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Abstract. The goal of anonymous whistleblowing is to publicly disclose
a message while at the same time hiding the identity of the sender in a
way that even if suspected of being the sender, this cannot be proven.
While many solutions to this problem have been proposed over the years,
they all require some form of interaction with trusted or non-colluding
parties. In this work, we ask whether this is fundamentally inherent. We
put forth the notion of anonymous transfer as a primitive allowing to
solve this problem without relying on any participating trusted parties.
We initiate the theoretical study of this question, and derive negative
and positive results on the existence of such a protocol. We refute the
feasibility of asymptotically secure anonymous transfer, where the message
will be received with overwhelming probability while at the same time
the identity of the sender remains hidden with overwhelming probability.
On the other hand, resorting to fine-grained cryptography, we provide a
heuristic instantiation (assuming ideal obfuscation) which guarantees that
the message will be correctly received with overwhelming probability and
the identity of the sender leaks with vanishing probability. Our results
provide strong foundations for the study of the possibility of anonymous
communications through authenticated channels, an intriguing goal which
we believe to be of fundamental interest.

1 Introduction

The term whistleblowing denotes “the disclosure by a person, usually an employee
in a government agency or private enterprise, to the public or to those in authority,
of mismanagement, corruption, illegality, or some other wrongdoing” [Whi].
Consider the following scenario. You are happily employed by some government
agency. However, one day, you learn that your employer violates human rights.
You strongly disagree with this breach of trust and law but you are bound
by law to keep internal information secret. Consequently, you are faced with a
dilemma: either you ignore the human rights violation, or you face dishonorable
discharge or even jail. In fact, whistleblowers often take an immense personal
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risk, and face sentences ranging from exile [BEA14] to incarceration [Phi18]
or worse. Whistleblowing is crucial for democracy to educate the public of
misdeeds and to call those in power to account. Therefore, it is desirable to
cryptographically protect the identity of the whistleblower to allow a low-risk
disclosure of wrongdoing.

The importance of this question is well recognized in cryptography and
security. It has been the subject of several influential works (e.g. DC-nets [Cha88],
Riposte [CBM15] or Blinder [APY20]). Concrete solutions include the use of secure
messaging apps [CGCD+20; Ber16], mix-nets [Cha03], onion routing systems
such as the Tor network [DMS04], or solutions built on top of DC-nets and secure
computation techniques [CBM15; APY20] (see also [ECZ+21; NSSD21]).

Yet, all current approaches to anonymous whistleblowing rely on trusted
parties (or non-colluding partially trusted servers), which either receive privately
the communication, or implement a distributed protocol to emulate an anonymous
network. Therefore, however ingenious and scalable some of these solutions are,
whistleblowers must ultimately trust that they will interact with parties or
servers which will (at least for some of them) remain honest and refuse to collude
throughout the transmission.

In this work, we ask whether this is fundamentally inherent, or whether
anonymous whistleblowing is possible in theory without having to privately
communicate with trusted parties. In its most basic form, the question we ask is
the following:

Is it possible for a whistleblower (who is communicating solely through
authenticated point-to-point or broadcast channels)

to publicly reveal some message m while remaining anonymous
without assuming trusted participating parties?

We do allow a Common Reference String (CRS) for technical reasons, and
stress that while it is technically also a trust assumption, it is much weaker;
instead of trusting a set of parties every time to follow the exact protocol and to
not cheat in any way, we only require a CRS to be set up once: A CRS that was
successfully sampled just once can be used for all future interactions.

The above is, of course, trivially impossible if the whistleblower is the only
communicating party. However, it becomes meaningful in a multiparty setting,
where a number of parties (unaware of the intent of the whistleblower) exchange
innocent-looking messages (think of a group of people having a conversation,
or using some public messaging service like Twitter or Facebook to broadcast
information). In this context, the question translates as follows: could the whistle-
blower somehow disguise its communication as an innocent-looking conversation
with the other parties, such that the message m can be publicly extracted (by
anyone) from the entire conversation, yet the identity of which party was indeed
the whistleblower remains hidden? To our knowledge, this intriguing question
has never been studied in the past. Our main contributions are threefold:
1. A definitional framework. We put forth a formal definition for a crypto-

graphic primitive that realizes the above goal, which we call an Anonymous
Transfer. We study the relation between variants of the notion.
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2. Impossibility results. We prove a strong impossibility result: we show that
Anonymous Transfer with overwhelming correctness and anonymity cannot
be realized in any polynomial number of rounds, by exhibiting a general
attack against any such protocol. This non-trivial result demonstrates that
anonymously communicating over authenticated channels is impossible with
standard cryptographic security levels, even assuming strong cryptographic
primitives such as ideal obfuscation.

3. Feasibility result. We complement our impossibility result by an intriguing
feasibility result: we show that fine-grained Anonymous Transfer is possible
assuming ideal obfuscation. The term fine-grained refers to cryptographic
constructions which are only guaranteed secure against adversaries whose
computational power is a fixed polynomial in the computing power of the
honest parties (in our case, the gap is quadratic). Our instantiation is a
plausible heuristic candidate when instantiating the ideal obfuscation by
candidate indistinguishability obfuscation schemes.

Both our negative and positive results are highly non-trivial and require a very
careful analysis. We view our work as addressing a fundamental question regarding
the a priori possibility of secure whistleblowing without interacting with trusted
parties, through the lens of anonymous communications over authenticated
channels. Nevertheless, our study is of a purely theoretical nature, and does not
have immediate practical relevance. In particular, we do not compare our results
to the practical real-world methods which whistleblowers can employ.

Anonymous Transfer and plausible deniability. The fundamental goal of an
Anonymous Transfer protocol is to achieve plausible deniability: the whistleblower
should be able to hide its identity among a group of parties, such that even if it
is strongly suspected that he is the whistleblower, this cannot be proven – any
party could equally be the whistleblower. Importantly, the involved parties are
never required to be aware that a message is being transmitted: their consent or
collaboration is not needed for the Anonymous Transfer to take place, and they
themselves have no advantage in finding out who the whistleblower was.

1.1 Undetectable Secure Computation

Secure Multiparty Computation (MPC) allows a set of parties to jointly evaluate
a function on their inputs without revealing these inputs. In certain scenarios,
however, the standard guarantees of MPC become insufficient: the mere fact
that a party is participating to a certain protocol already reveals information
about that party. Consider for example the following scenario: your company
was hacked, but you do not have enough forensic data to trace the attackers. If
several companies fell victim to the same hacker, a joint effort may yield enough
information to successfully trace the hacker. However, the very fact that you are
initiating such a protocol reveals that your company has been hacked.

The notion of Covert Multiparty Computation (CMPC) [vHL05; CGO+07]
was introduced to cope with situations in which even revealing one’s participation
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to the protocol is undesirable. CMPC allows a set of parties to securely compute
a protocol among n parties with the following two guarantees: (1) If all parties
are actually willing to participate in the protocol (and are not simply having
innocent conversations), and if the output of the protocol was acceptable (which
is specified by some function g of the joint input), then everyone learns the result
of the protocol. (2) Otherwise (if at least one party was not participating, or
the output was not acceptable), no one learns anything about who were the
participating parties (or even whether there was any).

CMPC is a powerful strengthening of secure computation. However, it still
has two important downsides: a single non-participating party is sufficient to
make the entire protocol fail (no one gets any output), and when all parties
participate, they all learn that they participated (hence, no one can deny anymore
having participated in the protocol). One of the primary motivations behind the
study of Anonymous Transfer, which we put forth in this work, is to open the
avenue to the study of a significantly more powerful form of secure computation
that provides the strongest deniability guarantees one can hope for: a secure
computation protocol where, even after the successful protocol execution, no one
learns who the participants were. Specifically, we consider the following setting: N
individuals are interacting. Among them, k players are willing to jointly compute
a public function f on their private inputs (x1, . . . , xk), while the remaining
(N − k) are not interested in taking part to the protocol (nor are even aware of
the fact that a secure computation might be taking place). At the end of the
protocol, the k participants should all receive the output, but no party should
be able to find out which of the parties were actually participating. We call this
strengthening of secure computation undetectable secure computation.

Since undetectable secure computation is stronger than Anonymous Trans-
fer (which it implies), our impossibility results for Anonymous Transfer also
translate to impossibility results for undetectable secure computation3. Further-
more, building on our positive result, we show how to construct anonymous
oblivious transfer (in the fine-grained security setting), a core building block for
constructing undetectable secure computation for more general functionalities.

1.2 Defining Anonymous Transfer

An Anonymous Transfer (AT) protocol describes the interaction between a
sender, a receiver and a non-participant. We assume all parties to interact in
the synchronous model over a public broadcast channel, i.e., in each round each
participant broadcasts a message which only depends on messages from previous
rounds. The non-participant is not aware that a protocol takes place, and is
only having an innocent conversation (we call them the “dummy player”, or
the “dummy friend”). We follow [vHL05; CGO+07] and model non-participating
3 This follows directly from the fact that given undetectable secure computation for

any function f , we can directly construct AT by computing a function that lets two
potential senders insert either a bitstring for transfer or ⊥ and outputs one of them
(i.e. the one input that is not ⊥) to the receiver.
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parties as parties that only broadcast uniform randomness in each round, since
any ordinary communication pattern can be viewed as an embedding of the
uniform distribution due to standard techniques [vHL05; HLv02; vH04]. The
sender aims to transmit a message to the receiver in a way that does not leak
its identity (the notion easily generalizes to more non-participating parties).
We say that an AT protocol is ε-correct if the probability that the receiver
successfully receives the message is at least ε. Further, we say that an AT
protocol is δ-anonymous if no adversary is able to determine the identity of the
sender (given the transcript and the receiver’s random tape) with advantage
more than (1− δ)/2 over guessing. These are the core properties which shape
an AT protocol. If the protocol allows the receiver to remain silent throughout
the protocol execution, sending a message corresponds to publicly revealing the
message (i.e., whistleblowing). Eventually, we call fine-grained AT an Anonymous
Transfer, where anonymity is only required to hold against adversaries from a
restricted complexity class (typically, adversaries whose runtime is bounded by a
fixed polynomial in the runtime of the honest parties).

1.3 Impossibility Result

Our first main result shows that AT is impossible in a strong sense.

Theorem 1 (Impossibility of AT, informal). There is no Anonymous Trans-
fer protocol with overwhelming correctness and anonymity, with any polynomial
number of rounds and any number n ≥ 1 of non-participating parties, even for
transmitting a single bit message.

Our proof proceeds in several steps. First, we show that any Anonymous
Transfer for transmitting a single bit with n non-participants, with overwhelming
correctness and anonymity implies (in a black-box way) a silent-receiver Anony-
mous Transfer (where the receiver never speaks) for transmitting κ bits (where κ
is some security parameter) with a single non-participating party. This reduction
uses a relatively standard indistinguishability-based hybrid argument.

Then, the core of the proof rules out the existence of κ-bit silent-receiver 1-non-
participant Anonymous Transfer with overwhelming correctness and anonymity.
The key intuition is the following: let P0, P1 be the two parties interacting with
the receiver, where Pb is the sender, and P1−b is the non-participant. Let Πκ

AT

be the protocol which these two parties execute, and assume that it satisfies
ε-correctness and δ-anonymity. Suppose that during their interaction, the parties
produce a transcript π. We consider an adversary A which replaces the last
message of P0 by a random value, before running the receiver algorithm to
reconstruct the transmitted message. Then if b = 1, the adversary just replaced
the last (random) message of the non-participating party by another random
message, and the transcript is still a perfectly valid transcript for Πκ

AT , hence
the reconstruction algorithm must still output the right string Σ with overall
probability ε. On the other hand, if b = 0, then the transcript is a valid transcript
for a “round-reduced” version of Πκ

AT , where the last round is replaced by two
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random messages. By the δ-anonymity, A should not distinguish between the two
situations with advantage better than (1− δ)/2. This implies that the correctness
of the round-reduced protocol cannot be much lower than ε, hence that we
constructed a δ-anonymous (c− 1)-round protocol with non-trivial correctness
guarantees. Then, A keeps repeating this procedure until we reach a 0-round
protocol, which cannot possibly have any non-trivial correctness guarantee.

While the above provides an intuition of the approach, the real strategy is
much more involved. In particular, using A to distinguish between a random
transcript of Πκ

AT and a random round-reduced transcript does not suffice to
rule out arbitrary polynomial-round protocols (more precisely, it would only
rule out logarithmic-round protocols, since the correctness guarantees would
decrease roughly by a factor two at each step of round reduction). Instead, A will
replace independently the last message of each party by a random value, getting
two distinct transcripts (π0, π1). Then, A attempts to distinguish whether π0
is a transcript of Πκ

AT and π1 is a round-reduced transcript, or the other way
around. While this is the proper way to attack the protocol, the analysis is more
involved, since now π0, π1 are not independent random variables anymore, as
they share a common prefix (the transcript of the first c−1 rounds). Nevertheless,
a more careful analysis shows that this dependency cannot significantly lower
the distinguishing probability of A.

In the full version [ACM21] we further prove that no AT protocol for N > 3
parties with overwhelming correctness and anonymity can exist unless a N = 3-
party protocol exists with overwhelming correctness and anonymity—which
cannot exist. It suffices to prove that any N -party Silent Receiver AT for N > 3
implies a (N)-party “normal” (i.e. with an actively participating receiver) AT,
without losing the overwhelming correctness and anonymity in the process.

Intuitively, the receiver does not broadcast any messages in the N -party
protocol; all communication comes from the (N − 1) potential senders. We con-
struct an (N − 1)-party protocol by letting the receiver play one non-participant,
with the one difference being that this party is known not to be the sender
(since it is the receiver); the sender can only be one of the (N − 2) other parties.
While the correctness remains unaffected, the anonymity decreases due to the
fact that guessing with one party less yields better results; yet we show that
the anonymity still remains overwhelming in the security parameter. We then
transform any N -party AT to an N -party SR-AT as described above and that to
a (N − 1)-party AT, until we have a 3-party AT that, assuming that the N -party
AT has overwhelming anonymity and correctness, maintains these properties.

On a high level, this process lets the actual participants simulate non-
participants behavior in their head; one-by-one their random tape is moved
to the CRS until only three parties are left: a sender, a receiver, and a non-
participant.

Our negative result applies to a weak model. In particular, non-participants
are modeled to be semi-honest. Hence, our negative result does not leave much
room for positive results.
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1.4 A Candidate Fine-Grained Anonymous Transfer

To circumvent the above impossibility result, we need to give up asymptotic
security and resort to the fine-grained setting: We only require anonymity against
adversaries which require polynomially—quadratically, in our case—more re-
sources than an honest protocol execution.

That is, our second main result shows that (perhaps surprisingly) non-trivial
AT is indeed possible in a weaker setting:

Theorem 2 (Feasibility of AT, informal). Let N = 3 be the number of
individuals. Assuming ideal obfuscation, for any anonymity δ, there is a c-round
Anonymous Transfer protocol Π1

AT (for ℓ bit messages) that has overwhelming
correctness, where anonymity δ holds against any adversary A with runtime ≪ c2.

That is, for our second main contribution we propose a protocol which—assuming
ideal obfuscation—allows to reduce the problem of de-anonymizing the sender
to a distribution testing problem. More precisely, we show that determining the
real sender in a c-round protocol given only a transcript of the AT protocol is
as hard as differentiating between two Bernoulli oracles, where one returns 1
with probability p and the other returns 1 with p + 1/(2c). For this distribution
testing problem, strong lower bounds on the number of required samples and
thus the adversarial runtime are known.

The protocol proceeds in rounds, where each honest message from the sender
gradually increases the probability that the transmitted bit is correctly received.
The sender first encrypts a verification key that is to-be-used be the obfuscated
circuit, and in each successive round the sender encrypts the bit and a signature
on both messages from the previous round to limit the ability of the adversary to
manipulate the transcript when attacking anonymity. The non-participant only
broadcasts random bits in each round. The Common Reference String contains
an obfuscated program with hard-coded keys for the pseudorandom encryption
scheme. The circuit checks the validity of the signatures of each round. Each
consecutive valid round increases the confidence in the transmitted bit. Finally,
the circuit outputs random bit according to the confidence gained. If all rounds
are valid, the correct bit will be output with probability 1, if no round is valid,
the correct bit will be output with probability 0.5.

While the high level intuition of the protocol is relatively clear, its exact
instantiation is particularly delicate – any small variant in the design seems to
open the avenue to devastating attacks. Furthermore, its analysis relies on long
and complex hybrid arguments that progressively reduce the advantage of the
adversary to contradictions with respect to known distribution testing bounds
with a limited number of samples. The majority of our proof can be found in our
full version [ACM21].

Our proof can be split in two parts. The first part exploits properties of
the encryption schemes, the signature scheme, and ideal obfuscation to prove
indistinguishability (against even PPT adversaries) between the actual protocol
and a hybrid, where all reported messages are truly random and independent
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from the sender and the transferred bit, and the obfuscated circuit only counts
how many input messages are identical to those from the challenge transcript.

This game still contains information on the sending party as it treats those
messages differently. To remove this dependency, we resort to distribution testing
and view the obfuscated circuit as a Bernoulli oracle which follows one of two
(known) distributions, and where the goal is to determine which one.

1.5 Discussions and Implications

In this section, we further discuss some implications and relations of our results
to the literature.

‘Philosophical implications:’ between obfustopia and impossibilitopia.
There is a small remaining gap between our negative and positive results: the
possibility of building anonymous transfer secure against arbitrary polytime
adversaries, but with non-negligible (e.g. inverse polynomial) anonymity error
remains open. Closing this gap would have an intriguing philosophical consequence:
stretching the terminology of Impagliazzo on the “worlds” of cryptography, it
would establish the existence of a cryptographic primitive that plausibly exists
in obfustopia (the world where indistinguishability obfuscation is possible) in
the fine-grained setting, yet does not exist (“reside in impossibilitopia”) with
standard hardness gaps. Interestingly, there are several known examples where
fine-grained constructions of a “higher world” primitive reside in a lower world;
for example, (exponentially secure) one-way functions (a Minicrypt assumption)
imply fine-grained public-key encryption (a Cryptomania assumption). Our work
seems to provide a new example of this behavior, at the highest possible level
of the hierarchy, showing that impossible primitives might end up existing if we
weaken their security to the fine-grained setting.

Relation to the anonymous whistleblowing literature. We clarify how our
(positive and negative) results relate to the literature on anonymous broadcast
and secure whistleblowing. In general, a whistleblower willing to reveal something
anonymously has two alternative choices: (1) the whistleblower has access to an
anonymous communication channel, for example by putting their message (say,
encrypted with the receiver public key) on some public website that somehow
cannot be traced to them. However, access to an anonymous channel is typically
a ’physical’ assumption, and one which is very hard to guarantee. This issue
is developed in great detail in the literature: see for example the discussion in
Spectrum [NSSD21] about how metadata have been used by federal judges to
trace and prosecute people who leaked data through secure messaging apps, or
the discussion in Riposte [CBM15] and Express [ECZ+21] on how traffic analysis
can be used to trace whistleblowers on the Tor network or the SecureDrop service.
Hence, most of the literature focuses on scenario (2): the individuals interact over
a communication network, and we do not assume that this network guarantees
anonymity in itself. In this case, what we want is to emulate this anonymity, by
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developing a strategy to help the whistleblower transmit a message anonymously
to the receiver.

The literature on this subject is incredibly vast, but this emulated anonymity
is always achieved using the same template in all solutions we are aware of (includ-
ing Spectrum, Blinder, Riposte, Express, Talek, P3, Pung, Riffle, Atom, XRD,
Vuvuzela, Alpenhorn, Stadium (or any other Mixnet-based solution), Karaoke,
Dissent, Verdict, and many more): when the whistleblower wants to anonymously
transmit a message, either to everyone (anonymous broadcast) or to a target
receiver, other users generate ‘honest’ traffic in which communications can be
hidden. To do so, the users interact with a set of non-colluding servers (some-
times two servers, sometimes more, some with honest majority, some without).
This is never even discussed or remarked: it is taken as an obvious fact that
this is the structure of an anonymous broadcast (or messaging) protocol. And
indeed, the need to generate honest traffic feels clear – if the whistleblower is
the sole sender, observing traffic directly leaks their identity. That the use of
non-colluding servers was never challenged or even discussed probably means
that it also feels clear – but this assumption is precisely what we challenge in our
work: we do assume that some users generate honest traffic, but we ask whether
the assumption of non-colluding participating servers is avoidable. Of course, any
scientific treatment of a broad question (‘are non-colluding helpful participants
required for anonymous broadcast?’) is bound to move from the broad question
to a formal model, in which (feasibility or impossibility) results can be achieved.
Nevertheless, we believe that our impossibility result demonstrates that the use
of non-colluding servers in all previous works was indeed unavoidable, at least
insofar as their aim was to achieve anonymity against arbitrary polynomial-time
adversaries.

Non-participating parties versus malicious parties. Our choice of for-
malism, with the notion of anonymous transfer, allows to study whether the
assumption of honest, non-colluding, participating servers can be replaced by
a considerably weaker trust assumption: that of non-participating parties, not
trying to take part to the protocol in any way (and not even required to be aware
of the execution of the protocol) beyond generating traffic. As we show, this
weaker assumption does not suffice against arbitrary polynomial-time adversaries,
but possibly suffices against bounded polynomial-time adversaries (where the
bound is sub-quadratic). As a natural next step, one could push the question
even further and ask: what if some of the non-participating parties were in fact
planted by a malicious adversary, and now play maliciously during the proto-
col? It seems plausible, that our general strategy can be extended to deal with
malicious non-participants. However, we expect the analysis to require different
techniques than the ones we used. We leave a formal proof of this to future work.

1.6 Further Results and Open Questions
In the full version [ACM21] we extend our fine-grained AT such that it transfers
ℓ-bit messages directly, which achieves the same level of security as the single-bit
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AT but requires twice as many rounds. We instantiate asymptotically secure AT
in the designated-sender setting with non-trivial (but not useful) parameters
for ε and δ. We define an extension of AT called Strong AT which we require
for Undetectable Computation. We define undetectable versions of both OT
(called Undetectable Oblivious Transfer (UOT)) and MPC (called Undetectable
Multiparty Computation (UMPC)), where k parties hide the respective execution
in a group of N individuals. We provide an instantiation of UOT based on strong
AT and use that to instantiate UMPC for k = 3.

Our work leaves open two exciting questions:

(1) Can our impossibility result for asymptotically secure AT with overwhelming
correctness and anonymity be extended to rule out asymptotically secure AT
with anonymity 1− 1/poly(κ)?

(2) Is it possible to instantiate AT in the fine-grained setting from “Obfustopia”
standard assumptions achieving similar parameter as our instantiation?

Given that both our open questions can be answered affirmatively, this would
separate the realm of asymptotic security from the realm of fine-grained security.

1.7 Acknowledgements
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2 Preliminaries

2.1 Notations

For any party P we denote by T P the random tape of P.
For events (A, B), Ā denotes the complementary even of A, Pr[A | B] denotes

the probability of A happening conditioned on B happening. For values (a, b), the
notation Ja = bK denote the bit value of the corresponding predicate. We let κ be
a security parameter; we write negl(κ) to denote any function negligible in κ and
owhl(κ) to denote a function overwhelming in κ (that is, 1− owhl(κ) = negl(κ)).
For any probability distribution D, we denote by Supp(D) the support of D, and
by x

$← D we denote that x is uniformly sampled from D.
For probability distributions p and q we write p⊗t as the distribution arising

from taking t sample from p, and p ◦ q as the distribution obtained by sampling
one time from p and one time from q. We write ∥p∥1 to denote the L1 norm of p.

For two bitstrings A, B ∈ {0, 1}m, A⊕B denotes the bitwise XOR of A and
B. We write by [n] for n ∈ N the set of numbers {1, . . . , n}.

2.2 Distribution Testing

In this section, we introduce preliminaries for probability testing. We start by
describing the Total Variational Distance between two distributions.
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Definition 1 (Total Variational Distance). Let p and q be two probability
distributions over the countable set of possible outcomes Ω. The total variational
distance between p and q is defined as:

dTV(p, q) := 1
2

∑
ω∈Ω

|p(ω)− q(ω)| = 1
2∥p− q∥1 (1)

An important property of the total variational distance is that it acts sublinear
when taking many samples. When taking t samples from a Bernoulli distribution
the corresponding distribution can be described by taking a single sample from a
t-bit Binomial distribution. The sub-additivity then bounds the total variational
distance of the corresponding binomial distribution:
Lemma 1 (Total variational distance of a t-fold probability distribution,
folklore). Let p and q be two Bernoulli distributions with total variational
distance dTV(p, q). Then it holds for the binomial distributions p⊗t and q⊗t that
result from sampling t times from the respective distributions:

dTV(p⊗t , q⊗t) ≤ t · dTV(p, q) (2)

Thus we can bound the distinguishing advantage of any distinguisher who
has taken t samples form the same oracle using the total variational distance of
the respective distributions directly.

A similar rule also holds for two different distributions, where the distinguisher
has to distinguish whether two samples originate from p ⊗ r or from q ⊗ s for
known values of p, q, r and s. In this case the rule states that:
Lemma 2 (Sub-Additivity of the Total Variational Distance for Prod-
uct Distributions, folklore). Let p and q be a probability distribution over
{0, 1}m with total variational distance dTV(p, q). Let r and s be two Bernoulli
distributions with total variational distance dTV(r, s). Then it holds for the distri-
bution derived from sampling from each distribution once and concatenating the
outputs (which yields a sample from {0, 1}m+1 originating either from p ◦ r or
q ◦ s) that

dTV(p ◦ r, q ◦ s) ≤ dTV(p, q) + dTV(r, s)
The following lemma limits the distinguishing advantage of any distinguisher

that tries to distinguish two distributions p and q based on a single sample.
Lemma 3 (Distinguishing distributions based on the Total Variational
Distance). Let p and q be two distributions with total variational distance
dTV(p, q). If dTV(p, q) < 1

3 , then no algorithm can exist that distinguishes p and
q with probability ≥ 2

3 based on a single sample.
Using Lemmas 1 and 3 we can provide lower bounds on the sampling com-

plexity of distinguishing two distributions p and q with advantage α/2.
Corollary 1 (Distinguishing two Bernoulli-Distributions with t sam-
ples). Any distinguisher D that distinguishes between p and q with probability
≥ 1

2 + α
2 requires t ∈ Ω

(
α

dTV(p,q)

)
samples.

We refer the reader to [ACM21] for proofs of Lemma 3 and Corollary 1.
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3 Anonymous Transfer

We consider the following situation: some secret agent Pb is willing to transfer a
message Σ to a receiver R, while hiding his identity b among two individuals. We
call Anonymous Transfer (AT) an interactive protocol that achieves this goal.

3.1 Network Model and Non-Participating Parties

The goal of an anonymous transfer protocol is to hide the transferred message
among innocent conversations by individuals, which are not taking part in the
protocol. By a well-established folklore result in steganography, this task can be
reduced to the simpler task of hiding the transferred message among uniformly
random beacons, broadcast by the other individuals: the uniform channel, where all
protocol messages look uniformly random, can be compiled into any other ordinary
communication pattern [vHL05; HLv02; vH04]. Therefore, as in previous works
(see von Ahn, Hopper, and Langford [vHL05] and Chandran, Goyal, Ostrovsky,
and Sahai [CGO+07]), we consider a set of k parties who interact with each other
via broadcast channels and focus, without loss of generality, on protocols for
the uniform channel. Consequently, we will model the non-participating parties
as “dummy parties” that only broadcast uniformly random messages of a fixed
length at each round.

3.2 The Model

Let b ∈ {1, · · · , N − 1} denote the index of the sender and let Σ ∈ {0, 1}ℓ be
the message that Pb wants to transfer to the receiver. We consider an interactive
protocol in the Common Reference String (CRS) model between N players
(P1, · · · , PN−1, R), where R and Pb participate in the protocol, and Pi for i ̸= b
are non-participating but present players that only broadcast random strings. The
receiver R gets the CRS as input and the sender Pb gets the CRS and the message
Σ as input. For any player P, let T P denote the random tape from which P draws
his random coins. The players interact through authenticated broadcast channels
in the synchronous model: the protocol proceeds in rounds, and each player
broadcasts a message at each round. We denote by ⟨R, P1, · · · , PN−1⟩(crs, b, Σ)
the distribution of the possible transcripts of the protocol in this setting (i.e.,
the sequence of all messages broadcasted by the players during an execution of
the protocol), where the probabilities are taken over the random coins T P of the
players P ∈ {R, P1, · · · , PN−1} and the random choice of the CRS crs.

Definition 2 ((ε, δ, c, ℓ)-Anonymous Transfer). An N -party (ε, δ, c, ℓ)-Anony-
mous Transfer (AT) for ε, δ ∈ R[0,1] and N, c, ℓ ∈ N (all possibly functions in
κ) is a tuple containing three PPT algorithms (Setup, Transfer, Reconstruct). The
number of rounds in the Transfer protocol is given as c and the bitlength ℓ defines
the length of the transferred message Σ. The algorithms are defined as follows:

Setup(1κ) takes as input the security parameter 1κ in unary encoding and outputs
a Common Reference String crs.

12



Transfer(crs, b, Σ) defines a c-round protocol4 that takes as input the Common
Reference String crs, an index b ≤ N − 1 specifying the sender, and the
message Σ ∈ {0, 1}ℓ from the sender and outputs a transcript π. The non-
sender sends independent uniformly distributed noise in each round. All
protocol messages sent by the receiver, the sender and the non-participating
parties at each round are bitstrings of length m = m(κ), where m is implicitly
specified by the Transfer protocol.

Reconstruct(crs, π, T R) is a local algorithm executed by the receiver that takes as
input the CRS crs, the protocol transcript π and the receiver’s random tape
T R and outputs a message Σ′.

The algorithms additionally satisfy the ε-correctness and the δ-anonymity
properties defined in Definitions 3 and 4.

Definition 3 (ε-Correctness). For any sufficiently large security parameter
κ, for any number of individuals N ∈ poly(κ), for any participant b ∈ [N − 1],
for any message length ℓ ∈ poly(κ), for any message Σ ∈ {0, 1}ℓ, and for any
CRS crs ← Setup(1κ), an Anonymous Transfer protocol Πℓ

AT between players
(P1, . . . , PN−1, R) is ε-correct if the following holds:

Pr
[

π
$← Transfer⟨R,P1,...,PN−1⟩(crs, b, Σ)

Σ′ ← Reconstruct(crs, π, T R) : Σ = Σ′
]
≥ ε (3)

Note that ε can take on any value between 0 and 1. The naive algorithm that
lets the receiver sample a uniformly random ℓ-bit string has ε = 1/2ℓ.

Definition 4 (δ-Anonymity). For any PPT algorithm A = (A0, A1), for all
sufficiently large security parameters κ, for any number of individuals N ∈ poly(κ),
and for any message length ℓ ∈ poly(κ), an Anonymous Transfer protocol Πℓ

AT

between players (P1, . . . , PN−1, R) is δ-anonymous if it holds that∣∣∣∣∣ Pr
b

$←[N−1]

[
Expanon

Πℓ
AT

,A,b(κ) = b
]
− 1

N − 1

∣∣∣∣∣ ≤ (1− δ) · N − 2
N − 1 (4)

where Expanon
Πℓ

AT
,A,b(κ) is defined in Fig. 1.

The value δ can take any value between 0 and 1. The higher δ the stronger the
provided anonymity guarantees. If a protocol is δ = 1-anonymous, the advantage
over guessing at random equals 0, and if a protocol is δ = 0-anonymous, the
advantage over guessing at random equals 1. The right-hand-side of Definition 4
contains a scaling factor of (N − 1)/(N − 2). This is due to the fact that even
under perfect anonymity (δ = 1), the receiver can still guess the sender. Knowing
that one of the N parties—namely itself—is not the sender, there are (N − 1)
4 A c-round protocol corresponds to a synchronous model, where each message is

broadcasted and the messages in each round only depend on messages from previous
rounds, see [ACM21] for a formal definition.
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Expanon
Πℓ

AT
,A,N,b

(κ)

crs $← Setup(1κ)

T R
$← {0, 1}poly(κ)

(Σ, st)← A0(crs, T R)

π
$← Transfer⟨R,P1,...,PN−1⟩(crs, b, Σ; T R, ·, ·)

return A1(π, T R, st)

Fig. 1: Definition of the game Expanon
Πℓ

AT
,A,b

(κ).

potential senders, of which (N − 2) are just dummy friends. Thus, the probability
of guessing wrong is given by the aforementioned factor.

Note that we require anonymity to hold, in particular, against the receiver.
Therefore, the adversary in the anonymity game may know the receiver’s random
tape T R from the beginning.

The guessing algorithm is split between A0 who is given the CRS and the
random tape T R the receiver is going to use during the protocol, and outputs
the target message Σ that should be transferred and a state st. In the second
phase, the algorithm A1 which is given the inputs π and the state.

Unless stated otherwise, we consider the case N = 3, i.e., one non-participant.

3.3 Fine-grained Anonymous Transfer

Fine-grained cryptographic primitives are only secure against adversaries with
an a-priori bounded runtime which is greater than the runtime of the honest
algorithms, [Mer78; DVV16]. We use the notion of [DVV16]. In the following, C1
and C2 are function classes.

Definition 5 (C1-fine-grained (ε, δ, c, ℓ)-Anonymous Transfer against C2).
The tuple (Setup, Transfer, Reconstruct) (as defined in Definition 2) is a C1-fine-

grained (ε, δ, c, ℓ)-Anonymous Transfer for ε, δ ∈ R[0,1] and c, ℓ ∈ N against C2 if
the following two conditions hold:

Efficiency. The algorithms (Setup, Transfer, Reconstruct) are in C1.
Security. Anonymity (Definition 4) is only required to hold against adversaries

in C2.

The definition of correctness remains as in Definition 3.

Example 1 (Merkle-Puzzles). Merkle-Puzzles [Mer78] are a fine-grained protocol
to exchange a shared key from symmetric encryptions where successful encryptions
can be efficiently distinguished from false ones. The sender S creates nmer many
ciphertexts, each under a different (relatively short) key, containing a unique
identifier and a symmetric key. The receiver R then randomly picks one of the
ciphertexts and runs a brute-force attack (which we assume to cost mmer many
steps) to recover the key and to send the identifier back to the sender.
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Here C1 := O(nmer + mmer) as the sender has to create nmer puzzles and the
receiver must use mmer steps to break one of them, and C2 := O(nmer ·mmer) as
an adversary has to break at worst all the nmer ciphertexts to recover the key.

3.4 Trivial Anonymous Transfers

For simplicity, we focus on 3-party anonymous transfer in the following discussions,
with two players P0, P1 and a receiver R.

Remark 1 (Perfect correctness.). A perfectly correct (i.e. ε = 1) protocol is
impossible. Given a player Pb with input Σ, there is always a probability that
the non-participating player P1−b behaves exactly as a participating player with
input Σ′ ̸= Σ, in which case R cannot obtain the correct output for sure.

Therefore, the best one can hope for is a correctness statistically close to 1. In
the following, we demonstrate ATs with trivial parameters.

Example 2 (Trivial single-bit AT). Consider the following trivial single-round
AT to transfer a single bit σ: Pb broadcasts his input σ (and P1−b broadcasts a
random bit). Upon receiving (σ0, σ1) from P0 and P1, if σ0 = σ1, R outputs σ0;
otherwise, R outputs a uniformly random bit. As P1−b broadcasts a random bit,
it holds that σ0 = σ1 with probability 1/2, in which case R obtains the correct
output σ = σb; else, R obtains the correct output with probability 1/2. Overall, R
obtains the correct output with probability 3/4. The protocol is 1/2-anonymous
since the adversary knows the message to be transmitted and can hence determine
the sender whenever the transmitted bits are distinct and guess with probability
1/2 otherwise. Hence, the above protocol is a (3/4, 1/2, 1, 1)-AT.

Example 3 (Trivial ℓ-bit AT). One can also construct a trivial ℓ-bit AT. To
transmit a message Σ ∈ {0, 1}ℓ: Pb simply sends Σ repeated κ times. Clearly,
(not only) R finds out both Σ and b with overwhelming probability. Hence, the
above protocol is a (1− negl(κ), negl(κ), κ · ℓ, ℓ)-AT.

In this work, we study whether ATs with non-trivial parameters can exist.

3.5 Reductions Among AT Protocols

In this section, we show that several simplified variants of anonymous transfer
are equivalent to the original definition.

AT implies silent-receiver AT. We say that an anonymous transfer has silent
receiver if the receiver never sends messages during the Transfer protocol, and
Reconstruct is a deterministic function of the CRS and the transcript π. Any AT
directly implies a silent-receiver AT with the same parameters for correctness
and anonymity, but at the cost of secrecy: Any (non-)participant is able to
reconstruct the message given only the transcript of broadcasted messages, not
just the receiving party of the protocol, which might be undesirable for practical
applications. Let Πℓ

AT be a (ε, δ, c, ℓ)-Anonymous Transfer. Define the silent-
receiver AT Πℓ

SR as follows:
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Πℓ
SR.Setup(1κ) runs crs ← Πℓ

AT .Setup(1κ) and samples a uniform random tape
T R for R. It outputs (crs, T R).

Πℓ
SR.Transfer(crs, b, Σ) proceeds exactly as Πℓ

AT .Transfer(crs, b, Σ), except that
the receiver R does not broadcast any message. At each round χ = 1 to
χ = c, the sender Pb locally appends the χ-th receiver message xχ in
Πℓ

AT .Transfer(crs, b, Σ; T R, ·, ·) to the current transcript π[χ] (note that xχ

can be computed deterministically from π[χ] and T R), and compute its next
message as in Πℓ

AT .Transfer using the transcript π[χ]∥xχ.
Πℓ

SR.Reconstruct(crs, π, T R) is defined exactly as Πℓ
AT .Reconstruct(crs, π, T R),

except that it first expands the transcript π by recomputing (deterministically)
the messages of R in Πℓ

AT .Transfer(crs, b, Σ; T R, ·, ·) and appending them to
π at each round.

The notion of silent receiver AT captures the notion of an anonymous transfer
whose aim is to publicly reveal a message (i.e., whistleblowing) rather than sending
it to a single receiver. An other way to look at it is to consider that the silent
receiver transformation can be seen as passive to active security transformation
for the receiver: If there is a secure AT protocol against a passive receiver, then
there is a secure silent receiver AT against an active receiver, simply because the
receiver has no option to cheat as no messages are sent.

Lemma 4. Πℓ
SR is an (ε, δ, c, ℓ)-Anonymous Transfer.

Proof (sketch). Correctness and number of rounds follow directly from the
description of Πℓ

SR, which simply mimics Πℓ
AT , except that the random tape of

the receiver is made public, and its messages are computed on the fly locally by
the sender and during the reconstruction. Anonymity follows also immediately
by observing that T R is given to the adversary in the anonymity game, hence
making it public cannot harm anonymity. ⊓⊔

Since the converse direction is straightforward, AT and silent receiver AT are
therefore equivalent.

Single-bit AT implies many-bit AT. In this section, we analyze how a single-
bit AT can be generically transformed into an AT which allows to transmit
bitstrings. We construct an ℓ-bit AT by executing the single-bit AT ℓ times
(sequentially) to transmit the message bit-by-bit. Let Π1

AT be a C1-fine-grained-
(ε, δ, c, 1)-Anonymous Transfer against C2. Further, let Πℓ

AT be the protocol
which uses ℓ instances of Π1

AT to transmit ℓ-bit messages bit-by-bit.
We analyze Πℓ

AT using the fine-grained definition. The results directly apply
using asymptotic security.

Lemma 5. Let Π1
AT be a C1-fine-grained (ε, δ, c, 1)-Anonymous Transfer against

C2. Then, the protocol Πℓ
AT is a C′1 := C1 ·ℓ-fine-grained

(
ε′, δ′, c · ℓ, ℓ

)
-AT against

C′2 := C2 − ℓ · C1, where ε′ = εℓ and δ′ = (δℓ− ℓ− δ + 2).5
5 We slightly abuse notation but we believe the meaning to be clear.

16



Proof. For Σ ∈ {0, 1}ℓ, we have ε′ = Prcrs,π,Σ′ [Σ = Σ′] = εℓ.
For the purpose of avoiding notational overhead, we prove anonymity for N = 3

parties, i.e., for one non-participant. The general case follows by generalizing
notation. Let A be an adversary against the anonymity of Πℓ

AT . We define a
sequence of hybrid games H1, . . . , Hℓ between Expanon

Πℓ
AT

,A,0(κ) and Expanon
Πℓ

AT
,A,1(κ)

in Fig. 2. H1 is identical to Expanon
Πℓ

AT
,A,1(κ) and Hℓ is identical to Expanon

Πℓ
AT

,A,0(κ).
We construct an adversary B against the anonymity of Π1

AT in Fig. 2. If
B plays Expanon

Π1
AT

,B,0(κ), then B simulates Hi+1 for A. Otherwise, if B plays
Expanon

Π1
AT

,B,1(κ), then B simulates Hi for A.

Hi

for j ∈ [ℓ] do
crsj ← Setup(1κ)

crs′ := (crs1, . . . , crsℓ)

T ′
R := (T R,1, . . . , T R,ℓ)← ({0, 1}poly(κ))ℓ

(Σ, stA)← A0(crs′, T ′
R)

for j ∈ {1, . . . , i− 1} do
πj ← Transfer(crs, 0, Σ[j]; T R,i, ·, ·)

for j ∈ {i, . . . , ℓ} do
πj ← Transfer(crs, 1, Σ[j]; T R,i, ·, ·)

return A1((π1, . . . , πℓ), stA)

B0(crs, T R)

i← {1, . . . , ℓ− 1}
for j ∈ [ℓ] \ {i} do

crsj ← Setup(1κ)

T R,j ← {0, 1}poly(κ)

crsi := crs, T R,i := T R

crs′ := (crs1, . . . , crsℓ)
T ′

R := (T R,1, . . . , T R,ℓ)
(Σ, stA)← A0(crs′, T ′

R)
st := (Σ, i, stA)
return (Σ[i], st)

B1(π, st)

parse st =: (Σ, i, stA)
for j ∈ {1, . . . , i− 1} do

πj ← Transfer(crs, 0, Σ[j]; T R,j , ·, ·)
for j ∈ {i + 1, . . . , ℓ} do

πj ← Transfer(crs, 1, Σ[j]; T R,j , ·, ·)
πi := π

return A1((π1, . . . , πℓ), stA)

Fig. 2: Hybrid games for the expansion of single-bit AT to multi-bit AT (left) and the
adversary (middle and right).

Provided that B is in C2, we have

1− δ ≥ |Pr[Expanon
Πℓ

AT
,B,0(κ)]− Pr[Expanon

Πℓ
AT

,B,1(κ)]|

= 1
ℓ− 1(Pr[Hℓ]− Pr[H1]) = 1

ℓ− 1

(
Pr[Expanon

Πℓ
AT

,A,0(κ)]− Pr[Expanon
Πℓ

AT
,A,1(κ)]

)
We have that T(B) = T(A) + (ℓ− 1) · C1 = T(A) + ℓ · C1. Hence, given that

T(A) = T(B)−C1 ∈ C2− ℓ ·C1, the anonymity advantage of A is (1− δ)(ℓ− 1)/2,
yielding anonymity of δ′ = δℓ− ℓ− δ + 2. ⊓⊔

4 Impossibility of Anonymous Transfer

In this section, we prove that no anonymous transfer protocol, with an arbitrary
polynomial number of rounds, can simultaneously enjoy overwhelming correctness
(ε = 1 − negl(κ)) and overwhelming anonymity (δ = 1 − negl(κ)), even for
transmitting single bit messages.

Theorem 3 (Impossibility of AT). Let µ : N 7→ R be any negligible function
and p be any polynomial. There is no (1− µ(κ), 1− µ(κ), p(κ), 1)-Anonymous
Transfer, for any number of parties.
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Theorem 3 will follow as a corollary from a more general result bounding the
relation between ε and δ in any c-round protocol. Throughout this section we
will focus on N = 3, that is, the case with one dummy player. This is without
loss of generality as we will show in the full version [ACM21] that any N -party
anonymous transfer with N > 3 implies in particular a 3-party anonymous
transfer, for which we will show here that it can not exist.

4.1 The Attacker

From now on, we focus on building a generic attack against 3-party silent-
receiver anonymous transfer for κ-bit messages. The theorem will follow from the
reductions from 1-bit anonymous transfer to multibit silent-receiver anonymous
transfer described in Section 3.5.

Let Πκ
AT be a silent-receiver (ε, δ, c, κ)-Anonymous Transfer. Let m = m(κ)

be the bitlength of the message from the non-participating party. Let Rand denote
the following procedure: on input a transcript π of Πκ

AT , Rand(π) truncates π to
c− 1 rounds of the AT protocol, and replaces the messages of the last round by
two uniformly random length-m bitstrings6. It outputs the new rerandomized
transcript π′. For every Σ ∈ {0, 1}κ and b ∈ {0, 1}, we let Db,Σ ,D′b,Σ ,DR denote
the following distribution:

Db,Σ = {Σ′ : crs ← Setup(1κ), π ← Transfer(b, Σ), Σ′ ← Reconstruct(crs, π)}
D′b,Σ = DR =Σ′ :

crs ← Setup(1κ),
π′ ← Rand(Transfer(b, Σ)),
Σ′ ← Reconstruct(crs, π′)

 ,

Σ′ :
crs ← Setup(1κ),
π′

$← ({0, 1}m × {0, 1}m)c,
Σ′ ← Reconstruct(crs, π′)


Fix an arbitrary polynomial t. We define an attacker At = (At

0, At
1) against

the anonymity of Πκ
AT , parameterized by the polynomial t, on Figure 3. In the

following, we will not use At directly to attack the full c-round protocol: rather,
we will use At as a distinguisher between the c-round protocol Πκ

AT , and the
(c− 1)-round protocol obtained by running Πκ

AT for (c− 1) rounds, and replacing
the messages of the last round by uniformly random m-bit strings. From there,
the proof of impossibility will proceed by induction; we refer the reader to the
introduction for a high-level intuition of our proof.

Base case: advantage of At when c = 1. We start the induction by bounding
the advantage of At in the anonymity game when Πκ

AT is non-interactive (i.e.,
Transfer consists of a single message from each of P0, P1 to the receiver). Before
proceeding, we make two key observations:

6 Since the protocol is silent-receiver, there is no message from the receiver; furthermore,
assuming that the sender message is m-bit is without loss of generality, since otherwise
the protocol is trivially not anonymous.
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Attacker At = (At
0, At

1)

Algorithm At
0

– On input crs, sample (Σ1, · · · , Σt) $← DR, and set Σt to be an arbitrary
element of {0, 1}κ \ {Σ1, · · · , Σt} (which exists since t≪ 2κ).

– Output (Σt, st = (crs, Σt)).
Algorithm At

1

– On input Σ, st, parse st as (crs, Σt) and π as a triple (π[c− 1], x0, x1),
where π[c− 1] is a transcript for the first c− 1 rounds (if c = 1, it is the
empty string), and (x0, x1) ∈ {0, 1}m×{0, 1}m are the last-round messages
from P0 and P1 respectively.

– Pick (x′
0, x′

1) $← {0, 1}m × {0, 1}m, set π0 ← (π[c− 1], x0, x′
1), π1 ←

(π[c− 1], x′
0, x1), and compute Σ′

b∗ ← Reconstruct(crs, πb∗ ) for b∗ = 0, 1.
– Return the following:
• if Σ′

0 = Σt, output 0;
• else, if Σ′

1 = Σt, output 1;
• else, return a uniformly random bit b′ $← {0, 1}.

Fig. 3: Attacker At against the δ-anonymity of the silent-receiver κ-bit AT protocol
Πκ

AT , parameterized by a polynomial t = t(κ).

(1) When c = 1, D′b,Σ = DR for any (b, Σ). In particular, this means that D′b,Σ

is independent of (b, Σ).

(2) When c = 1 and b = 0, the distribution of the values (Σ′0, Σ′1) constructed
by At

1 given as input a random transcript π ← Transfer(0, Σt) is exactly the
distribution D0,Σt ×DR. This is because x0 is a random message from the sender
with input b = 0 and value Σt, and (x1, x′0, x′1) are three uniformly random
elements of {0, 1}m, hence (x0, x′1) is exactly a random transcript of Πκ

AT with
(b, Σt), while (x′0, x1) is just a pair of random messages. Similarly, if b = 1, the
distribution of the values (Σ′0, Σ′1) constructed by At

1 given as input a random
transcript π ← Transfer(1, Σt) is exactly the distribution DR×D1,Σt .

Both observations follow directly from the definitions of Db,Σ ,D′b,Σ ,DR and
of At

1. Building on the above observations, we show that for an appropriate choice
of t, the advantage of At in the anonymity game can be made arbitrarily close
to (ε− 1)/2:

Claim. For any polynomial n, there is a polynomial t such that∣∣∣∣∣ Pr
b

$←{0,1}

[
Expanon

Πκ
AT

,At,b(κ) = b
]
− 1/2

∣∣∣∣∣ ≥ ε

2 −
1
n

, (5)

which implies that any silent-receiver (ε, δ, 1, κ)-Anonymous Transfer must satisfy
δ ≤ 1−ε+2/n for any polynomial n; equivalently, δ ≤ 1−ε+negl(κ). In particular,
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this means that if the AT has overwhelming correctness (ε = 1− negl(κ)), then δ
must be negligible.

The proof for this claim can be found in the full version [ACM21].

4.2 Putting the Pieces Together

With the above analysis, we showed that for any silent-receiver (ε, δ, c, κ)-
Anonymous Transfer, it must necessarily hold that (1−δ)/2 ≥ ε/2c−negl(κ). Since
any (ε, δ, c, κ)-Anonymous Transfer implies a silent-receiver (ε, δ, c, κ)-Anonymous
Transfer (with the exact same parameters, see Section 3.5), we obtain:

Corollary 2. Any (ε, δ, c, κ)-Anonymous Transfer must satisfy

1− δ

2 ≥ ε

2c
− negl(κ).

In particular, this implies that there exists no κ-bit AT with overwhelming cor-
rectness and anonymity, for any polynomial number of rounds.

Furthermore, as shown in Section 3.5, any single-bit c-round AT with cor-
rectness ε = 1 − negl(κ) and anonymity δ = 1 − negl(κ) implies a κ-bit AT
with correctness ε′ = εκ = (1 − negl(κ))κ = 1 − negl(κ), and anonymity
δ′ = (δ − 1) · κ− δ + 2 = 1− negl(κ). Combining this reduction with Corollary 2
concludes the proof of Theorem 3.

4.3 Extensions and Limitations

The adversary in our impossibility result makes a black-box use of an arbitrary
3-party silent receiver multibit anonymous transfer; the reduction to N -party
single-bit anonymous transfer is black-box as well. In particular, this means that
our impossibility result relativizes: it remains true relative to any oracle, where
access to the oracle is granted to all participants and all algorithms (including
the adversary).

In the next section, we will provide a heuristic construction of fine-grained
anonymous transfer. The aim of this construction is to complement our impos-
sibility result, and to draw an interesting and surprising picture: anonymous
transfer appears to be impossible to realize with the standard superpolynomial
cryptographic hardness gaps, but becomes feasible if one settles for a small
polynomial hardness gap. Our fine-grained construction is described and formally
proven secure using an ideal obfuscation scheme; instantiating the scheme with
candidate indistinguishability obfuscation schemes gives a plausible heuristic
construction (the same way that instantiating the random oracle model with
standard hash functions gives plausible heuristic constructions of various cryp-
tographic primitives, when the construction is not pathological). Because our
impossibility result relativizes, in contrast, standard anonymous transfer remains
provably impossible relative to an ideal obfuscation oracle (while fine-grained
anonymous transfer, as we will see, provably exist relative to such an oracle).
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Impossibility of fine-grained multibit AT with overwhelming correct-
ness and anonymity. In the multibit setting, where the sender wants to
transmit ω(log κ) bits to the receiver, our result further demonstrates that there
exists no fine-grained anonymous transfer with overwhelming correctness and
anonymity 1− negl(κ), even with an arbitrary small polynomial gap between the
runtime of the honest parties and that of the adversary. Indeed, let r = O(c ·m)
be a lower bound on the runtime of the honest parties (r is the total number
of bits sent by the sender, hence it is a clear lower bound on its running time),
and consider an adversary At with t = κ · cg, where g > 0 is an arbitrarily small
constant. Then by construction, the runtime of At is O(κ · r · cg) ≤ O(κ · r1+g)
(as it is dominated by the cost of sampling t random transcripts for At

0). Then
this adversary satisfies

1− δ

2 ≥
∣∣∣∣Pr[Expanon

Πκ
AT

,At,b(κ) = b]− 1
2

∣∣∣∣ ≥ 1
c
·
(

ε

2 −
1
cg

)
, (6)

which implies that δ and ε cannot be simultaneously equal to 1 − negl(κ)
(since 1/(2c)− 1/c1+g cannot be a negligible function for any polynomial c and
any constant g > 0).

Limitations of the impossibility result. Even putting aside the heuris-
tic security guarantee of our fine-grained construction (or its security in an
idealized model), a gap remains between our impossibility result and our con-
struction: our impossibility result does not rule out the possibility of having,
say, a (1− negl(κ), 1− 1/c, c, κ)-Anonymous Transfer – that is, an anonymous
transfer with overwhelming correctness, and vanishing anonymity error 1/c in
c rounds, with standard (superpolynomial) security. In contrast, our heuristic
construction only achieves overwhelming correctness and anonymity arbitrarily
close to 1/c against fine-grained adversaries. It is an interesting open question to
close this gap. We conjecture that the true answer is negative:

Conjecture 1. There exists no (1− negl(κ), 1− 1/c, c, κ)-Anonymous Transfer.

What follows assumes that the reader is familiar with standard philosophical
considerations on the worlds of Impagliazzo. Proving the above conjecture would
have a very interesting (theoretical) consequence: it would demonstrate the
existence of a natural cryptographic primitive that plausibly exists within the
realm of fine-grained cryptography, yet is impossible with standard hardness
gap. It is known that fine-grained constructions sometimes allow building “high-
end” cryptographic primitives in “low-end” cryptographic realms. For example,
Merkle puzzles, which can be instantiated under exponentially strong one-way
functions [BGI08], provide a fine-grained key exchange; borrowing Impagliazzo’s
terminology [Imp95], this places “fine-grained Cryptomania” inside (a strong
form of) Minicrypt. Proving the conjecture would induce a comparable result,
but at the highest level of the hierarchy: it would, in a sense, place fine-grained
Impossibilitopia (a world of cryptographic primitives so powerful that they simply
cannot exist) inside Obfustopia.
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Fine-grained Protocol Π1
AT .

Upon activation, R draws OTP $← {0, 1} and computes (kR, vkR)← Sig.KeyGen(1κ).
Then R sets x

(0)
R ← Pke.Enc(pkP , (OTP, vkR)) and broadcasts x

(0)
R .

On input (b, σ), Pb computes a signature key pair (vkb, kb)← Sig.KeyGen(1κ) and a
symmetric key skb ← Ske.KeyGen(1κ).
Then, Pb computes a signature µ ← Sig.Sig(kb, x

(0)
R ) and broadcasts x

(0)
b ←

Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (σ, µ)).
Upon activation , P1−b sets uniformly random x

(0)
1−b.

For each round χ from 1 to c :
Pb computes µ ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1 )) and sets x

(χ)
b ←

Ske.Enc(skb, (σ, µ)).
P1−b: Broadcast x

(χ)
1−b

$← {0, 1}m.
R: computes µ ← Sig.Sig(kR, (x(0)

R , (x(0)
0 , x

(0)
1 ), . . . , (x(c)

0 , x
(c)
1 ))), compute σ′ :=

P AT (x(0)
R , (x(0)

0 , x
(0)
1 ), . . . , (x(c)

0 , x
(c)
1 ), µ) and output OTP ⊕ σ′.

Fig. 4: The protocol Π1
AT for fine-grained Anonymous Transfer. The circuit P AT is

defined in Fig. 5.

5 Fine-Grained AT from Ideal Obfuscation

In this section, we focus on realizing Anonymous Transfer with fine-grained
security according to Definition 5. More precisely, we construct a c-round protocol
which achieves anonymity δ, where the honest parties have runtime in C1 := O(c)
against adversaries in C2 := o(c2(1 − δ)), where c = c(κ) is a polynomial in κ.
For the sake of simplicity we introduce the protocol with N = 3, implying a
single dummy friend. However, expanding this protocol to an arbitrary N ∈ N is
straightforward as the behavior of all dummy friends is the same by definition
and instead of two messages, each round now contains N − 1 messages.

We exploit the limited runtime of the adversary and provide a protocol in
Fig. 4 with c rounds. In each new round (or with each valid sender message) the
probability that the correct bit is eventually returned increases, i.e., each valid
round increases the receiver’s confidence in the message. Each round lets the
sender compute a signature µ using a sEUF-CMA secure signature scheme7 for
the transcript of the previous round. The transferred bit σ and the signature µ
are then sent. The verification key for the signature scheme is transmitted by
the sender in the first round. In order to make the sent messages look random
the message is not sent directly. Instead, the sender encrypts the message using
an IND$-CCA secure encryption scheme7, [Rog04]. Since not every length m
bitstring is a valid ciphertext, we use a special function Dec∗ instead of the normal
function Dec, which is defined as follows: If Dec on input ct returns ⊥ then Dec∗
returns F(ct), otherwise Dec∗ returns Dec(ct). Hence, every possible input allows
an interpretation as a cleartext. We use those for both the asymmetric and
symmetric schemes.

In order to make the output unusable for any other party, the receiver draws
a One-Time-Pad as first message which eventually masks the final output, and
7 See [ACM21] for definitions of sEUF-CMA, IND$-CCA and ideal obfuscation.

22



P AT [pkP , c]
(

x
(0)
R ,

(
x

(0)
0 , x

(0)
1

)
,
(

x
(1)
0 , x

(1)
1

)
. . . ,

(
x

(c)
0 , x

(c)
1

))
(OTP, vkR) := Pke.Dec∗(skP , x

(0)
R ),

(sk0, vk0) := Pke.Dec∗(skP , x
(0)
0 [1 : m]), (σ0, µ0) := Ske.Dec∗(sk0, x

(0)
0 [m + 1: 2m]),

(sk1, vk1) := Pke.Dec∗(skP , x
(0)
1 [1 : m]), (σ1, µ1) := Ske.Dec∗(sk1, x

(0)
1 [m + 1: 2m]),

if ¬Sig.Vfy(vkR, (x(0)
R , (x(0)

0 , x
(0)
1 ), . . . , (x(c)

0 , x
(c)
1 ))) then :

return CointossS(π)
(0.5)(0, 1)

χ0 := JSig.Vfy(µ0, vk0, x
(0)
R )K · (c + 1), χ1 := JSig.Vfy(µ1, vk1, x

(1)
R )K · (c + 1),

foreach χ ∈ {1, . . . , c} do :
foreach b ∈ {b′|b′ ∈ {0, 1}, χb = (c + 1)} do : // Take on the role of each potential sender.

Xb := Ske.Dec∗(skb, x
(χ)
b ), σ′

b := Xb[0], µb := Xb[1 : |Xb|]
if ¬Sig.Vfy(µb, vkb, π[χ− 1]) ∨ σb ̸= σ′

b then :
χb := χ // Remember first bad round.

b′ := argmaxb(χb)

return OTP ⊕ CointossS(π)
(1/2·(1+χb′ /c))(σb′ , (1− σb′ ))

Fig. 5: Obfuscated program P AT for the fine-grained setting with c rounds.

a verification key of a signature scheme. The latter is used to ensure that the
receiver approves with the transcript; after the two potential senders provided
all messages, the receiver signs the entire transcript and only if this signature
verifies the entire previous transcript, the circuit continues. The first message of
the receiver is broadcast, while the signature is only used locally.

The receiver obtains its output by computing the signature as described above
and feeding the final transcript alongside the signature into an obfuscated circuit
which is supplied in a common reference string. The circuit is obfuscated using
ideal obfuscation7. It hides a PRF key and a secret decryption key skP for the
IND$-CCA secure PKE. The corresponding encryption key pkP is also part of
the CRS and, hence, known to all parties. This encryption scheme is used by
the sender and the receiver to hide their respective first message. This uniquely
determines the symmetric key used to decrypt the remaining messages of each
potential sender. The message also contains a verification key used to sign the
previous messages in future rounds, the bit that the sender wants to transfer,
and the initial signature on the receivers message. The remaining rounds of the
sender are encrypted using a symmetric scheme, namely the IND$-CCA secure
SKE scheme, using the key transferred to the circuit in the first round.

The circuit is shown in Fig. 5. It starts by extracting the verification keys and
symmetric encryption keys (one per potential sender) alongside the bits that the
respective party wants to transfer and the initial signatures on the first receiver
messages from the respective initial messages of both parties, and the receivers
OTP and verification key from the receiver message. Then the circuit starts by
verifying the signature of the receiver on the entire transcript, and if that does not
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match, returns a uniformly random bit8. Otherwise, if the receiver’s signature is
valid, the circuit searches for the first faulty round of each potential sender. That
is, the first round of each potential sender where the signature on the previous
round fails to verify or where the encoded bit differs from the bit extracted from
the initial message. The party who sent the most consecutive valid rounds is
selected as the sending party. The circuit outputs the bit transmitted by that
party with probability depending on the ratio between valid sender messages and
the total number of rounds, which ranges between 1/2 (i.e., a uniformly random
bit) if no round was valid for any party and 1 (i.e., deterministically returning
the correct bit) if all rounds were correct. However, as stated before, the circuit
does not output that bit directly, but instead masks it using the OTP extracted
from the receiver’s first message. This ensures secrecy9, as other parties only get
a masked output which information-theoretically hides the actual bit.

5.1 Security Analysis

Theorem 4 (Correctness). If the protocol from Fig. 4 is instantiated with
an Ideally Obfuscated version of the circuit from Fig. 5 the protocol is ε-correct
with ε = (1− negl(κ)).

At the end of an honest protocol execution, the maximum round in which
a valid signature has been provided equals the number of rounds c. With over-
whelming probability, the sending parties’ input is the only one that contains c
many valid rounds. Hence, the correctly masked bit is returned. Since the mask
is input by the receiver and later applied to the output, the receiver obtains the
correctly masked bit. We refer the reader to [ACM21] for a formal proof.

Theorem 5 (Anonymity). Let Pke be an IND$-CCA secure asymmetric
encryption scheme, let Ske be a tightly secure multi-challenge IND$-CCA secure
symmetric encryption scheme, let Sig be an sEUF-CMA secure signature scheme,
let O be an ideal obfuscator, let F be a secure PRF, and let κ be the security
parameter. Then the c-round protocol Π1

AT for N = 3 satisfies δ-anonymity for
all adversaries in C2 := o(c2(1− δ)).

Proof (sketch). An outline of the entire proof is given in the full version [ACM21].
On a high level, the proof is structured into two parts. In the first part, we
successively modify the anonymity game Expanon

Π1
AT

,A,b(κ) and the obfuscated
circuit oracle P AT to remove as much computationally hidden information about
8 This is denoted in the figure by the CointossS(π)

(p) (σ, σ) function, which returns σ, i.e.
the first argument, with probability p, and σ, i.e. the second argument, with the
complementary probability (1− p), where the randomness for p is extracted from the
argument provided by π.

9 Secrecy is an additional property we require for Strong AT. Secrecy means that no
third party can extract the transferred bit from the transcript (see the full version
[ACM21] for the formal definition). This property will be relevant for applications
that use AT as a building block.

24



Oracle Oβ
i

if β = 0 then

pi := i + c− 1
2c

else

pi := i + c

2c

return Ber(pi)

C(c)

β
$← {0, 1}

return AOβ
1 ,...,Oβ

c (1κ)

A(1κ)

for j = 1 . . . t do
ij ← Computations

xj
$← Oij

β′ ← Computations((ij , xj)t
j=1)

return β′

Fig. 6: Game to distinguish whether Bernoulli oracles follow a given distribution p or
q = p− 1/2c.

b as possible. More precisely, we exploit the non-malleability of Pke and sEUF-
CMA security of Sig to unnoticeably alter the oracle to determine the number of
valid rounds by counting how many rounds of the input transcript are identical
to the challenge transcript provided by Expanon

Π1
AT

,A,b(κ). The first round which is
not entirely identical to the challenge transcript (i.e. either the sender message
or the non-sender message differ) increases the valid rounds count only if the
input sender message is identical to the challenge sender message or if the input
sender message decrypts to the same content as the challenge sender message.
The following round will be counted as invalid since the signature verification will
fail. After this step, the decryption keys of Ske and Pke are not necessary for
chosen-ciphertext simulation anymore. Then, we first replace the sender messages
which are encrypted using Ske and then the first round sender message which
is encrypted using Pke with uniform randomness exploiting the IND$-CCA
security of both encryption schemes.

The only information about the bit b that is left in the present game is due
to the oracle which counts valid sender messages by comparing the input sender
message with the challenge sender message. Clearly, the final modification of the
game must be the removal of this dependency on b. However, this removal will
noticeably alter the output distribution of the oracle. Hence, an adversary with
arbitrary polynomial runtime will be able to distinguish this hop with constant
probability [CDV+14]. However, if we can limit the runtime of the adversary
to be sub-quadratic in the runtime of the honest protocol execution, we are
able to apply results from distribution testing to achieve a good bound for this
distinguishing advantage. We will elaborate on this final game hop in more detail
below and will refer to the second last game as Gameσ

7 (κ) and to the last game
(i.e. the game, where no information about b remains) as Gameσ

8 (κ). For detailed
descriptions of all game hops, we refer the reader to the full version [ACM21].

For the sake of reducing complexity of the problem of proving indistinguisha-
bility between Gameσ

7 (κ) and Gameσ
8 (κ) we describe an intermediate game in

Fig. 6 that is provably as hard to solve as distinguishing the two games.
The key idea is the following: The challenger C creates c oracles where the

probability to return 1 is equally distributed between 1/2 and 1 in c steps.
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On β = 0 the oracles are distributed equally between [1/2, 1). On β = 1 the
oracles are distributed equally between (1/2, 1]. That is, on β = 0 the oracle
χ returns 1 with probability (c + χ − 1)/(2c) and on β = 1 it returns 1 with
probability (c + χ)/(2c).

We now stress that this game is as hard as the problem of distinguishing the
two games from Gameσ

7 (κ) and Gameσ
8 (κ):

Lemma 6. Let D be a distinguisher distinguishing Gameσ
7 (κ) and Gameσ

8 (κ)
with advantage α over guessing. Let t be the number of queries that D sends to
the obfuscated circuit. There is a reduction adversary A that uses D which has
advantage α over guessing in winning Fig. 6.

Proof (sketch). To create the transcript, the adversary samples bits σ and b
for the transferred bit and the sending party, respectively. It then creates πC by
sampling 2c random bitstrings of length m and assigns them to the two parties.

The oracle is simulated by letting A follow the behavor of the oracle: If the
input is the challenge transcript, output the bit directly; if it is a completely
new transcript, follow the honest protocol; otherwise, if the first-round messages
of both parties are the same, A searches χ∗ as the first round where the input
differs from the challenge transcript.

If the message from the sending party in round (χ∗ + 1) is from the challenge
trascript, then A sends χ∗ to the oracle Oχ∗ provided by the challenger and
obtains a bit σ∗, and returns σ∗ ⊕ σ̄ (i.e. the return gets flipped if it should go
towards 0). Otherwise, A returns σ with probability proportional to χ∗/c.

It follows (we elaborate on that in [ACM21]) that the result can be translated;
if the distinguisher guesses Gameσ

8 (κ) then A reports that the χ-th oracle returns
1 with probability (χ+c−1)/2c. Otherwise, if the distinguisher guesses Gameσ

7 (κ),
A reports that the probabilities were given as (χ + c)/2.

The simulation is such that the challenge oracles are only queried if the input
transcript contains the first χ∗ messages of the challenge transcript from both
parties and then in round χ∗ + 1 only the message of the sending party. In that
case, the difference induced by the game hop states that in Gameσ

7 (κ) the sending
parties message still increases the probability by 1/(2c), whereas in Gameσ

8 (κ) the
message is ignored; which correspond exactly to the case we have to distinguish
in our challenge. The full proof can be found in the full version [ACM21]. ⊓⊔

Proving indistinguishability has thus been reduced to showing that no fine-
grained adversary can win the game from Fig. 6 with non-negligible advantage.
The interface of an adversary in this game is given as a set of 2c oracles. Each
oracle follows a Bernoulli distribution that returns the correct bit σC with
probability p. For each round χ < c any distinguisher D is given access to two
oracles. Each oracle can be queried by copying the first χ messages of both parties,
but then using (exactly) one new message for round (χ + 1)—which replaces
either the sending parties message or that of the dummy friend. Any upper
bound on winning the game from Fig. 6 translates to the underlying problem of
distinguishing the final two games.
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Analyzing the game from Fig. 6 comes down to probability theory. Recall
from Corollary 1 that in order to distinguish two Bernoulli distributions p and
q with advantage α/2 we require Ω(α/dTV(p, q)) many samples. Applying this
corollary to Fig. 6 implies that we have c instances where the χ-th instance is
to distinguish p = χ+c

2c from q = χ+c−1
2c . This implies the following L1-norm

between p and q in round χ:

dTV(p, q) = 1
2(|Pr[p = 1]− Pr[q = 1]|+ |Pr[p = 0]− Pr[q = 0]|)

= 1
2

(∣∣∣∣c + χ

2c
− c + χ− 1

2c

∣∣∣∣ +
∣∣∣∣c− χ

2c
− c− χ + 1

2c

∣∣∣∣) = 1
2c

(7)

Note here that the total variational distance in round χ is independent from
the round χ and the same for all c oracles. Combining this information with
Lemma 2 means that any distribution p and q resulting from sampling t times
from arbitrary oracles results in a total variational distance ≤ t 1

2c . 10

We now merge this insight with the result of Eq. (7) and the bound of
Corollary 1. This leads a lower bound of:

t ∈ Ω
(

α

dTV(p, q)

)
= Ω(αc) (8)

We thus have:

Corollary 3. Let D be a distinguisher in Fig. 6 that uses t samples and has
runtime in C2 := o(c2/α). Let the cost of acquiring a single sample be O(c). Then
the distinguisher D is correct with probability at most 1/2 + α/2.

Proof. The bound from Eq. (8) covers any adversary trying to win Fig. 6 regardless
of how the t samples are distributed between the c oracles. This follows from
the subadditional property of the total variational distance shown in Lemma 2
and the computation in Eq. (7) showing that the total variational distance is the
same between all oracles; thus the bound from Lemma 1 still is valid and the
total variational distance between any pair of t-fold distributions is at most t · 1

2c .
Thus Lemma 3 maintains its validity. Hence the lower bound of Eq. (8)

matches our setting. The bound is linear in c with the linear cost of querying a
single sample (as the adversary has to evaluate the entire circuit for each sample,
which requires O(c) runtime) this limits the distinguisher in such a way that only
strictly less samples can be drawn than required according to Eq. (8). ⊓⊔

Putting everything together, we have that for all PPT distinguishers D,
|Pr[out0,D = 1] − Pr[out8,D = 1]| is negligible in κ. In particular, |Pr[out0,D =
1] − Pr[out8,D = 1]| is negligible for distinguishers D in C2. Additionally, the
10 This is in contrast to the Hellinger-distance H which yields tighter bounds but where

the amount of information from a single query really depends on the oracle Oχ

which is queried. This makes it harder to provide meaningful bounds for adversaries
querying different oracles with their t samples.
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employed reductions are in C1 = O(c). Furthermore, for all adversaries A,
|Pr[out8,A = 1|b = 0] − Pr[out8,A = 1|b = 1]| ≤ α, where the runtime of the
game also is in C1. Hence, we may conclude that for all adversaries A in C2,
|Pr

b
$←{0,1}

[Expanon
Π1

AT
,A,b(κ) = b]− 1/2| ≤ α/2. ⊓⊔

On the Need for Stronger Obfuscation. Due to [CLT+15], indistinguishability
obfuscation (or more precisely, its probabilistic variant) can only guarantee
indistinguishability if the distance between the output distributions of two circuits
is statistically close to zero. This is not the case in our final game hop. Therefore,
we crucially require a stronger form of obfuscation such as virtual black-box
obfuscation or ideal obfuscation. Due to [JLL+22], employing ideal obfuscation
yields a heuristic candidate proven secure in an idealized model. Hence, our result
constitutes a first step towards instantiating anonymous transfer.

Stronger Anonymity Notions. Our positive result demonstrates that despite our
strong negative result, some non-trivial anonymity is achievable. Note, however,
that our positive result is still weak in many regards. Strengthening the achieved
notion to, for instance, achieve anonymity against malicious non-participants,
seems highly non-trivial. In particular, malicious non-participants may easily nul-
lify any correctness guarantee by behaving exactly like a sender. Straightforward
attempts to address this problem, e.g. letting the obfuscated circuit output all
messages with equal confidence, open the gates for new attacks. For instance, in
the above setup, replacing the last message of half of all possible senders causes
the circuit to output either both the sender message and the injected message or
only the injected message, depending on whether the real sender is part of the
parties whose messages are replaced. This strategy allows to de-anonymize the
sender in runtime O(c log c).

5.2 Final Result

Let c = c(κ) be a polynomial in κ. Let C1 := O(c) and let C2 := o(c2(1− δ)) for
some δ ∈ R[0,1]. Putting Theorems 4 and 5 together, we have:

Corollary 4. The protocol Π1
AT is a strong C1-fine-grained (1− negl(κ), δ, c, 1)-

AT against C2.

Applying Lemma 5 to transform our single-bit AT into an ℓ-bit AT yields:

Corollary 5. The protocol Πℓ
AT is a strong C′1-fine-grained (1− negl(κ), (δℓ−

ℓ− δ + 2), c · ℓ, ℓ)-AT against C′2, where C′1 = ℓ · C1 and C′2 = C2 − ℓ · C1.

Using δ = 1 − 1√
c

and c = Ω(ℓ2) for the single-bit AT Π1
AT we get that

δ′ := 1− ℓ−1
c and C′1 = O(ℓ ·c) and C′2 = o(c2(1−δ)−ℓ ·c) = o(c2(1−δ)) = o(c1.5).

A non-black-box change to the protocol Π1
AT from Figs. 4 and 5 leads to

better overall parameters. We introduce the necessary changes to the protocol
alongside a security analysis in the full version [ACM21].
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