
Steganography-Free Zero-Knowledge

Behzad Abdolmaleki1, Nils Fleischhacker2, Vipul Goyal3, Abhishek Jain4, and
Giulio Malavolta1

1 Max Planck Institute for Security and Privacy, Bochum, Germany
{behzad.abdolmaleki,giulio.malavolta}@mpi-sp.org

2 Ruhr University Bochum, Germany
mail@nilsfleischhacker.de

3 NTT Research and Carnegie Mellon University, USA
vipul@cmu.edu

4 Johns Hopkins University, Baltimore, USA
abhishek@cs.jhu.edu

Abstract. We revisit the well-studied problem of preventing stegano-
graphic communication in multi-party communications. While this is
known to be a provably impossible task, we propose a new model that
allows circumventing this impossibility. In our model, the parties first
publish a single message during an honest non-interactive pre-processing
phase and then later interact in an execution phase. We show that in this
model, it is indeed possible to prevent any steganographic communica-
tion in zero-knowledge protocols. Our solutions rely on standard crypto-
graphic assumptions.

1 Introduction

Consider the following scenario: a computer at a government agency storing
highly classified data has been infected with a stealthy malware. The malware’s
main purpose is to communicate the classified data to an attacker on the Inter-
net. To minimize the possibility of being detected and quarantined, the malware
has been designed to stealthily “encode” the secret data in ordinary communi-
cation between the infected computer and the outside world. This may include
communication with “honest” entities on the Internet or potentially even the
attacker (disguised as an honest user). An intriguing question, which forms the
basis of the present work, is whether it is possible to detect such communication?

The above scenario is representative of a broader theme concerning stegano-
graphic communication, where a party A wants to transmit a secret message
to another party B by communicating over a public broadcast channel without
being detected by an external observer who is listening on the channel. Since the
use of an encrypted channel can be easy to detect, A may instead try to embed
its message in an innocuous-looking conversation. For example, [34], it may send
a photograph of a person to securely transmit bit 0 if the 30th hair from the left
is white, and 1 otherwise.



2 Abdolmaleki, Fleischhacker, Goyal, Jain, and Malavolta

A sequence of works [14, 31, 29, 3] have established that such steganographic
communication is always possible in any system with some entropy, and is prov-
ably impossible to detect. As such, it may seem that the answer to the afore-
mentioned question is negative.

A New Model for Preventing Steganography. In this work, we propose
a new model for circumventing the aforementioned impossibility result. In our
model, any communication (via an interactive protocol) proceeds in two phases:
a non-interactive pre-processing phase and an execution phase. Each party pub-
lishes a single message during the pre-processing phase, while the execution
phase corresponds to the actual protocol execution. We assume that the parties
are honest during the pre-processing phase, but may be completely malicious
during the execution phase. Our main goal is to ensure that any attempts at
steganographic communication during the execution phase will be detected by the
external observer.

We, in fact, consider a stronger model where only one of the parties is re-
quired to be honest during the pre-processing phase. In this case, the malicious
parties may be able to subliminally embed information in their pre-processing
messages. However, we require that such subliminal communication is limited to
the (non-interactive) pre-processing and that no steganographic communication
can be performed during the execution phase. Our model is meaningful in our
motivating example: if the pre-processing step is executed before the computer is
infected, then it ensures that no information can be later leaked by the malware
without being detected.

Let us now explain why the pre-processing model can help in preventing
steganography. As observed in many prior works, the key source of the problem
is that the parties’ algorithms may be randomized, which opens an avenue for
subliminal communication. Removing the use of randomness altogether does not
yield a solution since randomness is necessary for most of cryptography [21]. The
pre-processing model helps resolve this dilemma. The main insight is that the
pre-processing step can be used to “fix” the randomness of the parties, thereby
forcing them to become deterministic during the execution phase. If the parties
deviate from the prescribed strategy, they can be detected by the observer.

A common method to detect deviation from prescribed strategy in any proto-
col is to use zero-knowledge (ZK) proofs [27], à la Goldreich, Micali, Wigderson
(GMW) compiler [26]. However, ZK proofs themselves require randomness [21].
As such, a priori, it might not be clear how to implement the above idea.

1.1 Our Contribution

We present a general method for preventing steganographic communication in
interactive protocols.

Defining Steganography Freeness. We start by defining steganography free-
ness for generic interactive protocols (S,R) in the non-interactive pre-processing
model. Intuitively, our notion requires that no adversarial sender S can stegano-
graphically communicate even a single bit of information to the receiver R during



Steganography-Free Zero-Knowledge 3

the execution phase as long as at least one of them was honest during the pre-
processing phase. We formalize this via a game-based definition (Section 3) where
at the start of the execution phase, the adversarial sender is given a randomly
chosen bit b. We require that at the end of the execution phase, the probability
that the receiver correctly guesses b and the execution transcript is accepted by
the observer is only negligibly more than one half.

Steganography-Free Zero-Knowledge. Our main tool for achieving steganog-
raphy freeness in a generic interactive protocol is a new notion of steganography-
free zero-knowledge (SF-ZK). An SF-ZK argument proceeds in two phases: first,
the prover and the verifier participate in a non-interactive pre-processing step
where they send a single message to each other. This step is executed before the
prover receives the statement and the witness. Next, the prover and the verifier
participate in the execution phase where the prover proves the validity of the
statement.

An SF-ZK argument system must satisfy the standard completeness, sound-
ness, and ZK properties. In particular, soundness (resp. ZK) must hold even if
the prover (resp. verifier) is malicious both during the pre-processing as well as
the execution phase. Further, SF-ZK must satisfy two new security properties:

– Observer Soundness: This property states that for any false statement, no
coalition of prover and verifier can produce a transcript that will be accepted
by the external observer as long as either the prover or the verifier was honest
during the pre-processing phase.

– Computationally Unique Transcripts (CUT): We define this property w.r.t.
languages L with unique witnesses; however, it can be naturally extended to
the multiple witnesses case. Intuitively, it states that once the pre-processing
phase has been executed (where either the prover or the verifier was honest),
then for any statement x ∈ L, two different sets of efficient prover and verifier
strategies cannot produce two different transcripts of the execution phase
that will both be accepted by the observer.

We show that the CUT property implies steganography freeness. Further,
we note that the observer soundness property is crucial in natural applications
of SF-ZK. Indeed, if we use SF-ZK to implement a GMW-style compiler for
constructing steganography-free protocols, then observer soundness would be
necessary to ensure that an adversarial party cannot deviate from a prescribed
strategy in the underlying protocol and therefore cannot use the execution tran-
script to perform steganographic communication.

We refer the reader to Section 3.1 for a formal definition of SF-ZK.

Positive Results. We construct an SF-ZK argument system with black-box
simulation for all languages in NP. We, in fact, provide two constructions: first,
assuming sub-exponentially hard injective one-way functions, we devise a solu-
tion in the single-execution setting, where the pre-processing phase can only be
used once. Then, assuming the existence of fully homomorphic encryption [24],
we present a solution in the multi-execution setting, where the pre-processing
can be refreshed to allow for an unbounded number of execution phases.



4 Abdolmaleki, Fleischhacker, Goyal, Jain, and Malavolta

Our construction of SF-ZK directly works for circuit satisfiability and avoids
any use of expensive NP reductions. In Section 4, we provide a construction of
SF-ZK in the single-execution setting. While this protocol follows a conceptually
clean approach, it involves a computationally expensive sub-protocol where the
prover is required to give a “proof of proof,” namely, proof of honest behavior
in the execution of another proof. To obtain a more efficient solution, we also
present another construction that follows the same key ideas as in our first
construction but avoids the expensive sub-protocol by instead using cut-and-
choose techniques [37].

In the full version of the paper, we extend our construction of SF-ZK to the
multi-execution setting.

Optimality of our Model. In the full version, we show that our adversar-
ial model is “tight”. Specifically, we show that when both the prover and the
verifier are malicious during the pre-processing, SF-ZK is impossible, except for
languages in BPP.

1.2 Applications

In the following we highlight a few interesting applications of SF-ZK.

Online Games. Imagine a group of players that want to engage in a game
of poker without a trusted dealer. The standard solution for this is to use a
multi-party computation (MPC) protocol to simulate a dealer by combining the
randomness of all players. MPC is however an inherently randomized machinery
and the same randomness could be used by colluding players to communicate
information (say, about their hands) in an undetectable way. This problem was
considered in [34], where the authors proposed a solution based on generic MPC
together with unique ZK proof.5 Their solution relies on players physically ex-
changing sealed envelopes prior to the execution of the protocol and hence cannot
be used over the internet (see Section 1.4 for a more detailed comparison).

In contrast, using SF-ZK allows us to bypass any physical interaction among
participants at the cost of a non-interactive pre-processing phase. The resulting
protocol is sanitized from any covert communication, since transmitting infor-
mation covertly via SF-ZK is computationally hard.

Private Classifier. Consider the scenario where a server holds a trained clas-
sifier and wants to give clients oracle access to the prediction without revealing
the logic implemented by the predictor. At the same time, the client wants to be
assured that the answers of the server are consistent and indeed correspond to
the output of the classifier. An obvious solution to this problem is to augment
the client-server interaction with a standard ZK proof of correctness.

Consider the event the server gets infected by a virus. The malicious program
might instruct the machine to simply output the full description of the classifier.
However, such behavior is easy to detect for anyone observing the network traffic.

5 In unique ZK only a single valid proof exists for a given statement-witness pair.



Steganography-Free Zero-Knowledge 5

What if the virus implements a more clever strategy: use the ZK proof as a vector
to slowly exfiltrate secret information? Since ZK proofs must be randomized,
there is plenty of room to transmit information in an undetectable manner.

One solution is to use SF-ZK instead: the (computational) uniqueness of the
transcripts ensures that the virus cannot embed information in the randomness
of the protocol and observer soundness forces the server to behave correctly.
That is, whatever the client can learn from an infected machine he can also
learn by honest queries to the non-corrupted server. Note that in this scenario
we can assume that the server is not infected during the training of the model,
which can be paired with the computation of the honest prover pre-processing.

A similar argument applies to any interaction in the client-server setting
where the server holds some amount of secret data (e.g., a password file, or,
classified emails) and might get infected with a virus.

1.3 Our Techniques

In this section, we provide an overview of the main ideas underlying our con-
structions of SF-ZK, both in the single-execution and multi-execution settings.

How to Simulate? We start by describing a key conceptual challenge in
constructing SF-ZK. Recall that a black-box simulator works by rewinding the
adversarial verifier potentially multiple times. This involves creating multiple
protocol transcripts which are necessarily different (for the rewinding to be “suc-
cessful”). This seems to be at odds with the computationally unique transcripts
(CUT) property of SF-ZK; indeed, since the simulator is also an efficient algo-
rithm, intuitively, it should also not be able to produce multiple transcripts of
the execution phase. This presents a catch-22: how can we achieve ZK property
without violating the CUT property (or vice-versa)?

Towards resolving this conundrum, recall that the CUT property is required
to hold against two different pairs of prover and verifier strategies (P1, V1) and
(P2, V2), who cannot communicate with each other. This rules out oblivious
black-box simulation strategies that involve running multiple execution threads
(with a common prefix) in parallel since such a strategy implies multiple tran-
script choices during an honest execution. However, it does not rule out non-
oblivious black-box simulation strategies. In particular, a non-oblivious simulator
can potentially create a transcript, and then use information learned from that
transcript to create another one. This does not violate the CUT property but
opens up an avenue for black-box simulation.

Starting Approach. To explain our approach, let us first recall the notion
of delayed-input witness indistinguishable (WI) proofs, where the statement and
the witness is only required for computing the last prover message. Such proofs
are known in three rounds with a public-coin verifier based on one-way func-



6 Abdolmaleki, Fleischhacker, Goyal, Jain, and Malavolta

tions [33]. In particular, a recent work of [28] constructed such proofs for circuit
satisfiability6 based on garbled circuits.

Now consider the following template for SF-ZK: during the pre-processing
phase, the prover publishes the first message α of the delayed-input WI and ad-
ditionally commits to some randomness (say) r. The verifier commits in advance
to the second (public-coin) message β of the WI and additionally publishes a
“trapdoor” statement with a (verifiably) unique witness. Both the prover and
verifier use a non-interactive commitment scheme with unique decommitment7

to compute their respective commitments.
At the start of the execution phase, both the prover and the verifier receive

the statement x and the prover additionally receives a (unique) witness w. The
execution phase proceeds as follows:

– The prover first simply sends a commitment c to 0 using randomness r.
– Next, the verifier decommits to the second message of WI and additionally

reveals the (unique) witness for the trapdoor statement.
– Finally, the prover sends the third message γ of the WI proof to prove the

statement: “either x is true or I committed to the trapdoor witness in c using
randomness r that was committed in the pre-processing”.

Let us now see why the above template enables black-box simulation. A
simulator can first produce a partial transcript of the execution phase by simply
committing to 0 in c and then learn the witness for the trapdoor statement.
Now, the simulator can rewind the verifier to the start of the execution phase
and generate a new transcript where it commits to the trapdoor witness. It then
continues the computation of the second transcript and produces the WI proof
using the second branch of the statement. Note that the simulator can use the
second branch in the WI because it is now true.

Challenges with CUT. In order to achieve the CUT property, we require the
delayed-input WI proof to have a unique accepting third message γ for a fixed
partial transcript (α, β) and a fixed statement and witness. Towards this, let us
briefly recall the construction of [28]. Below, we describe the basic version which
achieves soundness one half; the full protocol with negligible soundness error is
achieved by parallel repetition of the basic protocol.

– First, the prover computes and sends a garbled circuit for the NP verification
circuit. Additionally, it commits to all the wire labels of the garbled circuit.

– Next, the verifier sends a random challenge bit.
– If the challenge bit is 0, the prover “opens” everything by revealing its ran-

dom tape, otherwise, it decommits to wire labels corresponding to the state-
ment and the witness. In the latter case, the verifier simply evaluates the
garbled circuit to check if its output is accepting.

6 The choice of circuit satisfiability as the language is not arbitrary. We use it to
avoid the potential issue of using NP reductions that do not preserve the number of
witnesses, which can open up an avenue for subliminal communication.

7 Such schemes are known based on injective one-way functions.



Steganography-Free Zero-Knowledge 7

At a first glance, it may seem that the above construction satisfies the unique
third message property if the witness is unique. A closer inspection, however,
reveals a subtle problem when we use the above WI in our template for SF-ZK.
The issue is that a cheating prover can simply guess in advance, e.g., the first
index (among all the parallel repetitions) where the challenge bit is 1. In that
repetition, he can choose to garble a trivial circuit that outputs 1 on every input.
Clearly, in this case, there are exponentially many accepting third messages. As
such, the adversarial prover can violate the CUT property with non-negligible
probability.

Towards addressing the above problem, our first observation is that the above
protocol can be transformed into one that satisfies the unique third message
property at the cost of losing the delayed input property. The transformation
is simple: for every repetition, the prover pre-commits to both of its possible
third messages (one for every challenge bit) in the first round. Now, in the last
round, it simply decommits to the appropriate response. Clearly, this protocol
satisfies the unique third message property but is no longer delayed input since
the prover must know the statement and the witness in order to compute the
first message. The latter means that we can not directly use it in our template
for SF-ZK.

Nevertheless, as we now describe, the above observation can be used to con-
struct a delayed-input WI with the required property. Our main observation is
as follows: the aforementioned attack required the prover to deviate from the
honest strategy, namely, sending a garbling of a circuit different from the NP
verification circuit (i.e., the circuit which outputs 1 on every input). If we could
ensure that the prover garbled the “correct” circuit, then the protocol would
indeed satisfy the aforementioned uniqueness property.

Towards this end, we modify the protocol template and now require the
prover to additionally prove via a separate three-round proof system that it
computed the garbling in the first round message of delayed-input WI “hon-
estly”. Crucially, a non-delayed-input proof with unique third message suffices
for this task since the statement and the witness is known in advance. The first
and second messages of this proof are fixed in the pre-processing (in a manner
as discussed before in the template); the prover only sends the third message of
the proof in the execution phase. The uniqueness of this message ensures that it
cannot be used for subliminal communication. More importantly, the soundness
of this proof ensures that the prover’s first message in the delayed-input WI is
well-formed, and therefore, the last message is unique.8

Challenges in ZK. The above idea resolves the main challenge in achieving
CUT property, but creates a new challenge in achieving the ZK property. Specif-
ically, the main issue is that in order to perform simulation, it seems that we

8 We remark that our actual protocol slightly differs from the above description in
that instead of using delayed-input WI, we introduce and use the notion of (com-
putationally) unique non-interactive WI with honest prover pre-processing. This
approach yields a more simplified construction. In this Section, however, we ignore
this distinction.



8 Abdolmaleki, Fleischhacker, Goyal, Jain, and Malavolta

need the non-delayed-input proof to itself be a (steganography-free) ZK proof.
However, this is very close to the goal we started with in the first place.

To resolve this seeming circularity, we observe that the non-delayed-input
proof does not always need to be simulated. In particular, this proof would only
need to be simulated when we invoke the WI property of the delayed-input WI
inside the hybrids for proving the ZK property of our main SF-ZK construc-
tion. Therefore, we do not need this proof to satisfy the standard notion of
ZK with polynomial-time simulation, and instead, it suffices to use ZK with
super-polynomial-time simulation. Indeed, the super-polynomial-time simulator
would only be invoked in the “intermediate” hybrids, but not the final one;
therefore, the running time of our final simulator for SF-ZK is unaffected. For-
tunately, the three-round proof system we described earlier indeed satisfies the
super-polynomial-time simulation property.

Observer Soundness. While the above solution template resolves the main
challenges in achieving ZK and CUT properties, it does not achieve observer
soundness property of SF-ZK. Indeed, consider the scenario where the verifier is
malicious during the pre-processing phase and uses some a priori fixed random-
ness (e.g., all 0’s). Now, in the execution phase, a malicious prover can use the
trapdoor witness (i.e., the witness of the second branch) in the WI proof in the
last round.

To address this challenge, we observe that if the verifier is dishonest dur-
ing pre-processing, then by our assumption that at least one of the parties be
honest, we have that the prover must be honest during pre-processing. We use
this observation to create an “asymmetry” between a malicious prover and the
simulator. Specifically, we require the prover to commit to bit 0 in the pre-
processing phase. We also modify the second branch of the WI in the execution
phase. Specifically, the second branch will now additionally require the prover
to prove that it committed to 1 in the pre-processing phase. Note that since the
prover was honest in the pre-processing, it can never execute the second branch
since it is always false. However, a simulator can choose to commit to 1 in the
pre-processing phase and therefore still use the second branch of the WI.

Other Details. The above discussion is oversimplified and ignores several ad-
ditional technical issues that we need to address to obtain a secure construction
of SF-ZK. For example, we must deal with aborting verifiers who may choose to
abort on one of the branches of WI with a high probability to skew the distri-
bution of transcripts generated by the simulator. We also need to enable some
mechanism for proving soundness as well as the CUT property via extraction,
even when the verifier’s randomness is fixed during the pre-processing. We re-
solve these issues by using techniques from [25], and by relying on complexity
leveraging in some of our proofs. We refer the reader to the technical Sections
for more details.

Multi-Execution SF-ZK. The pre-processing phase of the above construction
is non-reusable, i.e., it can only be used for a single execution phase. We now
describe a strategy to refresh the pre-processing phase. Our starting idea is sim-



Steganography-Free Zero-Knowledge 9

ple: During the i-th execution phase, the prover and the verifier simply generate
new pre-processing messages using pre-committed randomness and give a new
SF-ZK proof to establish that the new message was computed honestly. Note,
however, that in regular ZK proofs, the size of the prover’s message grows with
the size of the relation circuit. This means that the size of the i-th pre-processing
messages must be larger than the size of the (i+ 1)-th pre-processing messages,
at least by a multiplicative overhead of the security parameter. This means that
this approach becomes infeasible after a constant number of refreshes.

A plausible approach to allow unlimited refreshing is to use an SF-ZK where
the communication complexity does not grow with the size of the relation circuit.
Four round ZK arguments (without SF property) that satisfy such a succinctness
property are known for all of NP based on collision-resistant hash functions [32].
Unfortunately, it is not clear how to use such argument systems in our setting:
first, we need the argument system to be delayed-input, namely, where the first
message of the prover is independent of the statement. Further, it is unclear how
to force uniqueness of last prover message while only relying on non-interactive
pre-processing.

We instead use a different solution based on (leveled) fully-homomorphic
encryption. The main idea is that instead of having the prover perform an “ex-
pensive” computation and prove its validity to the verifier, we instead require
both the prover and the verifier to perform the expensive computation “locally”
on their own. Since the computation involves the private state of the prover, we
use FHE to send it to the verifier, who can use the homomorphism property to
perform the computation. Now, the prover only needs to prove a simple state-
ment that the resulting encryption (after homomorphic evaluation) decrypts to
the “correct” value. The size of this statement (and the corresponding relation
circuit) is fixed, and does not cause a blowup as before. Also observe that the
maximum size of the circuit to be computed homomorphically is a priori fixed,
therefore leveled FHE suffices. We note that this idea has been previously used
(see, e.g., [30]) to construct “short” non-interactive zero-knowledge proofs.

1.4 Related Work

Preventing steganographic communication has been the subject of a large body
of literature addressing the problem in variety models. We provide a short sum-
mary of other directions that address the challenge of protecting cryptosystems
against different forms of subversion in below (also refer the reader to [38] for
an excellent comprehensive survey).

Collusion-Free Protocols. Our work is closely related to prior work on
collusion-free protocols [34] (see also [35]). Roughly speaking, a collusion-free
multiparty protocol prevents a group of adversarial parties from colluding with
each other to gain an unfair advantage over honest participants, e.g., in a game
of poker. As Lepinski et al. explain in their work, a key challenge in designing
such protocols is preventing steganographic communication between the adver-
sarial parties. They use physical assumptions, namely, simultaneous exchange of



10 Abdolmaleki, Fleischhacker, Goyal, Jain, and Malavolta

sealed envelopes, and an interactive pre-processing model to construct collusion-
free protocols. While their overall goal is very similar to ours, we note that
their constructions require strong physical assumptions (e.g., sealed envelopes)
to ensure verifiable determinism.

We further note that our notion of steganography-free ZK is similar in spirit
to the notion of “unique ZK” [35], which is used by [34] in their constructions. In
particular, unique ZK requires a one-to-one mapping between a proof transcript
and the witness used to compute the transcript, which is similar to the CUT
property of steganography-free ZK. However, while our notion of steganography-
free ZK is a strengthening of zero-knowledge, the notion of unique ZK is not.
Unique ZK requires a common reference string as well as a pre-processing step
where the prover must necessarily be honest. This means that if the prover was
dishonest from the beginning, the soundness no longer holds (even if the verifier
continues to be honest from the beginning). Unique ZK also does not require the
observer soundness property, which makes it harder to use in our applications.

Preventing Steganography via Sanitization. Multiple lines of works have
used the approach of using “sanitization” to prevent steganographic communica-
tion. The work of Alwen et al. [1] considered a mediator model for collusion-free
protocols to avoid the use of pre-processing and physical channels. This active
mediator has the ability to modify the messages of the protocol participants.
This approach is similar in spirit to prior work on subliminal-free ZK and di-
vertible ZK protocols [18, 39, 11, 13, 9, 12] who also use an active “warden” to
modify the messages of the prover and the verifier. More recently, Mironov and
Stephens-Davidowitz [38] (see also [20]) initiated the study of “reverse firewalls”
to prevent steganographic communication in general two-party communication.
Roughly speaking, a reverse firewall for a party P is an external entity that sits
between P and the outside world and whose scope is to sanitize P ’s incoming
and outgoing messages in the face of subversion of their computer. Later, there
has been more efforts on secure computation protocols in this model [15, 23, 16].

Comparison to our model. In the sanitization-based model there is an entity
(namely, the reverse firewall) that sits on the network of each participant and
has the ability to re-randomize the messages sent by the parties. We note that
all of these works differ fundamentally from ours in that they rely on an active
mediator (or warden, or reverse firewall) who can sanitize the messages of the
parties, whereas we consider the classical steganographic communication setting,
where there is a passive observer who can look at the messages of the parties
(but not modify them). This allows one to detect steganography by just looking
at the communication transcript.

Kleptography and Algorithmic-Substitution Attacks. A sequence of
works starting from [44, 45], and more recently followed by a series of papers [8,
5, 7, 41, 42, 2], consider the problem of designing cryptographic primitives which
retain meaningful security even against adversaries who can tamper with the
implementation of the cryptographic algorithm. In particular, these works con-
sider “functionality-preserving” tampering where the adversary does not break
the functionality of the cryptographic algorithm to avoid detection. However,



Steganography-Free Zero-Knowledge 11

this still leaves open the possibility of the tampered implementation leaking any
secret information used by the cryptographic algorithm (e.g., a secret-key for
encryption, or a signing key for signature schemes) to the adversary by misusing
the randomness. For this reason, these works either avoid the use of randomness
altogether (whenever possible), or rely on external sanitizers (such as random
oracles) or consider split-state tampering.

There has been another the line of work for protection mechanisms by Dodis
et al. [19] that studies backdoored pseudorandom generators (BPRGs). In their
setting, public parameters are secretly generated together with secret backdoors
by a subversive that allows to bypass security, while for any adversary that does
not know the backdoor it remains secure.9 They showed that BPRGs can be
immunized by applying a non-trivial function (e.g., a PRF or a seeded extractor)
to the outputs of a possibly backdoored pseudorandom generator.

Comparison to our model. Our setting (involving ZK proofs and multi-party
computation) necessarily relies on the use of randomness. As such, the solutions
we achieve in our model restrict the use of randomness to the pre-processing
step, without relying on external sanitizers, or other such means.

Trusted Initialization Phase. Assuming the trust initialization phase setting,
Fischlin and Mazaheri [22] proposed an alternative defense mechanism, so-called
self-guarding that contrary to the aforementioned approaches that rely on ex-
ternal sanitizers, does not depend on external parties. The security definitions
in this model rely on the assumption of having a ”secure initialization phase”.
This assumption makes our problem substantially easier: The NIZK by Sahai
and Waters [43] has a deterministic prover and it trivially yields a construction
of steganography-free ZK in the common reference string (CRS) model.

Comparison to our model. Self-guarding requires one to rely on a trusted
initialization phase where the cryptosystem is unsubverted. In our model, each
party runs a local pre-processing, and security is guaranteed if either of the
parties is honest during the pre-processing phase.

2 Preliminaries

We denote by n ∈ N the security parameter that is implicitly given as input to
all algorithms in unary representation 1n. We denote by {0, 1}` the set of all
bit-strings of length `. For a finite set S, we denote the action of sampling x
uniformly at random from S by x←$S, and we denote the cardinality of S by
|S|. An algorithm is efficient or PPT if it runs in time polynomial in the security
parameter. If A is randomized then by y := A(x; r) we denote that A is run on
input x and with random coins r and produces output y. If no randomness is
specified, then it is assumed that A is run with freshly sampled uniform random
coins, and we write this as y ← A(x). A function negl(n) is negligible if for all

9 Parameter subversion has been considered for several primitives, including pseudo-
random generators [19, 17], non-interactive zero knowledge [4], and public-key en-
cryption [2].



12 Abdolmaleki, Fleischhacker, Goyal, Jain, and Malavolta

positive polynomial poly(n), there exists an N ∈ N, such that for all n > N ,
negl(n) ≤ 1/poly(n).

We recall the the notions of projective garbling schemes [6], homomorphic en-
cryption [24], zero-knowledge arguments with super-polynomial simulation (SPS-
ZK) [40], and non-Interactive witness indistinguishable arguments with honest
pre-processing (HPP-NIWI) [10] in the full version of this paper.

3 Defining Steganography-Freeness

In this section, we introduce the definitions of steganography-free zero-knowledge
interactive arguments and steganography-free multi-party computation. Stega-
nography-freeness is generally impossible for regular protocols because without
being constrained, a malicious party could always try to correlate its randomness
with the secrets it wishes to subliminally communicate. We prevent such attacks
by utilizing a non-interactive pre-processing phase. Specifically, we consider pro-
tocols that proceed in two phases: A non-interactive pre-processing phase, and
an interactive execution phase. As we will see below, our definitions guarantee
that no steganographic communication can be performed in the execution phase,
once the pre-processing was completed.

We begin by defining steganography-freeness for generic interactive proto-
cols (with pre-processing), which closely matches the intuition behind this no-
tion. Roughly speaking, our notion steganography-free says that no machines
can communicate through a protocol execution without being detected. This is
captured as a game between a sender and a receiver, where the sender is given
a random bit b and interacts with the receiver. In order to win the game the
receiver must output b, without raising the suspicion of an external observer.
The formal definition is given in the following.

Definition 1 (Steganography-Freeness). A protocol Π = (S1,R1,S2,R2)
is steganography-free relative to a PPT observer Θ if for all admissible pairs
(S̃1, R̃1), and for all PPT algorithms (S∗,R∗) it holds that

Pr

[
(s1, p1)← S̃1(1λ), (s2, p2)← R̃1(1λ),

b←$ {0, 1}, T := 〈S∗(s1, p2, b),R∗(s2, p1)〉
:
Θ(p1, p2, T ) = 1∧
R∗(s2, p1, T ) = b

]
≤ 1

2
+negl(n)

where (S∗,R∗) are the (possibly) corrupted versions of (S2,R2). Both parties (S1

and R1) individually compute pre-processing information comprising of a public
output and a secret state in the pre-processing stage. In the execution phase, both
parties (S2 and R2) receive as input their respective secret states as well as the
other party’s public output from the pre-processing phase.

Note that the definition is relative to some observer Θ. Generally, any proto-
col is steganography-free relative to some observer, e.g., the trivial Θ that does
not accept any transcript. However, this is of course not a useful property. The
challenge, therefore, is to achieve steganography-freeness relative to a meaningful
observer that accepts honest communication.



Steganography-Free Zero-Knowledge 13

It is also important to observe that the definition is conditioned on some
admissibility criterion on the behavior of the players in the pre-processing. In
this work we are interested in what we call a partial-honest pre-processing, i.e.,
a pair (S̃1, R̃1) is considered admissible if both algorithms are PPT and at least
one of them is honest. Note that for this case we consider rushing adversaries
that sample their pre-processing after the honest one is fixed. We mention that
the definition can be extended to capture a bounded amount of covert commu-
nication by sampling multiple bits.

3.1 Steganography-Free Zero-Knowledge

Towards defining steganography-free zero-knowledge, we extend the standard
definitions in a natural way to accommodate an input-independent pre-processing
phase. In the pre-processing stage, both parties (P1 and V1) individually com-
pute pre-processing information comprising of a public output and a secret state.
In the execution phase, both parties (P2 and V2) receive as input their respective
secret states as well as the other party’s public output from the pre-processing
phase, together with the statement x. The prover additionally receives a witness
w. At the end of this phase, the honest verifier outputs either 0 or 1. In addition
to the standard properties for a zero-knowledge protocol, a steganography-free
zero-knowledge protocol must additionally satisfy the following new properties:

1. Observer Completeness: There exists an efficient algorithm Θ, that takes as
input the protocol transcript and accepts if both parties are honest.

2. Observer Soundness: The (possibly colluding) prover and verifier cannot
convince the observer to accept a transcript for any x /∈ L, as long as either
the prover or the verifier executes the pre-processing phase honestly.

3. Computationally Unique Transcripts: Given a language with unique wit-
nesses, no two independent coalitions of prover and verifier can produce two
different transcripts that are both accepted by the observer. This is again
conditioned on the fact that at least one of the parties was honest during
the pre-processing.

This set of properties will guarantee that the protocol execution cannot be used
as a covert channel. Later we will show that these conditions are indeed sufficient
to achieve steganography-freeness. The formal definition is given in the following.

Definition 2 (Steganography-Free Zero-Knowledge Arguments). Let L
be a language in NP with corresponding relation R. A steganography-free in-
teractive argument system Π = (P,V) for language L in the non-interactive
pre-processing model with observer Θ must satisfy the following properties:

Completeness. For all (x,w) ∈ R it holds that

Pr

[
(s1, p1)← P1(1n),
(s2, p2)← V1(1n)

: 1←
〈
P2(x,w, s1, p2),V2(x, s2, p1)

〉]
≥ 1− negl(n).



14 Abdolmaleki, Fleischhacker, Goyal, Jain, and Malavolta

Computational Non-Adaptive Soundness. For all x /∈ L and all malicious PPT
provers P∗ it holds that

Pr

[
(s1, p1)← P∗(x),
(s2, p2)← V1(1n)

: 1←
〈
P∗(x, s1, p2),V2(x, s2, p1)

〉]
≤ negl(n).

Computational Soundness. For all malicious PPT provers P∗ it holds that

Pr

(s1, p1)← P∗(1n),
(s2, p2)← V1(1n),
x← P∗(s1, p2)

: 1←
〈
P∗(x, s1, p2),V2(x, s2, p1)

〉
∧ x /∈ L

 ≤ negl(n).

Here, we use the terms computational soundness and adaptive computational
soundness interchangeably.

Zero-Knowledge. For all malicious PPT verifiers V∗ there exists an expected
polynomial time simulator Sim, such that for all PPT distinguishers D, it holds
that for all tuples (x,w) ∈ R∣∣∣∣∣∣∣∣

Pr

[
(s1, p1)← P1(1n),

(s2, p2)← V∗(x)
: D(

〈
P2(x,w, s1, p2),V∗(x, s2, p1)

〉
) = 1

]
−Pr

[
(s1, p1)← Sim(1n),

(s2, p2)← V∗(x)
: D(〈Sim(x, s1, p2),V∗(x, s2, p1)〉) = 1

]
∣∣∣∣∣∣∣∣ ≤ negl(n).

Observer Completeness. For all (x,w) ∈ R it holds that

Pr

[
(s1, p1)← P1(1n), (s2, p2)← V1(1n),
T :=

〈
P2(s1, p2, x, w),V2(s2, p1, x)

〉 : Θ(p1, p2, T , x) = 1

]
≥ 1− negl(n).

Non-Adaptive Observer Soundness. For all x /∈ L, for all admissible pairs (P̃1, Ṽ1),
for all PPT algorithms P∗ and V∗ it holds that

Pr

[
(s1, p1)← P̃1(x), (s2, p2)← Ṽ1(x),
T := 〈P∗(s1, p2, x),V∗(s2, p1, x)〉 : Θ(p1, p2, T , x) = 1

]
≤ negl(n)

Observer Soundness. For all admissible pairs (P̃1, Ṽ1), for all PPT algorithms
P∗ and V∗ it holds that

Pr

[
(s1, p1)← P̃1(1n), (s2, p2)← Ṽ1(1n),
x← P∗(s1, p2); T := 〈P∗(s1, p2, x),V∗(s2, p1, x)〉 :

Θ(p1, p2, T , x) = 1
∧ x /∈ L

]
≤ negl(n)

where a pair (P̃1, Ṽ1) is considered admissible if both algorithms are PPT and it
holds that P̃1(w, x) = P1(1n) or Ṽ1(x) = V1(1n). Notice that, we use the terms
observer soundness and adaptive observer soundness interchangeably.

Computationally Unique Transcripts. For all x ∈ L such that there exists a

unique w such that R(x,w) = 1, for all admissible pairs (P̃1, Ṽ1), for all PPT

algorithms (P∗,V∗, P̂∗, V̂∗) it holds that

Pr

(s1, p1)← P̃1(w, x), (s2, p2)← Ṽ1(x),
T1 := 〈P∗(s1, p2, x, w),V∗(s2, p1, x)〉,
T2 :=

〈
P̂∗(s1, p2, x, w), V̂∗(s2, p1, x)

〉 :
Θ(p1, p2, T1, x) = 1∧
Θ(p1, p2, T2, x) = 1∧

T1 6= T2

 ≤ negl(n)



Steganography-Free Zero-Knowledge 15

where a pair (P̃1, Ṽ1) is considered admissible if both algorithms are PPT and it
holds that P̃1(w, x) = P1(1n) or Ṽ1(x) = V1(1n).

Observe that, although the honest pre-processing algorithms do not require
the statement or the witness as input, we still provide the (possibly) malicious
machines with x (and w if the prover is malicious). This guarantees that the prop-
erties are preserved even if the algorithm has partial knowledge of the statement
(and possibly the witness) ahead of time.

We further remark that our definition of computationally unique transcripts
is going to be useful only for languages with unique witnesses, since the prover
might be able to produce two accepting transcripts by simply executing the
protocol with two different witnesses. While this suffices for our applications,
the definition can be naturally extended to the k-witnesses case by requiring the
coalitions to output k + 1 distinct valid transcripts.

Steganography-Freeness. In the following, we argue that our conditions de-
fined above suffice to show that the protocol satisfies steganography-freeness.

Theorem 1 (Steganography-Freeness). Let L be a language with unique
witnesses and let (P,V) be an observer sound zero-knowledge protocol for L with
computationally unique transcripts. Then (P,V) is steganography-free relative to
the observer with partially honest pre-processing.

We defer the proof to the full version.

Multi-Execution SF-ZK. The above definition refers to single-execution SF-
ZK where all of the properties are required to hold for a single execution phase,
after the pre-processing is fixed. In the full version of the paper, we extend the
notion of SF-ZK to the multi-execution setting.

4 A Steganography-Free ZK Protocol

Let L̃ be any average-case hard language with unique witnesses and let f :
{0, 1}nOWF → {0, 1}mOWF be a one-way function with an efficiently checkable
range. Let (WI-P,WI-V) be an HPP-NIWI with unique proofs for the follow-
ing language: LNIWI =

(
x, y, w̃,

c0, c̄, c̃

) ∣∣∣∣∣∣
∃(w, s, r̃) : ((x,w) ∈ R ∧ Com(r̃; s) = c̄ ∧ Com(0n; r̃) = c̃)

∨ ∃(r, r̃) : (Com(1; r) = c0 ∧ Com(w̃; r̃) = c̃)
∨ ∃(w, r, z) : ((x,w) ∈ R ∧ Com(1; r) = c0 ∧ f(z) = y)


where the first branch (1) is going to be used by the prover and the second

branch (2) will allow one to simulate without knowing the witness. Interestingly
the third branch (3) is used neither by the honest prover nor by the simulator,
but it is only instrumental to prove the indistinguishability of the two. Finally,
we let (SPS-P,SPS-V) be a three-round SPS-ZK argument system with unique
last messages for the following language:

LSPSZK = {τ | ∃u : WI-P1(u) = τ}.



16 Abdolmaleki, Fleischhacker, Goyal, Jain, and Malavolta

Prover P1(1n) Verifier V1(1n)Pre-Processing

Sample (r, r̃, s)←$ {0, 1}3nCOM

u←$ {0, 1}nNIWI

v←$ {0, 1}nSPSZK

Commit to c0 ← Com(0; r)

c̄← Com(r̃; s)

Compute τ ←WI-P1(1nNIWI ;u)

α← SPS-P1(τ, u; v)

Define s1 := (r, r̃, s, u, v)

p1 := (τ, α, c0, c̄)

Return (s1, p1)

Sample (x̃, w̃)←$ R̃
t←$ {0, 1}nCOM

z←$ {0, 1}nOWF

Compute y ← f(z)

β ← SPS-V1(1nSPSZK)

c← Com(β; t)

Define s2 := (β, y, t, w̃)

p2 := (c, x̃, y)

Return (s2, p2)

Prover P2(s1, p2, x, w) Verifier V2(s2, p1, x)Execution

Parse s1 := (r, r̃, s, u, v)

p2 := (c, x̃, y)

Compute c̃← Com(0n; r̃)

If (x̃, w̃) /∈ R̃ or Com(β; t) 6= c abort

Compute γ ← SPS-P2(τ, u, β; v)

π ←WI-P2((x, y, w̃, c0, c̄, c̃), (w, s, r̃);u)

Parse s2 := (β, y, t, w̃)

p1 := (τ, α, c0, c̄)

If SPS-V2(τ, α, β, γ) 6= 1 or WI-V((x, y, w̃, c0, c̄, c̃), τ, π) 6= 1 return 0

Else return 1

c̃

(w̃, β, t)

(γ, π)

Fig. 1. Our SF-ZK protocol.

4.1 Our Protocol

Our protocol SF-ZK is formally described in Figure 1. We describe extensions
to the multi-execution setting in the full version.

Pre-Processing. In the pre-processing phase, the honest prover computes a
commitment to 0 and to some random coins r̃. The former guarantees that, if
the prover’s pre-processing is honest, then it is hard to cheat in the execution
phase, whereas the latter fixes the random coins used later in the execution
phase. The prover also initializes the pre-processing τ of an HPP-NIWI proof
and computes the first message α of an SPS-ZK proof that asserts that τ is
well-formed. The public output of the prover’s pre-processing consists of the
commitments together with the messages (τ, α). The secret state consists of the
random coins used in the pre-processing.

On the other hand, the verifier samples a random image y from the domain
of the one-way function f and computes a commitment c to a randomly sam-
pled second message β of the SPS-ZK proof. Furthermore, it samples a random
instance x̃ of an average-case hard language with unique witnesses. The public
output of the verifier’s pre-processing consists of (c, x̃, y), and the secret state
consists of the random coins used in the pre-processing.



Steganography-Free Zero-Knowledge 17

Execution. The execution phase is started by the prover, who sends a com-
mitment c̃ to 0n, using the random coins r̃ fixed in the pre-processing. Then the
verifier replies with the decommitment (β, t) to c and reveals the unique witness
w̃. The prover checks that (β, t) is a valid decommitment for c and computes
the last message γ of the SPS-ZK protocol that certifies that τ is well-formed.
Finally, it computes the proof π using the first branch (1) thereby proving that
c̃ was correctly formed using the random coins committed in the pre-processing
and that x is indeed an accepting instance of L. The verifier simply checks
whether the transcript (α, β, γ) and the proof π verify correctly.

While c̃ might seem purposeless, it is going to be useful in the simulation:
The simulator will spawn a lookahead thread to learn w̃, which will allow it to
rewind the execution to compute c̃ as a commitment to w̃. This in turn allows
it to compute the proof π using the second branch (2), which does not require
knowledge of the witness for x. This is however not a feasible strategy for any
malicious prover (which cannot rewind the execution of the protocol), since it
requires to know w̃ ahead of time.

4.2 Analysis

Parameters. Let n be the security parameter of our scheme, we consider the
following parameters that are (implicitly) given as input to each algorithm of
our building blocks:

– nSPSZK : The security parameter for the SPS-ZK argument (SPS-P,SPS-V).
– nNIWI : The security parameter for the non-interactive witness indistinguish-

able argument (WI-P,WI-V).
– nCOM : The security parameter for the perfectly binding commitment scheme

Com with unique openings.
– nL : The security parameter for the average-case hard language with unique

witnesses L̃.
– nOWF : The security parameter for the one-way function f .

We require that the parameters satisfy the following relation

2nSPSZK � 2nOWF � 2nCOM � 2nNIWI = 2nL ,

where a� b means that for all polynomial functions a ·poly(n) < b. In particular
we require the SPS-ZK argument to be sound against an adversary that runs
in time poly(nSPSZK) and to be simulatable in time O(2nSPSZK). By setting the
security parameter of the underlying perfectly binding commitment scheme to
be also nSPSZK, then one can find the committed message in time O(2nSPSZK) by
exhaustive search.10 We require the one-way function to be hard to invert in
time O(2nSPSZK) but easy to invert in time O(2nOWF), similarly the commitment
scheme is hiding against O(2nOWF) bounded machines but extractable in time
O(2nCOM). Finally, the HPP-NIWI and the average-case hard language shall be
hard even for adversaries running in time O(2nCOM)� O(2nOWF)� O(2nSPSZK).

10 This instantiation of the perfectly binding commitment scheme used inside the SPS-
ZK protocol is different from the perfectly binding commitment scheme Com used
in our protocol. In particular, we use different security levels for these schemes.



18 Abdolmaleki, Fleischhacker, Goyal, Jain, and Malavolta

Security proof. In the following, we state our main theorems:

Theorem 2 (Soundness). If (WI-P,WI-V) is an HPP-NIWIs with unique proofs,
L̃ is an average-case hard language with unique witnesses, (SPS-P,SPS-V) is an
SPS-ZK argument, and the commitment scheme Com is perfectly binding, then
the argument system SF-ZK in Figure 1 is computationally sound.

Proof. The proof consists of two steps. In the first step, we prove that it in
present of non-adaptive (selective) security notation in a way that the adversary
is not allow to adaptively choose the statement. In the second step, we invoke
complexity leveraging to lift the reduction to the adaptive settings.

Non-adaptive soundness. Assume that there exists an x∗ /∈ L and a ma-
licious PPT prover P∗ such that the verifier on input x∗ and interaction with
P∗ will accept with probability ε. Let xNIWI := (x, y, w̃, c0, c̄, c̃) We can split this
probability into two parts: Either P∗ cheats in such away that xNIWI /∈ LNIWI (in
which case we will be able to use the soundness of the HPP-NIWI to show that
P∗ would not be successful) or P∗ cheats in such away that xNIWI ∈ LNIWI. In this
case, we show that this event can only occur with negligible probability due to
the average-case hardness of L̃. Let cheat be the event that a malicious prover
causes the honest verifier to accept x∗.

ε = Pr[cheat]

= Pr[cheat|xNIWI /∈ LNIWI] · Pr[xNIWI /∈ LNIWI]︸ ︷︷ ︸
ε′

+ Pr[cheat|xNIWI ∈ LNIWI] · Pr[xNIWI ∈ LNIWI]︸ ︷︷ ︸
ε′′

Bounding ε′. We will first bound ε′ using the soundness of the HPP-NIWI and
the super-polynomial extractability of the SPS-ZK. Assume towards contradic-
tion, that ε′ ≥ 1/poly(n). We then construct a malicious WI-P∗ as follows: WI-P∗

engages with P∗ in a protocol execution where it impersonates the verifier and
computes all of the messages honestly. Let (α, β, γ) be the variables determined
by the transcript of the execution. Then WI-P∗ checks that SPS-V(τ, α, β, γ) = 1
and extracts the witness u from (α, β, γ) in time O(2nSPSZK) (recall the choice of
parameters from Section 4.2) if this is the case. If the extraction fails or the tran-
script does not verify, then WI-P∗ aborts. Finally, WI-P∗ outputs (xNIWI, τ, π, u).

It is easy to see that WI-P∗ perfectly simulates the verifier’s preprocessing as
well as the execution phase for P∗. WI-P∗ successfully cheats, if (τ, π) verifies,
extraction is successful, and xNIWI /∈ LNIWI.

Note that 1 ←
〈
P∗(x∗, s1, p2),V1(x∗, s2, p1)

〉
implies that both (α, β, γ) as

well as (τ, π) verify correctly. Assume for the moment that the extraction from



Steganography-Free Zero-Knowledge 19

(α, β, γ) is successful with probability 1− negl(n). Then it holds that

Pr

[
(xNIWI, τ, π, u)←WI-P∗(1n) :

xNIWI /∈ LNIWI ∧WI-P1(u) = τ
∧ WI-V(xNIWI, τ, π) = 1

]
≥Pr[cheat|xNIWI /∈ LNIWI] · Pr[xNIWI /∈ LNIWI] · (1− negl(n))

=ε′ − negl(n) = 1/poly(n)− negl(n).

Since WI-P∗ runs in time O(2nSPSZK)+poly(n) this would contradict the soundness
of the HPP-NIWI. What is left to be shown is that the probability that the
extraction from (α, β, γ) is not successful is bounded by a negligible function.
If this was not the case, then α and the randomness used to compute it would
uniquely determine β (recall the properties of SPS-ZK from Section 2). Therefore
we could find the randomness in time O(2nSPSZK)+poly(n) and use it together with
α, to break the hiding property of c = Com(β). It follows that the extraction must
succeed with all but negligible probability. We can conclude that ε′ ≤ negl(n).

Bounding ε′′. Assume towards contradiction that ε′′ ≥ 1/poly(n). Since x∗ /∈ L,
the definition of LNIWI implies that for an xNIWI ∈ LNIWI there exists an (r, r̃)
such that Com(1; r) = c0 and Com(w̃; r̃) = c̃. However, we can show that this
would allow us to decide L̃ in the average case as follows.

Given a random instance x̃, compute a verifier preprocessing honestly using
x̃ as the random instance of the average-case hard language. The prover P∗

returns its pre-processing and the commitment c̃. Then extract the content of
c̃ in time O(2nCOM). If it contains a valid witness for x̃ return 1, else return
a random bit. Note that if x̃ /∈ L̃ then w̃ does not exist and therefore the
algorithm described above will always output a random bit. On the other hand,
if x̃ ∈ L̃ then we can lower bound the probability of the algorithm outputting
1 by 1/2 + ε′′ = 1/2 + 1/poly(n). Since the described algorithm runs in time
O(2nCOM) + poly(n) this clearly contradicts the average case hardness of L̃ as
specified in Section 4.2. We have thus established that ε = ε′+ ε′′ ≤ negl(n) and
SF-ZK is therefore computationally sound.

From selective to adaptive . For the second step of the proof, we rely on
complexity leveraging. Let lx be the domain size of the statement lx = |x|. Let
B against the adaptive security. We set lx to be

2lx � 2nSPSZK � 2nOWF � 2nCOM � 2nNIWI = 2nL .

We construct a reduction which behaves identically as the non-adaptive case,
except that it guesses a statement x and aborts if x 6= x∗. The analysis is
identical to what described above, except that the advantage drops by a factor
at most 1/2lx .

Theorem 3 (Observer Soundness). If (WI-P,WI-V) is an HPP-NIWI with
unique proofs, L̃ is an average-case hard language with unique witnesses, Com is
a perfectly binding commitment scheme with unique openings, and (SPS-P,SPS-V)
is an SPS-ZK argument, then the argument system SF-ZK in Figure 1 is observer
sound.



20 Abdolmaleki, Fleischhacker, Goyal, Jain, and Malavolta

Θ(p1, p2, T , x)

1 : if Com(β; t) 6= c or (x̃, w̃) /∈ R̃
2 : return 0

3 : elseif SPS-V(τ, α, β, γ) = 0 or WI-V((x, y, w̃, c0, c̄, c̃), τ, π) = 0

4 : return 0

5 : else return 1

Fig. 2. The observer algorithm Θ

Proof. We describe the observer algorithm in Figure 2. Recall that the observer
soundness definition considers two cases. In one case the prover acts honestly
during the pre-processing phase (P̃ = P1), in the other case the verifier does
(Ṽ = V1). We analyze the two cases separately.

Honest P1. Assume towards contradiction, that there exists an x∗ /∈ L, a
malicious prover P∗, and a malicious verifier V∗ such that

1

poly(n)
≤ Pr

[
(s1, p1)← P1(1n), (s2, p2)← V∗(x∗),
T := 〈P∗(x∗, s1, p2),V∗(x∗, s2, p1)〉 : Θ(p1, p2, T , x) = 1

]
.

From this it follows that

1

poly(n)
≤ Pr

[
(r, τ)← P1(1n),

π ∈ T : WI-V((x, y, w̃, c0, c̄, c̃), τ, π) = 1

]
. (1)

Where Equation 1 stems from the fact that the prover’s pre-processing is hon-
est and the observer always verifies the proof π. Recall that the statement
(x, y, w̃, c0, c̄, c̃) ∈ LNIWI if and only if

∃(s, r̃) : (x∗ ∈ L ∧ Com(r̃; s) = c̄ ∧ Com(0n, r̃) = c̃)

∨ ∃(r, r̃) : (Com(1; r) = c0 ∧ Com(w̃, r̃) = c̃)

∨ ∃(r, z) : (x∗ ∈ L ∧ Com(1; r) = c0 ∧ f(z) = y)

(2)

By assumption, x∗ /∈ L and Com(0; r) = c0, since the prover’s pre-processing is
generated honestly and the commitment scheme is perfectly binding. Therefore
each of the parts underlined in Equation 2 is false. By extensions, this makes
the conjunction in each of the three branches false. It follows then that π is a
proof for a false statement given an honestly generated τ , which contradicts the
soundness of the HPP-NIWI.

Honest V1. For this case we can bootstrap the verifier’s honest preprocessing
into a fully honest verifier execution and then simply reduce observer soundness
to regular soundness.

Assume towards contradiction that there exists an x∗ /∈ L, a malicious prover
P∗, and a malicious verifier V∗ such that

1

poly(n)
≤ Pr

[
(s1, p1)← P∗(x∗), (s2, p2)← V1(1n),
T := 〈P∗(x∗, s1, p2),V∗(x∗, s2, p1)〉 : Θ(p1, p2, T , x) = 1

]
.



Steganography-Free Zero-Knowledge 21

From this it follows that

1

poly(n)
≤Pr

(s1, p1)← P∗(x∗),
(s2, p2)← V1(1n),
T :=

〈
P∗(x∗, s1, p2),V2(x∗, s2, p1)

〉 : Θ(p1, p2, T , x) = 1

 (3)

= Pr

[
(s1, p1)← P∗(x∗),
(s2, p2)← V1(1n)

: 1←
〈
P∗(x∗, s1, p2),V2(x∗, s2, p1)

〉]
(4)

To see why Equation 3 holds, first note that the commitment scheme is per-
fectly binding and the language L̃ has unique witnesses. Since Θ verifies in line
1 that (β, t) is a valid decommitment of c and that w̃ is indeed a witness of
x̃, it follows that given the verifier’s honest pre-processing there exists only a
unique verifier message that does not cause the observer to output 0. For every
possible transcript of the interaction between P∗ and V∗ consider the following
two possibilities. Either the message sent by V∗ is exactly that unique message
or it sends any other message. In the first case, the malicious verifier behaves
identically to the honest verifier and replacing V ∗ by V 2 does not change the re-
sulting transcript or the output of Θ at all. In the latter case, Θ already outputs
0 for this transcript anyway and the only change could be that Θ now outputs 1.
Thus we can conclude that the probability of Θ outputting 1 can only increase.
Thus Equation 3 must hold.

To see that Equation 4 must hold we simply need to consider the checks
performed by Θ in line 3. It’s easy to see that Θ(p1, p2, T , x) = 1 implies that
SPS-V(τ, α, β, γ) = 1 and WI-V((x, y, w̃, c0, c̄, c̃), τ, π) = 1, since the protocols
are public-coin (and therefore publicly verifiable). However, these coincide with
all checks performed by the honest verifier. Therefore, in an execution between
the malicious prover and the honest verifier, the honest verifier accepts if and
only if the transcript is accepted by the observer. Equation 4 therefore holds.
We’ve thus shown that

1

poly(n)
≤ Pr

[
(s1, p1)← P∗(x∗),
(s2, p2)← V1(1n)

: 1←
〈
P∗(x∗, s1, p2),V2(x∗, s2, p1)

〉]
which would contradict the soundness of SF-ZK. Therefore, an x∗ and P∗ as
assumed above cannot exist and SF-ZK must also be (selective) observer sound.
The proof for the adaptive observer sound is the same as above.

Theorem 4 (Zero Knowledge). If (WI-P,WI-V) is an HPP-NIWIs with unique
proofs, (SPS-P,SPS-V) is an SPS-ZK argument with unique last message, f is a
one-way function with efficiently checkable range, and Com is a perfectly bind-
ing and computationally hiding commitment scheme, then the argument system
SF-ZK in Figure 1 is computationally zero knowledge.

Proof. We specify the zero-knowledge simulator Sim in the following. The simu-
lator keeps a record of its running time and aborts if the number of steps exceeds
2n.
1. During the preprocessing phase the simulator acts exactly like the honest

prover, except that it commits to 1 in c0 ← Com(1, r).



22 Abdolmaleki, Fleischhacker, Goyal, Jain, and Malavolta

2. In the execution phase, it initializes a counter i = 0 and runs the following
lookahead thread.
(a) Commit to 0n in c̃ using fresh randomness and send c̃.
(b) As a response V∗ either aborts or sends a response (w̃, β, t).
(c) If i = 0 check whether the verifier aborts or (x̃, w̃) /∈ R̃ and abort the

whole simulation if any of these conditions are met, outputting whatever
V∗ outputs. Otherwise set i := 1 and return to step 2a.

(d) If i 6= 0 check whether the verifier aborts or (x̃, w̃) /∈ R̃ and return to
step 2a if this is the case. Otherwise set i := i + 1; if i = 12n exit the
loop, otherwise return to step 2a.

3. Let T be the number of iterations of the previous loop. Let p̃ := 12n/T .
Then the simulator enters in the following loop up to (n2/p̃)-many times.
(a) Use the alternative witness w̃ to compute c̃ := Com(w̃; r∗), using fresh

random coins r∗, and send c̃ to the verifier.
(b) As a response V∗ either aborts or sends a second message (w̃, β, t).
(c) If the verifier aborts or the second message is invalid, return to step 3a,

else exit the loop.
4. If n2/p̃ iterations were reached without a valid w̃ being output by the verifier,

output fail. Else use the alternative witness (r, r∗) to compute π using the
second branch (2) of the HPP-NIWI proof and compute γ honestly. Send
(γ, π) to the verifier.

5. The simulator outputs whatever V∗ outputs.
We first bound the running time of the simulator and the probability of the
simulator outputting fail.

Lemma 1. Sim runs in expected polynomial time in n.

Proof. Let p(n) be the probability that V∗ outputs a well-formed response given
c̃ computed as in step 2a. Observe that the work of the simulator is strictly
polynomial time except for the number of rewindings, therefore it is sufficient
to bound the number of iterations. Note that from [36] the expected number
of iterations of the first loop is exactly 12n

p(n) . With this observation in mind, we

distinguish between two cases

1. p(n)
p̃ 6= O(1). In this case, we use the trivial bound 2n. However, this case

can be shown to happen with negligible probability by the Chernoff bound.

2. p(n)
p̃ = O(1). In this case we can bound the running time by

poly(n) · p(n) ·
(

12n

p(n)
+
n2

p̃

)
= poly(n) · p(n)

p̃
= poly(n)

which concludes our analysis.

Next we bound the probability that the simulator outputs fail.

Claim. The probability that Sim outputs fail is negligible in n.

Let q(n) be the probability that V∗ outputs a well-formed response given c̃
(computed as in step 3). We state and prove the following helping lemma.



Steganography-Free Zero-Knowledge 23

Lemma 2. There exists a negligible function such that q(n) ≥ p(n)− negl(n).

Proof. If p(n) is negligible than it is trivial. Else it can be easily shown via a
two-step argument. Let us define q(n) as q(n) except that in the simulation the
commitment c̄ is computed as the commitment to a random string. Note that in
the real protocol the corresponding opening s is used only after the last message
of V∗ and therefore q(n) = q(n) − negl(n) by the hiding of the commitment
scheme.

Recall that p(n) is defined as the probability of V∗ to abort given c̃ = Com(0)
using fresh randomness and q(n) is defined as the probability of V∗ to abort given
c̃ = Com(w̃) using fresh randomness. Thus we can use V∗ as a distinguisher for
the commitment scheme and it will succeed with probability p(n)− q(n). Since
this value can be bound by a negligible function by the computational hiding of
Com, we have that

p(n)− (q(n) + negl(n)) = p(n)− q(n) ≤ negl(n)

which implies that q(n) ≥ p(n)− negl(n) and concludes our proof.

We are now in the position of proving our claim.

Proof. Recall that the simulator outputs fail if all n
2

p̃ iterations in step 3 are not
successful. We consider two cases.

1. p(n) ≤ 2 · negl(n). In this case the simulator reaches step 3 with negligible
probability and therefore fail happens with the same probability.

2. p(n) > 2 · negl(n). For conceptual simplicity we split the loop in step 3 to
n independent rewinds, each upper-bounded by n

p̃ steps. Then fail happens
if all of the rewinds as not successful. By a routine calculation we obtain
that the expected number of iterations of each rewinding until a successful
instance is found is

1

q(n)
≤ 1

p(n)− negl(n)
<

2

p(n)
= O

(
1

p̃

)
,

where the first inequality is by Lemma 2 and last equality is discussed above.
By Markov’s inequality the probability that the simulator tries more than
n
p̃ iterations is at most O(1/n). Since we consider n independent instances,

the total probability is bounded by O(1/n)n.

Finally, we show that the distribution induced by the output of the simulator is
computationally indistinguishable from the honest one. Consider the following
sequence of hybrids.

Hybrid H1: The first hybrid is the interaction between the simulator Sim and
the malicious verifier V∗.

Hybrid H2: The last message γ of the SPS-ZK is simulated in time O(2nSPSZK).
Hybrid H3: The simulator inverts the one-way function to obtain z̃ such that

f(z̃) = y and uses it, together with the original witness w and the
randomness r, to compute π by satisfying the third branch (3).



24 Abdolmaleki, Fleischhacker, Goyal, Jain, and Malavolta

Hybrid H4: The simulator computes c̃ as Com(0n) using fresh random coins.
Hybrid H5: The simulator no longer rewinds the verifier and simply executes

the protocol in a single thread.
Hybrid H6: The commitment c̃ is computed using the committed randomness

r̃, instead of a fresh r∗.
Hybrid H7: The simulator computes π using the original witness (w, s, r̃), with-

out inverting f .
Hybrid H8: The SPS-ZK is no longer simulated and instead computed honestly.
Hybrid H9: The simulator now commits to 0 in c0 = Com(0; r).

It is easy to see that the last hybrid exactly matches the honest execution. We
will show that each δi defined as

δi := |Pr[D(〈Hi(x,w),V∗(x)〉) = 1]− Pr[D(〈Hi+1(x,w),V∗(x)〉) = 1]|

is negligible in n. Note that the simulator Sim runs in expected (super) polynomial-
time, whereas all of the following reductions must terminate in strict (super)
polynomial-time. This issue can be dealt with by truncating Sim to twice its ex-
pected running time. By Markov’s inequality, this reduces its success probability
by at most 1/2.

Observe that the difference in the first hybrid is that the SPS-ZK protocol is
simulated in super-polynomial time. The simulator simply guesses the challenge
of the verifier ahead of time and restarts the whole execution if the guess was
not correct. The expected number of attempts is in the order of O(2nSPSZK),
however, when the simulator is successful, the transcript of the execution is
statistically close to the transcript of an honest run. This bounds the value of
δ1 (and analogously of δ7) to a negligible function.

The differences δ2 and δ6 can be shown to be negligible with a reduction to the
witness indistinguishability of the HPP-NIWI arguments: The reduction simply
sets π to be the challenge proof and returns the output of the distinguisher.
Note that the random coins of the setup are not required for the simulation.
The reduction runs in time O(2nOWF) + O(2nSPSZK) + poly(n) and therefore the
differences among these hybrids can be bound by a negligible function (recall
the parameter setup from Section 4.2).

Note that the fifth hybrid differs from the fourth only in case fail happens,
however by Lemma 4.2 this happens with negligible probability and the bound
on δ4 follows. δ3 and δ5 can be shown to be negligible with a trivial reduction to
the hiding property of the commitment scheme. Note that the reduction runs in
time O(2nOWF)+O(2nSPSZK)+poly(n), however the commitment scheme is assumed
to be hiding for machines bounded by such a runtime. The bound on δ8 uses
an identical argument except that now the reduction runs in (strict) polynomial
time. We can conclude that

|Pr[D(〈P(x,w),V∗(x)〉) = 1]− Pr[D(Sim(x)) = 1]| ≤
9∑
i=1

δi ≤ negl(n).

Theorem 5 (Computationally Unique Transcripts). If (WI-P,WI-V) is an
HPP-NIWI with unique proofs, L̃ is an average-case hard language with unique



Steganography-Free Zero-Knowledge 25

witnesses, f is a one-way function, (SPS-P,SPS-V) is an SPS-ZK argument
with unique last messages, and the commitment scheme Com is perfectly binding
and has unique openings, then the argument system SF-ZK in Figure 1 has
computationally unique transcripts.

Proof. Recall that a pair of machines (P̃1, Ṽ1) is admissible if at least one of
the two is identical to an honest generation algorithm. We treat the two cases
separately.

Honest P1. First observe that the verifier only sends the decommitment (β, t)
and the witness w̃. Since the commitment scheme is perfectly binding and has
unique decommitments and Θ verifies that the decommitment is correct, then
(β, t) is uniquely determined by the preprocessing. Further, L̃ has unique wit-
nesses, therefore w̃ is also fixed by the preprocessing, for any choice of x̃.

On the prover’s side the tuple (c̃, γ, π) collects all messages sent in the ex-
ecution. Since the prover’s preprocessing phase is honest, c0 is a commitment
to 0. Since the commitment scheme is perfectly binding and has unique decom-
mitments, then c̄ from the pre-processing fixes both (s, r̃). If we assume towards
contradiction that there exists two different accepting c̃ and ĉ, by the soundness
of π we have that c̃ = Com(0n, r̃) and ĉ = Com(0n, r̂), where c̄ = Com(r̃, s) and
c̄ = Com(r̂, s). However this is a contradiction since the commitment has unique
openings. It follows that r̃ = r̂ and therefore c̃ is unique. Recall that both the
HPP-NIWI and the SPS-ZK have unique last messages, and therefore (γ, π) are
uniquely determined by the pre-processing.

Honest V1. Given an honest verifier pre-processing p2 and a (possibly mali-
cious) prover pre-processing p1 for a certain statement x with unique witnesses,

let T1 := (c̃, β, t, w̃, π, γ) and T2 := (ĉ, β̂, t̂, ŵ, π̂, γ̂) be the two transcripts such
that Θ(p1, p2, T1, x) = Θ(p1, p2, T2, x) = 1. We shall prove that T1 = T2 with all
but negligible probability.

(β, t) = (β̂, t̂) : Since the commitment scheme is perfectly binding and has unique
openings and c = Com(β; t) is fixed in the pre-processing, this equality must hold.

w̃ = ŵ : The witness is uniquely determined by the statement x̃, since L̃ has
unique witnesses.

γ = γ̂ : Fix τ and (α, β), which are all part of the pre-processing, then γ is unique
since the SPS-ZK has unique last messages.

π = π̂ : First note that there must exist some u such that WI-P1(u) = τ . To see
why this is the case, recall either the transcript of the SPS-ZK proof uniquely
determines the witness or α (together with the randomness used to compute it)
uniquely determines the challenge β. If a valid u does not exist, then we are left
with the latter case, which implies that we can guess the content of c running in
time O(2nSPSZK). This contradicts the hiding property of Com (refer to Section 2
for further discussion). It follows that τ is well-formed except with negligible
probability.



26 Abdolmaleki, Fleischhacker, Goyal, Jain, and Malavolta

Therefore both π and π̂ are generated using the witness for one of the fol-
lowing branches:

∃(s, r̃) : (x∗ ∈ L ∧ Com(r̃; s) = c̄ ∧ Com(0n, r̃) = c̃)
∨ ∃(r, r̃) : (Com(1; r) = c0 ∧ Com(w̃, r̃) = c̃)
∨ ∃(r, z) : (x∗ ∈ L ∧ Com(1; r) = c0 ∧ f(z) = y)

We bound the probability that π or π̂ is a valid proof for the second branch (2)
in the following. Assume without loss of generality that such proof is π. Since the
commitment scheme is perfectly binding we can extract w̃ from c̃ (by exhaustive
search) in time O(2nCOM). Note that the extraction is successful with probability 1
since c̃ is perfectly binding. Recall that Ṽ1 is honest by assumption and therefore
we can plug in a hard instance x̃ and break the average-case hardness of L̃ from
the first message of the prover.

On the other hand, if the third branch (3) is proven with non-negligible
probability then we can invert y in time O(2nSPSZK)+poly(n) by extracting u from
(α, β, γ) and running the polynomial-time extractor of the HPP-NIWI proof. It
follows that both proofs are for the first branch (1), which implies that they are
identical.
c̃ = ĉ : As we argued above, π must be a proof for the first branch. Since (s, r̃) are
fixed in the pre-processing by c̄, then c̃ is also uniquely determined, unless π is
a proof for a false statement. This happens only with negligible probability. ut

Acknowledgements. Behzad Abdolmaleki and Giulio Malavolta were sup-
ported by the German Federal Ministry of Education and Research BMBF (grant
16K15K042, project 6GEM). Nils Fleischhacker and Giulio Malavolta were sup-
ported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.
Vipul Goyal was supported by the NSF award 1916939, DARPA SIEVE program
under Agreement No. HR00112020025, a gift from Ripple, a DoE NETL award,
a JP Morgan Faculty Fellowship, a PNC center for financial services innovation
award, and a Cylab seed funding award. Abhishek Jain was supported in part
by NSF CNS-1814919, NSF CAREER 1942789, Johns Hopkins University Cat-
alyst award, AFOSR Award FA9550-19-1-0200 and the Office of Naval Research
Grant N00014-19-1-2294.

References

1. Joël Alwen, abhi shelat, and Ivan Visconti. Collusion-free protocols in the mediated
model. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume
5157 of Lecture Notes in Computer Science, pages 497–514, Santa Barbara, CA,
USA, August 17–21, 2008. Springer, Heidelberg, Germany.

2. Benedikt Auerbach, Mihir Bellare, and Eike Kiltz. Public-key encryption resistant
to parameter subversion and its realization from efficiently-embeddable groups.
In Michel Abdalla and Ricardo Dahab, editors, PKC 2018: 21st International
Conference on Theory and Practice of Public Key Cryptography, Part I, volume
10769 of Lecture Notes in Computer Science, pages 348–377, Rio de Janeiro, Brazil,
March 25–29, 2018. Springer, Heidelberg, Germany.



Steganography-Free Zero-Knowledge 27

3. Michael Backes and Christian Cachin. Public-key steganography with active at-
tacks. In Joe Kilian, editor, TCC 2005: 2nd Theory of Cryptography Conference,
volume 3378 of Lecture Notes in Computer Science, pages 210–226, Cambridge,
MA, USA, February 10–12, 2005. Springer, Heidelberg, Germany.

4. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an un-
trusted CRS: Security in the face of parameter subversion. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, Advances in Cryptology – ASIACRYPT 2016, Part II,
volume 10032 of Lecture Notes in Computer Science, pages 777–804, Hanoi, Viet-
nam, December 4–8, 2016. Springer, Heidelberg, Germany.

5. Mihir Bellare and Viet Tung Hoang. Resisting randomness subversion: Fast de-
terministic and hedged public-key encryption in the standard model. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015,
Part II, volume 9057 of Lecture Notes in Computer Science, pages 627–656, Sofia,
Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

6. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS
2012: 19th Conference on Computer and Communications Security, pages 784–
796, Raleigh, NC, USA, October 16–18, 2012. ACM Press.

7. Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-surveillance without the
state: Strongly undetectable algorithm-substitution attacks. In Indrajit Ray,
Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015: 22nd Conference
on Computer and Communications Security, pages 1431–1440, Denver, CO, USA,
October 12–16, 2015. ACM Press.

8. Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of symmetric
encryption against mass surveillance. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture
Notes in Computer Science, pages 1–19, Santa Barbara, CA, USA, August 17–21,
2014. Springer, Heidelberg, Germany.

9. Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic
proxy cryptography. In Kaisa Nyberg, editor, Advances in Cryptology – EURO-
CRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages 127–144,
Espoo, Finland, May 31 – June 4, 1998. Springer, Heidelberg, Germany.

10. Zvika Brakerski, Sanjam Garg, and Rotem Tsabary. Fhe-based bootstrapping of
designated-prover nizk. In Pass R., Pietrzak K. (eds) Theory of Cryptography.
TCC 2020. Lecture Notes in Computer Science, vol 12550. Springer, Cham, 2020.

11. Mike Burmester and Yvo Desmedt. Broadcast interactive proofs (extended ab-
stract). In Donald W. Davies, editor, Advances in Cryptology – EUROCRYPT’91,
volume 547 of Lecture Notes in Computer Science, pages 81–95, Brighton, UK,
April 8–11, 1991. Springer, Heidelberg, Germany.

12. Mike Burmester, Yvo Desmedt, Toshiya Itoh, Kouichi Sakurai, and Hiroki Shizuya.
Divertible and subliminal-free zero-knowledge proofs for languages. Journal of
Cryptology, 12(3):197–223, June 1999.

13. Mike Burmester, Yvo Desmedt, Toshiya Itoh, Kouichi Sakurai, Hiroki Shizuya, and
Moti Yung. A progress report on subliminal-free channels. In Ross J. Anderson,
editor, Information Hiding, First International Workshop, Cambridge, UK, May
30 - June 1, 1996, Proceedings, volume 1174 of Lecture Notes in Computer Science,
pages 157–168. Springer, 1996.

14. Christian Cachin. An information-theoretic model for steganography. Inf. Comput.,
192(1):41–56, July 2004.



28 Abdolmaleki, Fleischhacker, Goyal, Jain, and Malavolta

15. Suvradip Chakraborty, Stefan Dziembowski, and Jesper Buus Nielsen. Reverse
firewalls for actively secure mpcs. In Advances in Cryptology, 40th Annual Inter-
national Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, pages
732–762, 2020.

16. Suvradip Chakraborty, Chaya Ganesh, Mahak Pancholi, and Pratik Sarkar. Re-
verse firewalls for adaptively secure mpc without setup. In Advances in Cryptology,
ASIACRYPT 2021, Tibouchi, Mehdi and Wang, Huaxiong, Springer International
Publishing, pages 335–364, 2021.

17. Jean Paul Degabriele, Kenneth G. Paterson, Jacob C. N. Schuldt, and Joanne
Woodage. Backdoors in pseudorandom number generators: Possibility and impos-
sibility results. In Matthew Robshaw and Jonathan Katz, editors, Advances in
Cryptology – CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Computer
Science, pages 403–432, Santa Barbara, CA, USA, August 14–18, 2016. Springer,
Heidelberg, Germany.

18. Yvo Desmedt. Abuses in cryptography and how to fight them. In Shafi Goldwasser,
editor, Advances in Cryptology – CRYPTO’88, volume 403 of Lecture Notes in
Computer Science, pages 375–389, Santa Barbara, CA, USA, August 21–25, 1990.
Springer, Heidelberg, Germany.

19. Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels, and Thomas Ris-
tenpart. A formal treatment of backdoored pseudorandom generators. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015,
Part I, volume 9056 of Lecture Notes in Computer Science, pages 101–126, Sofia,
Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

20. Yevgeniy Dodis, Ilya Mironov, and Noah Stephens-Davidowitz. Message trans-
mission with reverse firewalls—secure communication on corrupted machines.
In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Computer Science, pages
341–372, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg,
Germany.

21. Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai. On the
(im)possibility of cryptography with imperfect randomness. In 45th Annual Sym-
posium on Foundations of Computer Science, pages 196–205, Rome, Italy, Octo-
ber 17–19, 2004. IEEE Computer Society Press.

22. Marc Fischlin and Sogol Mazaheri. Self-guarding cryptographic protocols against
algorithm substitution attacks. In IEEE 31st Computer Security Foundations Sym-
posium (CSF), 2018.

23. Chaya Ganesh, Bernardo Magri, and Daniele Venturi. Cryptographic reverse fire-
walls for interactive proof systems. Cryptology ePrint Archive, Report 2020/204,
2020.

24. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of Computing,
pages 169–178, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press.

25. Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. Journal of Cryptology, 9(3):167–190, June 1996.

26. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th Annual ACM Symposium on Theory of Computing, pages 218–229,
New York City, NY, USA, May 25–27, 1987. ACM Press.

27. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In 17th Annual ACM Symposium



Steganography-Free Zero-Knowledge 29

on Theory of Computing, pages 291–304, Providence, RI, USA, May 6–8, 1985.
ACM Press.

28. Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. On the power of
secure two-party computation. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology – CRYPTO 2016, Part II, volume 9815 of Lecture Notes in
Computer Science, pages 397–429, Santa Barbara, CA, USA, August 14–18, 2016.
Springer, Heidelberg, Germany.

29. Nicholas J. Hopper, John Langford, and Luis von Ahn. Provably secure steganog-
raphy. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume
2442 of Lecture Notes in Computer Science, pages 77–92, Santa Barbara, CA, USA,
August 18–22, 2002. Springer, Heidelberg, Germany.

30. Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptography with
tamperable and leaky memory. In Phillip Rogaway, editor, Advances in Cryptology
– CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 373–
390, Santa Barbara, CA, USA, August 14–18, 2011. Springer, Heidelberg, Germany.

31. Stefan Katzenbeisser and Fabien A.P. Petitcolas. Defining security in stegano-
graphic systems, 2002.

32. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In 24th Annual ACM Symposium on Theory of Computing, pages 723–
732, Victoria, BC, Canada, May 4–6, 1992. ACM Press.

33. Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge
proofs. In Alfred J. Menezes and Scott A. Vanstone, editors, Advances in Cryp-
tology – CRYPTO’90, volume 537 of Lecture Notes in Computer Science, pages
353–365, Santa Barbara, CA, USA, August 11–15, 1991. Springer, Heidelberg,
Germany.

34. Matt Lepinski, Silvio Micali, and abhi shelat. Collusion-free protocols. In Harold N.
Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of
Computing, pages 543–552, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

35. Matt Lepinski, Silvio Micali, and abhi shelat. Fair-zero knowledge. In Joe Kilian,
editor, TCC 2005: 2nd Theory of Cryptography Conference, volume 3378 of Lecture
Notes in Computer Science, pages 245–263, Cambridge, MA, USA, February 10–
12, 2005. Springer, Heidelberg, Germany.

36. Yehuda Lindell. How to simulate it - a tutorial on the simulation proof technique.
Cryptology ePrint Archive, Report 2016/046, 2016. https://ia.cr/2016/046.

37. Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In Moni Naor, editor, Advances
in Cryptology – EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer
Science, pages 52–78, Barcelona, Spain, May 20–24, 2007. Springer, Heidelberg,
Germany.

38. Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic reverse firewalls. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EURO-
CRYPT 2015, Part II, volume 9057 of Lecture Notes in Computer Science, pages
657–686, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

39. Tatsuaki Okamoto and Kazuo Ohta. How to utilize the randomness of zero-
knowledge proofs. In Alfred J. Menezes and Scott A. Vanstone, editors, Advances
in Cryptology – CRYPTO’90, volume 537 of Lecture Notes in Computer Science,
pages 456–475, Santa Barbara, CA, USA, August 11–15, 1991. Springer, Heidel-
berg, Germany.

40. Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol
composition. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003,



30 Abdolmaleki, Fleischhacker, Goyal, Jain, and Malavolta

volume 2656 of Lecture Notes in Computer Science, pages 160–176, Warsaw,
Poland, May 4–8, 2003. Springer, Heidelberg, Germany.

41. Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptography:
Clipping the power of kleptographic attacks. In Jung Hee Cheon and Tsuyoshi Tak-
agi, editors, Advances in Cryptology – ASIACRYPT 2016, Part II, volume 10032 of
Lecture Notes in Computer Science, pages 34–64, Hanoi, Vietnam, December 4–8,
2016. Springer, Heidelberg, Germany.

42. Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Generic se-
mantic security against a kleptographic adversary. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Con-
ference on Computer and Communications Security, pages 907–922, Dallas, TX,
USA, October 31 – November 2, 2017. ACM Press.

43. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deni-
able encryption, and more. In David B. Shmoys, editor, 46th Annual ACM Sym-
posium on Theory of Computing, pages 475–484, New York, NY, USA, May 31 –
June 3, 2014. ACM Press.

44. Adam Young and Moti Yung. Kleptography: Using cryptography against cryp-
tography. In Walter Fumy, editor, Advances in Cryptology – EUROCRYPT’97,
volume 1233 of Lecture Notes in Computer Science, pages 62–74, Konstanz, Ger-
many, May 11–15, 1997. Springer, Heidelberg, Germany.

45. Adam Young and Moti Yung. The prevalence of kleptographic attacks on discrete-
log based cryptosystems. In Burton S. Kaliski Jr., editor, Advances in Cryptology –
CRYPTO’97, volume 1294 of Lecture Notes in Computer Science, pages 264–276,
Santa Barbara, CA, USA, August 17–21, 1997. Springer, Heidelberg, Germany.


