the first example of a wTCF function with plausible post-quantum
security.

Our construction also satisfies a weaker variant of the adaptive hardcore bit prop-
erty [BCM+18]: loosely speaking, it guarantees that one cannot simultaneously solve
the adaptive hardcore bit problem for n independent instances, except with probabil-
ity negligible in n. Interestingly, our proof strategy is completely different from that
of [BCM+18], and does not rely on any leakage-resilience property. To obtain the
stronger variant of the adaptive hardcore bit property (as formulated in [BCM+18])
we conjecture that computing the XOR of adaptive hardcore bits amplifies the security
to negligibly close to 1/2. In the context of one-wayness, it is known that direct-product
hardness implies the XOR lemma [GNW11,GSV18], and we leave open the problem
of proving a similar statement for the adaptive hardcore bit property.

To substantiate the usefulness of our construction, we show that our wTCF family
can be used to devise a computational test of qubit [BCM+18,Vid20], which is the basic
building block used in the general verification of quantum computations.

1.2 Technical Overview

We now provide a simplified overview of how we construct a wTCF family from
an assumption that plausibly holds over isogeny-based group actions. We present our
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overview entirely in terms of group actions (based on the framework of [ADMP20]),
and thus we do not assume any familiarity with CSIDH and its variants [CLM+18,BKV19].
The starting point for our construction is a recently introduced assumption in [ADMP20],
called the linear hidden shift (LHS) assumption. In a nutshell, LHS assumption over a
regular and abelian group action ⋆ : G × X → X states that for any ℓ = poly(λ), if
M← Gℓ×n, v← {0, 1}n, and x← Xℓ (for some sufficiently large n) then

(x,M,Mv ⋆ x)
c
≈ (x,M,u),

where u ← Xℓ is sampled uniformly and ⋆ is applied component-wise. Given this
assumption, we rely on an observation by [KCVY21] to construct a function family that
is (almost) 2-to-1. It can be verified by inspection that ifB = poly(λ) is a large enough
integer, then for any injective function f̄ whose domain is a superset of [B + 1]n, the
function f with domain {0, 1}× [B]n defined by f(b ∈ {0, 1}, s ∈ [B]n) = f̄(s+b ·v)
is an “almost” 2-to-1 function. Based on this simple observation, an initial attempt to
define a claw-free “almost” 2-to-1 function (from LHS) would be

fpp(b, s) = M(s+ b · v) ⋆ x, pp = (M← Gn×n,Mv ⋆ x,x← Xn), (∗)

where v ← {0, 1}n. As a sanity check, any claw-pair ((0, s0), (1, s1)) can be used
to break the LHS assumption by simply computing v = s0 − s1. There are two
major issues with the initial attempt above: (1) unlike the DDH-based construction
of [KCVY21], a cryptographic group action does not seem to be amenable for a “DDH-
style” trapdoor [FGK+10] (in fact, any such technique would immediately break the
post-quantum security of LHS assumption), and (2) it is not clear how to translate the
LWE-based proof of adaptive hardcore bit property from [BCM+18] to the group ac-
tion setting. Indeed, the latter seems to be a major bottleneck, because [BCM+18] relies
on the lossy mode of LWE to prove the adaptive hardcore bit property via a lossiness
argument, a technique that seems to be out of reach based on our current understanding
of cryptographic group actions. At a high level, any change in the structure of matrix M
(say using a “rank” 1 matrix) can be easily detected by a quantum adversary. Thus, we
opt for an entirely computational approach to prove the adaptive hardcore bit property.
We first describe our approach for showing adaptive hardcore bit property, and later we
explain how to add input recoverability based on a related computational assumption.

From a Claw-Based Inner Product to a Shift-Based Equation. Note that for the
function (family) fpp above (∗), the adaptive hardcore bit property means that no QPT
adversary can simultaneously hold a preimage (b, sb) and a pair (d, c ∈ {0, 1}) such
that c = ⟨d, s0 ⊕ s1⟩, where s1−b is the preimage of fpp(b, sb) such that s1−b ̸= sb
and the inner product is computed over F2. To simplify the proof, an observation
by [BCM+18] showed that any such tuple (b, sb,d, c) can be transformed into a bi-
nary equation in terms of the shift vector v, i.e., there is an efficient transformation T
that given (b, sb,d, c) outputs a binary vector d′ and c′ ∈ {0, 1} such that c′ = ⟨d′,v⟩,
and that for a uniformly chosen d the resulting d′ is non-zero with overwhelming prob-
ability. Thus, the adaptive hardcore bit property can be rephrased as the infeasibility
of computing any non-trivial parity of the shift vector v with a probability noticeably
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more than 1/2. Although our final construction will be quite different from the simple
one outlined above (∗), it would still be amenable to a transformation from a claw-
based inner product into a shift-based equation. Therefore, we focus on the latter in
the remaining part of this overview. Looking ahead, in our final construction the shift
vector v will consist of n binary vectors vi (for i ∈ [n]). In the next step, we describe a
generic approach to prove that no attacker can succeed in outputting n non-zero vectors
d′i and n bits ci (i ∈ [n]) such that ci = ⟨d′i,vi⟩ for all i ∈ [n].

Direct-Product Adaptive Hardcore Bit. Let Fpp : {0, 1}n → Y be a function (fam-
ily) such that pp is generated via a randomized algorithm Gen. In addition, assume that
F satisfies correlated pseudorandomness, i.e., for uniformly sampled w← {0, 1}n and
n independently sampled (ppi)i∈[n] (via Gen) we have

(pp1, . . . ,ppn, Fpp1
(w), . . . , Fppn

(w))
c
≈ (pp1, . . . ,ppn, u1, . . . , un),

where ui ← Y for i ∈ [n]. Suppose that there is a procedureP that given (ppi, Fppi
(w))i∈[n]

(where ppi is generated independently for i ∈ [n]) and n (random) binary vectors
(ri)i∈[n], it outputs

(pp′i, Fpp′
i
(w ⊕ ri))i∈[n]

such that
(pp′i, Fpp′

i
(w ⊕ ri))i∈[n]

s
≈ (ppi, Fppi

(vi))i∈[n], (∗∗)
where vi ← {0, 1}n for i ∈ [n] and each ppi is generated independently. Moreover, the
procedure P should map a random tuple (ppi, ui)i∈[n] (where ui ← Y ) to a random
tuple.

Given such a function family with corresponding procedure P , below we briefly
outline a reduction that shows for any QPT1 adversary A, given (ppi, Fppi

(vi))i∈[n]
where ppi and vi are sampled independently for i ∈ [n], it is infeasible to produce n
non-zero vectors d′i and n bits ci (for i ∈ [n]) such that ci = ⟨d′i,vi⟩ for all i ∈ [n],
where the inner product is computed over F2. We informally refer to this property as
direct-product adaptive hardcore bit property.

Let H = (pp1, . . . ,ppn, y1, . . . , yn) be a correlated pseudorandomness challenge.
The reduction samples ri for i ∈ [n] and it runs P on (H, r1, . . . , rn). Let (d′i, βi) for
i ∈ [n] be the output of A. Observe that if the advantage of A is non-negligible and H
is pseudorandom, i.e., yi = Fppi

(w) for all i ∈ [n], the reduction can use (d′i, βi) and
ri to compute ci = ⟨d′i,w⟩ for i ∈ [n]. If there exists an index n′ such that d′n′ lies in
the span of (d′1, . . . ,d

′
n′−1), i.e.,

d′n′ =

n′−1∑
i=1

αid
′
i, (α1, . . . , αn′−1) ∈ {0, 1}n

′−1,

the reduction can simply check cn′
?
=
∑n′−1

i=1 αici. If the equality holds the reduction
outputs 0, otherwise it outputs a random bit. On the other hand, a routine information-
theoretic argument shows that if H is a truly random tuple then the check above passes

1 The reduction is entirely classical, so if correlated pseudorandomness holds with respect to all
classical PPT adversaries, then the proposition holds for the same class of adversaries as well.
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with a probability close to 1/2, because ri (for any i ∈ [n]) is statistically hidden from
the view of A, allowing us to deduce the direct-product adaptive hardcore bit property
(a slight modification of the argument also works in case all d′i for i ∈ [n] are linearly
independent).

So far, we argued that if Fpp : {0, 1}n → Y is a function family with correlated
pseudorandomness and a corresponding procedure P , it also satisfies the direct-product
adaptive hardcore bit property. In the next step, we rely on a conjecture to deduce the
(plain) adaptive hardcore bit property (defined below), which will allow us to deduce
the adaptive hardcore bit property (for an almost 2-to-1 function) in our final construc-
tion. A non-adaptive version of the following conjecture has already been proved via a
transformation from direct-product hardness to (Yao’s) XOR lemma [GNW11].

Conjecture 1 (Informal). If Fpp : {0, 1}n → Y is a function family (with the properties
described above) that satisfies the direct-product adaptive hardcore bit property, it also
satisfies the following adaptive hardcore bit property defined as:

Pr

[
A
(
{ppi}i∈[n], {Fppi

(vi)}i∈[n]
)
→

(
{d′i ̸= 0n}i∈[n],

n⊕
i=1

⟨d′i,vi⟩

)]
≤ 1/2+negl .

Remark 1. While the adaptive hardcore bit property in the conjecture above is different
from the adaptive hardcore bit property in the case of the (2-to-1) TCF family, they can
be related via the transformation that has been described before, namely the transfor-
mation from a claw-based inner product to a shift-based equation.

Realizing (Direct-Product) Adaptive Hardcore Bit. It remains to show how we can
realize the abstraction above using LHS or a related assumption. First, observe that
correlated pseudorandomness can be easily handled since for n randomly generated ppi

of the following form, it follows immediately by the LHS assumption that for i ∈ [n]:

(xi,Mi,Miw ⋆ xi)i∈[n]
c
≈ (xi,Mi,ui)i∈[n] ppi = (Mi ← Gn×n,xi ← Xn)

where w ← {0, 1}n and ui ← Xn for i ∈ [n]. However, it is unclear how to find
a corresponding efficiently computable procedure P (defined in the previous part). To
get around this issue, we work with a slightly different form of the LHS assumption.
Specifically, we can work with the following form of the LHS assumption (which is
implied by the original LHS assumption via a simple reduction):

ppi = (M
(0)
i ← Gn×n,M

(1)
i ← Gn×n,xi ← Xn), i ∈ [n],(

xi,M
(0)
i ,M

(1)
i ,
[
M

(0)
i (1−w) +M

(1)
i w

]
⋆ xi

)
i∈[n]

c
≈
(
xi,M

(0)
i ,M

(1)
i ,ui

)
i∈[n],

where 1 is an all-one vector. It is not hard to see that based on the new form of the
assumption, given (ppi, Fppi

(w)) and binary vectors ri for i ∈ [n], one can efficiently
produce

(pp′i, Fpp′
i
(w ⊕ ri)), i ∈ [n],

where Fpp′
i
(w⊕ri) = Fppi

(w), and pp′i is simply obtained by swapping the jth column

of M(0)
i and M

(1)
i for all positions j such that the jth bit of ri is 1. One can also verify

that the aforementioned procedure also satisfies the indistinguishability (∗∗).
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Input Recoverability and Extended LHS Assumption. To add input recoverability,
we informally define one-matrix version of an extended form of the LHS assumption,
which asserts that(

M,m,x(β),y(β)
)
β∈{0,1}

c
≈
(
M,m,u(β),u′

(β))
β∈{0,1},

where each of the terms above is distributed as

w← {0, 1}n, M← Gn×n, m← Gn, x(0) ← Xn,

t← Gn, u(β) ← Xn, u′
(β) ← Xn, (β ∈ {0, 1})

x(1) :=
[
Mw

]
⋆ x(0), y(0) := t ⋆ x(0),

y(1) :=
[
Mw +m⊙w

]
⋆ y(0),

and ⊙ denotes the component-wise product of an integer and a group element (defined
in a natural way). Note that for the left-hand side of the assumption above, knowing (a
trapdoor) t is enough to recover w,1 since

−t ⋆ y(1) = (m⊙w) ⋆ x(1).

Final Construction. Now we provide the final construction of our wTCF family. To
generate a key-trapdoor pair, for each i ∈ [n] and β ∈ {0, 1} sample

vi ← {0, 1}n, M
(β)
i ← Gn×n, m

(β)
i ← Gn, x

(0)
i ← Xn, ti ← Gn,

and set

x
(1)
i :=

[
M

(0)
i (1− vi) +M

(1)
i vi

]
⋆ x

(0)
i , y

(0)
i := ti ⋆ x

(0)
i ,

y
(1)
i :=

[
M

(0)
i (1− vi) +M

(1)
i vi +m

(0)
i ⊙ (1− vi) +m

(1)
i ⊙ vi

]
⋆ y

(0)
i ,

where ⊙ denotes component-wise product. Output (ek, td) where

td =
(
vi, ti

)
i∈[n], ek =

(
M

(β)
i ,m

(β)
i ,x

(β)
i ,y

(β)
i

)
i∈[n],β∈{0,1}.

To evaluate the function fek,b on input (si)i∈[n] ∈ ([B]n)n, output (z̄i, zi) for i ∈
[n] where

z̄i =
[
(1− b) ·M(0)

i 1+
(
M

(1)
i −M

(0)
i

)
si
]
⋆ x

(b)
i ,

zi =
[
(1− b) ·M(0)

i 1+
(
M

(1)
i −M

(0)
i

)
si + (1− b) ·m(0)

i + (m
(1)
i −m

(0)
i )⊙ si

]
⋆ y

(b)
i .

Observe that if fek,b((si)i∈[n]) = (z̄i, zi)i∈[n] then the following relation holds for
any i ∈ [n]:

(−ti −m
(0)
i ) ⋆ zi =

[
(m

(1)
i −m

(0)
i )⊙ (si + b · vi)

]
⋆ z̄i.

Because the action is applied component-wise and each entry of si lies in [B], one
can recover each entry of si efficiently by a simple brute force, since both vi and ti are
included in the trapdoor.

1 Note that knowledge of t is enough to recover w even if w is non-binary but with short entries,
i.e., if each entry of w is polynomially bounded.
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Computational Qubit Test. To exemplify the usefulness of our wTCF family, we show
how it can be used as the cryptographic building block in the computational qubit test
described by Vidick [Vid20]. Such a test allows a quantum prover to certify the pos-
session of a qubit in its internal state. Importantly, the verifier and the communication
are entirely classical. The protocol that we present is largely unchanged from [Vid20],
except for a few syntactical modifications due to the presence of non-perfect matchings
in the input domain of our wTCFs. For more details, we refer the reader to Section 5.
We view this protocol as a promising first step towards the usage of our isogeny-based
wTCF in more complex protocols for the verification of more involved quantum tasks.

2 Preliminaries

We denote by λ ∈ N the security parameter. A function negl is negligible if it vanishes
faster than any polynomial. We denote by [n] the set {1, . . . , n}.

2.1 Quantum Information

We recall a few facts about quantum information to establish some notation and we
refer the reader to [NC02] for a more comprehensive overview. A (pure) quantum state
|ψ⟩ is a unit vector in a separable Hilbert space H. Throughout this work, we will only
consider finite-dimensional Hilbert spaces and so we will always assume that H ≃
Cd, for some integer d ≥ 1. A Projector-Valued Measure (PVM) consists of a set of
projectors {Πi} that sum up to identity, and if Πi are not required to be projectors,
it is called a Positive Operator-Valued Measure (POVM). Given a POVM {Πi}, the
Born rule establishes that measuring a state |ψ⟩ will yield outcome i with probability
⟨ψ|Πi |ψ⟩.

An observable O is a Hermitian operator on H. Let O =
∑

i λiΠi be the spectral
decomposition of O, then we call an eigenstate of O a pure state |ψ⟩ such that Πi |ψ⟩
will deterministically yield outcome λi, when measured according to O. Throughout
this work, we will only consider binary observables O such that O2 = Id, and that O =
Π0−Π1. I.e., they are the sum of two projectors and have eigenvalues λi ∈ {−1,+1}.
It is convenient to define the expected outcome of an observable O on a state |ψ⟩ as∑

i

λi ⟨ψ|Πi |ψ⟩ = ⟨ψ|O |ψ⟩ .

2.2 Cryptographic Group Actions and Extended LHS Assumption

In this part we recall some definitions related to cryptographic group actions from [ADMP20],
which provided a framework to capture certain isogeny-based assumptions (e.g., vari-
ants of CSIDH [CLM+18,BKV19]). We refer to [ADMP20] for a detailed explanation
of these definitions. Towards the end of the section, we provide a definition of extended
linear hidden shift assumption, from which we later show the construction of wTCF
family. We present our results entirely in terms of group actions with certain hardness
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properties (based on the framework of [ADMP20]), and thus we do not assume famil-
iarity with CSIDH and its variants [CLM+18,BKV19]. We refer to [Pei20,BS20] for an
overview of quantum attacks against CSIDH for certain choices of parameters.

Throughout the paper, we use the abbreviated notation (G,X, ⋆) to denote a group
action ⋆ : G×X→ X. Moreover, we are going to assume that group actions are abelian
and regular, i.e., both free and transitive (which is the case for all isogeny-based group
actions). For such group actions, we have |G| = |X|. Note that if a group action is
regular, then for any x ∈ X, the map fx : g 7→ g ⋆ x defines a bijection between G and
X.

We recall the definition of an effective group action (EGA) from [ADMP20]. In a
nutshell, an effective group action allows us to efficiently perform certain tasks over
G (e.g., group operation, inversion, and sampling uniformly) efficiently, along with an
efficient procedure to compute the action of any group element on any set element. As
a concrete example, a variant of CSIDH [BKV19] (called “CSI-FiSh”) can be modeled
as an effective group action, for which the group G is isomorphic to (ZN ,+).1

Definition 1 (Effective Group Action (EGA)). A group action (G,X, ⋆) is effective if
it satisfies the following properties:

1. The group G is finite and there exist efficient (PPT) algorithms for:
(a) Membership testing (deciding whether a binary string represents a group ele-

ment).
(b) Equality testing and sampling uniformly in G.
(c) Group operation and computing inverse of any element.

2. The set X is finite and there exist efficient algorithms for:
(a) Membership testing (to check if a string represents a valid set element),
(b) Unique representation.

3. There exists a distinguished element x0 ∈ X with known representation.
4. There exists an efficient algorithm that given any g ∈ G and any x ∈ X, outputs
g ⋆ x.

Notation. For a group action ⋆ : G × X → X, we always use the additive notation +
to denote the group operation in G. Since G is abelian, it can be viewed as a Z-module,
and hence for any z ∈ Z and g ∈ G the term zg is well-defined. This property naturally
extends to vectors and matrices as well, so if g ∈ Gn and z ∈ Zn for some n ∈ N, then
we use ⟨g, z⟩ to denote

∑n
i=1 zigi. Thus, for any matrix M ∈ Gm×n and any vector

z ∈ Zn, the term Mz is also well-defined.
For any two vectors z ∈ Zn and g ∈ Gn we use the notation z ⊙ g to denote a

vector whose ith component is zigi (component-wise/Hadamard product). The group
action also extends to the direct product group Gn for any positive integer n. If g ∈ Gn

and x ∈ Xn, we use g ⋆ x to denote a vector of set elements whose ith component is
gi ⋆ xi.

1 Although we present our results in terms of EGA, one can also obtain the same results from a
restricted EGA assuming a one-time quantum preprocessing, since EGA and restricted EGA
are quantumly equivalent [ADMP20].
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Definition 2 (Weak Pseudorandom EGA). An (effective) group action (G,X, ⋆) is
said to be a weak pseudorandom EGA if it holds that

(x, y, t ⋆ x, t ⋆ y)
c
≈ (x, y, u, u′),

where x← X, y ← X, t← G, u← X, and u′ ← X.

Definition 3 (Linear Hidden Shift (LHS) assumption [ADMP20]). Let (G,X, ⋆) be
an effective group action (EGA), and let n > log |G|+ω(log λ) be a positive integer. We
say that liner hidden shift (LHS) assumption holds over (G,X, ⋆) if for any ℓ = poly(λ)
the following holds:

(x,M,Mw ⋆ x)
c
≈ (x,M,u),

where each of the terms above is distributed as

x← Xℓ, M← Gℓ×n, w← {0, 1}n, u← Xℓ.

Definition 4 (Extended LHS assumption). Let (G,X, ⋆) be an effective group action
(EGA), and let n > log |G|+ ω(log λ) be a positive integer. We say that extended LHS
assumption holds over (G,X, ⋆) if for any ℓ = poly(λ) the following holds:(

Mi,mi,x
(β)
i ,y

(β)
i

)
i∈[ℓ],β∈{0,1}

c
≈
(
Mi,mi,u

(β)
i ,u′

(β)
i

)
i∈[ℓ],β∈{0,1},

where each of the terms above is distributed as

w← {0, 1}n, Mi ← Gn×n, mi ← Gn, x
(0)
i ← Xn,

ti ← Gn, u
(β)
i ← Xn, u′

(β)
i ← Xn,

x
(1)
i :=

[
Miw

]
⋆ x

(0)
i , y

(0)
i := ti ⋆ x

(0)
i ,

y
(1)
i :=

[
Miw +mi ⊙w

]
⋆ y

(0)
i .

Remark 2. Note that in the assumption above if y(1)
i were distributed as y(1)

i =
[
Miw

]
⋆

y
(0)
i , then the extended LHS assumption would be implied by any weak pseudoran-

dom EGA over which LHS assumption holds. In other words, the presence of the term
mi ⊙ w makes the extended LHS assumption seemingly stronger than the plain LHS
assumption.

3 Weak Trapdoor Claw-Free Functions

We define the notion of a weak trapdoor claw-free function (wTCF) family. We adopt
a slightly simplified syntax compared to [BCM+18] as each function in our definition
of wTCF family will be a deterministic function rather than mapping to a probability
distribution.
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Definition 5 (wTCF). Let n = n(λ) be an integer such that n = poly(λ). Let F be a
family of functions

F = {fek,b : Xn → Y }(ek,b)∈K×{0,1},
where X , Y , and K are finite sets indexed by λ, and K denotes the the key space.
We say that F is a weak trapdoor claw-free (wTCF) function family if it satisfies the
following properties:

1. There exists a PPT algorithm Gen which generates an evaluation key ek along with
a trapdoor td as (ek, td)← Gen(1λ).

2. For all but a negligible fraction of key-trapdoor pairs (ek, td) ∈ supp(Gen(1λ)),
the following properties hold.
(a) There exists an efficient algorithm Invert that for any b ∈ {0, 1} and any x ∈

Xn, it holds that
Invert(td, b, fek,b(x)) = x.

(b) There exists two dense subsets X0 ⊆ Xn and X1 ⊆ Xn and a perfect match-
ing Rek ⊆ X0 × X1 such that for any (x0,x1) ∈ X0 × X1 it holds that
fek,0(x0) = fek,1(x1) iff (x0,x1) ∈ Rek, where a dense subset X ⊆ Xn is
defined as a subset that satisfies

Pr
x←Xn

[x ∈ X] ≥ 1− n−c,

for some constant c ≥ 1. For any x ∈ Xn, membership in X0 or X1 can
be checked efficiently given the trapdoor td. In addition, there exists a dense
subset X̄ ⊆ X0∩X1 ⊆ Xn such that membership in X̄ can be checked without
td.
Informally, this property means that a randomly sampled x ← Xn lies in
X̄ ⊆ X0 ∩X1 with “good” probability. Moreover, for any x ∈ X0 ∩X1 and
any b ∈ {0, 1}, the image y = fek,b(x) has exactly one preimage x0 ∈ X0

under fek,0 and one preimage x1 ∈ X1 under fek,1.
3. (a) There exists an efficiently computable “binary encoding” function B : Xn →

{0, 1}nℓ such that B−1 is also efficiently computable on the range of B.
(b) For any b ∈ {0, 1} and any x ∈ Xn, there exists a set Yb,x ⊆ {0, 1}nℓ such

that
Pr

d←{0,1}nℓ
[d /∈ Yb,x] ≤ negl,

and membership in Yb,x can be checked efficiently given b and x.
(c) Let Wek be a (key-dependent) set of tuples defined as

Wek =
{(
b,xb,d,

(
⟨di,Bi(x0)⊕Bi(x1)⟩

)
i∈[n]

)∣∣∣ b ∈ {0, 1}, (x0,x1) ∈ Rek,
d ∈ Y0,x0 ∩ Y1,x1

}
,

where di and Bi(·) denote the ith ℓ-bit chunk of d and B(·), respectively (the
inner product is computed over F2). We require that for any QPT adversaryA,
if (ek, td)← Gen(1λ) then

Pr[A(ek) ∈Wek] ≤ negl,

where the probability is taken over all randomness in the experiment.
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3.1 XOR Lemmas for Adaptive Hardcore Bits

The weak version (direct-product) of the adaptive hardcore bit property (property 3c)
will not be sufficient for our protocol. In the following, we define a stronger version of
the property that we will need in our analysis. Note that the only difference with respect
to property 3c is that the adversary is required to output a single bit h, which is the XOR
of the n bits required before.

Definition 6 (Adaptive Hardcore Bit). Let F be a wTCF, and let Wek be a (key-
dependent) set of tuples defined as

Wek =

{(
b,xb,d, h

)∣∣∣∣ b ∈ {0, 1}, (x0,x1) ∈ Rek,d ∈ Y0,x0
∩ Y1,x1

,
h =

⊕n
i=1⟨di,Bi(x0)⊕ Bi(x1)⟩

}
,

where di and Bi(·) denote the ith ℓ-bit chunk of d and B(·), respectively. We require
that for any QPT adversary A, if (ek, td)← Gen(1λ) then

Pr[A(ek) ∈Wek] ≤ 1/2 + negl,

where the probability is taken over all randomness in the experiment.

We define the following property for a wTCF family, which requires that any key/input/output
can be viewed as n independent instances. Our construction of wTCF will satisfy this
property.

Definition 7. Let F be a wTCF family of functions with domain Xn and range Y =
Ȳ n. Let Gen, Eval, and Invert be the associated algorithms. We say that F is a wTCF
family with independent evaluations (wTCF-IE) if there exists algorithms Gen, Eval,
and Invert such that

– Gen is identically distributed to the concatenation of n independent runs of Gen.
– For each (ek, td) = {(eki, tdi)}i∈[n] in the support of Gen ≡ (Gen)n, the output of

any function fek,b ∈ F on any x ∈ Xn is identical to the concatenation of Evaleki,b
on xi for i ∈ [n].

– For each (ek, td) = {(eki, tdi)}i∈[n] in the support of Gen ≡ (Gen)n, the output
of Inverttd,b on any y ∈ Ȳ n is identical to the concatenation of Inverttdi,b on yi for
i ∈ [n].

Next we state our conjecture, namely that any wTCF-IE that satisfies direct-product
adaptive hardcore bit property (3c), also satisfies the adaptive hardcore bit property.

Conjecture 2. If F is a wTCF-IE family that satisfies the direct-product adaptive hard-
core bit property 3c, then F satisfies the property 6.

Remark 3. Note that for our construction, the conjecture above is implied by the (in-
formal) conjecture 1 via a transformation (from claw-based inner product to shift-based
equation) that we will see later. We omit the formal details as it is going to be similar to
the proof of Lemma 7.
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Random Subset Adaptive Hardcore Bit. To gain confidence in our conjecture, we
show that a weaker variant of it is implied by property 3c. Roughly speaking, this notion
says that it is hard to predict the XOR of a random subset of the adaptive n hardcore
bits. However, note that the predictor is not given the subset ahead of time.

Definition 8 (Random Subset Adaptive Hardcore Bit). Let F be a wTCF. For any
QPT adversary A, the success probability in the following experiment is negligibly
close to 1/2.

– The challenger samples (ek, td)← Gen(1λ) and sends ek to A.
– A sends a tuple (b,xb,d).
– The challenger samples a subset r← {0, 1}n and sends r to A.
– A returns a bit h ∈ {0, 1} and succeeds if the following conditions are satisfied:

• (x0,x1) ∈ Rek

• d ∈ Y0,x0 ∩ Y1,x1

• h =
⊕n

i=1 ri · ⟨di,Bi(x0)⊕ Bi(x1)⟩

where di and Bi(·) denote the ith ℓ-bit chunk of d and B(·), respectively.

Next we show that this new variant is directly implied by definition 5. This is an almost
immediate application of a theorem from [AC02].

Lemma 1. Let F be a wTCF, then F satisfies definition 8.

Proof. The proof consists of a reduction to the direct-product adaptive hardcore bit
property of the wTCF (property 3c). Let A be a QPT algorithm that succeeds in the
above game with probability greater than 1/2 + ε, for some inverse-polynomial ε. Let
|ψ⟩ denote the internal state of the adversary after the second step of the protocol, and
in particular after the tuple (b,xb,d) has been sent to the challenger. Let Gek be a set
defined as follows:

Gek =

{
(b,xb,d, |ψ⟩) : Pr

[
A(r; |ψ⟩) =

n⊕
i=1

ri · ⟨di,Bi(x0)⊕ Bi(x1)⟩

]
≥ 1/2 + ε/2

}

where the probability is taken over the random choice of r and over the internal coins
of A. We use the abbreviation A(r; |ψ⟩) to denote the output of the adversary A run on
state |ψ⟩ and on input r. Observe that the above set is well-defined, since xb uniquely
determines the claw (x0,x1), provided that (x0,x1) ∈ Rek.

We argue that Pr[(b,xb,d, |ψ⟩) ∈ Gek] ≥ ε/2, where the probability is over the
random choice of ek and the random coins ofA. For notational convenience, we relabel
hi = di ·

[
Bi(x0)⊕ Bi(x1)

]
.
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Assume towards contradiction that Pr[(b,xb,d, |ψ⟩) ∈ Gek] < ε/2. We can then
rewrite:

Pr [A succeeds] =Pr

[
A(r; |ψ⟩) =

n⊕
i=1

ri · hi

]

=Pr

[
A(r; |ψ⟩) =

n⊕
i=1

ri · hi

∣∣∣∣∣(b,xb,d, |ψ⟩) ∈ Gek

]
Pr [(b,xb,d, |ψ⟩) ∈ Gek]

+Pr

[
A(r; |ψ⟩) =

n⊕
i=1

ri · hi

∣∣∣∣∣(b,xb,d, |ψ⟩) /∈ Gek

]
Pr [(b,xb,d, |ψ⟩) /∈ Gek]

<ε/2 + (1/2 + ε/2)

=1/2 + ε

which contradicts our initial hypothesis. Conditioned on (b,xb,d, |ψ⟩) ∈ Gek, we then
consider the algorithm A(·; |ψ⟩). Such an algorithm runs in polynomial time and, on
input r, it returns

h =

n⊕
i=1

ri · hi =
n⊕

i=1

ri · ⟨di,Bi(x0)⊕ Bi(x1)⟩

with probability at least ε/2 (over the random choice of r and the internal coins of A).
By the Adcock-Cleve theorem [AC02], it follows that there exists an efficient algorithm
that, with a single query to A(·; |ψ⟩), returns (h1, . . . , hn) with inverse polynomial
probability. This violates the direct-product adaptive hardcore bit property of F .

4 wTCF from Extended LHS Assumption

Here we show how to construct a wTCF family from extended LHS assumption (Defi-
nition 4) over a group action (G,X, ⋆).

Construction. Let n be the secret dimension of underlying extended LHS assumption,
and let B > 2n3 be an integer. We define a wTCF family as follows. Let X = [B]n,
and Y = (X2n)n. Note that Xn = ([B]n)n and Y will be the input and output space
of our wTCF family, respectively. To generate a key-trapdoor pair, for each i ∈ [n] and
β ∈ {0, 1} sample

vi ← {0, 1}n, M
(β)
i ← Gn×n, m

(β)
i ← Gn, x

(0)
i ← Xn, ti ← Gn,

and set

x
(1)
i :=

[
M

(0)
i (1− vi) +M

(1)
i vi

]
⋆ x

(0)
i , y

(0)
i := ti ⋆ x

(0)
i ,

y
(1)
i :=

[
M

(0)
i (1− vi) +M

(1)
i vi +m

(0)
i ⊙ (1− vi) +m

(1)
i ⊙ vi

]
⋆ y

(0)
i ,
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where ⊙ denotes component-wise product. Output (ek, td) where

td =
(
vi, ti

)
i∈[n], ek =

(
M

(β)
i ,m

(β)
i ,x

(β)
i ,y

(β)
i

)
i∈[n],β∈{0,1}.

To evaluate the function fek,b on input (si)i∈[n] ∈ ([B]n)n, output (z̄i, zi) for i ∈
[n] where

z̄i =
[
(1− b) ·M(0)

i 1+
(
M

(1)
i −M

(0)
i

)
si
]
⋆ x

(b)
i ,

zi =
[
(1− b) ·M(0)

i 1+
(
M

(1)
i −M

(0)
i

)
si + (1− b) ·m(0)

i + (m
(1)
i −m

(0)
i )⊙ si

]
⋆ y

(b)
i .

To invert the function fek,b on some value (z̄i, zi)i∈[n], we recover each si (for
i ∈ [n]) as follows. Observe that if fek,b((si)i∈[n]) = (z̄i, zi)i∈[n] then the following
relation holds for any i ∈ [n]:

(−ti −m
(0)
i ) ⋆ zi =

[
(m

(1)
i −m

(0)
i )⊙ (si + b · vi)

]
⋆ z̄i.

Because the action is applied component-wise and each entry of si lies in [B], one
can recover each entry of si efficiently by a simple brute force, since both vi and ti are
included in the trapdoor.

We have already shown the construction above satisfies the properties (1) and (2a)
of a wTCF family, thus proving the following lemma.

Lemma 2. Let F be the function family (with associated algorithms) as described in
the construction, then F satisfies the properties 1 and 2a.

Next, we show the construction above satisfies the remaining properties of a wTCF
family (Definition 5) via the following lemmata.

Lemma 3. Let F be the function family (with associated algorithms) as described in
the construction, then F satisfies the property 2b.

Proof. It is easy to see that for all but a negligible fraction of key-trapdoor pairs (ek, td) ∈
supp(Gen(1λ))

– Any evaluation key ek uniquely determines vi for i ∈ [n].1

– fek,b is an injective function.

For a given evaluation key ek, consider the following two subsets:

X0 =
{
(si)i∈[n] | ∀i ∈ [n] : si ∈ [B]n ∧ si − vi ∈ [B]n

}
,

X1 =
{
(si)i∈[n] | ∀i ∈ [n] : si ∈ [B]n ∧ si + vi ∈ [B]n

}
.

Let Rek ⊆ X0 ×X1 be the relation defined as

Rek =
{((

s
(0)
i

)
i∈[n],

(
s
(1)
i

)
i∈[n]

)
∈ X0 ×X1

∣∣∣ ∀i ∈ [n] : s
(0)
i = s

(1)
i + vi

}
.

1 Recall that G is a superpolynomially (and possibly exponentially) large group. For example, in
case of the variant from [BKV19] the group is cyclic, and hence a randomly chosen evaluation
key uniquely determines vi with overwhelming probability [BM87].
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One can immediately verify that Rek is a perfect matching. Because fek,b is injec-
tive, it holds that

∀
((

s
(0)
i

)
i∈[n],

(
s
(1)
i

)
i∈[n]

)
∈ X0 ×X1 :

fek,0

((
s
(0)
i

)
i∈[n]

)
= fek,1

((
s
(1)
i

)
i∈[n]

)
⇐⇒(

s
(0)
i

)
i∈[n] =

(
s
(1)
i + vi

)
i∈[n] ⇐⇒((

s
(0)
i

)
i∈[n],

(
s
(1)
i

)
i∈[n]

)
∈ Rek.

Since each vi is a binary vector, it follows that for any b ∈ {0, 1}

Pr
(si)i∈[n]←([B]n)n

[
(si)i∈[n] ∈ Xb

]
≥ 1− n2(B − 1)−1 ≥ 1− n−1.

For any b ∈ {0, 1}, given any tuple (si)i∈[n] membership in Xb can be checked
efficiently using the trapdoor, simply by testing whether si − (−1)bvi ∈ [Bn] for all
i ∈ [n].

Finally, define the set X̄ as

X̄ =
{
(si)i∈[n] | ∀i ∈ [n] : si ∈ {2, . . . , B − 1}n

}
.

Membership in X̄ can be checked efficiently without a trapdoor. Moreover, by a simple
argument, we have

Pr
(si)i∈[n]←([B]n)n

[
(si)i∈[n] ∈ X̄

]
≥ 1− 2n2(B − 1)−1 ≥ 1− n−1,

and hence X̄ is a dense subset of the input space ([B]n)n.

Lemma 4. Let F be the function family (with associated algorithms) as described in
the construction, then F satisfies the properties 3a and 3b.

Proof. Consider the binary encoding function B : (([B])n)n → {0, 1}nℓ where ℓ =
n⌈logB⌉. Specifically, B((si)i∈[n]) outputs the binary representation of (si)i∈[n], where
each component of si is represented using a chunk of ⌈logB⌉-bit string. It is immediate
to see that B is injective and it is also efficiently invertible on its range, and hence F
satisfies the property 3a.

To avoid abusing the notation, we also define a simple function B̄ : [B]→ {0, 1}⌈logB⌉,
which outputs the binary representation of any s ∈ [B]. For a tuple (b, s,d) ∈ {0, 1} ×
[B]n × {0, 1}ℓ, let Tb,d : [B]n → {0, 1}n be a function that maps s = (s1, . . . , sn) to
d′ = (d′1, . . . , d

′
n) where

d′j = ⟨d(j), B̄(sj)⊕ B̄(sj − (−1)b)⟩, j ∈ [n],

and d(j) denotes the jth ⌈logB⌉-bit chunk of d. Note that the inner product is computed
over F2, while the operation− is performed over Z. As we will see later, the motivation
for defining the transformation Tb,d stems from the following observation [BCM+18]
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that given (s,d, ⟨d, (s+ v)⟩) ∈ [B]n × {0, 1}ℓ × {0, 1} for some binary v ∈ {0, 1}n,
where the inner product is computed over F2 and the addition + is over integers, one
can use Tb,d to obtain a pair of the form (d′, ⟨d′,v⟩) ∈ {0, 1}n×{0, 1}. This transfor-
mation will be useful in proving the weak adaptive hardcore bit property 3c.

For any s ∈ [B]n, since B̄ is an injective function it follows that the term B̄(sj) ⊕
B̄(sj − (−1)b) is non-zero for any j ∈ [n]. Therefore, if d(j) ← {0, 1}⌈logB⌉ then d′j
will be 0 with probability 1/2. It follows that for any s ∈ [B]n and any b ∈ {0, 1}, if
d← {0, 1}ℓ then

Pr[Tb,d(s) = 0n] ≤ negl .

For any b ∈ {0, 1} and any (si)i∈[n] ∈ ([B]n)n, consider the following set

Yb,(si)i∈[n]
=
{
(di)i∈[n] ∈ {0, 1}nℓ

∣∣ ∀i ∈ [n] : Tb,si(di) ̸= 0n
}
.

By a simple union bound it follows that for any b ∈ {0, 1} and (si)i∈[n] ∈ ([B]n)n

we have
Pr

(di)i∈[n]←{0,1}nℓ

[
(di)i∈[n] ∈ Yb,(si)i∈[n]

]
≤ negl,

where we used the fact that for each i ∈ [n] it holds that Prdi
[Tb,di

(si) = 0n] ≤
negl. Clearly, Tb,d is efficiently computable, and hence membership in Yb,(si)i∈[n]

is
efficiently checkable given b and (si)i∈[n], establishing the property 3b.

Lemma 5. Let F be the function family (with associated algorithms) as described in
the construction, then F satisfies the property 3c based on the extended LHS assump-
tion.

Proof. The lemma follows from putting together Lemma 6 (proving hardness of an
alternative formulation of the extended LHS assumption), Lemma 7 (which shows a
transformation relating claw-based equations to linear equations in vi), and Lemma 8
(showing hardness of predicting concatenation of any non-trivial parity of vi for i ∈ [n]
based on the extended LHS assumption), all of which will be proved subsequently.

Theorem 1. Let F be the function family (with associated algorithms) as described in
the construction, then F is a wTCF-IE family based on the extended LHS assumption.

Proof. We have already established thatF is a wTCF family by putting together Lemma 2,
Lemma 3, Lemma 4, and Lemma 5. It follows by inspection that F also satisfies the
independent evaluation property 7, and hence F is a wTCF-IE family.

The following lemma establishes the hardness of a different formulation of the ex-
tended LHS assumption.

Lemma 6. If H0 and H1 be two distributions defined as follows then H0
c
≈ H1 based

on the extended LHS assumption.

w← {0, 1}n, M
(β)
i ← Gn×n, m

(β)
i ← Gn,

x
(0)
i ← Xn, ti ← Gn, u

(β)
i ← Xn, u′

(β)
i ← Xn,
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x
(1)
i :=

[
M

(0)
i (1−w) +M

(1)
i w

]
⋆ x

(0)
i , y

(0)
i := ti ⋆ x

(0)
i ,

y
(1)
i :=

[
M

(0)
i (1−w) +M

(1)
i w +m

(0)
i ⊙ (1−w) +m

(1)
i ⊙w

]
⋆ y

(0)
i ,

H0 :=
(
M

(β)
i ,m

(β)
i ,x

(β)
i ,y

(β)
i

)
i∈[n],β∈{0,1}, H1 :=

(
M

(β)
i ,m

(β)
i ,u

(β)
i ,u′

(β)
i

)
i∈[n],β∈{0,1},

Proof. Given a challenge of the form

H ′ =
(
Mi,mi,x

(β)
i ,y

(β)
i

)
i∈[n],β∈{0,1},

the reduction samples two matrices M
(0)
i and M

(1)
i and two vectors m

(0)
i and m

(1)
i

uniformly conditioned on

Mi = M
(1)
i −M

(0)
i , mi = m

(1)
i −m

(0)
i .

It then sets

x̄
(0)
i := x

(0)
i , ȳ

(0)
i := y

(0)
i ,

x̄
(1)
i := M

(0)
i 1 ⋆ x

(0)
i , y

(1)
i :=

[
M

(0)
i 1+m

(0)
i ⊙ 1

]
⋆ y

(0)
i ,

and outputs the following tuple(
M

(β)
i ,m

(β)
i , x̄

(β)
i , ȳ

(β)
i

)
i∈[n],β∈{0,1}.

Observe that in the tuple above M
(β)
i ,m

(β)
i are distributed uniformly for i ∈ [n] and

β ∈ {0, 1}. If H ′ corresponds to extended LHS samples, a routine calculation shows
that the tuple above is distributed as H0. On the other hand, if H ′ corresponds to truly
random samples then the tuple above would be distributed as H1. Therefore, based on
the extended LHS assumption it follows that H0 is indistinguishable from H1.

Lemma 7. Let ek =
(
M

(β)
i ,m

(β)
i ,x

(β)
i ,y

(β)
i

)
i∈[n],β∈{0,1} be a tuple distributed as in

the construction, i.e.,

vi ← {0, 1}n, M
(β)
i ← Gn×n, m

(β)
i ← Gn, x

(0)
i ← Xn, ti ← Gn,

x
(1)
i :=

[
M

(0)
i (1− vi) +M

(1)
i vi

]
⋆ x

(0)
i , y

(0)
i := ti ⋆ x

(0)
i ,

y
(1)
i :=

[
M

(0)
i (1− vi) +M

(1)
i vi +m

(0)
i ⊙ (1− vi) +m

(1)
i ⊙ vi

]
⋆ y

(0)
i ,

and let Wek be the set defined in the property 3c with respect to the construction of
wTCF family, i.e.,

Wek =
{(
b,
(
s
(b)
i

)
i∈[n],d,

(
⟨di,Bi

((
s
(0)
i

)
i∈[n]

)
⊕ Bi

((
s
(1)
i

)
i∈[n]

)
⟩
)
i∈[n]

∣∣∣
b ∈ {0, 1},

((
s
(0)
i

)
i∈[n]

)
,
(
s
(1)
i

)
i∈[n]

))
∈ Rek,d ∈ Y

0,(s
(0)
i )i∈[n]

∩ Y
1,(s

(1)
i )i∈[n]

}
,
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where B,Rek, and Yb,(si)i∈[n]
are defined in the proof of Lemma 4. If there is an attacker

A such that
Pr[A(ek) ∈Wek] = ε,

then there is an attacker A′ such that

Pr
[
A′(ek)→

(
d′i ̸= 0n, ⟨d′i,vi⟩

)
i∈[n]

]
≥ ε.

Proof. Let the following tuple

γ :=
(
b,
(
s
(b)
i

)
i∈[n],d,

(
ci
)
i∈[n]

)
,

be the output A on ek. We are going to argue that if γ ∈ Wek and d′i is computed
as d′i = T

b,s
(b)
i
(di) for i ∈ [n], then ci = ⟨d′i,vi⟩ for all i ∈ [n], where T is the

transformation defined in the proof of Lemma 4. Observe that since

d ∈ Y
0,(s

(0)
i )i∈[n]

∩ Y
1,(s

(1)
i )i∈[n]

⊆ Y
b,(s

(b)
i )i∈[n]

,

it follows from the definition of these sets (in the proof of Lemma 4) that for each
i ∈ [n] we have d′i ̸= 0n. Furthermore, relying again on the proof of Lemma 4 we have((

s
(0)
i

)
i∈[n],

(
s
(1)
i

)
i∈[n]

)
∈ Rek =⇒

(
s
(0)
i

)
i∈[n] =

(
s
(1)
i + vi

)
i∈[n] =⇒

B
((
s
(0)
i

)
i∈[n]

)
⊕ B

((
s
(1)
i

)
i∈[n]

)
= B

((
s
(b)
i

)
i∈[n]

)
⊕ B

((
s
(1−b)
i − (−1)bvi

)
i∈[n]

)
.

Let d′i,j , s(b)i,j , and vi,j be the jth component of d′i, s
(b)
i , and vi, respectively. Let di,j ∈

{0, 1}⌈logB⌉ be the jth ⌈logB⌉-bit chunk of di. By definition of T and B̄ from the
proof of Lemma 4, it follows that for any i ∈ [n] we have

ci =

n∑
j=1

⟨di,j ,
(
B̄(s

(b)
i,j )⊕ B̄(s

(b)
i,j − (−1)bvi,j)

)
⟩

=

n∑
j=1

vi,j⟨di,j ,
(
B̄(s

(b)
i,j )⊕ B̄(s

(b)
i,j − (−1)b)

)
⟩

=

n∑
j=1

vi,jd
′
j = ⟨d′i,vi⟩,

where the second line follows from the fact that vi,j ∈ {0, 1} and the last line follows
from the definition of T. Note that any computation inside B̄ is done over Z, while any
other computation (including the overall summation) is performed over F2.

Viewing any evaluation key ek as a (one-way) function of (vi)i∈[n] in the construc-
tion, the following lemma establishes that any QPT adversary cannot predict a string
obtained by concatenating any non-trivial parity of vi for i ∈ [n].
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Lemma 8. If ek =
(
M

(β)
i ,m

(β)
i ,x

(β)
i ,y

(β)
i

)
i∈[n],β∈{0,1} be a tuple distributed as in

the construction, i.e.,

vi ← {0, 1}n, M
(β)
i ← Gn×n, m

(β)
i ← Gn, x

(0)
i ← Xn, ti ← Gn,

x
(1)
i :=

[
M

(0)
i (1− vi) +M

(1)
i vi

]
⋆ x

(0)
i , y

(0)
i := ti ⋆ x

(0)
i ,

y
(1)
i :=

[
M

(0)
i (1− vi) +M

(1)
i vi +m

(0)
i ⊙ (1− vi) +m

(1)
i ⊙ vi

]
⋆ y

(0)
i ,

then for any QPT adversary A we have

Pr
[
A(ek)→

(
d′i ̸= 0n, ⟨d′i,vi⟩

)
i∈[n]

]
≤ negl,

where the probability is taken over randomness of ek and A, and the inner product is
computed over F2.

Proof. Consider the following two hybrids H0 and H1 defined as

w← {0, 1}n, M
(β)
i ← Gn×n, m

(β)
i ← Gn, x

(0)
i ← Xn, ti ← Gn,

x
(1)
i :=

[
M

(0)
i (1−w) +M

(1)
i w

]
⋆ x

(0)
i , y

(0)
i := ti ⋆ x

(0)
i ,

y
(1)
i :=

[
M

(0)
i (1−w) +M

(1)
i w +m

(0)
i ⊙ (1−w) +m

(1)
i ⊙w

]
⋆ y

(0)
i ,

H0 :=
(
M

(β)
i ,m

(β)
i ,x

(β)
i ,y

(β)
i

)
i∈[n],β∈{0,1}, H1 :=

(
M

(β)
i ,m

(β)
i ,u

(β)
i ,u′

(β)
i

)
i∈[n],β∈{0,1},

where u
(β)
i ← Xn and u′

(β)
i ← Xn for i ∈ [n] and β ∈ {0, 1}. Note that H0 does not

correspond to the distribution of a “real” evaluation key, as H0 incorporates a single
vector w ∈ {0, 1}n across different samples. We show that given any adversary with
a non-negligible advantage in outputting concatenation of adaptive hardcore bits, one
can construct another adversary that can distinguish between H0 and H1 with a non-
negligible advantage. By Lemma 6, we know thatH0 is computationally distinguishable
from H1 and hence the statement of the lemma follows.

For any vector r ∈ {0, 1}n, let πr be a simple mapping that takes two n by n
matrices M(0) and M(1), and for each i ∈ [n] it swaps the ith column of M(0) and
M(1) if ri = 1. As two simple examples, we have

π0n
(
M(0),M(1)

)
=
(
M(0),M(1)

)
, π1n

(
M(0),M(1)

)
=
(
M(1),M(0)

)
.

As a simple special case, we also use the notation πr(m(0),m(1)) to denote swapping
components of two vectors m(0) and m(1) with respect to r. Let the following(

M
(0)
i ,M

(1)
i ,m

(0)
i ,m

(1)
i ,x

(β)
i ,y

(β)
i

)
i∈[n],β∈{0,1}

be a tuple that is distributed asH0 (with a slight reformatting). For any n binary vectors
ri ∈ {0, 1}n, set(

M′
(0)
i ,M′

(1)
i

)
:= πri

(
M

(0)
i ,M

(1)
i

)
, (m′

(0)
i ,m′

(1)
i ) := πri(m

(0)
i ,m

(1)
i ),
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and observe that the tuple

H ′0 :=
(
M′

(0)
i ,M′

(1)
i ,m′

(0)
i ,m′

(1)
i ,x

(β)
i ,y

(β)
i

)
i∈[n],β∈{0,1}

is distributed as follows:

x
(1)
i :=

[
M′

(0)
i (1− (w ⊕ ri)) +M′

(1)
i (w ⊕ ri)

]
⋆ x

(0)
i ,

y
(1)
i :=

[
M′

(0)
i (1− (w ⊕ ri)) +M′

(1)
i (w ⊕ ri) +m′

(0)
i ⊙ (1− (w ⊕ ri)) +m′

(1)
i ⊙ (w ⊕ ri)

]
⋆ y

(0)
i .

Now if we sample each ri randomly, it is not hard to see that H ′0 is statistically
indistinguishable from an honestly generated evaluation ek as defined in the lemma.
Thus, there is an efficient randomized procedure P that maps an instance of H0 to an
honestly generated ek. Furthermore, applying the same procedure P would still map an
instance of H1 to an instance of H1.

Let Hb (for some challenge b ∈ {0, 1}) be a challenge tuple of the form(
M

(0)
i ,M

(1)
i ,m

(0)
i ,m

(1)
i ,x

(β)
i ,y

(β)
i

)
i∈[n],β∈{0,1},

and let A be an attacker that outputs concatenation of adaptive hardcore bits. We con-
struct an adversaryA′ that distinguishesH0 andH1. First,A′ samples n random vector
ri ← {0, 1}n and sets(

M′
(0)
i ,M′

(1)
i

)
:= πri

(
M

(0)
i ,M

(1)
i

)
, (m′

(0)
i ,m′

(1)
i ) := πri(m

(0)
i ,m

(1)
i ).

It then runs A on ēk where

ēk =
(
M′

(0)
i ,M′

(1)
i ,m′

(0)
i ,m′

(1)
i ,x

(β)
i ,y

(β)
i

)
i∈[n],β∈{0,1}.

Let (d′i, ci)i∈[n] be the output of A(ēk). In the next step A′ proceeds as follows:

A′ computes c′i = ⟨d′i, ri⟩ ⊕ ci for i ∈ [n]. Let D′ ∈ {0, 1}n×n be a matrix whose
rows are d′i.

– Case 1: If (d′i)i∈[n] are linearly independent vectors, A′ computes w′ = D′
−1

c′,
where operations are performed over F2. If the following holds, A′ outputs 0. Oth-
erwise it outputs a random bit b′.

x
(1)
1 =

[
M

(0)
1 (1−w′) +M

(1)
1 w′

]
⋆ x

(0)
1 .

– Case 2: There is a minimal index n′ > 1 and n′ − 1 bits (α1, . . . , αn′−1) such that
d′n′ =

∑n′−1
i=1 αid

′
i. If the following holds, A′ outputs 0. Otherwise, it outputs a

random bit b′.

c′n′ =

n′−1∑
i=1

αic
′
i.

We now analyze the advantage of A′ in distinguishing H0 and H1.
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– Hb is distributed as H0: Since A′ maps an instance of H0 to a tuple that is statisti-
cally indistinguishable from an honestly generated evaluation key, it follows that if
ε be the advantage of A, then

Pr
[
A(ēk)→

(
d′i ̸= 0n, ⟨d′i,w ⊕ ri⟩

)
i∈[n]

]
= ε,

and hence with probability ε we have

c′i = ⟨d′i, ri⟩ ⊕ ci = ⟨d′i, ri⟩ ⊕ ⟨d′i,w ⊕ ri⟩ = ⟨d′i,w⟩, ∀i ∈ [n].

Furthermore, it is easy to see that conditioned on the event that A succeeds, A′
outputs 0. This follows immediately by observing that in case 1, A′ recovers w,
and in case 2

c′n′ = ⟨d′n′ ,w⟩ = ⟨
n′−1∑
i=1

αid
′
i,w⟩ =

n′−1∑
i=1

αi⟨d′i,w⟩ =
n′−1∑
i=1

αic
′
i.

Therefore, it holds that

Pr[A′(H0) = 0] ≥ ε+ (1− ε) · Pr[b′ = 0] = (1 + ε)/2.

– Hb is distributed as H1: Although A′ maps a truly random instance (i.e., H1)
to a truly random instance, we can still argue that A′ outputs 0 with probability
negligibly close to 1/2. First, observe that the vectors (ri)i∈[n] are information-
theoretically hidden from the view ofA. Thus, conditioned on the event that case 2
happens we have

Pr
[
c′n′ =

n′−1∑
i=1

αic
′
i

]
= Pr

[
⟨d′n′ , rn′⟩ ⊕ cn′︸ ︷︷ ︸

σL

=

n′−1∑
i=1

αi ·
(
⟨d′i, ri⟩ ⊕ ci

)
︸ ︷︷ ︸

σR

]
.

Because d′i ̸= 0n (for all i ∈ [n]) and there exists at least one index i∗ such that
αi∗ ̸= 0, it follows that the left-hand side (σL) and the right-hand side (σR) are
distributed independently from each other, and hence we have

Pr
[
c′n′ =

n′−1∑
i=1

αic
′
i

]
= 1/2.

A similar argument implies that conditioned on the event that case 1 happens, A′
outputs 0 with probability 1/2 + negl. Therefore, it holds that

Pr[A′(H0) = 0] ≤ 1/2 + negl,

and hence the advantage of A′ in distinguishing H0 and H1 is at least ε/2− negl,
as required.
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5 Computational Test of Qubit

We show that our wTCF can be used to devise a computational test that the prover
has a qubit. The protocol closely follows the outline of [Vid20], with a few syntactical
modifications, due to the usage of wTCFs.

5.1 Definition

We start by recalling the definition of a qubit. We denote {A,B} ≡ AB + BA as the
anti-commuter of two operators A and B, and we say A anti-commutes B if {A,B} =
0.

Definition 9 (Qubit). A qubit is a triple (|ψ⟩ , X, Z) such that |ψ⟩ is a unit vector on
H and X,Z are binary observables onH, such that

{X,Z} |ψ⟩ = 0.

As usual in the computational settings, we will be interested in a slightly weaker guar-
antee, where the above quantity is bounded by a negligible function negl, in which case
we say that the tuple (|ψ⟩ , X, Z) is computationally close to a qubit. The following
lemma justifies the definition of a qubit, and its proof can be found in [Vid20].

Lemma 9 ([Vid20]). Let (|ψ⟩ , X, Z) be a qubit onH. Then there exists a Hilbert space
H′ and an isometry V : H → C2 ⊗H′ such that:

V X |ψ⟩ = (σX ⊗ Id)V |ψ⟩ and V Z = (σZ ⊗ Id)V |ψ⟩

where

σX =

(
0 1
1 0

)
and σZ =

(
1 0
0 −1

)
are the Pauli observables.

5.2 Protocol

Let F be a wTCF function family. The protocol for a computational test of a qubit is
described below.

1. The verifier samples (ek, td)← Gen(1λ) and sends ek to the prover.
2. The prover prepares the state

1√
2 · |Xn|

∑
b∈{0,1}

∑
xb∈Xn

|b⟩ |xb⟩ |fek,b(xb)⟩

which is efficiently computable since fek,b is efficiently computable. Then it un-
computes the first register and traces it out to obtain

1√
2 · |Xn|

∑
b∈{0,1}

∑
xb∈Xn

|xb⟩ |fek,b(xb)⟩ .
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Note that this mapping is efficiently computable since, given xb and fek,b(xb), the
bit b is efficiently computable. The prover then measures the last register in the
computational basis to obtain some y ∈ Y . The prover returns y to the verifier.

3. The verifier computes

Invert(td, 0, y) = x0 and Invert(td, 1, y) = x1

and aborts if x0 /∈ X̄ and x1 /∈ X̄. The verifier then selects a uniformly random
challenge c← {0, 1} and sends c to the prover.

4. (a) (Preimage test) If c = 0, the prover measures the first register in the computa-
tional basis to obtain an x, which is sent to the verifier. The verifier accepts if
there exists a b ∈ {0, 1} such that fek,b(x) = y.

(b) (Equation test) If c = 1, the prover measures the first register in the Hadamard
basis to obtain some d = (d1, . . . ,dn) ∈ {0, 1}nℓ, which is sent to the verifier.
Let (x0,x1) be the vectors defined in the previous step, and B is defined in
definition 5. The verifier accepts if

d ∈ Y0,x0
∩ Y1,x1

and
n⊕

i=1

⟨di,Bi(x0)⊕ Bi(x1)⟩ = 0.

5.3 Analysis

First, we argue that the protocol is correct, i.e., the honest prover passes the tests with
probability 1 − n−c, for some constant c. Observe that the verifier accepts at step 3 if
x0 ∈ X̄ or x1 ∈ X̄. Since X̄ is a dense subset of Xn, it follows that:

– x0 ∈ X̄ or x1 ∈ X̄, and
– (x0,x1) ∈ Rek

except with inverse polynomial probability. Thus, the verifier rejects y with probability
at most inverse polynomial. Conditioning on the verifier accepting in step 3, we have
that the state of the prover equals

1√
2
(|x0⟩+ |x1⟩) |y⟩

where (x0,x1) are the pre-images of y under fek,0 and fek,1, respectively. On the one
hand, measuring the first register in the computational basis returns a random pre-image
of y, which allows the prover to pass the pre-image test with probability one, on the
other hand, measuring the register in the Hadamard basis, returns a random vector or-
thogonal to B(x0) ⊕ B(x1), where B is the bit-decomposition operator. By definition,
we have that

⟨d,B(x0)⊕ B(x1)⟩ =
n⊕

i=1

⟨di,Bi(x0)⊕ Bi(x1)⟩ = 0.

Furthermore, d belongs to the set Y0,x0
∩ Y1,x1

with overwhelming probability. Thus
the prover passes the equation test with probability negligibly close to one.
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Next, we argue that the prover’s state contains a qubit assuming that F is a wTCF
family satisfying the adaptive hardcore bit property. The argument is essentially identi-
cal to the one shown in [Vid20] with minor syntactical modifications and we report it
here only for completeness.

Theorem 2. Let F be a wTCF family that satisfies the adaptive hardcore bit property.
Let |ψ⟩ be the state of a prover (after step 2) that succeeds with probability negligibly
close to one. Then there exist two binary observablesX and Z, such that (|ψ⟩ , X, Z) is
computationally close to a qubit. In particular, assuming the conjecture 2, the protocol
can be instantiated based on the extended LHS assumption.

Proof. Let |ψ⟩ be the state of the prover after sending the y to the verifier. We assume
without loss of generality that |ψ⟩ is a pure bipartite state onHP ⊗HM, where the reg-
ister P keeps the internal state of the prover. We also assume without loss of generality
that the answer for c = 0 is obtained by measuring M on the computational basis. On
the other hand, we also assume that the answer for c = 1 is obtained by computing
U |ψ⟩, for some unitary U , and measuring the resulting register M in the Hadamard
basis. Next, we define the observables X and Z as

Z =
∑

x∈Xn

(−1)zek,y(x) |x⟩⟨x| ⊗ IdP

and

X =
∑

d∈Y0,x0
∩Y1,x1

(−1)xek,y(d)U†(H⊗nℓM ⊗ IdP)
†(|d⟩⟨d|M ⊗ IdP)(H

⊗nℓ
M ⊗ IdP)U

where the predicate zek,y(x) labels as 0 the pre-image of y under fek,0 and as 1 the
pre-image of y under fek,1 (other vectors are labeled arbitrarily). On the other hand, the
predicate xek,y(d) labels as 0 the d such that ⟨d,B(x0)⊕B(x1)⟩ = 0 and as 1 all other
vectors. We are now ready to show that (|ψ⟩ , X, Z) is computationally close to a qubit.
Let us rewrite

1

4
∥{X,Z} |ψ⟩∥2

=
1

4
∥(XZ + ZX) |ψ⟩∥2

=
1

4
⟨ψ| (XZ + ZX)†(XZ + ZX) |ψ⟩

=
1

4
⟨ψ| (XZ + ZX)2 |ψ⟩

=
1

2
(⟨ψ| (XZ0XZ0) |ψ⟩+ ⟨ψ| (XZ1XZ1) |ψ⟩+ ⟨ψ| (Z0XZ0X) |ψ⟩+ ⟨ψ| (Z1XZ1X) |ψ⟩)

= ⟨ψ| (Z0XZ0) |ψ⟩+ ⟨ψ| (Z1XZ1) |ψ⟩+ negl

where the third equality uses that (XZ+ZX) is Hermitian, the fourth equality follows
from Lemma 10, and the last equality follows since we assume the prover to succeed
with probability close to 1 and this |ψ⟩ is negligibly close to an eigenstate of X with
eigenvalue +1.
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To complete the proof, we, therefore, need to show that the quantities ⟨ψ| (Z0XZ0) |ψ⟩
and ⟨ψ| (Z1XZ1) |ψ⟩ are negligible. We show this for the first term and the second case
follows by symmetry. The proof consists of a reduction against the adaptive hardcore
bit of property of F : The reduction receives the key ek for the challenger and internally
runs the prover to obtain the state |ψ⟩ then it measures the register M in the compu-
tational basis to obtain some x. If x is a pre-image of 1, then the reduction returns a
(x,d), for a randomly sampled d. Else, it applies the unitary U to |ψ⟩ and measures the
register M in the Hadamard basis to obtain d. It returns (x,d).

In the former case (x being a pre-image of 1), we can lower bound the success
probability of the reduction to be negligibly close to 1/2 ⟨ψ|Z1 |ψ⟩, since the prover is
assumed to succeed with probability close to 1 and thus the post-measurement state is
close to Z1 |ψ⟩. Analogously, in the latter case (x being a pre-image of 0), the success
probability of the reduction is negligibly close to

⟨ψ|Z0X0Z0 |ψ⟩ = 1/2(⟨ψ|Z0 |ψ⟩+ ⟨ψ|Z0XZ0 |ψ⟩).

Overall, the success probability of the reduction is 1/2 + 1/2 ⟨ψ|Z0XZ0 |ψ⟩. We can
conclude that the second summand is negligible unless the reduction can break the
adaptive hardcore bit property with a non-negligible probability. “In particular” part of
theorem follows from Theorem 1.

To complete the proof, we need the following Lemma, which follows in verbatim
from [Vid20].

Lemma 10. Let X and Z be binary observables, then

1

2
(XZ + ZX)2 = XZ0XZ0 +XZ1XZ1 + Z0XZ0X + Z1XZ1X.

Proof. Since X and Z are Hermitian and square to identity, we can rewrite

(XZ + ZX)2 = 2Id+XZXZ + ZXZX.

Recall that Z = Z0 − Z1, and thus we can expand

ZXZ = (Z0 − Z1)X(Z0 − Z1) = Z0XZ0 + Z1XZ1 − Z0XZ1 − Z1XZ0.

Using that Z0 + Z1 = Id we have

X = IdXId = (Z0 + Z1)X(Z0 + Z1) = Z0XZ0 + Z1XZ1 + Z0XZ1 + Z1XZ0.

Combining the two equations above we obtain that ZXZ = 2(Z0XZ0+Z1XZ1)−X .
Plugging this into our first equation we obtain

(XZ + ZX)2 = 2Id+XZXZ + ZXZX

= 2Id+X(2(Z0XZ0 + Z1XZ1)−X) + (2(Z0XZ0 + Z1XZ1)−X)X

= 2Id+ 2XZ0XZ0 + 2XZ1XZ1 + 2Z0XZ0X + 2Z1XZ1X − 2X2

= 2(XZ0XZ0 +XZ1XZ1 + Z0XZ0X + Z1XZ1X).
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Proof of Quantumness. We mention that our wTCF can be plugged into the work of
[BKVV20]1 to obtain a classically verifiable proof of quantumness (PoQ). While PoQ is
a strictly weaker goal than the qubit test that we described above, we explicitly mention
this application since PoQ only requires the claw-freeness property. In particular, this
means that we obtain a protocol for PoQ without the need to invoke conjecture 2 by
relying only on the extended LHS assumption.
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