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Abstract. The recent work of Agrawal et al., [Crypto ’21] and Goyal et al.
[Eurocrypt ’22] concurrently introduced the notion of dynamic bounded collusion
security for functional encryption (FE) and showed a construction satisfying the
notion from identity based encryption (IBE). Agrawal et al., [Crypto ’21] further
extended it to FE for Turing machines in non-adaptive simulation setting from the
sub-exponential learining with errors assumption (LWE). Concurrently, the work
of Goyal et al. [Asiacrypt ’21] constructed attribute based encryption (ABE) for
Turing machines achieving adaptive indistinguishability based security against
bounded (static) collusions from IBE, in the random oracle model. In this work,
we significantly improve the state of art for dynamic bounded collusion FE and
ABE for Turing machines by achieving adaptive simulation style security from a
broad class of assumptions, in the standard model. In more detail, we obtain the
following results:

1. We construct an adaptively secure (AD-SIM) FE for Turing machines,
supporting dynamic bounded collusion, from sub-exponential LWE. This
improves the result of Agrawal et al. which achieved only non-adaptive
(NA-SIM) security in the dynamic bounded collusion model.

2. Towards achieving the above goal, we construct a ciphertext policy FE scheme
(CPFE) for circuits of unbounded size and depth, which achieves AD-SIM
security in the dynamic bounded collusion model from IBE and laconic
oblivious transfer (LOT). Both IBE and LOT can be instantiated from a
large number of mild assumptions such as the computational Diffie-Hellman
assumption, the factoring assumption, and polynomial LWE. This improves
the construction of Agrawal et al. which could only achieve NA-SIM security
for CPFE supporting circuits of unbounded depth from IBE.

3. We construct an AD-SIM secure FE for Turing machines, supporting dynamic
bounded collusions, from LOT, ABE for NC1 (or NC) and private information
retrieval (PIR) schemes which satisfy certain properties. This significantly
expands the class of assumptions on which AD-SIM secure FE for Turing
machines can be based. In particular, it leads to new constructions of FE for
Turing machines including one based on polynomial LWE and one based on
the combination of the bilinear decisional Diffie-Hellman assumption and the
decisional Diffie-Hellman assumption on some specific groups. In contrast
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the only prior construction by Agrawal et al. achieved only NA-SIM security
and relied on sub-exponential LWE.
To achieve the above result, we define the notion of CPFE for read only RAM
programs and succinct FE for LOT, which may be of independent interest.

4. We also construct an ABE scheme for Turing machines which achieves
AD-IND security in the standard model supporting dynamic bounded
collusions. Our scheme is based on IBE and LOT. Previously, the only known
candidate that achieved AD-IND security from IBE by Goyal et al. relied on
the random oracle model.

Keywords: Turing Machines · Functional Encryption · Attribute Based Encryp-
tion.

1 Introduction

Functional encryption (FE) [38, 15] is a powerful generalization of public key encryption,
which goes beyond the traditional “all or nothing” access to encrypted data. In FE, a
secret key is associated with a function f , a ciphertext is associated with an input x and
decryption allows to recover f(x). Security intuitively requires that the ciphertext and
secret keys do not reveal anything other than the output of the computation. This can be
formalized by positing the existence of a simulator which can simulate ciphertexts and
secret keys given only the functions fi and their outputs on the messages xj , namely
fi(xj) for all secret keys skfi and ciphertexts ctxj seen by the adversary in the real
world. This “simulation style” notion of security, commonly referred to as SIM security,
is ruled out by lower bounds in a general security game [15, 2]. However, it can still
be achieved in the bounded collusion model [30], which restricts the adversary to only
request an a-priori bounded number of keys and challenge ciphertexts.

There has been intensive research in the community on FE in the last two decades,
studying the feasibility for general classes of functions, from diverse assumptions,
satisfying different notions of security. An exciting line of research has focused on
FE for uniform models of computation supporting unbounded input lengths, such as
Deterministic or Non-deterministic Finite Automata, Turing machines and Random
Access machines [28, 11, 7, 4, 8, 34], in contrast to non-uniform models such as circuits.
While circuits are expressive, they suffer from two major drawbacks in the context of FE.
First, they force the input length to be fixed, a constraint that is inflexible and wasteful in
most applications. Second, they necessitate the worst-case running time of the function
on every input. By overcoming these limitations, FE schemes can fit demands of real
world applications more seamlessly.

In this work, we study FE for Turing machines (henceforth TMFE) in the bounded
collusion model, namely a security model which restricts the adversary to only request
a bounded number of keys. Introduced by Gorbunov, Vaikuntanathan and Wee [30],
this model has been popular since i) it is sufficient for multiple interesting real world
scenarios, ii) it can support SIM style security, and iii) it can enable constructions from
weaker assumptions or for more general functionalities. In the context of TMFE, the very
recent work of Agrawal et al. [5] provided the first construction of bounded TMFE from
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the (sub-exponential) Learning With Errors assumption (LWE).4 Furthermore, this work
achieved the notion of dynamic bounded collusion, where the collusion bound Q does
not have to be declared during setup and may be chosen by the encryptor differently for
each ciphertext, based on the sensitivity of the encrypted data. Thus, in their construction,
the encryptor can choose an input x of unbounded length, a collusion bound Q and a
time bound t, the key generator can choose a machine M of unbounded length and the
decryptor runs M on x for t steps and outputs the result.

The work of Agrawal et al. [5] takes an important step forward in our understanding
of bounded TMFE by providing the first feasibility result in a flexible dynamic model.
However, it still leaves several important questions unanswered. For instance, the
security notion achieved by TMFE is non-adaptive (denoted by NA-SIM) [15] where
the adversary must send all the secret key requests before seeing the challenge ciphertext.
Moreover, this limitation appears as a byproduct of the security notion achieved by the
ingredient sub-schemes used for the construction (more on this below). Additionally,
[5] relies on the heavy machinery of succinct single key FE for circuits [29], where
succinctness means that the ciphertext size does not depend on the size of circuits
supported (but may depend on output length and depth). Succinct FE is known to be
constructible only from sub-exponential LWE5 which necessitates the same assumption to
underlie TMFE. This seems unnecessarily restrictive – in contrast, for the circuit model,
bounded FE can be constructed from the much milder and more general assumption
of public key encryption (PKE) [30, 12]. This raises the question of whether a strong
primitive like succinct FE is really necessary to support the Turing machine model. As
detailed below, succinct FE is a crucial tool in the construction, on whose properties the
design relies heavily, and it is not clear whether this requirement can be weakened.

For the more limited primitive of Attribute Based Encryption (ABE), the recent
work of [34] does provide a construction supporting Turing machines in the bounded
collusion model (albeit without the dynamic property discussed above), assuming only
the primitive of identity based encryption (IBE). Recall that ABE is a restricted class
of FE in which the ciphertext is associated with both an input x and a message m and
secret key is associated with a machine M . Decryption yields m given a secret key skM
such that M(x) = 1. Since IBE is a much weaker primitive than succinct FE and can be
constructed from several weak assumptions such as the computational Diffie-Hellman
assumption (CDH), the factoring assumption (Factoring), LWE and such others, this
state of affairs is more satisfying. However, ABE is significantly weaker than FE since it
does not hide the data on which the computation actually occurs, and is also an “all or
nothing” primitive. Moreover, while their construction achieves strong adaptive security
(denoted by AD-IND hereon), their construction relies on the random oracle model,
unlike [5] which is NA-SIM in the standard model.

4 Here, sub-exponential (resp., polynomial) LWE refers to the assumption that assumes the
distinguishing advantage of the adversary for the decision version of LWE is sub-exponentially
(resp., negligibly) small. The modulus to error ratio, which is another important parameter in
LWE, will be referred to as approximation factor in this paper.

5 Aside from obfustopia primitives such as compact FE [9, 13].
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1.1 Our Results

In this work, we significantly improve the state of the art for dynamic bounded collusion
TMFE by achieving adaptive simulation style security from a broad class of assumptions.
In more detail, we obtain the following results:

1. We construct an adaptively secure (AD-SIM) TMFE, supporting dynamic bounded
collusion, from sub-exponential LWE. This improves the result of [5] which achieved
only NA-SIM security in the dynamic bounded collusion model.

2. Towards achieving the above goal, we construct a ciphertext policy FE6 scheme
(CPFE) for circuits of unbounded size and depth, which achieves AD-SIM security
in the dynamic bounded collusion model from IBE and laconic oblivious transfer
(LOT). Both IBE and LOT can be instantiated from a large number of mild
assumptions such as CDH, Factoring or polynomial LWE. This improves the
construction of [5] which could only achieve NA-SIM security for CPFE supporting
circuits of unbounded depth from IBE.

3. We construct an AD-SIM secure TMFE, supporting dynamic bounded collusions,
from LOT, ABE for NC1 (or NC) and private information retrieval (PIR) schemes
which satisfy certain properties. This significantly expands the class of assumptions
on which AD-SIM secure TMFE can be based since ABE for NC1 can be
constructed from pairing based assumptions like the bilinear decisional Diffie-
Hellman assumption (DBDH) [35] as well as polynomial LWE with slightly super-
polynomial approximation factors7 [31, 14], LOT can be based on CDH, Factoring
and polynomial LWE [20, 21, 16], and PIR with the required properties can also
be based on LWE [17], the decisional Diffie-Hellman assumption (DDH), or the
quadratic residuosity assumption (QR) [22]. This leads to new constructions of
TMFE as follows:

– one based on the polynomial hardness of LWE with quasi-polynomial approxi-
mation factors,

– one based on the combination of DBDH and DDH on some specific groups.
– one based on the combination of DBDH and QR.

If we instantiate PIR with LWE, we need ABE for NC and LWE with quasi-
polynomial approximation factors [32] since the answer function of PIR from
LWE [17, 27] is in NC. See Section 5 for the detail. In contrast the only prior
construction by [5] achieved only NA-SIM security and relied on sub-exponential
LWE. When instantiated with LWE, we observe that the above construction improves
the first construction we described. However, we still present the first construction
because it is much simpler.

4. We also construct an ABE scheme for Turing machines which achieves AD-IND
security in the standard model supporting dynamic bounded collusions. Our scheme
is based on IBE and LOT. Previously, the only known candidate that achieved
AD-IND security from IBE relied on the random oracle model [34].

6 A secret key and a ciphertext are associated with an input x and a function f , respectively
unlike the standard FE.

7 That is, O(λω(1)).
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Table 1 : Comparison for bounded collusion-resistant FE for
uniform models of computation

FE Class Security Model Assumption

[7] TM 1-key NA-SIM static (sub-exp, sub-exp)-LWE†

[6] (SKFE) NFA Sel-SIM static (sub-exp, sub-exp)-LWE†

[5] NL AD-SIM dynamic (sub-exp, sub-exp)-LWE†

[5] TM NA-SIM dynamic (sub-exp, sub-exp)-LWE†

Ours §4 TM AD-SIM dynamic (sub-exp, sub-exp)-LWE†

Ours §5 TM AD-SIM dynamic (poly, quasi-poly)-LWE†

Ours §5 TM AD-SIM dynamic DDH‡ & DBDH
Ours §5 TM AD-SIM dynamic QR & DBDH

† For adv ∈ {poly, sub-exp} and apprx ∈ {quasi-poly, sub-exp},
(adv, apprx)-LWE means that {polynomial, sub-exponential} hardness
of LWE with {quasi-polynomial, sub-exponential} approxiation factors,
respectively. ‡DDH over the multiplicative sub-group of Zq where q
is a prime.

1.2 Other Related Work

A key policy FE8 (KPFE) for Turing machines supporting only a single key request was
provided by Agrawal and Singh [7] based on sub-exponential LWE. Agrawal, Maitra
and Yamada [6] provided a construction of KPFE for non-deterministic finite automata
(NFA) which is secure against bounded collusions of arbitrary size. However, this
construction is in the symmetric key setting. These constructions do not support the
dynamic collusion setting. The first works to (concurrently) introduce and support the
notion of dynamic bounded collusion are [23] and [5]. Both works obtain simulation
secure KPFE schemes for circuits with dynamic collusion resistance. [5] additionally
obtain succinct CPFE/KPFE schemes for circuits with dynamic collusion property, and
also to support Turing machines and NL with different security trade-offs. We provide
a comparison for bounded collusion-resistant FE for uniform models of computation
in Table 1. All the results in the table are about FE whose encryption time depends on
the running-time of computation. There are FE schemes whose encryption time does not
depend the running-time of computation [28, 11, 4, 36]. However, such constructions are
based on strong assumptions such as extractable witness encryption [28] and compact
FE [11, 4, 36]. We also omit works based on indistinguishability obfuscation. The focus
of the present work is on weak assumptions.

1.3 Our Techniques

In this section, we provide an overview of our techniques. Our final construction is
obtained by going through number of steps. We refer to Figure 1 for the overview.

8 This is the same as the standard FE. We use this term to distinguish from CPFE.
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Fig. 1 Illustration of our construction path. Each rectangle represents FE and rounded rectangles
represents other primitives. “Bounded CPFE" (resp., “Unbounded CPFE") means CPFE for
bounded (resp., unbounded) size circuits. The red (resp., blue) rectangles represent FE with
AD-SIM security under bounded dynamic collusion (resp., NA-SIM security under single key
collusion). The dashed lines indicate known implications or implications that can be shown by
adapting previous techniques relatively easily. The solid lines indicate implications that require
new ideas and are shown by us. We do not include (selectively secure) garbled circuits, secret key
encryption, and PRF in the figure in order to simplify the presentation.

Recap of TMFE by [5]: To begin, we recap some of the ideas used in the construction
of TMFE provided by [5]. At a high level, their approach is to separate the cases where
the length of the input x and running time bound 1t is larger than the machine size
|M | and one where the opposite is true, i.e. |(x, 1t)| ≤ |M | and |(x, 1t)| > |M |. They
observe that running these restricted schemes in parallel allows supporting either case,
where the one sub-scheme is used to decrypt a ciphertext if |(x, 1t)| ≤ |M | and the
second is used otherwise. We note that such a compiler was first developed by [6] in
the symmetric key setting and [5] uses ideas from [33] to upgrade it to the public key
setting.

To construct the restricted sub-schemes, [5] uses KPFE for the case |(x, 1t)| ≤ |M |
and CPFE for |(x, 1t)| > |M |. For concreteness, let us consider the case |(x, 1t)| ≤ |M |.
Now, using the “delayed encryption” technique of [33] (whose details are not relevant for
our purpose), one may assume that there exists an infinite sequence of KPFE instances
and the i-th instance supports circuits with input length i. To encrypt a message x with
respect to the time bound 1t, they use the |(x, 1t)|-th instance of KPFE. To generate
the secret key for a Turing machine M , they encode M into a set of circuits Ci,M for
i = 1, . . . , |M |, where Ci,M is a circuit that takes as input a string (x, 1t) of length i,
and then runs the machine M for t steps on this input to generate the output. Secret
keys for Ci,M are generated using the i-th instance of KPFE for all of i ∈ [|M |]. A
crucial detail here is that M can be of unbounded size, because each KPFE instance
supports unbounded size circuits. Now, decryption is possible when |(x, 1t)| ≤ |M |
by using the |(x, 1t)|-th instance. To construct the KPFE scheme, the authors enhance
constructions of “succinct KPFE” from the literature [29, 1], which can be constructed
from (sub-exponential) LWE. The resultant scheme satisfies AD-SIM security against
(dynamic) bounded collusions.
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To handle the opposite case, namely |(x, 1t)| > |M |, the authors follow the “dual”
of the above procedure, using a CPFE scheme in place of KPFE, which supports circuits
of unbounded depth (hence size). In more detail, to encrypt a message (x, 1t), they
construct a circuit {Ui,x,t}i∈[|(x,1t)|], where Ui,x,t is a circuit that takes as input a string
M of length i, interprets it as a description of a Turing machine, runs it on input x for
t steps and outputs the result. They encrypt the circuit Ui,x,t using the i-th instance of
CPFE for all of i ∈ [|(x, 1t)|]. Note that it is necessary that the CPFE scheme support
circuits of unbounded depth and not just size, since the circuit must run Turing machine
for t steps, where t may be arbitrarily large. The authors use IBE to instantiate such a
CPFE. However, they can only achieve NA-SIM, where the adversary must make all its
key requests before obtaining the challenge ciphertext. This limitation is inherited by
the resultant TMFE scheme even though KPFE satisfies AD-SIM security as discussed
above.

TMFE with AD-SIM security: As discussed above, the missing piece in constructing
TMFE with AD-SIM security from LWE is an instantiation of CPFE supporting
unbounded depth circuits with AD-SIM security. We now show how to design this
by carefully combining (in a non black-box way) two ingredients – i) an AD-SIM secure
CPFE for circuits of bounded depth, size and output, denoted by BCPFE, which was
constructed in [5] using IBE, and ii) adaptively secure garbled circuits (GC) based on
LOT [24]. Our construction makes crucial use of the structural properties of the LOT
based adaptive GC constructed by Garg and Srinivasan [24]. We describe this next.

Adaptively secure garbled circuits via LOT: Garg and Srinivasan [24] provided a
construction of adaptively secure GC with near optimal online rate by leveraging the
power of LOT. Recall that LOT [18] is a protocol between two parties: sender and a
receiver. The receiver holds a large database D ∈ {0, 1}N and sends a short digest d
(of length λ) of the database to the sender. The sender has as input a location L ∈ [N ]
and two messages (m0,m1). It computes a read-ciphertext c using its private inputs and
the received digest d by running in time poly(logN, |m0|, |m1|, λ) and sends c to the
receiver. The receiver recovers the message mD[L] from the ciphertext c and the security
requirement is that the message m1−D[L] remains hidden. Updatable LOT additionally
allows updates to the database.

The main idea in [24] is to “linearize” the garbled circuit, namely to ensure that
the simulation of a garbled gate g depends only on simulating one additional gate.
With this linearization in place, they designed a careful sequence of hybrids based on
a pebbling strategy where the number of changes required in each intermediate hybrid
is O(log(|C|)). In more detail, their construction views the circuit C to be garbled as a
sequence of step circuits along with a database D, where the ith step circuit implements
the ith gate in the circuit. The database D is initialized with the input x and updated to
represent the state of the computation as the computation progresses. Thus, at step i, the
database contains the output of every gate g < i in the execution of C on x. The ith step
circuit reads contents from two pre-determined locations in the database, corresponding
to the input wires, and writes a bit, corresponding to the output of the gate, to location
i. Thus, they reduce garbling of the circuit to garbling each step circuit along with the
database D.
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Coming back to our goal of CPFE for unbounded depth circuits, a starting point
idea is to use a sequence of bounded size schemes BCPFE to encode a sequence of low
depth step circuits described above. Intuitively, we leverage the decomposability of the
adaptive GC construction so that a BCPFE scheme can generate each garbled version
of the step circuit, using randomness that is derived jointly from the encryptor and key
generator via a pseudorandom function (PRF). Specifically, the key generator provides
BCPFE keys for input x, along with a PRF input tag, and the encryptor provides BCPFE
ciphertexts for the GC step circuits along with a PRF seed. Put together, BCPFE decrypts
to provide the inner decomposable GC (generated using jointly computed PRF output),
which may then be evaluated to recover C(x). A crucial detail swept under the rug here
is how the sequence of GCs interacts with the database which captures the state of the
computation. In particular, as the computation proceeds, the database must be updated,
and these updates must be taken into account while proceeding with the remainder of
the evaluation. This detail is handled via the updatable property of our LOT similarly to
[24]. In the interest of brevity, we do not describe it here, and refer the reader to Section
3 for details.

Assuming the sequence of BCPFE schemes can produce the garbled step circuits and
garbled database, we still run into another problem in the security proof – the number
of BCPFE ciphertexts is as large as the size of the circuit being encrypted while on
the other hand, there is an information-theoretic barrier that the key size of an AD-SIM
secure CPFE should grow with the number of challenge ciphertexts [15]. This would
bring us right back to where we started as we want to handle unbounded depth circuits
and the key generator cannot even know this depth, so we cannot create enough space in
the key to support this embedding. Our key observation to overcome this hurdle is that
we do not need to simulate all the ciphertexts simultaneously. In particular, by relying on
the pebbling-based simulation strategy used in [24], we can upper bound the number of
ciphertexts in “simulation mode” by a fixed polynomial in each hybrid in the proof. This
allows us to embed a simulated GC into the BCPFE secret key which is of fixed size,
thereby allowing the post challenge queries required for AD-SIM security. To formalize
this idea, we introduce an abstraction which we call “gate-by-gate garbling” (see Section
3), which is similar to locally simulatable garbling introduced by Ananth and Lombardi
[10]. For more details, please see Sections 3 and 4.

TMFE without succinct KPFE for circuits: We now describe our construction of
TMFE without using succinct KPFE for circuits. The high level template for the final
construction is the same as discussed earlier, namely, to construct two sub-schemes
that handle the cases |(x, 1t)| ≤ |M | and |(x, 1t)| > |M | separately. Previously, we
showed how to construct CPFE with AD-SIM security, for unbounded depth circuits
from IBE and LOT, and used this to handle the case |(x, 1t)| > |M | . The counterpart
|(x, 1t)| ≤ |M | was handled using KPFE for circuits of unbounded size, which was
constructed in [5] by upgrading the succinct, single key KPFE of Goldwasser et al. [29]
from (sub-exponential) LWE. Our goal is to construct FE that can handle the case of
|(x, 1t)| ≤ |M | and satisfies AD-SIM security without relying on succinct KPFE.

To begin, observe that the generalized bundling technique discussed above lets us
focus on the case where |x, 1t| is fixed, but |M | is unbounded. Moreover, it suffices to
restrict ourselves to 1-NA-SIM security, since 1-NA-SIM implies AD-SIM for FE with
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bounded message length (please see Section [3, Sec 6.4]). In [5], the authors use succinct
KPFE to instantiate this scheme by taking advantage of the fact that the size of the
circuit associated with the secret key in the succinct KPFE is unbounded. Thus, we can
embed a machine M of unbounded size into the secret key. Then we can run the Turing
machine inside the circuit for |M | steps, which exceeds t (since we have t < |M |) and
thus finishes the computation.

Our starting point observation is that since |(x, 1t)| ≤ |M |, where |(x, 1t)| is fixed
and |M | is unbounded, we can think of M as a large database, x as a short input and t
as bounded running time, which naturally suggest the random access machines (RAM)
model of computation. Intuitively, if |M | is massive but |x| and t are small, then running
M on x requires only a bounded number of lookups in the transition table and a bounded
number of steps, regardless of the size of M . Motivated by this observation, we cast M
as a large database and construct a program P which has (x, 1t) hardwired in it, and
executes M(x) via RAM access to M . It is important to note that even if the program
does not have M as an input, RAM access to M suffices, because the transition only
depends on the description of the current state and the bit that is pointed to by the header.
To capture this notion in the setting of FE, we introduce a new primitive, which we call
CPFE for (read only) RAM programs. Here, the encryptor encrypts the program P(x,1t)

above, the key generator provides a key for database M and decryption executes P(x,1t)

on M , which is equal to M(x). Crucially, the running time of encryption is required to
be independent of |D|.

To construct a CPFE for read only RAM, we build upon ideas that were developed in
the context of garbled RAM constructions [37]. In these constructions, a garbled RAM
program consists of t garbled copies of an augmented “step circuit” which takes as input
the current CPU state, the last read bit and outputs an updated state and the next read
location. Copy i of the CPU step circuit is garbled so that the labels for the output wires
corresponding to the output state match the labels of the input wires corresponding to
the input state in the next copy i+ 1 of the circuit. The obvious question in this context
is how to incorporate data from memory into the computation – clearly, decomposing
the computation necessitates some mechanism in which the sequence of garbled circuits
communicate with the outside memory9. To enable this, previous works have used IBE
and oblivious RAM (ORAM) [37, 25]. At a very high level, IBE is used to choose the
correct label of the GC as follows – the garbled memory can consist of IBE secret keys
for identity (i, b) where i is the given location and b is the bit stored in it, while the
garbled circuits can output IBE ciphertexts whose messages are the labels of the next
circuit, under identities (i, b). On the other hand, ORAM hides the position read.

However, an immediate hurdle is that ORAM necessitates two parties (client and
server) to agree on a secret key. Translated into our setting, this would require that the
encryptor and key generator share some secret information – but this is not possible
as we are in the public key setting. To overcome this barrier, we introduce the notion
of FE for LOT, denoted by LOTFE (Section 5.1). In LOTFE, the encryptor has two
messages (µ0, µ1) and a database location i. The key generator has a database D as
input. Decryption allows to recover µD[i] and security hides both µ1−D[i] as well as the

9 The careful reader may note the similarity with the adaptive garbled circuit construction by [24]
discussed above.
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position i. This corresponds to hiding the “other label” as well as the position that was
read, in the garbled RAM approach.

It remains to construct LOTFE. Observe that LOTFE must still satisfy the desired
succinctness properties, in that a secret key should encode unbounded size data and the
running time of the encryption algorithm should be independent of this size. However,
by reducing the requisite functionality to something simple like LOT, we earn several
benefits over using succinct KPFE. In particular, since we only need to support the
table lookup functionality, we can replace the fully homomorphic encryption (FHE)
which was used in the succinct KPFE construction [29] with the much weaker private
information retrieval (PIR). Due to this, we can replace ABE for circuits that is used in
the construction of [29] by the much weaker ABE for NC1 (or NC), which in turn can be
constructed by a wider variety of assumptions. We discuss this in more detail below.

Let us briefly recall the main ideas used to construct succinct KPFE. The construction
of [29] carefully stitches together ABE for circuits, FHE and GC as follows. At a very
high level, FHE is used to encrypt the input x, and this ciphertext x̂ is then used as the
attribute string for ABE. To encode the circuit f , we construct an ABE secret key for a
closely related circuit f ′, which is used to restrict computation on the FHE ciphertext
embedded in the ABE encodings. During decryption, we can check if f ′(x̂) = 1 and
recover the message if so. Intuitively, f ′(x̂) will represent the bits of an FHE encryption
of f(x), denoted by f̂(x) and provide a message lbli,0 if the ith bit of f̂(x) is 0 and
lbli,1 if the ith bit of f̂(x) is 1. These labels are then used as inputs to the GC which
encodes the FHE decryption circuit, so that the decryptor can recover f(x) as desired.
Note that the usage of GC implies that the construction can only support a single function
key, since otherwise the adversary can recover labels for multiple inputs, violating GC
security.

Following a similar template, we can construct 1-NA-SIM secure LOTFE using
ABE for NC1 (or NC), PIR and GC. We encrypt labels under attributes corresponding
to the PIR query and provide a key for the PIR answer function to recover the labels
corresponding to the PIR answer. These are subsequently fed into the garbled circuit to
recover the answer in the clear. We need that the PIR answer function is in NC1 so that
it fits ABE for NC1. Towards this, we show that PIR from QR or DDH has its answer
function in NC1 and thus can be combined with ABE for NC1. If we instantiate PIR
with an FHE-based scheme [17, 27], the answer function is in NC and we need ABE for
NC, which can be instantiated with LWE with quasi-polynomial approximation factors.
Our LOTFE not only allows to use various assumptions other than LWE, which was not
possible before, but also allows us to remove the complexity leveraging required for the
LWE based construction described before, while achieving AD-SIM secure TMFE at the
end10. We need Sel-IND secure ABE as a building block to achieve 1-NA-SIM secure
LOTFE.

The reason why Sel-IND security suffices for our case is that the reduction algorithm
can guess the target attribute the adversary chooses only with polynomial guess. Although

10 We observe that the above construction when instantiated with LWE improves the first
construction we described. However, we still present the first construction because it is much
simpler.
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there are exponentially many possible PIR queries, the reduction algorithm only has to
guess an input that is encoded inside PIR.query. This is because the randomness used for
computing the query is not controlled by the adversary, but by the reduction algorithm.
Since there are only polynomial number of possible inputs to PIR query function, the
guessing can be done only with polynomial security loss. Please see Section 5 for the
complete description.

ABE for TM from LOT and IBE: Lastly, we construct ABE for Turing machines
supporting AD-SIM security with dynamic bounded collusions. Our construction relies
on LOT and IBE. In contrast to the construction of [34], we do not rely on the random
oracle and moreover, we support dynamic bounded collusions.

As before, we consider two cases, namely |(x, 1t)| ≤ |M | and the opposite
|(x, 1t)| > |M |. Observe that for the case of longer input, the LOT based CPFE
construction discussed above suffices since it implies TMFE where |(x, 1t)| > |M |
with dynamic bounded collusions as discussed above. Therefore we focus on the case
of shorter input. For this, our starting point is the single key, NA-IND secure (non-
adaptively indistinguishable) ABE for TM constructed by the recent work of Goyal et
al. [34], which relies on IBE. We upgrade this to adaptively (AD-SIM) secure ABE for
TM supporting dynamic bounded collusions of arbitrary size, when |(x, 1t)| ≤ |M |, as
follows. To begin, we observe that single key NA-IND security in fact implies single key
NA-SIM security in the context of ABE (see [3, Remark 2.5] for an argument). Then, we
combine the above single key NA-SIM ABE for Turing machines, denoted by 1-TMABE
and AD-SIM secure BCPFE (for bounded circuits) with bounded dynamic collusion
similarly to [5, Sec. 4].

In more detail, the master public key and master secret key of the final ABE
scheme are those of BCPFE. To encrypt message m under attribute (x, 1t) for a
collusion bound 1Q, the encryptor first constructs a circuit 1-TMABE.Enc(·, x, 1t,m),
which is an encryption algorithm of the single-key ABE for TM scheme, that takes
as input a master public key and outputs an encryption of the attribute (x, 1t) and
message m under the key. The encryptor then encrypts the circuit using the BCPFE
scheme with respect to the bound 1Q. To generate a secret key for a Turing machine
M , the key generator freshly generates a master key pair of 1-TMABE, namely
(1-TMABE.mpk, 1-TMABE.msk). It then generates a BCPFE secret key BCPFE.sk
corresponding to the string 1-TMABE.mpk and an ABE secret key 1-TMABE.skM
for the machine M . The final secret key is (BCPFE.sk, 1-TMABE.skM ). Decryption
is done by first decrypting the BCPFE ciphertext using the BCPFE secret key
to recover 1-TMABE.Enc(1-TMABE.mpk, x, 1t,m) and then using the secret key
1-TMABE.skM to perform ABE decryption and recover the message m if M(x) = 1
within t steps. Security follows from the individual security of the two underlying
schemes and yields an AD-SIM secure ABE for TM for an a-priori bounded |(x, 1t)|
with bounded dynamic collusion.

To remove the restriction on |(x, 1t)|, we use the “generalized bundling” trick of
[5, Sec 6.2.2], for the case of |(x, 1t)| < |M |. Thus, we obtain AD-SIM ABE for TM
where |(x, 1t)| < |M | with dynamic bounded collusions. Finally, we combine AD-SIM
ABE for TM with |(x, 1t)| > |M | and one with |(x, 1t)| ≤ |M | as described above. The
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transformation yields AD-SIM secure ABE for TM with dynamic bounded collusions,
which readily implies AD-IND security. Please see [3, Sec 6] for further details.

2 Preliminaries

Here, we define functional encryption (FE) with dynamic bounded collusion, which is
introduced by [5, 23]. The notion is stronger than conventional bounded collusion FE
[30, 12] in that the collusion bound can be determined by an encryptor dynamically, rather
than being determined when the system is setup. We note that some of the definitions
here are taken verbatim from [5]. We refer to [3, Sec 2] for additional preliminaries.

2.1 Functional Encryption

Let R : X × Y → {0, 1}∗ be a two-input function where X and Y denote “message
space" and “key attribute space”, respectively. Ideally, we would like to have an FE
scheme that handles the relation R directly, where we can encrypt any message x ∈ X
and can generate a secret key for any key attribute y ∈ Y . However, in many cases,
we are only able to construct a scheme that poses restrictions on the message space
and key attribute space. To capture such restrictions, we introduce a parameter prm
and consider subsets of the domains Xprm ⊆ X and Yprm ⊆ Y specified by it and the
function Rprm defined by restricting the function R on Xprm × Yprm. An FE scheme for
{Rprm : Xprm × Yprm → {0, 1}∗}prm is defined by the following PPT algorithms:

Setup(1λ, prm)→ (mpk,msk): The setup algorithm takes as input the security parame-
ter λ in unary and a parameter prm that restricts the domain and range of the function
and outputs the master public key mpk and a master secret key msk.

Encrypt(mpk, x, 1Q)→ ct: The encryption algorithm takes as input a master public
key mpk, a message x ∈ Xprm, and a bound on the collusion Q in unary. It outputs a
ciphertext ct.

KeyGen(msk, y)→ sk: The key generation algorithm takes as input the master secret
key msk, and a key attribute y ∈ Yprm. It outputs a secret key sk. We assume that y
is included in sk.

Dec(ct, sk, 1Q)→ m or ⊥: The decryption algorithm takes as input a ciphertext ct, a
secret key sk, and a bound Q associated with the ciphertext. It outputs the message
m or ⊥ which represents that the ciphertext is not in a valid form.

Remark 1. We also consider single collusion FE, which is a special case where Q is
always fixed to be Q = 1. In such a case, we drop 1Q from the input to the algorithms
for simplicity of the notation.

Definition 1 (Correctness). An FE scheme FE = (Setup,KeyGen,Enc,Dec) is correct
if for all prm, x ∈ Xprm, y ∈ Yprm, and Q ∈ N,

Pr

[
(mpk,msk)← Setup(1λ, prm) :

Dec
(
Enc(mpk, x, 1Q),KeyGen(msk, y), 1Q

)
6= R(x, y)

]
= negl(λ)

where probability is taken over the random coins of Setup, KeyGen and Enc.
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We define simulation-based security notions for FE in the following.

Definition 2 (AD-SIM Security for FE with Dynamic Bounded Collusion). Let
FE = (Setup,KeyGen,Enc,Dec) be a (public key) FE scheme with dynamic bounded
collusion for the function family {Rprm : Xprm×Yprm → {0, 1}∗}prm. For every stateful
PPT adversary A and a stateful PPT simulator Sim = (SimEnc,SimKG), we consider
the experiments in Figure 2.

ExprealFE,A

(
1λ
)

ExpidealFE,Sim

(
1λ
)

1. prm← A(1λ) 1. prm← A(1λ)
2. (mpk,msk)← Setup(1λ, prm) 2. (mpk,msk)← Setup(1λ, prm)

3. (x, 1Q)← AKeyGen(msk,·)(mpk) 3. (x, 1Q)← AKeyGen(msk,·)(mpk)

– Let (y(1), . . . , y(Q1)) be A’s oracle queries.
– Let sk(q) be the oracle reply to y(q).
– Let V:={(z(q):=R(x, y(q)), y(q), sk(q))}q∈[Q1].

4. ct← Enc(mpk, x, 1Q) 4. (ct, st)← SimEnc(mpk,V, 1|x|, 1Q)
5. b← AO(msk,·)(mpk, ct) 5. b← AO

′(st,msk,·)(mpk, ct)
6. Output b 6. Output b

Fig. 2 AD-SIM security for FE

We emphasize that the adversary A is stateful, even though we do not explicitly
include the internal state of it into the output above for the simplicity of the notation. On
the other hand, the above explicitly denotes the internal state of the simulator Sim by st.
In the experiments:

– The oracle O(msk, ·) = KeyGen(msk, ·) with 1 ≤ Q1 ≤ Q, and
– The oracleO′(st,msk, ·) takes as input the q-th key query y(q) for q ∈ [Q1+1, Q1+
Q2] and returns SimKG(st,msk, R(x, y(q)), y(q)), where Q1 +Q2 ≤ Q

The FE scheme FE is then said to be simulation secure for one message against
adaptive adversaries (AD-SIM-secure, for short) if there is a PPT simulator Sim such
that for every PPT adversary A, the following holds:∣∣∣Pr[ExprealFE,A

(
1λ
)
= 1]− Pr[ExpidealFE,Sim

(
1λ
)
= 1]

∣∣∣ = negl(λ). (2.1)

Remark 2 (Non-adaptive security). We can consider a variant of the above security
definition where the adversary is not allowed to make a secret key query after the
ciphertext ct is given (i.e., Q1 = Q). We call the notion non-adaptive simulation security
(NA-SIM). In particular, when we consider single collusion FE, the notion is called
1-NA-SIM. We refer to [3, Sec 2.4] for the formal definitions.

Special Classes of FE. We define various kinds of FE by specifying the relation.
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CPFE for circuits. To define CPFE for circuits, we set X to be the set of all circuits
and Y = {0, 1}∗ and define R(C, x) = C(x) if the length of the string x and the input
length of C match and otherwise R(C, x) = ⊥. In this paper, we will consider the
circuit class Cinp that consists of circuits with input length inp := inp(λ). To do so, we
set prm = 1inp, Xprm = Cinp, and Yprm = {0, 1}inp.

Remark 3. In the definition of CPFE for circuits, even though the input length of the
circuits in Cinp is bounded, the size of the circuits is unbounded.

FE for Turing Machines. To define FE for Turing machines, we set X = {0, 1}∗, Y to
be set of all Turing machine, and define R : X × Y → {0, 1} as

R((x, 1t),M) =

{
1 if M accepts x in t steps
0 otherwise.

.

3 Gate-by-Gate Garbling with Pebbling-based Simulation

We define a notion of gate-by-gate garbling and its pebbling-based simulation. This is
an abstraction of the backbone of the adaptive garbling by Garg and Srinivasan [24].

First, we define a syntax of a standard garbling scheme.11 A garbling scheme for a
circuit class C cosists of PPT algorithms GC = (GCkt,GInp,GEval) with the following
syntax:

GCkt(1λ, C)→ (C̃, st): The circuit garbling algorithm takes as input the unary
representation of the security parameter λ and a circuit C ∈ C and outputs a
garbled circuit C̃ and state information st.

GInp(st, x)→ x̃: The input garbling algorithm takes as input the state information st
and an input x and outputs a garbled input x̃.

GEval(C̃, x̃)→ y: The evaluation algorithm takes as input the garbled circuit C̃ and
garbled input x̃ and outputs an output y.

Definition 3 (Correctness). A garbling scheme GC = (GCkt,GInp,GEval) is correct
if for all circuits C ∈ C and its input x,

Pr[(C̃, st)← GCkt(1λ, C), x̃← GInp(st, x) : GEval(C̃, x̃) = C(x)] = 1.

In addition to the security notion for a standard garbling scheme in [3, Definition
2.8], we introduce a new security notion specific to gate-by-gate garbling, which we call
pebbling-based security. For defining gate-by-gate garbling, we prepare some notations
about circuits.

11 Note that the syntax defined here is more general than that of Yao’s garbling defined in [3,
Definition 2.8].
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Notations. For a circuit C, we denote by Gates the set of all gates of C. We use inp and
out to mean the input-length and output-length of C, respectively. A unique index from
1 to N is assigned to each bit of input and gate where N is the sum of the input-length
and the number of gates of C. In particular, each bit of input is assigned by indices
from 1 to inp, each intermediate gate is assigned by indices from inp+ 1 to N − out,
and each output gate is assigned by indices from N − out+ 1 to N . We assume that a
circuit has fan-in 2 and unbounded fan-out without loss of generality. A gate G ∈ Gates
is represented as (gG, iG, AG, BG) where gG : {0, 1} × {0, 1} → {0, 1} is a function
corresponding to G, iG is the index of G, and AG and BG are indices of the input bits or
gates whose values are passed to G as input. We assume AG < iG and BG < iG without
loss of generality. We call (iG, AG, BG) the topology of G and denote it by top(G). We
call the set of topology of all gates the topology of C and denote it by top(C).

Intuitively, gate-by-gate garbling is a garbling scheme whose circuit garbling
algorithm can be decomposed into gate garbling algorithms for each gate, whose
efficiency is independent of the size of the circuit. The formal definition is given below:

Definition 4 (Gate-by-Gate Garbling:). A garbling scheme GC = (GCkt,GInp,GEval)
for a circuit class C is said to be gate-by-gate garbling with Nrand = Nrand(top(C))
randomness slots and randomness length ` if GCkt can be decomposed into PPT sub-
algorithms (GSetup,GGate) as follows:

GCkt(1λ, C): The circuit garbling algorithm proceeds as follows:
1. Run GSetup(1λ, top(C)) to generate a public parameter pp.
2. For i ∈ [Nrand], generate a randomness Ri ← {0, 1}` for ` = poly(λ) that

does not depend on C.
3. For G ∈ Gates, run GGate(pp,G, {Ri}i∈S(G)) to generate a garbled gate G̃.

Here, S(G) ⊆ [Nrand] is a subset of size O(1) that is efficiently computable from
G and top(C).

4. Output a garbled circuit C̃ :=
(
pp, {G̃}G∈Gates

)
and the state information

st := (pp, {Ri}i∈Sst) where Sst ⊆ [Nrand] is a subset of size O(inp+ out) that
is efficiently computable from top(C).

We require GC to satisfy the following requirements.

1. GGate(pp,G, {Ri}i∈S(G)) runs in time poly(λ) independently of the size ofC where
pp← GSetup(1λ, top(C)) and Ri ← {0, 1}` for i ∈ [Nrand].

2. GInp(st, x) is deterministic and runs in time poly(λ, inp, out) independently of the
size of C where pp ← GSetup(1λ, top(C)), Ri ← {0, 1}` for i ∈ [Nrand], and
st := (pp, {Ri}i∈Sst).

We require gate-by-gate garbling to satisfy (M,T )-pebbling-based security for some
parameters M and T , which intuitively requires the following: There are three modes
of gate garbling algorithms, the white mode, black mode, and gray mode. The white
mode gate garbling algorithm is identical to the real gate garbling algorithm. The black
mode gate garbling algorithm is a “simulation” algorithm that simulates a garbled gate
without knowing the functionality of the gate. The gray mode garbling algorithm is an
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“input-dependent simulation” algorithm that simulates a garbled gate by using both the
circuit C and its input x that are being garbled. We call a sequence of modes of each
gate of C a configuration of C. There is a configuration-based input-garbling algorithm
that simulates a garbled input by using C and a configuration as additional inputs. When
the configuration is all-white, it corresponds to the real input garbling algorithm, and
when the configuration is all-black, it corresponds to a legitimate “simulation” algorithm
that only uses C(x) instead of C and x. The security requires that there is a sequence of
configurations of length T that starts from the all-white configuration, which corresponds
to the real garbling algorithm, to the all-black configuration, which corresponds to the
simulation algorithm, such that:

1. the number of gates in the gray mode in any intermediate configuration is at most
M , and

2. garbled circuits and garbled inputs generated in neighboring configurations are
computationally indistinguishable even if the distinguisher can specify all the
randomness needed for generating garbled gates whose modes are black or white in
both of those configurations.

We give the formal definition of pebbling-based security in [3, Sec 3.1].

Instantiation. Our definition of gate-by-gate garbling with pebbling-based simulation
security captures the backbone of the proof technique of adaptive garbling in [24]. The
following lemma is implicit in their work. The lemma is proven in [3, Appendix A] for
completeness.

Lemma 1 (Implicit in [24]). If there exists LOT, which exists assuming either of CDH,
Factoring, or LWE, there exists a gate-by-gate garbling for all polynomial-size circuits
that satisfies (M,T )-pebbling-based simulation security for M = O(log size) and
T = poly(size) where size is the size of a circuit being garbled.

4 AD-SIM CPFE with Dynamic Bounded Collusion

In this section, we construct an AD-SIM secure CPFE scheme CPFE for unbounded
polynomial-size circuits with dynamic bounded collusion. CPFE supports the function
class Cinp,out for any polynomials inp = inp(λ) and out = out(λ) where Cinp,out is the
class of circuits with input-length inp and output-length out.
Ingredients. We now describe the underlying building blocks used to obtain CPFE:

1. A gate-by-gate garbling scheme GC = (GCkt,GInp,GEval) for Cinp,out with Nrand

randomness slots and randomness length ` that satisfies (M,T )-pebbling-based
simulation security for M = poly(λ) and T = poly(λ). By Lemma 1, such a
scheme exists under the existence of laconic OT, which in turn exists under either of
CDH, Factoring, or LWE. We denote byR the randomness space of GGate.

2. A PRF PRF = (PRF.Setup,PRF.Eval) from {0, 1}inp to {0, 1}`.
3. A PRF PRF′ = (PRF′.Setup,PRF′.Eval) from {0, 1}inp toR.
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Circuit GarbleCirc

Input: A string x ∈ {0, 1}inp and a key-tag r ∈ {0, 1}λ
Hardwired value: a public parameter pp, gate G, set S(G), tuple of PRF keys
{Ki}i∈S(G), and PRF key K′G.

1. Compute Ri ← PRF.Eval(Ki, r) for i ∈ S(G) and R′G ← PRF′.Eval(K′G, r).
2. Output G̃ := GGate(pp,G, {Ri}i∈S(G);R′G).

Fig. 3 The description of GarbleCirc

4. An M -CT AD-SIM secure CPFE scheme with dynamic bounded collusion denoted
by BCPFE = (BCPFE.Setup,BCPFE.Enc,BCPFE.KeyGen,BCPFE.Dec) for
bounded polynomial-size circuits. Here, M -CT AD-SIM security roughly means
security against adversaries that see M challenge ciphertexts. Due to a technical
reason, however, our notion of M -CT AD-SIM security is slightly different from
the standard one e.g., [30, Appendix A]. Our definition is given in [3, Sec 4.1.2]. We
construct a CPFE scheme for bounded polynomial-size circuits that satisfies this
security notion from IBE in [3, Appendix B.1].
We require BCPFE to support a circuit class CBCPFE.inp,BCPFE.out,BCPFE.size con-
sisting of circuits with input length BCPFE.inp, output length BCPFE.out, and
size at most BCPFE.size, where BCPFE.inp := inp + λ and BCPFE.out and
BCPFE.size are output-length and the maximum size of the circuit GarbleCirc
defined in Figure 3, respectively. By the efficiency requirements of GC (Definition 4),
BCPFE.out = poly(λ, inp) and BCPFE.size = poly(λ, inp) independently of the
size of the circuit C being encrypted.

5. A (single-ciphertext) AD-SIM-secure CPFE scheme with dynamic bounded collu-
sion denoted by BCPFE′ = (BCPFE′.Setup,BCPFE′.Enc,BCPFE′.KeyGen,BCPFE′.Dec)
for bounded polynomial-size circuits. We require BCPFE′ to support a circuit class
CBCPFE′.inp,BCPFE′.out,BCPFE′.size consisting of circuits with input length BCPFE′.inp,
output length BCPFE′.out, and size at most BCPFE′.size, where BCPFE′.inp :=
inp+ λ and BCPFE′.out and BCPFE′.size are the output length and the maximum
size of the circuit GarbleInp defined in Figure 4, respectively. By the efficiency
requirements of GC (Definition 4), BCPFE′.out = poly(λ, inp) and BCPFE′.size =
poly(λ, inp) independently of the size of the circuit C being encrypted.

Construction. In the construction, for a circuit C, we define the universal circuit UC
such that UC(x)=C(x). We define UC in such a way that the topology of UC does not
reveal anything beyond the size of C.12 The description of CPFE is given below.

Setup(1λ, prm): On input the security parameter λ and the parameter prm, do the
following:
1. Run (BCPFE.mpk,BCPFE.msk)← BCPFE.Setup(1λ,BCPFE.prm).
2. Run (BCPFE′.mpk,BCPFE′.msk)← BCPFE′.Setup(1λ,BCPFE′.prm).

12 We explain how to construct such UC in [3, Sec 2.1].
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Circuit GarbleInp

Input: A string x ∈ {0, 1}inp and a key-tag r ∈ {0, 1}λ
Hardwired value: a public parameter pp and a tuple of PRF keys {Ki}i∈Sst .

1. Compute Ri ← PRF.Eval(Ki, r) for i ∈ Sst.
2. Set st := (pp, {Ri}i∈Sst).
3. Output x̃ := GInp(st, x).

Fig. 4 The description of GarbleInp

3. Output (mpk,msk):=((BCPFE.mpk,BCPFE′.mpk), (BCPFE.msk,BCPFE′.msk)).
Enc(mpk, C, 1Q): On input the master public key mpk = (BCPFE.mpk,BCPFE′.mpk),

a circuit C ∈ Cinp,out, and the query bound 1 ≤ Q ≤ 2λ in unary form, do the
following:
1. Compute the universal circuit UC . In the following, we write Gates to mean the

set of gates of UC rather than C.
2. Run pp← GSetup(1λ, top(UC)).
3. For i ∈ [Nrand], generate Ki ← PRF.Setup(1λ)
4. For G ∈ Gates generate K′G ← PRF′.Setup(1λ).
5. For G ∈ Gates, run

BCPFE.ctG ← BCPFE.Enc(BCPFE.mpk,GarbleCirc[pp,G, S(G), {Ki}i∈S(G),K′G], 1Q)

where GarbleCirc[pp,G, S(G), {Ki}i∈S(G),K′G] is the circuit as defined in
Figure 3.

6. Run BCPFE′.ct← BCPFE′.Enc(BCPFE′.mpk,GarbleInp[pp, {Ki}i∈Sst ]) where
GarbleInp[pp, {Ki}i∈Sst ] is the circuit as defined in Figure 4.

7. Output ct:=({BCPFE.ctG}G∈Gates,BCPFE′.ct).
KeyGen(msk, x): On input the master secret key msk = (BCPFE.msk,BCPFE′.msk)

and an input x ∈ {0, 1}inp, do the following:
1. Generate r ← {0, 1}λ.
2. Run BCPFE.sk← BCPFE.KeyGen(BCPFE.msk, (x, r)).
3. Run BCPFE′.sk← BCPFE′.KeyGen(BCPFE′.msk, (x, r)).
4. Output sk:=(r,BCPFE.sk,BCPFE′.sk).

Dec(ct, sk, 1Q): On input a ciphertext ct = ({BCPFE.ctG}G∈Gates,BCPFE′.ct) and a
secret key sk = (r,BCPFE.sk,BCPFE′.sk), do the following:
1. For G ∈ Gates, run G̃← BCPFE.Dec(BCPFE.ctG,BCPFE.sk, 1

Q)
2. Run x̃← BCPFE′.Dec(BCPFE′.ct,BCPFE′.sk, 1Q).
3. Set ŨC := (pp, {G̃}G∈Gates).
4. Compute and output GEval(ŨC , x̃).

Correctness Let ct = ({BCPFE.ctG}G∈Gates,BCPFE′.ct) be an honestly generated
ciphertext for a circuit C and sk = (r,BCPFE.sk,BCPFE′.sk) be an honestly
generated secret key for an input x. By the correctness of BCPFE, for each G ∈
Gates, if we generate G̃ ← BCPFE.Dec(BCPFE.ctG,BCPFE.sk, 1

Q), then we have
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G̃ = GGate(pp,G, {Ri}i∈S(G);R′G) where Ri ← PRF.Eval(Ki, r) for i ∈ S(G) and
R′G ← PRF′.Eval(K′G, r). Similarly, by the correctness of BCPFE′, if we generate
x̃ ← BCPFE′.Dec(BCPFE′.ct,BCPFE′.sk, 1Q), then we have x̃ = GInp(st, x) where
Ri ← PRF.Eval(Ki, r) for i ∈ Sst and st := (pp, {Ri}i∈Sst). Then, by the (perfect)
correctnes of GC, GEval(ŨC , x̃) = UC(x) = C(x) where ŨC := (pp, {G̃}G∈Gates).
Security The following theorem asserts the security of CPFE. The proof appears in [3,
Sec 4.2].

Theorem 1. If GC satisfies (M,T )-pebbling-based simulation security for M =
poly(λ) and T = poly(λ), BCPFE is M -CT AD-SIM-secure against dynamic bounded
collusion, BCPFE′ is AD-SIM-secure against dynamic bounded collusion, and PRF
and PRF′ are secure pseudorandom functions, then CPFE is AD-SIM-secure against
dynamic bounded collusion.

FE for Turing machines. Agrawal et al. [5] (implicitly) showed that one can construct
FE for TM with AD-SIM security against dynamic bounded collusion based on CPFE
for unbounded polynomial-size circuits with AD-SIM security against dynamic bounded
collusion additionally assuming sub-exponential LWE. Since (even polynomial) LWE
implies LOT and IBE, by combining their result and Theorem 1, we obtain the following
theorem:

Theorem 2. Assuming sub-exponential LWE, we have FE for TM with AD-SIM security
against dynamic bounded collusion.

This improves one of the main results of [5] that constructed a similar scheme with
NA-SIM security based on the same assumption. Since this is further improved in regard
to assumptions in Section 5, we omit the details.

5 TMFE without Succinct FE

In this section, we propose an alternative route to construct FE for Turing machine that
does not use succinct FE. We refer to Section 1 for the overview.

5.1 FE for Laconic OT Functionality

Here, we define FE for LOT functionality by specifying the relation RLOTFE : XLOTFE×
YLOTFE → {0, 1}∗.
FE for Laconic OT Functionality. To define FE for LOT functionality, we set prm = ⊥,
XLOTFE = N× N× {0, 1}∗ × {0, 1}∗, and YLOTFE = {0, 1}∗. An element in XLOTFE

is represented by (N, i, µ0, µ1) with N ∈ N, i ∈ [N ], and µ0, µ1 ∈ {0, 1}∗ with
|µ0| = |µ1|. We assume that both i and N are represented in binary form. We then define

RLOTFE((N, i, µ0, µ1), D) =

{
(N,µD[i]) if |D| = N

(N, 1|µ0|) otherwise
,

where |D| is the length of D as a binary string and D[i] is the i-th bit of D.
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Remark 4 (Succinctness). We note that the encryption algorithm should run in fixed
polynomial time in λ that is independent from N , since N is input to the encryption
algorithm in binary form. This in particular implies that the running time of the encryption
algorithm is independent from the size of the database D supported by the scheme. This
property can be seen as an analogue of the efficiency requirements for the succinctness
of FE [29] or laconic OT [18].

Remark 5. We also note that the above FE has similar functinality to that of LOT [18].
However, the important difference is that we intend to hide the index i while they do not.
This security requirement is captured by the definition of RLOTFE above, where i is not
part of the output.

Ingredients. We now describe the underlying building blocks used for our construction
of FE for LOT functionality. We need the following ingredients.

1. PIR scheme PIR = (PIR.Query,PIR.Answer,PIR.Reconstruct) that satisfies
the efficiency requirements in [3, Definition 2.9]. In particular, we require that
PIR.Query and PIR.Reconstruct run in fixed polynomial time for any N ≤
2log

2 λ (even for super-polynomial N ). This implies that the lengths of PIR.query,
PIR.answer, and PIR.st are bounded by a fixed polynomial in the security parameter
that is independent of N . We use the uniform upper bound `PIR = poly(λ) for them
and assume that they are represented by binary strings of length `PIR. Additionally,
we require that the function PIR.Answer has shallow circuit implementations. As
we show in [3, Appendix C], we have the following instantiations:
(a) PIR constructions from (the polynomial hardness of) LWE [17, 27] has

implementation of the answer function in NC.
(b) For PIR constructions from DDH/QR [22], we have implementations of the

answer function in NC1. For DDH based construction, we have to use the
multiplicative sub-group of Zq for prime q.

2. 1-Sel-IND secure ABE scheme ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec)
for circuits that can evaluate the answer function of PIR in the above. We consider
two types of instantiations:
(a) We can use general ABE for circuit [31, 14]. If the answer function of

PIR is implemented in NC, we can base the security of the scheme on
polynomial hardness of LWE with quasi-polynomial approximation factors
(i.e., O(λpoly(log λ))).

(b) We can use ABE for NC1 circuits. In more details, we need the scheme to
support circuit with fixed input length and any depth d, where we allow the key
generation algorithm and the decryption algorithms to run in time poly(λ, 2d).
This effectively limits the class of the circuits to be NC1. We can instantiate
such an ABE from (the polynomial hardness of) LWE with super-polynomial
approximation factor [32] (i.e., O(λω(1))) or various assumptions on pairing
groups including DBDH or CBDH (the computational bilinear Diffie-Hellman
assumption) [35].

3. Selectively secure garbled circuit GC = (GC.Garble,GC.Sim). We can instantiate it
from any one-way function [39].
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Circuit C[N,PIR.st, µ0, µ1]

Hardwired constants: The integer N , The PIR secret state PIR.st, the messages µ0, µ1.
Input: String X ∈ {0, 1}`PIR

1. Parse X → PIR.answer.
2. Run PIR.Reconstruct(PIR.st,PIR.answer, N)→ b.
3. Output µb.

Fig. 5 Circuit C[N,PIR.st, µ0, µ1]

4. IBE scheme IBE = (IBE.Setup, IBE.KeyGen, IBE.Enc, IBE.Dec) with AD-IND
security. Since IBE with AD-IND security is implied by IBE with Sel-IND [19] and
the latter is trivially implied by the ABE for NC1 circuit, this does not add a new
assumption.

We assume that all the ingredients above have perfect correctness for simplicity. We
consider correctness error only for PIR, because DDH based instantiation does not have
perfect correctness.
Construction. Here, we describe our scheme LOTFE = (Setup,KeyGen,Enc,Dec).
The construction is similar to that of succinct FE by [29] where FHE is replaced by PIR.
In the construction, we assume that N, |D| ≤ 2log

2 λ. This is sufficient for dealing with
unbounded size D, because 2log

2 λ = λlog λ is super-polynomial.

Setup(1λ): On input the security parameter λ, do the following:
1. Run (IBE.mpk, IBE.msk)← IBE.Setup(1λ).
2. Run (ABE.mpk,ABE.msk) ← ABE.Setup(1λ, prm), where prm:=1`PIR+2λ.

This means that the ABE supports circuit with input length `PIR + 2λ.
3. Output mpk:=(ABE.mpk, IBE.mpk) and msk:=(ABE.msk, IBE.msk).

Enc(mpk, (N, i, µ0, µ1)): On input the master public key mpk = (ABE.mpk, IBE.mpk)
and the message (N, i, µ0, µ1), do the following:
1. Run (PIR.query,PIR.st)← PIR.Query(1λ, i, N).
2. Pick labk,b ← {0, 1}λ for k ∈ [`PIR], b ∈ {0, 1}.
3. For k ∈ [`PIR], b ∈ {0, 1}, compute

ABE.ctk,b ← ABE.Enc(ABE.mpk, (PIR.query, k, b), labk,b).

4. Construct circuit C[N,PIR.st, µ0, µ1] as Figure 5.
5. Run C̃ ← GC.Garble

(
1λ, C[N,PIR.st, µ0, µ1]

)
.

6. Set msg:=
(
C̃,PIR.query, {ABE.ctk,b}k∈[`PIR],b∈{0,1}

)
.

7. Run IBE.ct← IBE.Enc(IBE.mpk, N,msg).
8. Output ct:=(N, 1|µ0|, IBE.ct).

KeyGen(msk, D): On input the master secret key msk = (ABE.msk, IBE.msk), an
input D ∈ {0, 1}∗ with |D| ≤ 2log

2 λ, do the following:
1. Construct the circuit F [D] as Figure 6.
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Circuit F [D]

Hardwired constants: The data D ∈ {0, 1}|D|.
Input: String X ∈ {0, 1}`PIR+λ+1

1. Parse the input as X → (PIR.query, k, b) where PIR.query ∈ {0, 1}`PIR , k ∈
{0, 1}λ, and b ∈ {0, 1}.

2. If k 6∈ [`PIR], output 0, where k is interpreted as an integer.
3. Run PIR.Answer(PIR.query, D, 1|D|)→ PIR.answer.
4. Compute b′ = PIR.answerk ⊕ b ⊕ 1, where PIR.answerk is the k-th bit of

PIR.answer.
5. Output b′.

Fig. 6 Circuit F [D]

2. Run
ABE.sk← ABE.KeyGen(ABE.msk, F [D]).

3. Run IBE.sk← IBE.KeyGen(IBE.msk, |D|).
4. Output sk:= (D,ABE.sk, IBE.sk).

Dec(ct, sk): On input a ciphertext ct = (N, 1|µ0|, IBE.ct), a secret key sk =
(D,ABE.sk, IBE.sk), do the following:

1. If |D| 6= N , output (N, 1|µ0|).
2. Run msg← IBE.Dec(IBE.sk, IBE.ct).
3. Parse msg→ (C̃,PIR.query, {ABE.ctk,b}k∈[n],b∈{0,1}).
4. Run PIR.answer← PIR.Answer(PIR.query, D, 1N ).
5. Run labk ← ABE.Dec(ABE.sk,ABE.ctk,PIR.answerk) for k ∈ [`PIR].
6. Compute µ:=GC.Eval(C̃, {labk}k).
7. Output (N,µ).

Efficiency. We discuss the efficiency of the scheme. It is not hard to see that Setup and
Enc run in polynomial time in its input length. We note that Enc runs in polynomial time
in λ and |µ| even for super-polynomial N as large as 2log

2 λ by the efficiency property of
PIR.Query and PIR.Reconstruct. For evaluating the efficiency of KeyGen, we consider
two settings based on how we instantiate ABE and PIR. The first case is the combination
of ABE for circuits and any PIR, whereas the second case is ABE for NC1 circuits and
PIR with answer function in NC1. We focus on the latter case since the former case is
much simpler. Evaluating the efficiency of KeyGen in this case is a bit subtle, because
ABE.KeyGen used inside the algorithm runs in exponential time in the depth of the
input circuit. In order to bound the running time of the algorithm, we evaluate the depth
of F [D] by going over all the computation steps inside the circuit. We observe that
only the second and the third steps out of the five steps are non-trivial. The second step
can be implemented by a circuit of depth O(log `PIR) = O(log λ) by checking k ?

= i
for all i ∈ [`PIR] in parallel and taking OR of all the outcomes. The third step can be
implemented by a circuit of depth O(log |D|) by our assumption on PIR. Overall, the
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depth of the circuit F [D] can be upper bounded by O(log λ+ log |D|) and thus the key
generation algorithm runs in time

2O(log λ+log |D|) = poly(λ, |D|)

as desired. We finally observe that the decryption algorithm runs in time polynomial
in the length of ct and sk, which are bounded by poly(λ, |D|) by the efficiency of the
encryption and key generation algorithms. Therefore, the decryption algorithm runs in
time poly(λ, |D|) as well.

Correctness. We focus on the case of |D| = N , since otherwise it is trivial.
By the correctness of IBE, msg is correctly recovered in the first step of the
decryption. Furthermore, since F [D](PIR.query, k,PIR.answerk) = PIR.answerk ⊕
PIR.answerk ⊕ 1 = 1, we observe that labk recovered in the 5-th step of the
decryption equals to labk,PIR.answerk by the correctness of ABE. Finally, by the
correctness of GC and PIR, µ recovered in the 6-th step of the decryption equals to
C[N,PIR.st, µ0, µ1](PIR.answer) = µD[i] with overwhelming probability as desired.

Security. The following theorem addresses the security of LOTFE, whose proof is
similar to that of succinct FE by [29]. However, we need somewhat more careful analysis
in order to base the security of the scheme on Sel-IND security of the underlying
ABE rather than on AD-IND security. The reason why Sel-IND security suffices for
our case is that the reduction algorithm can guess the target attribute the adversary
chooses only with polynomial security loss. In more detail, we change ABE ciphertexts
encrypting labk,1−PIR.answerk for attribute (PIR.query, k, 1 − PIR.answerk) to be that
encrypting labk,PIR.answerk in the security proof. A naive way of guessing the attribute
(PIR.query, k, 1 − PIR.answerk) ends up with exponential security loss, since there
are exponentially many possible PIR.query. However, the reduction algorithm only
has to guess (N, i) that is encoded inside PIR.query, because the randomness used for
computing the query is not controlled by the adversary, but by the reduction algorithm.
Since there are only polynomial number of possible (N, i, k, 1 − PIR.answerk), the
guessing can be done only with polynomial security loss.

Theorem 3. If IBE is AD-IND secure, ABE is Sel-IND secure, GC is selectively secure,
and PIR is private, then the above FE is 1-NA-SIM secure.

The proof of Theorem 3 appears in [3, Sec 5.1].

5.2 CPFE for read only RAM

Here, we define CPFE for read only RAM by specifying the relation RCPRAMFE :
XCPRAMFE × YCPRAMFE → {0, 1}∗.
CPFE for read only RAM computation. To define CPFE for read only RAM, we set
YCPRAMFE = {0, 1}∗ and XCPRAMFE to be a set of read only RAM programs of the form
P = {P τ}τ∈[t]. We define RCPRAMFE(P,D) ∈ {0, 1}∗ to be the output obtained by
executing P with the RAM access to the dataD. In our case, we consider RAM programs
with some specific structure. To define this, we introduce the parameter prm = 1`st and
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the set of RAM programs PT,size. We then constrain the domain as Xprm = PT,size and
Yprm = {0, 1}∗. A RAM program in PT,size is of the form P = {P τ}τ where the step
circuit P τ is of the form P τ : {0, 1}`st → {0, 1}`st−1 × {0, 1}log2 λ. For D ∈ {0, 1}N
and P = {P τ}τ∈[t], we define (stτ , Lτ ) ∈ {0, 1}`st−1 × {0, 1}log2 λ for τ ∈ [2, t] by
induction as

(stτ , Lτ ):=P τ−1(stτ−1, D[Lτ−1]) where (st1, D[L1]):=(0`st−1, 0). (5.1)

Here, stτ and Lτ ∈ {0, 1}log2 λ output by P τ−1 represent the state information and
the position Lτ to be read from the data D respectively. The state stτ and the read bit
D[Lτ ], which is the Lτ -th bit of D, is then input to the next step circuit P τ . In the above
computation, the initial state st1 and the initial read bit D[L1] are defined to be zero
strings. Note that the position to be read is assumed to be represented by a binary string
of {0, 1}log2 λ, which is interpreted as an integer in [0, 2log

2 λ]. Since 2log
2 λ = λlog λ is

super-polynomial, this is sufficient for pointing a position in any unbounded size data.
The output obtained by running P with the RAM access to the data D is denoted by PD

and is defined to be PD := stt+1.

Remark 6 (Succinctness). Similarly to the case of LOTFE, the running time of the
encryption algorithm is independent from the size of the database D supported by the
scheme. This property can be seen as an analogue of the efficiency requirements for the
succinctness of FE [29] or laconic OT [18].

Remark 7 (Efficiency). We note that we do not require the decryption time to be
independent of the size of the database D, while the encryption time is required to
be so. This is in contrast to ABE/FE for RAM efficiency in the literature [26, 8], where
the decryption time is also required to be sublinear in the size of the database. However,
our weaker definition suffices for our purpose of constructing FE for TM.

Ingredients. We now describe the underlying building blocks used for our construction
of CPFE for read only RAM.

1. FE with laconic OT functionality LOTFE = (LOTFE.Setup, LOTFE.KeyGen,
LOTFE.Enc, LOTFE.Dec) with 1-NA-SIM security. This can be instantiated by the
scheme in Section 5.1. For simplicity, we assume that the encryption algorithm
of LOTFE only requires randomness of λ bits. This can be achieved by using the
randomness as a PRF key to derive longer pseudorandom string for example.

2. IBE scheme IBE = (IBE.Setup, IBE.KeyGen, IBE.Enc, IBE.Dec) with AD-IND
security. Since the construction of LOTFE in Section 5.1 already uses IBE, this does
not add new assumption.

3. Selectively secure garbled circuit GC = (GC.Garble,GC.Sim). We can instantiate it
from any one-way function [39].

Construction. Here, we describe our scheme CPRAMFE = (Setup,KeyGen,Enc,Dec).
The construction is inspired by the garbled RAM construction by [25], which in turn is
based on [37], where a sequence of garbled circuits read the memory stored outside of
the circuits via RAM access. Whereas they use the combination of IBE and ORAM to
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Circuit SC[τ, P τ , LOTFE.mpk,Rτ , {labτ+1
k,b }k,b]

Hardwired constants: The step number τ , the step circuit P τ , the master public key
LOTFE.mpk, randomness Rτ , and the set of labels {labτ+1

k,b }k∈[n],b∈{0,1}.
Input: String X ∈ {0, 1}n.

1. Parse the input as X → (N, st, rData), where N ∈ {0, 1}log
2 λ, st ∈ {0, 1}`st−1,

and rData ∈ {0, 1}.
2. Run P τ (st, rData) = (st′, L).
3. Run LOTFE.Enc

(
LOTFE.mpk, (N,L, labτ+1

n,0 , lab
τ+1
n,1 );Rτ

)
→ LOTFE.ct.

4. Set Y :=(N, st′).

5. Output


({

labτ+1
k,Yk

}
k∈[n−1]

, LOTFE.ct

)
if τ 6= t

st′ if τ = t

Fig. 7 Circuit SCτ = SC[τ, P τ , LOTFE.mpk,Rτ , {labτ+1
k,b }k,b]

enable the oblivious access to the memory, we use LOTFE for this purpose instead. This
change is crucial for us because ORAM is a secret key primitive and is not compatible
with our setting of public key FE.

Setup(1λ, prm): On input the security parameter λ, the parameter prm = 1`st , do the
following:
1. Run (IBE.mpk, IBE.msk)← IBE.Setup(1λ).
2. Run (LOTFE.mpk, LOTFE.msk)← LOTFE.Setup(1λ).
3. Output mpk:=(LOTFE.mpk, IBE.mpk) and msk:=(LOTFE.msk, IBE.msk).

Enc(mpk, P ): On input the master public key mpk = (LOTFE.mpk, IBE.mpk), a read
only RAM program P = {Pτ}τ∈[t] ∈ P`st , do the following:
1. Set n:= log2 λ+ `st.
2. Pick labτk,b ← {0, 1}λ for τ ∈ [t], k ∈ [n], and b ∈ {0, 1}.
3. Pick Rτ ← {0, 1}λ for τ ∈ [t].
4. Construct circuit SCτ := SC[τ, P τ , LOTFE.mpk,Rτ , {labτ+1

k,b }k,b] for τ ∈ [t]

as Figure 7, where we define labt+1
k,b = ⊥ for k ∈ [n], b ∈ {0, 1}.

5. For all τ ∈ [t], run

S̃C
τ
← GC.Garble

(
1λ,SCτ , {labτk,b}k,b

)
.

6. For all k ∈ [n], b ∈ {0, 1}, run

IBE.ctk,b ← IBE.Enc(IBE.mpk, (k, b), lab1k,b).

7. Output ct:=
(
{S̃C

τ
}τ∈[t], {IBE.ctk,b}k∈[n],b∈{0,1}

)
.

KeyGen(msk, D): On input the master secret key msk = LOTFE.msk, an input D ∈
{0, 1}N , where N ≤ 2log

2 λ, do the following:
1. Run

LOTFE.sk← LOTFE.KeyGen(LOTFE.msk, D).
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2. Set X = N‖0n−log2 λ, where N is represented as a string in {0, 1}log2 λ.
3. For all k ∈ [n], run

IBE.skk,Xk
← IBE.KeyGen(IBE.msk, (k,Xk)).

4. Output sk:=
(
D, LOTFE.sk, {IBE.skk,Xk

}k∈[n]
)
.

Dec(ct, sk): On input a ciphertext ct = ({S̃C
τ
}τ , {IBE.ctk,b}k,b) and a secret key

sk = (D, LOTFE.sk, {IBE.skk,Xk
}k), do the following:

1. Run Set X:=N‖0n−log2 λ.
2. Run lab1k:=IBE.Dec(IBE.skk,Xk

, IBE.ctk,Xk
) for k ∈ [n].

3. Set label := {lab1k}k∈[n].
4. For τ = 1, . . . , t

(a) Compute gout := GC.Eval(S̃C
τ
, label).

(b) If τ = t, set y := gout and break out of the loop.
(c) Parse gout→

(
{labk}k∈[n−1], LOTFE.ct

)
.

(d) Compute (N, labn):=LOTFE.Dec(LOTFE.sk, LOTFE.ct).
(e) Set label := {labk}k∈[n].

5. Output y.

Correctness and Security. The correctness of CPRAMFE is shown in [3, Sec 5.2]. We
prove that CPRAMFE is 1-NA-SIM secure in [3, Sec 5.2].

Efficiency. By the efficiency of LOTFE and IBE, it is easy to see that Setup and KeyGen

run in time poly(λ) and poly(λ, |D|), respectively. We can also see that |S̃C
τ
| =

poly(λ, |P τ |) and thus the running time of Enc can be bounded by poly(λ, |P |). Finally,
Dec runs in polynomial time in its input length by the efficiency of the underlying
primitives and thus run in time poly(λ, |P |, |D|).

5.3 FE for Turing Machines with Fixed Input Length

Here, we show that CPRAMFE we constructed in Section 5.2 can easily be converted
into FE for TM. The resulting construction can handle TM of unbounded size, but it
is only 1-NA-SIM secure and can only handle the case where the length of (x, 1t) is
bounded. These limitations will be removed in the next subsection.

RAM Programs reading multi-bit at once. To simplify the description, we assume
that each step of RAM computation reads a block consisting of B(λ) = poly(λ) bits
at once instead of reading a single bit. Correspondingly, we assume that the database
contains B bits of data at a single location. This is without loss of generality because
a RAM program that reads single bit at once can be converted into that reads B bits at
once by making the length of step circuits B times longer and increasing the size of each
step circuit so that it can keep B bits inside it.

Representing Turing machine computation as RAM computation. In order to
represent the computation executed by a Turing machine as a computation by RAM
program, we introduce the following mappings:
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P τ(x,1t)

Hardwired constants: The step number τ , the input x to the TM, and the running time t.
Input: (st, rData) ∈ {0, 1}t+2λ × {0, 1}B .

1. Parse the input as st → (i,W, q), where i, q ∈ {0, 1}λ and W ∈ {0, 1}t and
rData→ ((q′0, b

′
0,∆i0), (q

′
1, b
′
1,∆i1), pre0, pre1).

2. If τ = 1, replace W with W = x‖0t−n.

3. Set i′ := i +∆iW [i], q′ = q′W [i], pre
′ = preW [i], and W ′[j] =

{
W [j] if j 6= i

b′W [i] if j = i

for j ∈ [t].
4. Set (st′, L) = ((i′,W ′, q′), q′).

5. Output

{
(st′, L) if τ 6= t

pre′ if τ = t

Fig. 8 Circuit P τ(x,1t)

f : This mapping takes as input (x ∈ {0, 1}n, 1t) and then convert it into a read
only RAM program P(x,1t) = {P τ(x,1t)}τ∈[t] defined as in Figure 8. Here, we set
B(λ) = 3λ. In the circuit, q, q′0, and q′1 are represented by strings in {0, 1}λ. In
particular, this means that the circuit can handle any size of Turing machines because
we can assume q ≤ Q < 2λ without loss of generality.

g : This mapping takes as input description of a Turing machine M = (Q, δ, F ) and
outputs a database DM that contains Q blocks each consisting of B bits. At its q-th
block, DM contains

DM [q] := (δ(q, 0), δ(q, 1), pre0, pre1),

where prec ∈ {0, 1} for c ∈ {0, 1} indicates whether q′c defined by δ(q, c) =
(q′c, b

′
c, ∆ic) is in the set of accepting states F or not. Since δ(q, b) ∈ [Q]×{0, 1}×

{0,±1} and Q < 2λ, each block can be represented by a binary string of length at
most B(λ) = 3λ.

We observe that the output of PDM

(x,1t) is the same as that obtained by running the
Turing machine M on input x for t steps. This is because each step circuit P τ(x,1t) of
P(x,1t) is designed to emulate τ -th step of the computation done by the machine. This
means that by applying the above mappings, we can convert CPRAMFE into an FE
scheme for Turing machine with fixed input length. It is easy to see that the security
and correctness of the scheme are preserved. In particular, the resulting scheme inherits
the 1-NA-SIM security. We also observe that the size of the program P = {P τ(x,1t)}τ is
bounded by a fixed polynomial in |(x, 1t)|.

5.4 Getting the Full-Fledged Construction

Here, we remove the restrictions from the consturction in Section 5.3 and obtain full-
fledged FE scheme for TM.
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Removing the non-adaptive and single key restriction. In the first step, we apply
the conversion in [3, Sec 6.4], which is essentially the same as the conversion given by
Agrawal et. al [5, Section 4], to the scheme to upgrade the security. The resulting scheme
is AD-SIM secure against bounded dynamic collusion. We refer to [3, Sec 6.4] for the
details.

Removing the fixed input length restriction. Our goal in the second step is constructing
an FE scheme for R≤ : A × B → M∪ {⊥}, where A = {0, 1}∗, B is the set of all
Turing machines, and

R≤((x, 1t),M) =

{
1 (if M accepts x in t steps) ∧ (|(x, 1t)| ≤ |M |)
0 otherwise.

This step is done in essentially the same manner as [5, Section 6.2.2] using [3,
Theorem 2.1]. We observe that the FE scheme that we obtained above can be seen as an
FE scheme for prm = 1i, Ri : Xi × Yi → {0, 1} where Xi = {0, 1}i and Yi is the set
of all Turing machines, and

Ri((x, 1
t),M) =

{
1 (if M accepts x in t steps)
0 otherwise.

That is, |(x, 1t)| is a-priori bounded by i. We set S, T , f , and g as

S(i) = i, T (i) = {1, . . . , i}, f(x, 1t) = (x, 1t), g(M) = {M}i∈[|M |].

Here, we crucially rely on |(x, 1t)| ≤ |M |.
Recall that

Rbndl(x, y) = {Ri(f(x)i, g(y)i)}i∈S(|x|)∩T (|y|), (5.2)

where f(x)i ∈ Xi, and g(y)i ∈ Yi are the i-th entries of f(x) and g(x), respectively.
It is easy to see that Rbndl is equivalent to R≤ except for the case |(x, 1t)| > |M |. In

this case, the decryption outputs an empty set ∅. However, the output should be 0 in FE
for R>. This issue can be easily fixed as observed by Agrawal et al. [5, Section 6.2.2].
Namely, we modify the decryption algorithm so that it outputs 0 if the decryption result
is ∅. We note that the resulting scheme inherits AD-SIM security, which is guaranteed by
[3, Theorem 2.1].

Removing the shorter input length restriction. In the above construction, there is
a restriction that the decryption is possible only when |(x, 1t)| ≤ |M |. To remove
the restriction, we first construct an AD-SIM secure FE scheme for TM such that the
decryption is possible only when |(x, 1t)| > |M |. Such a scheme can be obtained
by applying the conversion by Agrawal et al. [5, Section 6.1 and 6.2.1] to AD-SIM
secure CPFE with dynamic bounded collusion for Cinp,out obtained in Section 4. We then
combine these two schemes to obtain the full-fledged scheme without the restriction by
applying the conversion by Agrawal et al. [5, Section 6.2.3]. Then, we obtain AD-SIM
secure FE for TM. Based on the discussion above, we obtain the following theorem:



28 S. Agrawal et al.

Theorem 4. Assuming IBE with AD-IND security, ABE for circuits with circuit class C
with Sel-IND security, updatable LOT (as per [3, Definition A.1]), and PIR (as per [3,
Definition 2.9] whose answer function is in C, we have FE for TM with AD-SIM security
against dynamic bounded collusion.
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