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Abstract. Broadcast is an essential primitive for secure computation.
We focus in this paper on optimal resilience (i.e., when the number of
corrupted parties t is less than a third of the computing parties n), and
with no setup or cryptographic assumptions.
While broadcast with worst case t rounds is impossible, it has been shown
[Feldman and Micali STOC’88, Katz and Koo CRYPTO’06] how to con-
struct protocols with expected constant number of rounds in the private
channel model. However, those constructions have large communication
complexity, specifically O(n2L+n6 logn) expected number of bits trans-
mitted for broadcasting a message of length L. This leads to a significant
communication blowup in secure computation protocols in this setting.
In this paper, we substantially improve the communication complexity of
broadcast in constant expected time. Specifically, the expected commu-
nication complexity of our protocol is O(nL+ n4 logn). For messages of
length L = Ω(n3 logn), our broadcast has no asymptotic overhead (up
to expectation), as each party has to send or receive O(n3 logn) bits.
We also consider parallel broadcast, where n parties wish to broadcast
L bit messages in parallel. Our protocol has no asymptotic overhead for
L = Ω(n2 logn), which is a common communication pattern in perfectly
secure MPC protocols. For instance, it is common that all parties share
their inputs simultaneously at the same round, and verifiable secret shar-
ing protocols require the dealer to broadcast a total of O(n2 logn) bits.
As an independent interest, our broadcast is achieved by a packed verifi-
able secret sharing, a new notion that we introduce. We show a protocol
that verifies O(n) secrets simultaneously with the same cost of verifying
just a single secret. This improves by a factor of n the state-of-the-art.

Keywords: MPC · Byzantine Agreement · Broadcast

1 Introduction

A common practice in designing secure protocols is to describe the protocol
in the broadcast-hybrid model, i.e., to assume the availability of a broadcast
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channel. Such a channel allows a distinguished party to send a message while
guaranteeing that all parties receive and agree on the same message. Assuming
the availability of a broadcast channel is reasonable only in a restricted setting,
for instance, when the parties are geographically close and can use radio waves.
In most settings, particularly when executing the protocol over the Internet,
parties have to implement this broadcast channel over point-to-point channels.

The cost associated with the implementation of the broadcast channel is often
neglected when designing secure protocols. In some settings, the implementation
overhead is a real obstacle in practice. In this paper, we focus on the most
demanding setting: perfect security with optimal resilience.

Perfect security means that the protocol cannot rely on any computational
assumptions, and the error probability of the protocol is zero. Optimal resilience
means that the number of parties that the adversary controls is bounded by
t < n/3, where n is the total number of parties. This bound is known to be
tight, as a perfectly-secure broadcast protocol tolerating n/3 corrupted parties
or more is impossible to construct [44,48], even when a constant error probability
is allowed [4].

Asymptotically-free broadcast. What is the best implementation of broad-
cast that we can hope for? For broadcasting an L bit message, consider the ideal
trusted party that implements an “ideal broadcast”. Since each party has to re-
ceive L bits, the total communication is O(nL). To avoid bottlenecks, we would
also prefer balanced protocols where all parties have to communicate roughly the
same number of bits, i.e., O(L), including the sender.

Regarding the number of rounds, it has been shown that for any broad-
cast protocol with perfect security there exists an execution that requires t + 1
rounds [32]. Therefore, a protocol that runs in strict constant number of rounds
is impossible to achieve. The seminal works of Rabin and Ben-Or [49,10] demon-
strated that those limitations can be overcome by using randomization. We de-
fine asymptotically-free broadcast as a balanced broadcast protocol that runs in
expected constant number of rounds and with (expected) communication com-
plexity of O(nL).

There are, in general, two approaches for implementing broadcast in our
setting. These approaches provide an intriguing tradeoff between communication
and round complexity:

– Low communication complexity, high number of rounds: For broad-
casting a single bit, the first approach [22,13] requires O(n2) bits of commu-
nication complexity, which is asymptotically optimal for any deterministic
broadcast protocols [27], or in general, O(nL+n2 log n) bits for broadcasting
a message of size L bits via a perfect broadcast extension protocol [20].4 This
comes at the expense of having Θ(n) rounds.

– High communication complexity, constant expected number of rounds:
The second approach, originated by the seminal work of Feldman and Mi-

4 Broadcast extension protocols handle long messages efficiently at the cost of a small
number of single-bit broadcasts.
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cali [29], followed by substantial improvements and simplifications by Katz
and Koo [41], requires significant communication complexity of O(n6 log n)
bits in expectation for broadcasting just a single bit, or O(n2L+n6 log n) bits
for a message of L bits.5 However, they work in expected constant rounds.

To get a sense of how the above translates to practice, consider a network
with 200ms delay per round-trip (such a delay is relatively high, but not unusual,
see [1]), and n = 300. Using the first type of protocol,≈ 300 rounds are translated
to a delay of 1 minute. Then, consider for instance computing the celebrated
protocol of Ben-Or, Goldwasser and Wigderson [12] on an arithmetic circuit
with depth 30. In each layer of the circuit the parties have to use broadcast, and
thus the execution would take at least 30 minutes. The second type of protocols
require at least Ω(n6 log n) bits of communication. The protocol is balanced and
each party sends or receives n5 log n bits ≈ 2.4 terabytes. Using 1Gbps channel,
this is a delay of 5.4 hours. Clearly, both approaches are not ideal.

This current state of the affairs calls for the design of faster broadcast pro-
tocols and in particular, understanding better the tradeoff between round com-
plexity and communication complexity.

Why perfect security? Our main motivation for studying broadcast is for
perfectly secure multiparty computation. Perfect security provides the strongest
possible security guarantee. It does not rely on any intractable assumptions
and provides unconditional, quantum, and everlasting security. Protocols with
perfect security remain adaptively secure (with some caveats [18,6]) and secure
under universal composition [43]. Perfect broadcast is an essential primitive in
generic perfectly secure protocols.

Even if we relax our goals and aim for statistical security only, the situation
is not much better. Specifically, the best upper bounds that we have are in
fact already perfectly secure [22,13,41,47,46,20]. That is, current statistically
secure results do not help in achieving a better communication complexity vs
round complexity tradeoff relative to the current perfect security results. We
remark that in the computational setting, in contrast, the situation is much
better. Asymptotically-free broadcast with f < n/2 can be achieved assuming
threshold signatures and setup assumption in constant expected rounds and with
O(n2 + nL) communication [41,3,50].

1.1 Our Results

We provide a significant improvement in the communication complexity of broad-
cast with perfect security and optimal resilience in the presence of a static ad-
versary. Towards that end, we also improve a pivotal building block in secure
computation, namely, verifiable secret sharing (VSS). Our new VSS has an O(n)

5 Using broadcast extension of [46] we can bring the asymptotic cost to O(nL) +
E(O(n7 logn)) bits. However, the minimum message size to achieve this L =
Ω(n6 logn). This is prohibitively high even for n = 100.
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complexity improvement that may be of independent interest. We present our
results in a top-down fashion. Our main result is:

Theorem 1.1. There exists a perfectly secure, balanced, broadcast protocol with
optimal resilience, which allows a dealer to send L bits at the communication
cost of O(nL) bits, plus O(n4 log n) expected bits. The protocol runs in constant
expected number of rounds and assumes private channels.

Previously, Katz and Koo [41] achieved O(n2L) bits plus O(n6 log n) ex-
pected number of bits. For messages of size L = Ω(n3 log n) bits, the total
communication of our protocol is O(nL) bits. Thus, we say that our protocol is
asymptotically free for messages of size L = Ω(n3 log n) bits. We recall that [41]
together with [46] are also asymptotically free albeit only for prohibitively large
value of L ( = Ω(n6 log n)). Table 1 compares our work to the state of the art
in broadcast protocols.

To get a sense from a practical perspective, for broadcasting a single bit with
n = 300, our protocol requires each party to send/receive roughly n3 log n ≈ 27
MB (as opposed to≈ 2.4 terabytes by [41]). Using a 1Gbps channel, this is 200ms.
For broadcasting a message of size ≈ 27 MB, each party still has to send/receive
roughly the same size of this message, and the broadcast is asymptotically free
in that case.

Parallel composition of broadcast. In MPC, protocols often instruct the n
parties to broadcast messages of the same length L in parallel at the same round.
For instance, in the protocol of [12], all parties share their input at the same
round, and for verifying the secret, each party needs to broadcast L = O(n2 log n)
bits.6 In fact, the notion of parallel-broadcast goes back to the work of Pease et
al. [48]. We have the following extension to our main result:

Corollary 1.2. There exists a perfectly-secure, balanced, parallel-broadcast pro-
tocol with optimal resilience, which allows n dealers to send messages of size L
bits each, at the communication cost of O(n2L) bits, plus O(n4 log n) expected
bits. The protocol runs in constant expected number of rounds.

For message of size L = O(n2 log n) bits, which is common in MPC, our
broadcast is asymptotically optimal. We obtain a cost of O(n4 log n) bits in
expectation, with expected constant rounds. Note that each party receivesO(nL)
bits, and therefore O(n2L) = O(n4 log n) bits is the best that one can hope for.
Again, the protocol is balanced, which means that each party sends or receives
only O(nL) bits.

For comparison, the other approach for broadcast based on [22,13,20] requires
total O(n4 log n) bits for this task, but with Θ(n) rounds. We refer again to
Table 1 for comparison.

6 In fact, in each round of the protocol, each party performs O(n) verifiable secret
sharings (VSSs), i.e., it has to broadcast O(n3 logn) bits. In [2] it has been shown
how to reduce it to O(1) VSSs per party, i.e., each party might have to broadcast
O(n2 logn).
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Task Reference Total P2P (in bits) Rounds

1× BC(L)

[22,13] O(n2L) O(n)
[22,13] + [20] O(nL+ n2 logn) O(n)

[41] O(n2L) + E(O(n6 logn)) E(O(1))
[41] + [46] O(nL) + E(O(n7 logn)) E(O(1))
Our work O(nL) + E(O(n4 logn))O(nL) + E(O(n4 logn))O(nL) + E(O(n4 logn)) E(O(1))E(O(1))E(O(1))

n× BC(L)
[22,13] O(n3L) O(n)
[41] O(n3L) + E(O(n6 logn)) E(O(1))

[41] + [46]7 O(n2L) + E(O(n7 logn)) E(O(1))
Our work O(n2L) + E(O(n4 logn))O(n2L) + E(O(n4 logn))O(n2L) + E(O(n4 logn)) E(O(1))E(O(1))E(O(1))

Table 1: Comparison of communication complexity of our work with the state-of-the-art
broadcast.

1× BC(L) refers to the task of a single dealer broadcasting a L-element message.
n× BC(L) refers to the task of n dealers broadcasting a L-element message in parallel.

To get a practical sense of those complexities, when n = 300 and parties have
to broadcast simultaneously messages of size L, our protocol is asymptotically
optimal for L = n2 log n ≈ 90KB.

Packed verifiable secret sharing. A pivotal building block in our construc-
tion, as well as perfectly secure multiparty protocols is verifiable secret sharing
(VSS), originally introduced by Chor et al. [21]. It allows a dealer to distribute
a secret to n parties such that no share reveal any information about the secret,
and the parties can verify, already at the sharing phase, that the reconstruction
phase would be successful.

To share a secret in the semi-honest setting, the dealer embeds its secret in a
degree-t univariate polynomial, and it has to communicate O(n) field elements.
In the malicious setting, the dealer embeds its secret in a bivariate polynomial
of degree-t in both variables [12,30]. The dealer then has to communicate O(n2)
field elements to share its secret. An intriguing question is whether this gap
between the semi-honest (where the dealer has to encode its secret in a structure
of size O(n)) and the malicious setting (where the dealer has to encode its secret
in a structure of size O(n2)) is necessary. While we do not answer this question,
we show that the dealer can pack O(n) secrets, simultaneously in one bivariate
polynomial. Then, it can share it at the same cost as sharing a single VSS,
achieving an overhead of O(n) per secret. We show:

Theorem 1.3. Given a synchronous network with pairwise private channels
and a broadcast channel, there exists a perfectly secure packed VSS protocol with
optimal resilience, which has a communication complexity of O(n2 log n) bits over
point-to-point channels and O(n2 log n) bits broadcast for sharing O(n) secret
field elements (i.e., O(n log n) bits) in strict O(1) rounds. The optimistic case
(where all the parties behave honestly) does not use the broadcast channel in the
protocol.

7 Since the broadcast extension protocol of [20] requires O(n) rounds, combining [41]
with [20] results in linear-round complexity and a worse communication complexity
than what the second row ([22,13] + [20]) provides.
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The best previous results achieve O(n3 log n) (point-to-point and broadcast)
for sharing O(n) secret elements [12,30,42,5], this is an improvement by a factor
of n in communication complexity.

Packing k secrets into one polynomial is a known technique, proposed by
Franklin and Yung [34]. It was previously used in Shamir’s secret sharing scheme.
However, it comes with the following price: While Shamir’s secret sharing allows
protecting against even n−1 corrupted parties, packing k secrets in one polyno-
mial achieves privacy against only n−k−1 parties. In the malicious case, VSS of
a single secret is possible only when the number of corruption satisfies t < n/3.
The idea of packing many secrets without trading off the allowed threshold of
corruption has been explored by Damg̊ard et al. [25]. However, this is achieved
at the expense of having O(n) rounds. In contrast, our packed verifiable secret
sharing enables packing O(n) secrets while keeping the threshold exactly the
same and ensuring O(1) round complexity. Compared to a constant round VSS
of a single secret, we obtain packed secret sharing completely for free (up to
small hidden constants in the O notation of the above theorem).

Optimal gradecast for Ω(n2) messages. Another building block that we
improve along the way is gradecast. Gradecast is a relaxation of broadcast intro-
duced by Feldman and Micali [29] (“graded-broadcast”). It allows a distinguished
dealer to transmit a message, and each party outputs the message it receives to-
gether with a grade g ∈ {0, 1, 2}. If the dealer is honest, all honest parties receive
the same message and grade 2. If the dealer is corrupted, but some honest party
outputs grade 2, it is guaranteed that all honest parties output the same message
(though some might have grade 1 only). We show that:

Theorem 1.4. There exists a perfectly secure gradecast protocol with optimal
resilience, which allows a party to send a message of size L bits with a com-
munication cost of O(nL + n3 log n) bits and in O(1) rounds. The protocol is
balanced.

This result is optimal when L = Ω(n2 log n) bits as each party has to receive
L bits even in an ideal implementation. Previously, the best gradecast protocol
in the perfect security setting [29] required O(n2L) bits of communication.

1.2 Applications and Discussions

Applications: Perfect secure computation. We demonstrate the potential
speed up of protocols in perfect secure computation using our broadcast. There
are, in general, two lines of works in perfectly secure MPC, resulting again in an
intriguing tradeoff between round complexity and communication complexity.

The line of work [12,19,37,24,8,2] achieves constant round per multiplica-
tion and round complexity of O(depth(C)), where C is the arithmetic circuit
that the parties jointly compute. The communication complexity of those proto-
cols results in O(n3|C| log n) bits over point-to-point channels in the optimistic
case, and an additional O(n3|C| log n) bits over the broadcast channel in the pes-
simistic case (recall that this means that each party has to send or receive a total
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of O(n4|C| log n) bits). In a nutshell, the protocol requires each party to perform
O(1) VSSs in parallel for each multiplication gate in the circuit, and recall that
in each VSS the dealer broadcasts O(n2 log n) bits. This is exactly the setting in
which our parallel broadcast gives asymptotically free broadcast (Corollary 1.2).
Thus, we get a protocol with a total of O(n4|C| log n) bits (expected) and ex-
pected O(depth(C)) rounds over point-to-point channels. Previously, using [41],
this would have been resulted in expected O(n6|C| log n) communication com-
plexity with O(depth(C)) rounds.

Another line of work [40,9,39] in perfectly-secure MPC is based on the player
elimination framework (introduced by Hirt and Maurer and Przydatek [40]).
Those protocol identify parties that may misbehave and exclude them from the
execution. Those protocols result in a total of O((n|C| + n3) log n) bits over
point-to-point channels, and O(n log n) bits over the broadcast channel. How-
ever, this comes at the expense of O(depth(C) + n) rounds. This can be com-
piled to O((n|C|+ n3) log n) communication complexity with O(n2 + depth(C))
rounds using [22,13], or to O((n|C|+ n7) log n) communication complexity with
O(n + depth(C)) rounds (expected) using [41]. Using our broadcast, the com-
munication complexity is O((n|C| + n5) log n) with O(n + depth(C)) rounds
(expected). We remark that in many setting, a factor n in round complexity
should not be treated the same as communication complexity. Roundtrips are
slow (e.g., 200ms delay for each roundtrip), whereas communication channels
can send relatively large messages fast (1 or even 10Gbps).

On sequential and parallel composition of our broadcast. Like Feldman
and Micali [29] and Katz and Koo [41] (and any o(t)-round expected broadcast
protocol), our protocol cannot provide simultaneous termination. Sequentially
composing such protocols is discussed in Lindell, Lysyanskaya and Rabin [45],
Katz and Koo [41] and Cohen et al. [23]. Regarding parallel composition, unlike
the black-box parallel composition of broadcasts studied by Ben-Or and El-
Yaniv [11], we rely on the idea of Fitzi and Garay [33] that applies to OLE-based
protocols. The idea is that multiple broadcast sub-routines are run in parallel
when only a single election per iteration is required for all these sub-routines.
This reduces the overall cost and also guarantees that parallel broadcast is also
constant expected number of rounds.

Modeling broadcast functionalities. We use standalone, simulation-based
definition as in [16]. The standalone definition does not capture rounds in the
ideal functionalities, or the fact that there is no simultaneous termination. The
work of Cohen et al. [23] shows that one can simply treat the broadcast with-
out simultaneous termination as an ideal broadcast as we provide (which, in
particular, has simultaneous and deterministic termination). Moreover, it allows
compiling a protocol using deterministic-termination hybrids (i.e., like our ideal
functionalities) into a protocol that uses expected-constant-round protocols for
emulating those hybrids (i.e,. as our protocols) while preserving the expected
round complexity of the protocol. We remark that in order to apply the com-
piler of [23], the functionalities need to follow a structure of (1) input from all
parties; (2) leakage to the adversary; (3) output. For simplicity, we did not write
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our functionalities using this specific format, but it is clear that our functional-
ities can be written in this style.

Our broadcast with strict-polynomial run time. Protocols in constant
expected number of rounds might never terminate (although, with extremely
small probability). Our protocols can be transformed into a protocol that runs
in strict polynomial time using the approach of Goldreich and Petrank [38]:
Specifically, after O(n) attempts to terminate, the parties can run the O(n)
rounds protocol with guaranteed termination. See also [23].

1.3 Related Work

We review the related works below. Error-free byzantine agreement and broad-
cast are known to be possible only if t < n/3 holds [44,48]. Moreover, Fischer
and Lynch [32] showed a lower bound of t + 1 rounds for any deterministic
byzantine agreement protocol or broadcast protocol. Faced with this barrier,
Rabin [49] and Ben-Or [10] independently studied the effect of randomization
on round complexity, which eventually culminated into the work of Feldman
and Micali [31] who gave an expected constant round protocol for byzantine
agreement with optimal resilience. Improving over this work, the protocol of
[41] requires a communication of O(n2L + n6 log n) for a message of size L bits,
while achieving the advantage of expected constant rounds. In regards to the
communication complexity, Dolev and Reischuk [28] established a lower bound
of n2 bits for deterministic broadcast or agreement on a single bit. With a round
complexity of O(n), [22,13] achieve a broadcast protocol with a communication
complexity of O(n2) bits.

We quickly recall the state of the art perfectly-secure broadcast extension
protocols. Recall that these protocols aim to achieve the optimal complexity
of O(nL) bits for sufficiently large message size L and utilize a protocol for
bit broadcast. The protocol of [47,35] communicates O(nL) bits over point-to-
point channels and O(n2) bits through a bit-broadcast protocol. The work of
[46] improves the number of bits sent through a bit-broadcast protocol to O(n)
bits. Both these extension protocols are constant round. The recent work of [20]
presents a protocol that communicates O(nL+n2 log n) bits over point-to-point
channels and a single bit through a bit-broadcast protocol. However, the round
complexity of this protocol is O(n).

2 Technical Overview

We describe the high-level overview of our techniques. We start with our im-
proved broadcast in Section 2.1, and then describe packed VSS in Section 2.2,
followed by the gradecast protocol in Section 2.3. To aid readability, we summa-
rize our different primitives and the relationship between them in Figure 1. In
each one of the those primitives we improve over the previous works.
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Primitive P2P Broadcast Reference Remarks

Broadcast O(nL) + E(O(n4 logn)) – Section 8.2 L bit message
Byzantine Agreement O(n2) + E(O(n4 logn)) – Section 8.1 –

Gradecast O(nL+ n3 logn) – Section 5 L bit message
Oblivious Leader Election O(n4 logn) – Section 7 –
Multi-moderated VSS O(n4 logn) – Section 6 Sharing O(n) values

Packed VSS (w. Gradecast) O(n3 logn) – Section 4 Sharing O(n) values

Packed VSS (w. Broadcast) O(n2 logn) O(n2 logn) Section 4 Sharing O(n) values

Broadcast


Byzantine Agreement

(BA)


Oblivious Leader Election

(OLE)
 Multi-moderated VSS


Gradecast


Packed VSS

(w. Gradecast)


Fig. 1: Roadmap of our building blocks. All lines are compositions, except for the line from
Multi-moderated VSS to Packed VSS, which is a white-box modification.

2.1 Improved Broadcast in Constant Expected Rounds

Our starting point is a high-level overview of the broadcast protocol of Katz and
Koo [41], which simplifies and improves the construction of Feldman and Mi-
cali [29]. Following the approach of Turpin and Coan [51] for broadcast extension
closely, broadcast can be reduced to two primitives: Gradecast and Byzantine
agreement.

1. Gradecast: A gradecast is a relaxation of broadcast, where a distinguished
dealer transmits a message, and parties output the message together with a
grade. If the dealer is honest, all honest parties are guaranteed to output the
dealer’s message together with a grade 2. Moreover, if the dealer is corrupted
and one honest party outputs grade 2, then it is guaranteed that all other
honest parties also output the same message, though maybe with a grade 1.
Looking ahead, we show how to improve gradecast of message of length L
bits from O(n2L) bits to O(nL+n3 log n) bits, which is optimal for messages
of L = Ω(n2 log n) bits. We overview our construction in Section 2.3.

2. Byzantine agreement: In Byzantine agreement all parties hold some bit
as input, and all of them output a bit at the end of the protocol. If all
honest parties hold the same value, then it is guaranteed that the output of
all parties would be that value. Otherwise, it is guaranteed that the honest
parties would agree and output the same (arbitrary) bit.

To implement broadcast, the dealer gradecasts its message M and then the
parties run Byzantine agreement (BA) on the grade they received (using 1 as
input when the grade of the gradecast is 2, and 0 otherwise). Then, if the output
of the BA is 1, each party outputs the message it received from the gradecast,
and otherwise it outputs ⊥.

If the dealer is honest, then all honest parties receive grade 2 in the gradecast,
and all would agree in the BA that the grade is 2. In that case, they all output
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M . If the dealer is corrupted, and all honest parties received grade 0 or 1 in
the gradecast, they would all use 0 in the Byzantine agreement, and all would
output ⊥. The remaining case is when some honest parties receives grade 2 in
the gradecast, and some receive 1. However, once there is a single honest party
that received grade 2 in the gradecast, it is guaranteed that all honest parties
hold the same message M . The Byzantine agreement can then go either way
(causing all to output M or ⊥), but agreement is guaranteed.

Oblivious leader election. It has been shown that to implement a Byzantine
agreement (on a single bit), it suffices to obliviously elect a leader, i.e., a ran-
dom party among the parties. In a nutshell, a Byzantine agreement proceeds in
iterations, where parties exchange the bits they believe that the output should
be and try to see if there is an agreement on the output. When there is no clear
indication of which bit should be the output, the parties try to see if there is an
agreement on the output bit suggested by the elected leader. A corrupted leader
might send different bits to different parties. However, once an honest leader is
elected, it must have sent the same bit to all parties. In that case the protocol
guarantees that all honest parties will agree in the next iteration on the output
bit suggested by the leader, and halt.

Oblivious leader election is a protocol where the parties have no input, and
the goal is to agree on a random value in {1, . . . , n}. It might have three different
outcomes: (1) All parties agree on the same random index j ∈ {1, . . . , n}, and
it also holds that Pj is honest; this is the preferable outcome; (2) All parties
agree on the same index i ∈ {1, . . . , n}, but Pi is corrupted; (3) The parties do
not agree on the index of the party elected. The goal is to achieve the outcome
(1) with constant probability, say ≥ 1/2. Recall that once outcome (1) occurs
then the Byzantine agreement succeeds. Achieving outcome (1) with constant
number of rounds and with constant probability implies Byzantine agreement
with constant expected number of rounds.

The key idea to elect a leader is to randomly choose, for each party, some
random value ci. Then, the parties choose an index j of the party for which cj
is minimal. To do that, we cannot let each party Pj choose its random value cj ,
as corrupted parties would always choose small numbers to be elected. Thus, all
parties contribute to the random value associated with each party. That is, each
party Pk chooses ck→j ∈ {1, . . . , n4} and the parties define cj =

∑n
k=1 ck→j mod

n4 as the random value associated with Pj . This guarantees that each value cj
is uniform.

However, just as in coin-tossing protocols, a party cannot publicly announce
its random choices, since then it would allow a rushing adversary to choose
its random values as a function of the announced values. This is prevented by
using verifiable secret sharing. Verifiable secret sharing provides hiding – given t
shares, it is impossible to determine what is the secret, and binding – at the end
of the sharing phase, the dealer cannot change the secret, and reconstruction is
guaranteed. The parties verifiably share their random values ck→j for every k, j.
After all parties share their values, it is safe to reconstruct the secret, reveal the
random values, and elect the leader based on those values.
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A problem: VSS uses a broadcast channel. A problem with the above
solution is that protocols for VSS use a broadcast channel to reach an agree-
ment on whether or not to accept the dealer’s shares. Yet, the good news is that
broadcast is used only during the sharing phase. Replacing each broadcast with
a gradecast does not suffice since honest parties do not necessarily agree on the
transmitted messages when corrupted senders gradecast messages. This leads to
the notion of “moderated VSS”, where the idea is to have a party that is respon-
sible for all broadcasted message. Specifically, now there are two distinguished
parties: a dealer Pk and a moderator Pj . The parties run the VSS where Pk is
the dealer; whenever a participant has to broadcast a message m, it first grade-
casts it, and then the moderator Pj has to gradecast the message it received.
Each party can then compare between the two gradecasted messages; however,
the parties proceed the execution while using the message that the moderator
had gradecasted as the message that was broadcasted. At the end of the exe-
cution, each party outputs together with the shares, a grade for the moderator
in {0, 1}. For instance, if the moderator ever gradecasted some message and the
message was received by some party Pi with grade ≤ 1, then the grade that
Pi gives the moderator is 0 — Pi cannot know whether other parties received
the same message at all. The idea is that honest parties might not necessarily
output the same grade, but if there is one honest party that outputs grade 1,
it is guaranteed that the VSS was successful, and we have binding. Moreover, if
the moderator is honest, then all honest parties would give it grade 1.

Going back to leader election, the value ck→j is distributed as follows: the
parties run a VSS where Pk is the dealer and Pj is the moderator. After all
values of all parties were shared (i.e., all parties committed to the values ck→j),
each party defines for each moderator Pj the value cj =

∑n
k=1 ck→j . If the grade

of Pj was not 1 in all its executions as a moderator, then replace cj =∞. Each
party elects the party Pℓ for which cℓ is minimal.

If the moderator Pj is honest, then for both honest and corrupted dealer
Pk, the VSS would end up with agreement, and all honest parties would give
Pj grade 1 as a moderator. The value cj =

∑n
k=1 ck→j mod n4 would be the

same for all honest parties, and it must distribute uniformly as honest dealers
contributed random values in this sum. Likewise, if a moderator Pj is corrupted
but some honest party outputs grade 1 in all executions where Pj served as
a moderator, then the value cj =

∑n
k=1 ck→j mod n4 must be the same for

all honest parties, and it also must be random, as honest dealers contributed
random values. There might be no agreement if some honest parties gave grade
1 for that moderator, while others did not and defined cj =∞. In that case, we
might not have an agreement on the elected leader. However, it is guaranteed
that the value cj is distributed uniformly. Thus, the inconsistency is bounded
with constant probability (roughly t/n ≤ 1/3).

Our improvements. As noticed above, each party participates as the dealer in
n executions, and as the role of the moderator in n executions. Thus, we have
a total of n2 executions of VSS. First, we show a new protocol that enables a
dealer to pack O(n) secrets at the cost of just one VSS (assuming broadcast),
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called packed VSS (see an overview in Section 2.2). For leader election, we have
to replace the broadcast in the packed VSS with a gradecast (with a moderator).

However, we cannot just pack all the O(n) values ck→j where Pk is the
dealer in one instance of a VSS with a moderator since each one of the secrets
corresponds to a different moderator. We, therefore, introduce a new primitive
which is called “Multi-moderated packed secret sharing”: The dealer distributes
O(n) values, where each corresponds to a different moderator, and have all
parties serve as moderator in one shared execution of a VSS.

More precisely, the packed VSS uses several invocations of broadcasts in the
sharing phase, just as a regular VSS. Until the very last round, the dealer also
serves as the moderator within each of those broadcasts. In the last round, there
is a vote among the parties whether accept or reject the dealer, where the vote
is supposed to be performed over the broadcast channel. At this point, the exe-
cution is forked to O(n) executions. Each corresponds to a different moderator,
where the moderator moderates just the last round’s broadcasts. The idea is that
the vast majority of the computation is shared between all O(n) executions, thus
the additional cost introduced for each moderator is small. This allows us to re-
place all n executions where Pi serves as a dealer with just one execution where
Pi is the dealer and other O(n) parties are moderators at the same time.

Another obstacle worth mentioning is that within multi-moderated packed
VSS, the dealer broadcastsO(n2 log n) bits, whereas other participant broadcasts
at most O(n log n) bits. Our gradecast is not optimal for this message size, and
thus when replacing those broadcasts with gradecasts, the overall cost would be
O(n5 log n). We can do better by considering all the multi-moderated VSSs in
parallel. Each party then participates in O(1) executions as a dealer and in O(n)
executions as a participant. Therefore, each party has to broadcast O(n2 log n)
bits in all invocations of multi-moderated packed VSS combined (O(n2 log n)
bits when it serves as a dealer, and (n − 1) × O(n log n) when it serves as a
participant). For that size of messages, our gradecast is optimal.

To conclude, to obtain our broadcast, we build upon [29,41] and introduce: (1)
an optimal gradecast protocol for Ω(n2 log n) messages which is used twice – for
gradecasting the message before running the Byzantine agreement and within the
Byzantine agreement as part of the VSSs; (2) a novel multi-moderated packed
secret sharing, which is based on a novel packed VSS protocol; (3) carefully
combine all the O(n) invocations of multi-moderated packed secret sharing to
amortize the costs of the gradecasts.

When comparing to the starting point of O(n2L) plus E(O(n6 log n)) of [41],
the improved gradecast allows us to reduce the first term to O(nL), for large
enough messages. Regarding the second term, packing O(n) values in the VSS
reduces one n factor, and the improved gradecast within the VSS reduces another
n factor. Overall this brings us to O(nL) plus E(O(n4 log n)).

2.2 Packed Verifiable Secret Sharing

Our packed verifiable secret sharing protocol is the basis of the multi-moderated
VSS. We believe that it will find applications in future constructions of MPC
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protocols, and is of independent interest. Communication cost wise, the best-
known constant-round perfect VSS sharing one secret is O(n2 log n) bits over
point-to-point channels in the optimistic case, and additional O(n2 log n) bits
over the broadcast channel in the pessimistic case [12,36,7]. Here, we retain the
same cost, yet “pack” t+1 secrets in one bivariate polynomial and generate t+1
independent Shamir-sharings at one go.

Sharing more secrets at one go. Our goal is to generate Shamir-sharing of
t+1 secrets, s−t, . . . , s0, at once. Denoting Shamir-sharing of a secret s by [s], our
goal is to produce [s−t] , . . . , [s0] using a single instance of a VSS. For this, the
dealer chooses a degree-(2t, t) bivariate polynomial8 S(x, y) such that S(l, 0) = sl
for each l ∈ {−t, . . . , 0}. We set fi(x) = S(x, i) of degree 2t and gi(y) = S(i, y) of
degree-t and observe that for every i, j it holds that fi(j) = S(j, i) = gj(i). The
goal of the verification part is that each Pi will hold fi(x) and gi(y) on the same
bivariate polynomial S(x, y). Then, each degree-t univariate polynomial gl(y) for
l ∈ {−t, . . . , 0} is the standard Shamir-sharing of sl amongst the parties. Once
the shares of the parties are consistent, each party Pi can locally compute its
share on gl(y) as gl(i) = fi(l).

Our protocol is a strict improvement of [2]. Specifically, the work of [2] con-
siders the VSS protocol of [12] when the dealer uses a (2t, t)-polynomial instead
of a degree-(t, t) polynomial. It observes that by minor modifications, the proto-
col still provides weak verifiability even though the sharing is done on a higher
degree polynomial. By “weak”, we mean that the reconstruction phase of the
polynomial might fail in the case of a corrupted dealer. Nevertheless, the guar-
antee is that the reconstruction phase would either end up successfully recon-
structing S(x, y), or ⊥, and whether it would succeed or not depends on the
adversary’s behavior. In contrast, in a regular (“strong”) VSS, reconstruction is
always guaranteed.

The work of [2] utilizes this primitive to improve the efficiency of the degree-
reduction step of the BGW protocol. However, this primitive is weak and does
not suffice for most applications of VSS. For instance, it cannot be used as a part
of our leader election protocol: The adversary can decide whether the polynomial
would be reconstructed or not. Thus there is no “binding”, and it can choose,
adaptively and based on the revealed secrets of the honest parties, whether the
reconstruction would be to the secret values or some default values. As such, it
can increase its chance of being elected.

Our work: achieving strong binding. In our work, we show how to achieve
strong binding. We omit the details in this high-level overview of achieving weak
verifiability of [2] secret sharing while pointing out that the protocol is a variant
of the VSS protocol of [12]. For our discussion, the protocol reaches the following
stage: If the dealer is not discarded, then there is a CORE of 2t + 1 parties that
hold shares of a unique bivariate polynomial S(x, y), and this set of parties
is public and known to all (it is determined based on votes performed over

8 We call a bivariate polynomial where the degree in x is 2t and in y is t, i.e., S(x, y) =∑2t
i=0

∑t
j=0 ai,jx

iyj as a (2t, t)-bivariate polynomial.
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the broadcast channel). Each party Pi in CORE holds two univariate shares
fi(x) = S(x, i) of degree-2t and gi(y) = S(i, y) of degree-t. Each party Pj for
j ̸∈ CORE holds a polynomial gj(y) = S(j, y), where some of those polynomials
are also public and were broadcasted by the dealer. In case the dealer is honest,
then all honest parties are part of CORE, whereas if the dealer is corrupted, then
it might be that only t + 1 honest parties are part of CORE. To achieve strong
binding, the dealer has to provide shares for parties outside CORE, publicly, and
in a constant number of rounds.

The first step is to make all the polynomials gj(y) for each j ̸∈ CORE public.
This is easy, since each such polynomial is of degree t. The dealer can broadcast
it, and the parties in CORE vote whether to accept. If there are no 2t + 1 votes
to accept, then the dealer is discarded. Since the shares of the honest parties in
CORE are consistent and define a unique (2t, t)-bivariate polynomial S(x, y), the
dealer cannot publish any polynomial gj(y) which is not S(j, y). Any polynomial
g′j(y) ̸= S(j, y) can agree with at most t points with S(j, y) and thus it would
receive at most t votes of honest parties in CORE, i.e., it cannot reach 2t + 1
votes.

The next step is to make the dealer also publicize the shares fj(x) for each
j ̸∈ CORE. This is more challenging since each fj(x) is of degree-2t, and therefore
achieving 2t + 1 votes is not enough, as t votes might be false. Therefore, the
verification is more delicate:

1. First, the parties in CORE have to vote OK on the f -polynomials that the
dealer publishes. If there are less than 2t + 1 votes, the dealer is discarded.

2. Second, for each party Pj in CORE that did not vote OK, the dealer is
required to publish its gj(y) polynomial. The parties in CORE then vote on
the revealed polynomials as in the first step of boosting from weak to strong
verification.

To see why this works, assume that the dealer tries to distribute a polynomial
f ′j(x) ̸= S(x, j). Then, there must exist an honest party such that its share does
not agree with f ′j(x). If f ′j(x) does not agree with shares that are public, then
it would be immediately discarded. If f ′j(x) does not agree with a share of an
honest party Pk that is part of CORE, then gk(y) would become public in the
next round, and the dealer would be publicly accused. The dealer cannot provide
a share gk(y) ̸= S(k, y) for the same reason as the first step of boosting from
weak to strong VSS. At the end of this step we have that all honest parties are
either part of CORE and their shares are private, or they are not in CORE and
their shares are public. Overall, all honest parties hold shares on the bivariate
polynomial S(x, y). We refer to section 4 for the formal protocol description.

2.3 Optimal Gradecast

A crucial building block in our construction is gradecast. We show how to im-
plement gradecast of a message of length L bits using total communication of
O(n3 log n + nL) bits. For this overview, we just deal with the case where the
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dealer is honest and show that all honest parties output the message that the
dealer gradecasted with grade 2. We leave the case of a corrupted dealer to the
relevant section (Section 5).

Data dissemination. Our construction is inspired in part by the data dissem-
ination protocol of [26], while we focus here on the synchronous settings. In the
task of data dissemination, t + 1 honest parties hold as input the same input
M , while other honest parties hold the input ⊥, and the goal is that all honest
parties receive the same output M in the presence of t corrupted parties. In
our protocol, assume for simplicity messages of size (t + 1)2 field elements (i.e.,
a degree-(t, t) bivariate polynomial). Data dissemination can be achieved quite
easily: (1) Each honest party sends to each party Pj the univariate polynomials
S(x, j), S(j, y). (2) Once a party receives t + 1 messages with the same pair of
univariate polynomials, it forwards those polynomials to all others. An adver-
sary might send different polynomials, but it can never reach plurality t + 1.
(3) After all the honest parties forwarded their polynomials to the others, we
are guaranteed that each party holds 2t + 1 correct shares of S and at most t
incorrect shares. Each party can reconstruct S efficiently using Reed Solomon
decoding. Note that this procedure requires the transmission of O(n3 log n) bits
overall. Therefore, our goal in the gradecast protocol is to reach a state where
t + 1 honest parties hold shares of the same bivariate polynomial.

Gradecast. For the sake of exposition, we first describe a simpler protocol
where the dealer is computationally unbounded, and then describe how to make
the dealer efficient. Again, assume that the input message of the dealer is en-
coded as a bivariate polynomial S(x, y). The dealer sends the entire bivariate
polynomial to each party. Then, every pair Pi and Pj exchange the polynomi-
als S(x, i), S(i, y), S(x, j), S(j, y). The two parties check whether they agree on
those polynomials or not. If Pi sees that the polynomials it received from Pj

are the same as it received from the dealer, then it adds j to a set Agreedi.
The parties then send their sets Agreedi to the dealer, who defines an undirected
graph where the nodes are the set {1, . . . , n} and an edge {i, j} exists if and only
if i ∈ Agreedj and j ∈ Agreedi. The dealer then (inefficiently) finds a maximal
clique K ⊆ {1, . . . , n} of at least 2t + 1 parties and gradecasts K to all parties
using a näıve gradecast protocol of [29,41] (note that this is a gradecast of case
O(n2L) with L = O(n log n)). A party Pi is happy if: (1) i ∈ K; (2) it received
the gradecast message of the dealer with grade 2; and (3) K ⊆ Agreedi. The
parties then proceed to data dissemination protocol.

The claim is that if the dealer is honest, then at least t+ 1 honest parties are
happy, and they all hold the same bivariate polynomial. This is because the set
of honest parties defines a clique of size 2t + 1, and any clique that the honest
dealer finds of cardinality 2t + 1 must include at least t + 1 honest parties. The
result of the data dissemination protocol is that all honest parties output S. If
the dealer is corrupted, we first claim that all honest parties that are happy must
hold the same bivariate polynomial. Any two honest parties that are happy must
be part of the same clique K that contains at least t + 1 honest parties, and
all honest parties in that clique must agree with each other (all see the same
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clique K defined by the dealer, and verified that they agreed with each other).
The univariate polynomials exchanged between those t+ 1 honest parties define
a unique bivariate polynomial. Again, data dissemination would guarantee that
all honest parties would output that bivariate polynomial.

On making the dealer efficient. To make the dealer efficient, we rely on a
procedure that finds an approximation of a clique, known as the STAR tech-
nique, introduced by [14]. In the technical section, we show how we can use
this approximation of a clique, initially introduced for the case of t < n/4, to
the much more challenging scenario of t < n/3. We refer to Section 5 for the
technical details.

3 Preliminaries

We consider a synchronous network model where the parties in P = {P1, . . . , Pn}
are connected via pairwise private and authenticated channels. Additionally, for
some of our protocols we assume the availability of a broadcast channel, which
allows a party to send an identical message to all the parties. One of the goals
of this paper is to implement such a broadcast channel over the pairwise pri-
vate channels, and we mention explicitly for each protocol whether a broadcast
channel is available or not. The distrust in the network is modelled as a com-
putationally unbounded active adversary A which can maliciously corrupt up to
t out of the n parties during the protocol execution and make them behave in
an arbitrary manner. We prove security in the standard, stand-alone simulation-
based model in the perfect setting [16,7] for a static adversary. Owing to the
results of [18], this guarantees adaptive security with inefficient simulation. We
derive universal composability [17] for free using [43]. We refer the readers to
the full version for the security proofs and more details.

Our protocols are defined over a finite field F where |F| > n + t + 1. We
consider two sets of n and t + 1 distinct elements from F publicly known to all
the parties, which we denote by {1, . . . , n} and {−t, . . . , 0} respectively. We use
[v] to denote the degree-t Shamir-sharing of a value v among parties in P.

3.1 Bivariate Polynomials

A degree (l,m)-bivariate polynomial over F is of the form S(x, y) =∑l
i=0

∑m
j=0 bijx

iyj where bij ∈ F. The polynomials fi(x) = S(x, i) and gi(y) =

S(i, y) are called ith f and g univariate polynomials of S(x, y) respectively. In our
protocol, we use (2t, t)-bivariate polynomials where the ith f and g univariate
polynomials are associated with party Pi for every Pi ∈ P.

3.2 Finding (n, t)-STAR

Definition 3.1. Let G be a graph over the nodes {1, . . . , n}. We say that a pair
(C,D) of sets such that C ⊆ D ⊆ {1, . . . , n} is an (n, t)-star in G if the following
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hold: (a) |C| ≥ n−2t; (b) |D| ≥ n− t; and (c) for every j ∈ C and every k ∈ D,
the edge (j, k) exists in G.

Canetti [14,15] showed that if a graph has a clique of size n − t, then there
exists an efficient algorithm which always finds an (n, t)-star. We refer the readers
to the full version for details.

4 Packed Verifiable Secret Sharing

Here we present a packed VSS to generate Shamir sharing of t + 1 secrets at
the cost of O(n2 log n) bits point-to-point and broadcast communication. The
security proof appears in the full version of the paper.

The Functionality. On holding t + 1 secrets s−t, . . . , s0, the dealer chooses a
uniformly random (2t, t)-bivariate polynomial S(x, y) such that S(l, 0) = sl for
each l ∈ {−t, . . . , 0} and uses the polynomial as its input. Our functionality for
VSS is as follows, followed by the VSS protocol.

Functionality 4.1: FVSS – Packed VSS Functionality

Input: The dealer holds a polynomial S(x, y).

1. The dealer sends S(x, y) to the functionality.

2. If S(x, y) is of degree at most 2t in x and at most t in y, then the function-
ality sends to each party Pi the two univariate polynomials S(x, i), S(i, y).
Otherwise, the functionality sends ⊥ to all parties.

Protocol 4.2: ΠpVSS – Packed VSS Protocol

Common input: The description of a field F, two sets of distinct elements from
it denoted as {1, . . . , n} and {−t, . . . , 0}.
Input: The dealer holds a bivariate polynomial S(x, y) of degree at most 2t in
x and at most t in y. Each Pi initialises a happy bit happyi = 1 9.

1. (Sharing) The dealer sends (fi(x), gi(y)) to Pi where fi(x) = S(x, i),
gi(y) = S(i, y).

2. (Pairwise Consistency Checks) Each Pi sends (fi(j), gi(j)) to every Pj .
Let (fji, gji) be the values received by Pi from Pj . If fji ̸= gi(j) or gji ̸= fi(j),
Pi broadcasts complaint(i, j, fi(j), gi(j)).

3. (Conflict Resolution) For each complaint(i, j, u, v) such that u ̸= S(j, i) or
v ̸= S(i, j), dealer broadcasts gDi (y) = S(i, y). Let pubR be the set of parties
for which the dealer broadcasts gDi (y). Each Pi ∈ pubR sets happyi = 0. For
two mutual complaints (complaint(i, j, u, v), complaint(j, i, u′, v′)) with either
u ̸= u′ or v ̸= v′, if the dealer does not broadcast anything, then discard the
dealer.

9 The happy bits will be used later for Multi-Moderated VSS in Section 6.
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4. (Identifying the CORE Set) Each Pi ̸∈ pubR broadcasts OK if fi(k) =
gDk (i) holds for every k ∈ pubR. Otherwise, Pi sets happyi = 0. Let CORE be
the set of parties who broadcasted OK. If |CORE| < 2t+ 1, then discard the
dealer.

5. (Revealing f-polynomials for non-CORE parties) For each Pk /∈
CORE, the dealer broadcasts fD

k (x) = S(x, k). Discard the dealer if for any
Pj ∈ pubR and Pk /∈ CORE, gDj (k) ̸= fD

k (j). Each Pi /∈ pubR broadcasts

OK if fD
k (i) = gi(k) holds for every broadcasted fD

k (x). Otherwise Pi sets
happyi = 0. Let K = {Pj |Pj /∈ pubR and did not broadcast OK}.

6. (Opening g-polynomials for complaining parties) For each Pj ∈ K,
the dealer broadcasts gDj (y) = S(j, y). Set pubR = pubR ∪ K. Discard the

dealer if fD
k (j) ̸= gDj (k) for any Pk /∈ CORE and Pj ∈ K. Each Pi ∈ CORE

with happyi = 1 broadcasts OK if fi(j) = gDj (i) for every broadcasted gDj (y).
Otherwise, Pi sets happyi = 0. If at least 2t+1 parties do not broadcast OK,
then discard the dealer.

7. (Output) If the dealer is discarded, then each Pi outputs ⊥. Otherwise, Pi

outputs (fi(x), gi(y)), where fi(x) = fD
i (x) if Pi /∈ CORE and gi(y) = gDi (y)

if Pi ∈ pubR.

Theorem 4.3. Protocol ΠpVSS (Protocol 4.2) securely realizes FVSS (Functional-
ity 4.1) in the presence of a static malicious adversary controlling up to t parties
with t < n/3.

Lemma 4.4. Protocol ΠpVSS has a communication complexity of O(n2 log n)
bits over point-to-point channels and O(n2 log n) bits broadcast for sharing O(n)
values (i.e., O(n log n) bits) simultaneously in 9 rounds.

5 Balanced Gradecast

In a Gradecast primitive, a dealer has an input and each party outputs a value
and a grade {0, 1, 2} such that the following properties are satisfied: (Validity):
If the dealer is honest then all honest parties output the dealer’s input and
grade 2; (Non-equivocation): if two honest parties each output a grade ≥ 1
then they output the same value; and lastly (Agreement): if an honest party
outputs grade 2 then all honest parties output the same output and with grade
≥ 1. We model this in terms of a functionality given in Functionality 5.1. The
case of an honest dealer captures validity. Case 2a and Case 2b capture the
agreement and non-equivocation respectively.

Functionality 5.1: FGradecast

The functionality is parameterized by the set of corrupted parties, I ⊆ {1, . . . , n}.

1. If the dealer is honest: the dealer sends m to the functionality, and all parties
receive (m, 2) as output.
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2. If the dealer is corrupted then it sends some message M to the functionality.
(a) If M = (ExistsGrade2,m, (gj)j ̸∈I) for some m ∈ {0, 1}∗ and each gj ∈
{1, 2}, then verify that each gj ≥ 1 and that at least one honest party
receives grade 2. Send (m, gj) to each party Pj .

(b) If M = (NoGrade2, (mj , gj)j ̸∈I) where each mj ∈ {0, 1}∗ and gj ∈ {0, 1},
then verify that for every j, k ̸∈ I with gj = gk = 1 it holds that
mj = mk. Then, send (mj , gj) to each party Pj .

In Section 5.1 we first describe a protocol that is not balanced, i.e., the total
communication complexity is O(n2L) but in which the dealer sends O(n2L) and
every other party sends O(nL). In Section 5.2 we show how to make the protocol
balanced, in which each party (including the dealer) sends/receives O(nL) bits.

5.1 The Gradecast Protocol

We build our construction in Protocol 5.2 using the idea presented in Section 2.3.
Recall that the gradecast used inside our protocol is the näıve gradecast with
complexity O(n2L) bits for L-bit message, as in [29,31]. The security of our
protocol is stated in Theorem 5.3 and the proof appears in the full version.

Protocol 5.2: ΠGradecast

Input: The dealer P ∈ {P1, . . . , Pn} holds (t+ 1)2 field elements (bi,j)i,j∈{0,...,t}
where each bi,j ∈ F that it wishes to distribute. All other parties have no input.

1. (Dealer’s polynomial distribution) The dealer:
(a) The dealer views its elements as a bivariate polynomial of degree at most

t in both x and y, i.e., S(x, y) =
∑t

i=0

∑t
j=0 bi,jx

iyj .

(b) The dealer sends S(x, y) to all parties.

2. (Pair-wise Information Exchange) Each party Pi:
(a) Let Si(x, y) be the polynomial received from the dealer.

(b) Pi sends to each party Pj the four polynomials (Si(x, j), Si(j, y), Si(x, i),
Si(i, y)).

3. (Informing dealer about consistency) Each party Pi:
(a) Initialize Agreedi = ∅. Let (f j

i (x), gji (y), f j
j (x), gjj (y)) be the polynomials

received from party Pj . If f j
i (x) = Si(x, i), g

j
i (y) = Si(i, y), f j

j = Si(x, j)

and gjj (y) = Si(j, y) then add j to Agreedi.

(b) Send Agreedi to the dealer.

4. (Quorum forming by dealer) The dealer:
(a) Define an undirected graph G as follows: The nodes are {1, . . . , n} and

an edge {i, j} ∈ G if and only if i ∈ Agreedj and j ∈ Agreedi. Use
STAR algorithm (Algorithm ??) to find a set (C,D) ∈ {1, . . . , n}2 where
|C| ≥ t + 1 and |D| ≥ 2t + 1, C ⊆ D, such that for every c ∈ C and
d ∈ D it holds that c ∈ Agreedd and d ∈ Agreedc.
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(b) Let E be the set of parties that agree with at least t + 1 parties in C.
That is, initialize E = ∅ and add i to E if |Agreedi ∩ C| ≥ t + 1.

(c) Let F be the set of parties that agree with at least 2t + 1 parties in E.
That is, initialize F = ∅ and add i to F if |Agreedi ∩ E| ≥ 2t + 1.

(d) If |C| ≥ t + 1 and |D|, |E|, |F | ≥ 2t + 1, then gradecast (C,D,E, F ).
Otherwise, gradecast (∅, ∅, ∅, ∅).

5. (First reaffirmation) Each party Pi:
(a) Let (Ci, Di, Ei, Fi, g) be the message that the dealer gradecasted and let

g be the associated grade.

(b) If (1) g = 2; (2) i ∈ Ci; (3) |Di| ≥ 2t + 1; and (4) Agreedi ∩ Di = Di;
then send OKC to all parties. Otherwise, send nothing.

6. (Second reaffirmation) Each party Pi:
(a) Let C ′i be the set of parties that sent OKC in the previous round.

(b) If i ∈ Ei and |Agreedi ∩ Ci ∩ C ′i| ≥ t + 1 then send OKE to all parties.

7. (Third reaffirmation and propagation) Each party Pi:
(a) Let E′i be the set of parties that sent OKE in the previous round.

(b) If i ∈ Fi and |Agreedi∩Ei∩E′i| ≥ 2t+1 then send (OKF , Si(x, j), Si(j, y))
to each party Pj .

8. (Final propagation) Each party Pi: Among all messages that were re-
ceived in the previous round, if there exist polynomials f ′i(x), g′i(y) that were
received at least t+1 times, then forward those polynomials to all. Otherwise,
forward ⊥.

9. (Output) Each party Pi: Let ((f ′1(x), g′1(y)), . . . , (f ′n(x), g′n(y)) be the
messages received in the previous round. If received at least 2t + 1 polyno-
mials that are not ⊥, then use robust interpolation to obtain a polynomial
S′(x, y). If there is no unique reconstruction or less than 2t + 1 polynomials
received, then output (⊥, 0). Otherwise, if S′(x, y) is unique, then:
(a) If (1) Pi sent OKF in Round 7; and (2) it received 2t+ 1 messages OKF

at the end of Round 7 from parties in Fi with the same polynomials
(f ′i(x), g′i(y)); then output (S′, 2).

(b) Otherwise, output (S′, 1).

Theorem 5.3. Let t < n/3. Protocol ΠGradecast (Protocol 5.2) securely realizes
Functionality FGradecast (Functionality 5.1) in the presence of a malicious ad-
versary controlling at most t parties. The parties send at most O(n3 log n) bits
where O(n2 log n) is the number of bits of the dealer’s input.

5.2 Making the Protocol Balanced

To make the protocol balanced, note that each party sends or receivesO(n2 log n)
bits except for the dealer who sends O(n3 log n). We therefore change the first
round of the protocol as follows:

1. The dealer:



Asymptotically Free Broadcast via Packed VSS 21

(a) The dealer views its elements as a bivariate polynomial of degree at most
t in both x and y, i.e., S(x, y) =

∑t
i=0

∑t
j=0 bi,jx

iyj .

(b) The dealer sends S(x, i) to each party Pi.

2. Each party Pi:
(a) Forwards the message received from the dealer to every other party.

(b) Given all univariate polynomials received, say u(x, 1), . . . , u(x, n), runs
the Reed-Solomon decoding procedure to obtain the bivariate polynomial
Si(x, y). If there is no unique decoding, then use Si(x, y) = ⊥.

3. Continue to run Protocol ΠGradecast (Protocol 5.2) from Step 2 to the end
while interpreting Si(x, y) decoded from the prior round as the polynomial
received from the dealer.

Theorem 5.4. The modified protocol securely realizes Functionality FGradecast

(Functionality 5.1) in the presence of a malicious adversary controlling at most t
parties. Each party, including the dealer sends or receives O(n2 log n) bits (giving
a total communication complexity of O(n3 log n)).

The following is a simple corollary, where for general message length of L
bits the dealer simply breaks the message into ℓ = ⌈L/(t + 1)2 log n⌉ blocks and
runs ℓ parallel executions of gradecast. Each party outputs the concatenation of
all executions, with the minimum grade obtained on all executions. The protocol
is optimal for L > n2 log n. We thus obtain the following corollary.

Corollary 5.5. Let t < n/3. There exists a gradecast protocol in the presence
of a malicious adversary controlling at most t parties, where for transmitting L
bits, the protocol requires the transmission of O(nL + n3 log n) bits, where each
party sends or receives O(L + n2 log n) bits.

6 Multi-Moderated Packed Secret Sharing

At a high level multi-moderated packed secret sharing is a packed VSS moderated
by a set M of t + 1 distinguished parties called moderators. The parties output
a flag for every moderator in the end. We represent the flag for a moderator
M ∈ M held by a party Pk as vkM . In addition, each party Pk holds a variable
dkM taking values from {accept, reject} for each M ∈M which identifies whether
the dealer is accepted or rejected when M assumes the role of the moderator.

If a moderator M is honest, then every honest party Pk will set vkM = 1
and the properties of VSS will be satisfied irrespective of whether the dealer is
honest or corrupt. If the dealer is honest, every honest Pk will set dkM = accept.
For a corrupt dealer, the bit can be 0 or 1 based on the dealer’s behaviour, but
all the honest parties will unanimously output the same outcome.

If a moderator M is corrupt, then it is guaranteed that: if some honest party
Pk sets the flag vkM = 1, then the properties of VSS will be satisfied irrespective
of whether the dealer is honest or corrupt. That is, if the dealer is honest every
honest Pk outputs dkM = accept. For a corrupt dealer, it is guaranteed that all
the honest parties unanimously output the same outcome for the dealer. We note
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that when no honest party sets its flag to 1 for a moderator M , then irrespective
for whether the dealer is honest or corrupt, it is possible that the parties do not
have agreement on their dkM . The functionality is defined as follows:

Functionality 6.1: Fmm-pVSS – Multi-Moderated Packed Secret Sharing

The functionality is parameterized by the set of corrupted parties I ⊆ {1, . . . , n},
a set M of t + 1 distinguished parties called as moderators.

1. The dealer sends polynomials fj(x), gj(y) for every j. If the dealer is honest,
then there exists a single (2t, t) polynomial S(x, y) that satisfies fj(x) =
S(x, j) and gj(y) = S(j, y) for every j ∈ {1, . . . , n}.

2. If the dealer is honest, then send fi(x), gi(y) for every i ∈ I to the adversary.
3. For each moderator Mj ∈M:
(a) If the moderator Mj is honest, then set vkMj

= 1 for every k ∈ {1, . . . , n}.
Moreover:
i. If the dealer is honest, then set dkMj

= accept for every k ∈ {1, . . . , n}.
ii. If the dealer is corrupt, then receive a message mj from the adver-

sary. If mj = accept then verify that the shares of the honest par-
ties define a unique (2t, t)-polynomial. If so, set dkMj

= accept for

every k ∈ {1, . . . , n}. In any other case, set dkMj
= reject for every

k ∈ {1, . . . , n}.
(b) If the moderator Mj is corrupt then receive mj from the adversary.

i. If mj = (Agreement, (vkMj
)k ̸∈I), dMj ) where dMj ∈ {accept, reject}, and

for some k ̸∈ I it holds that vkMj
= 1. Set (vkMj

)k ̸∈I as received from the

adversary. Verify that S(x, y) is (2t, t)-polynomial. If not, set dkMj
=

reject for every k ̸∈ I. Otherwise, set dkMj
= dMj

for every k ̸∈ I.

ii. If mj = (NoAgreement, (dkMj
)k ̸∈I) where each dkMj

∈ {accept, reject},
then set vkMj

= 0 for every k ∈ {1, . . . , n} and d1Mj
, . . . , dnMj

as received
from the adversary.

4. Output: Each honest party Pk (k ̸∈ I) receives as output fi(x), gi(y),
(dkM )M∈M, and flags (vkM )M∈M.

To clarify, each party Pi receives global shares for all moderators, and an
output diM and flag viM for each moderator M ∈ M. If the dealer and the
moderator are honest, then all the flags are 1 and the parties accept the shares.
If the moderator Mj is corrupted, then as long as there is one honest party Pk

with vkMj
= 1 there will be an agreement in the outputs d1Mj

, . . . , dnMj
(either all

the honest parties accept or all of them reject). When vkMj
= 0 for all the honest

parties, we might have inconsistency in the outputs d1Mj
, . . . , dnMj

with respect
to that moderator.

The protocol. We build on the discussion given in Section 2.1. We consider
the protocol of VSS where the dealer inputs some bivariate polynomial S(x, y)
of degree at most 2t in x and degree at most t in y. For multi-moderated packed
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secret sharing, essentially, each broadcast from ΠpVSS is simulated with two se-
quential gradecasts. The first gradecast is performed by the party which intends
to broadcast in the underlying packed VSS protocol, while the second is exe-
cuted by a moderator. Note that these gradecasts are realized via the protocol
ΠGradecast, presented in the Section 5, having the optimal communication com-
plexity. Up to Step 6 of ΠpVSS (Protocol 4.2), the dealer is the moderator for each
gradecast. At Step 6, we fork into t + 1 executions, with a unique party acting
as the moderator in each execution. Since the protocol steps remain similar to
ΠpVSS, we describe the multi-moderated packed secret sharing protocol below in
terms of how the broadcast is simulated at each step and the required changes
at Step 6 of the packed VSS protocol.

Protocol 6.2: Πmm-pVSS – Multi-Moderated Packed Secret Sharing

Simulating broadcast up to (including) Step 6 of ΠpVSS:

1. Simulating broadcast of a message by the dealer.
(a) The dealer: When the dealer has to broadcast a message m it gradecasts

it.

(b) Party Pi: Let (m, g) be the message gradecasted by the dealer, where
m is the message and g is the grade. Proceed with m as the message
broadcasted by the dealer. If g ̸= 2, then set happyi = 0 within the
execution of ΠpVSS.

2. Simulating broadcast of a party Pj .
(a) Party Pj: When Pj wishes to broadcast a message m, it first gradecasts

it.

(b) The dealer: Let (m, g) be the message and g its associated grade. The
dealer gradecasts m.

(c) Each party Pi: Let (m′, g′) be the messages gradecasted by the dealer.
Use m′ as the message broadcasted by Pj in the protocol. Moreover, if
g′ ̸= 2; or if g = 2 but m′ ̸= m, then Pi sets happyi = 0 within the
execution of ΠpVSS.

After Step 6 of ΠpVSS:

1. Each party Pi: Set viMj
= 1, and let fi(x), gi(y) be the pair of shares Pi is

holding at end of Step 6. Gradecast accept if happyi = 1 and reject otherwise.
At this point, we fork into |M| executions, one per moderator Mj ∈ M as
follows:
(a) The moderator Mj: Let (a1, . . . , an) be the decisions of all parties as

received from the gradecast. Gradecast (a1, . . . , an).

(b) Each party Pi: Let (a1, . . . , an) be the decisions received directly from
the parties, and let (a′1, . . . , a

′
n) be the message gradecasted from the

moderator Mj with associated grade g′. Set viMj
= 0 if g′ ̸= 2, or there

exists ak received from Pk with grade 2 but for which ak ̸= a′k. Then:
i. If there exists 2t + 1 accepts within (a′1, . . . , a

′
n), then set diMj

=
accept.
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ii. Otherwise, set diMj
= reject.

2. Output: Pi outputs (fi(x), gi(y)), (diM1
, . . . , diMt

) and (viM1
, . . . , viMt

).

Theorem 6.3. Protocol 6.2 computes Fmm-pVSS (Functionality 6.1) in the pres-
ence of a malicious adversary corrupting at most t < n/3 parties. The protocol
requires the transmission of O(n2 log n) bits over point-to-point channels, the
dealer gradecasts O(n2 log n) bits, and each party gradecasts at most n log n bits.

6.1 Reconstruction

The reconstruction protocol ensures that even for a corrupt moderator, all the
honest parties reconstruct the same value when its flag is set to 1 by some
honest party. This aligns with the guarantees of the sharing phase, which en-
sures that the protocol achieves VSS corresponding to a moderator when there
exists an honest party with its flag set to 1 at the end of the sharing phase.

Protocol 6.4: ΠRec
mm-pVSS – Reconstruct of Multi-Moderated Packed Se-

cret Sharing

The protocol is parameterized by the set of moderatorsM and a set B contain-
ing |M| distinct non-zero values in the field. To be specific B denotes the set
{−t, . . . , 0} used in ΠpVSS. We assume a one-to-one mapping between M and
{−t, . . . , 0}.
Input: Each party Pi holds (fi(x), gi(y)), (diM )M∈M and (viM )M∈M.

1. Each party sends fi(x) to all. Let (f1(x)′, . . . , fn(x)′) be the polynomials
received.

2. For each M ∈M (let β∗ ∈ B be its associated value):
(a) If diM = accept, then use Reed Solomon decoding procedure to recon-

struct the unique degree-t polynomial gβ∗(y) that agrees with at least
2t + 1 values f1(β∗), . . . , fn(β∗) and set siM = gβ∗(0). If there is not
unique decoding, then set siM = 0.

(b) If diM = reject, then set siM = 0.

3. Output: Output (siM )M∈M.

Theorem 6.5. For each moderator M ∈M, if there exists an honest party with
vkM = 1 then all honest parties hold the same sk

′

M = skM .

7 Oblivious Leader Election

We start with the functionality which captures OLE with fairness δ, where
each party Pi outputs a value ℓi ∈ {1, . . . , n} such that with probability at
least δ there exists a value ℓ ∈ {1, . . . , n} for which the following conditions
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hold: (a) each honest Pi outputs ℓi = ℓ, and (b) Pℓ is an honest party.
The functionality is parameterized by the set of corrupted parties I, a pa-
rameter δ > 0 and a family of efficiently sampling distributions D = {D}.
Each D ∈ D is a distribution D : {0, 1}poly(n) → {1, . . . , n}n satisfying:
Prr←{0,1}poly(n) [D(r) = (j, . . . , j) s.t. j ̸∈ I] ≥ δ .

Functionality 7.1: FOLE – Oblivious Leader Election Functionality

The functionality is parameterized by the set of corrupted parties I ⊂ {1, . . . , n}
and the family D.

1. The functionality receives from the adversary a sampler D and verifies that
D ∈ D. If not, then it takes some default sampler in D ∈ D.

2. The functionality chooses a random r ← {0, 1}poly(n) and samples
(ℓ1, . . . , ℓn) = D(r).

3. It hands r to the adversary and it hands ℓi to every party Pi .

Looking ahead, our protocol will define a family D in which the functionality
can efficiently determine whether a given sampler D is a member of D. Specif-
ically, we define the sampler as a parametrized algorithm with some specific
values hardwired. Therefore, the ideal adversary can just send those parameters
to the functionality to specify D in the family.

Protocol 7.2: ΠOLE – Oblivious Leader Election Protocol

1. Choose and commit weights: Each party Pi ∈ P acts as the dealer and
chooses ci→j as random values in {1, . . . , n4}, for every j ∈ {1, . . . , n}. Pi

then runs the following for T := ⌈n/t + 1⌉ times in parallel. That is, for
ℓ ∈ [1, . . . , T ], each Pi acting as the dealer executes the following in parallel:

(a) Let the set of moderators be Mℓ = (P(ℓ−1)·(t+1)+1, . . . , Pℓ·(t+1)).

(b) The dealer Pi chooses a random (2t, t)-bivariate polynomial Si,ℓ(x, y)
while hiding the t+1 values ci→j for every j ∈ {(ℓ−1) · (t+1)+1, . . . , ℓ ·
(t + 1)}, one corresponding to each moderator Pj ∈Mℓ. Specifically, Pi

chooses Si,ℓ(x, y) such that Si,ℓ(0, 0) = ci→(ℓ−1)·(t+1)+1 and so on till

Si,ℓ(−t, 0) = ci→ℓ·(t+1). The parties invoke Fmm-pVSS (Fig. 6.1) where Pi

is the dealer, and the moderators are parties in Mℓ.

(c) Each party Pk gets as output a pair of shares f i,ℓ
k (x), gi,ℓk (y), outputs dki,j

and a flag vki,j for each moderator Pj ∈Mℓ.
Note that the above is run for all dealers P1, . . . , Pn in parallel, where each
dealer has T parallel instances (in total T · n invocations).
Upon completion of the above, let succeededi be the set of moderators for
which Pi holds a flag 1 in all executions, i.e., succeededi := {j | vid,j =
1 for all dealers Pd ∈ P}.

2. Reconstruct the weights and pick a leader: The reconstruction phase,
ΠRec

mm-pVSS (Fig. 6.4) of each of the above nT instances of multi-moderated
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packed secret sharing is run in parallel to reconstruct the secrets previously
shared.
Let cki→j denote Pk’s view of the value ci→j for every i, j ∈ {1, . . . , n}, i.e.,
the reconstructed value for the instance where Pi is the dealer and Pj is the
moderator.
Each party Pk sets ckj =

∑n
i=1 c

k
i→j mod n4 and outputs j that minimizes ckj

among all j ∈ succeededk (break ties arbitrarily).

Theorem 7.3. Protocol ΠOLE (Protocol 7.2) computes FOLE (Functionality 7.1)
in the presence of a malicious adversary corrupting at most t < n/3 parties. The
protocol requires a transmission of O(n4 log n) bits over point-to-point channels.

8 Broadcast

8.1 Byzantine Agreement

In a Byzantine agreement, every party Pi holds initial input vi and the following
properties hold: (Agreement): All the honest parties output the same value;
(Validity): If all the honest parties begin with the same input value v, then all
the honest parties output v. We simply plug in our OLE in the Byzantine agree-
ment of [41]. As described in Section 1.3, we present standalone functionalities
for Byzantine agreement and broadcast, where the intricacies of sequential com-
position are tackled in [23]. The protocol for byzantine agreement (ΠBA) which
follows from [41] and its proof of security appear in the full version of the paper.

Functionality 8.1: FBA – Byzantine Agreement

The functionality is parameterized by the set of corrupted parties I.

1. The functionality receives from each honest party Pj its input bj ∈ {0, 1}.
The functionality sends (bj)j ̸∈I to the adversary.

2. The adversary sends a bit b̂.

3. If there exists a bit b such that bj = b for every j ̸∈ I, then set y = b.

Otherwise, set y = b̂.

4. Send y to all parties.

Theorem 8.2. Protocol ΠBA is a Byzantine agreement protocol tolerating t <
n/3 malicious parties that works in constant expected rounds and requires the
transmission of O(n2) bits plus expected O(n4 log n) bits of communication.

8.2 Broadcast and Parallel-broadcast

In a broadcast protocol, a distinguished dealer P ∗ ∈ P holds an initial input
M and the following hold: (Agreement): All honest parties output the same
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value; Validity: If the dealer is honest, then all honest parties output M . We
formalize it using the following functionality:

Functionality 8.3: FBC

The functionality is parametrized with a parameter L.

1. The dealer (sender) P ∗ sends the functionality its message M ∈ {0, 1}L.

2. The functionality sends to all parties the message M .

To implement this functionality, the dealer just gradecasts its message M
and then parties run Byzantine agreement on the grade they received, while
parties use input 1 for the Byzantine agreement if and only if the grade of the
gradecast is 2. If the output of the Byzantine agreement is 1, then they output
the message they received in the gradecast, and otherwise, they output ⊥. We
simply plug in our gradecast and Byzantine agreement in the protocol below.
Note that the communication complexity our protocol is asymptotically free (up
to the expectation) for L > n3 log n.

Protocol 8.4: ΠBC– Broadcast Protocol for a single dealer

– Input: The dealer holds a message M ∈ {0, 1}L.

– Common input: A parameter L.
1. The dealer: Gradecast M .

2. Each party Pi: Let M ′ be the resultant message and let g be the
associated grade. All parties run Byzantine agreement where the input
of Pi is 1 if g = 2, and otherwise the input is 0.

– Output: If the output of the Byzantine agreement is 1 then output M ′.
Otherwise, output ⊥.

Theorem 8.5. Protocol 8.4 is a secure broadcast tolerating t < n/3 malicious
parties. For an input message M of length L bits, the protocol requires O(nL)
plus expected O(n4 log n) bits total communication, and constant expected rounds.

Parallel Broadcast. Parallel broadcast relates to the case where n parties wish
to broadcast a message of size L bits in parallel. In that case, we rely on an idea
of Fitzi and Garay [33] that applies to OLE-based protocols. The idea is that the
multiple broadcast sub-routines are run in parallel when only a single election
per iteration is required for all these sub-routines. This results in the following
corollary:

Corollary 8.6. There exists a perfectly secure parallel-broadcast with optimal
resilience, which allows n parties to broadcast messages of size L bits each, at
the cost of O(n2L) bits communication, plus O(n4 log n) expected communicating
bits. The protocols runs in constant expected number of rounds.
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For completeness, we provide the functionality for parallel broadcast below,
and omit the proof since it follows from broadcast.

Functionality 8.7: Fparallel
BC

The functionality is parametrized with a parameter L.

1. Each Pi ∈ P sends the functionality its message Mi ∈ {0, 1}L.

2. The functionality sends to all parties the message {Mi}i∈{1,...,n}.

Efficiency. The protocol gradecasts n messages, each of which requires O(nL)
bits of communication and runs in constant rounds. In addition, we run Byzan-
tine agreement where a single leader election per iteration is necessary across
all the instances, which requires expected O(n4 log n) bits of communication in
expected constant rounds.
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