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Abstract. Vector Commitments allow one to (concisely) commit to a
vector of messages so that one can later (concisely) open the commitment
at selected locations. In the state of the art of vector commitments, al-
gebraic constructions have emerged as a particularly useful class, as they
enable advanced properties, such as stateless updates, subvector open-
ings and aggregation, that are for example unknown in Merkle-tree-based
schemes. In spite of their popularity, algebraic vector commitments re-
main poorly understood objects. In particular, no construction in stan-
dard prime order groups (without pairing) is known.
In this paper, we shed light on this state of affairs by showing that a large
class of concise algebraic vector commitments in pairing-free, prime order
groups are impossible to realize.
Our results also preclude any cryptographic primitive that implies the
algebraic vector commitments we rule out, as special cases. This means
that we also show the impossibility, for instance, of succinct polynomial
commitments and functional commitments (for all classes of functions
including linear forms) in pairing-free groups of prime order.

1 Introduction

Vector commitments [27, 9] (VC) are a class of commitment schemes that allow
a sender to commit to a vector v of n messages, in such a way that she can later
open the commitment at selected positions. Namely, the sender can convince
anyone that the i-th message in the committed vector is vi. A secure scheme
shall satisfy position binding, i.e. generating valid openings to different values
vi 6= v′i for the same position i is computationally infeasible.

The distinguishing feature of vector commitments is that commitments and
openings must be succinct. In the original notion of [27, 9], this means that their
size is independent of n, the length of the vector, but a relaxed notion allowing a
logarithmic dependence in n may be considered, as in the case of the celebrated
Merkle tree construction [29].
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Mainly thanks to their succinctness property, vector commitments have been
shown to be a useful building block in several applications, such as zero-knowledge
sets [31, 27, 9], verifiable databases [3, 9], succinct arguments [22, 30, 4, 25],
proofs of retrievability [20, 12], and stateless blockchains [10, 4].

Analyzing the state of the art of VC schemes, we see that VC constructions
are based on two main approaches.

On one side, we have tree-based VCs, notably Merkle trees [29] and their
generalizations [24]. These constructions have the advantage of being realizable
from collision resistant hash functions, and thus can be based on the hardness
of virtually any cryptographic problem including factoring, discrete logarithm,
SIS and many more. In fact, we notice that VCs with logarithmic-size openings
are equivalent to collision-resistant hash functions. The main drawback of tree-
based schemes is that their openings are of size O(log n). Additionally, the tree-
based approach seems to inherently impede the realization of properties such as
subvector openings [4, 25] and aggregation [8], that turn useful in both theoretical
and practical applications of VCs.

On the other side, we have algebraic vector commitments, notably based on
bilinear pairings [27, 21, 9], groups of unknown order [9], and lattices [34, 35].
Roughly speaking, an algebraic VC is one in which the commitment and verifi-
cation algorithm only use algebraic operations over the group that underlies the
construction (this rules out hashing group elements for example). The main ad-
vantage of these constructions is that they admit openings of constant size,5 that
are virtually optimal – a single group element in most constructions. Moreover,
algebraic schemes naturally achieve useful properties such as (additive) homo-
morphism, stateless updatability [9], subvector openings [4, 25] and aggregation
[8]. Yet, the powerful versatility of existing VCs with constant-size openings
contrasts with the limited theoretical understanding of their foundations.

We see two main open questions related to algebraic VCs. The first one
concerns the minimal general assumption that implies them. While tree-based
schemes with logarithmic openings are well understood, being de facto equivalent
to collision-resistant hash functions6, we have no generic recipe to build algebraic
VCs with constant-size openings.7 The second question is whether algebraic VCs
can be built from “standard” prime-order groups without pairings. In this setting,
known constructions rely either on the tree-based approach (e.g., building a
Merkle tree on top of Pedersen hash function), or on inner-product arguments
in the random oracle model [6, 7]. Both these approaches entail logarithmic-size
openings and a non-algebraic verification.
5 We include lattice-based schemes in the ‘algebraic’ category although they do not
perfectly fit our notion of using a group in a black box way; also, existing schemes
still need (poly) logarithmic-size openings.

6 A Merkle tree is a VC with logarithm openings that can be realized from any CRHF.
Conversely, in any non trivial VC the commitment procedure has to be shrinking
and collision resistant, from which CRHF can be built.

7 The only generic construction with constant size opening is the folklore one that
combines a hash function and a constant-size SNARK; yet this is non-algebraic due
to the need of encoding the hash computation in the SNARK’s constraint system.
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We believe that settling these two questions would improve our understanding
of vector commitments. In this work, we focus on the second question for two
important reasons: (i) on the theoretical front, studying algebraic VCs in this
minimal setting helps us understand conceptually what are the “ingredients”
needed to build them; (ii) on the practical side, pairing-free groups of known
order are the simplest and most efficient cryptographic setting, and yet we know
of no construction of algebraic VCs there.

Our results are negative: we show that a broad class of VC schemes in this
setting cannot both be succinct and satisfy position binding.

1.1 Our Results

We informally call a vector commitment built on top of a group G of prime order
q “algebraic” if all its procedures use G in a black box way, i.e. without relying on
the representation of group elements. We show the following two main results.

Impossibility of algebraic VCs with linear verification. We start by looking at the
class of algebraic VC schemes in which the verification algorithm is a set of linear
equations over G. Specifically, for a message m and position i the verification
consists of checking that

A(z,m, i) ·X ?
= B(z,m, i) ·Y (1)

where X = (X1,X2) are the group elements appearing respectively in the public
parameters and the commitment, openings are of the form (Y, z) with Y being a
vector of group elements and z of field elements, and A,B are functions defining
matrices with coefficients in Fq.

We believe this to be the simplest and most natural form of verification using
only group operations. However we show that whenever A depends affinely on
z,m and B is independent from them (we say such a scheme has strictly linear
verification), then it is impossible to achieve both position binding and succinct-
ness. More specifically we prove that if a scheme has position binding, commit-
ments of bit-length `c and opening proofs of bit-length `π, then asymptotically
their product is lower bounded by the length of the vector we are committing to,
i.e. `c · `π = Ω(n). Thus either `c = Ω(

√
n) or `π = Ω(

√
n). Interestingly, this

family of schemes captures generalizations of Pedersen commitments [2] which,
as we show in the full version, achieve this lower bound.

Next, we investigate how crucial are our requirements on the dependence of
A(·) and B(·) on z,m. We show they are necessary. Indeed, if we allow either
A to depend quadratically, or B affinely, on z,m then there exist succinct VC
constructions whose verification can be written in the above form over a group
G. We provide examples in the full version. The schemes we find however rely
on arithmetization techniques to encode arbitrary circuits as constraint systems
of degree 2 over a finite field [13]. This for instance means that, for proper choice
of A and B, it is possible to express, using an algebraic verification equation as
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(1), computations like the validity tests for a Merkle tree path, or any arbitrary
VC verification algorithm.

Despite being secure and succinct, VC schemes built this way do not satis-
factorily answer our question in a positive way, as they appear to bypass the
underlying group as their source of hardness. Indeed, either their security comes
from problems unrelated to G, or if they depend on G, they must do it in a
non-black-box way8.

Impossibility of algebraic VCs with generic group verification. Motivated by
these findings, we investigate whether VCs can be built given only black-box
access to a cryptographic group. To study this case, we just assume the VC
(which we call algebraic with generic verification) to use the underlying group
generically, without any further constraint on its verification procedure.

Eventually we provide a black-box separation in Maurer’s Generic Group
Model [28]. This informally implies that any VC using G generically and whose
position binding reduces to a hard problem in G (such as DLP or CDH) cannot
be succinct, as it must hold `c · `π = Ω(n).

1.2 Our Techniques

Our strategy to prove our impossibility results on algebraic vector commitments
consists of two main steps. (A) We show that from a VC it is possible to con-
struct a class of signature schemes. In particular, if the VC is algebraic with
linear (resp. generic) verification, the resulting signature scheme’s verification
has analogous algebraic properties. (B) We prove the insecurity of this class of
signature schemes in pairing-free groups of known order. To achieve the latter re-
sult we build on, and extend, the recent techniques of [11], that provide negative
results for a somewhat smaller family of algebraic signatures.

In what follows we give an overview on each step.

From VCs to Signatures. Given a VC scheme for vectors of length n our transfor-
mation produces a signature scheme with polynomially bounded message space
{1, . . . , n}. In a nutshell, the public key is a commitment c to a vector of n ran-
dom values (s1, . . . , sn). The signature on the message i ∈ [n] is the pair (si, πi)
where πi is the VC opening proof that c opens to si at position i. Verification
simply runs the VC verification algorithm to check that the opening is valid.

Conveniently, this transformation maps algebraic VCs with linear/generic
verification to signature schemes with the analogous property, which we then
call algebraic signatures with linear/generic verification. This happens since the
verification algorithm is essentially the same in both primitives.

The resulting signature however may not be proved existentially unforgeable
if it comes from a VC satisfying only position binding. Indeed the latter property
does not imply that every opening proof is hard to compute. However, assuming
8 For example, one may consider a Merkle-tree of Pedersen commitments which must
use the group representation to go from one level to another.
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that the scheme is also succinct, an adversary who produces ‘many’ correct
openings should have to correctly guess the value of several messages si used
to generate the commitment. This can be shown to be information-theoretically
hard if the commitment and opening proofs provided have significantly smaller
bit-length than the min-entropy of those messages.

For this reason we introduce a relaxed security notion, called ϑ-unforgeability,
where an adversary must provide not only one but at least more than ϑ-many9

forgeries for non-queried messages. Setting ϑ as a proper function of the number
of queries made by the adversary, we prove that signatures from VCs are ϑ-
unforgeable.

Impossibility of Algebraic Signatures, revisited. To conclude our impossibility re-
sult for VCs, we finally provide an impossibility result and a black-box separation
for algebraic signatures with strictly linear and generic verification respectively.
In particular, we show in both cases that the message space in a ϑ-unforgeable
construction is upper-bounded by n + ϑ with n being the number of group el-
ements in the verification key. We also show this to be tight by providing a
construction that achieves this bound in the full version.

Notice that similar results were already proved in [11]. In their work signa-
tures are assumed to be of the form (Y, t) with Y a vector of group elements
and t ∈ {0, 1}κ. Moreover the verification procedure is assumed to consist of a
linear check as in Equation 1. For this class of signatures, which can be shown
equivalent to our notion of algebraic with linear verification, they provide an
attack running in time O(2κ · poly(λ)).

Thus their adversary is efficient only when t = O(log λ), whereas our impossi-
bility result applies to schemes with strictly linear verification, where signatures
may contain several field elements. Likewise, their black-box separation only cap-
tures schemes with linear verification, while we extend it to signatures where all
procedures are simply required to be generic. To show that this class of schemes
is indeed more general we provide examples in the full version.

We finally stress that, as in [11], our results hold in Maurer’s Generic Group
Model [28]. For a comparison with other models of generic computation, such as
Shoup’s Generic Group Model [40], we refer to the discussion in [42].

1.3 Interpretation of our impossibility and further implications

As mentioned earlier, both our impossibility results specify precise bounds and
conditions under which VCs cannot be built generically in pairing-free groups.
The bottom line is that, whenever a position-binding VC scheme uses the group
in a black box way (and relies on it for security), then it cannot be succinct,
which we recall is the distinguishing feature of this primitive.

Another interesting aspect of our impossibility results is that they imply
analogous impossibilities for any primitive that allows one to construct alge-
braic VCs (with either strictly linear or generic-group verification) in pairing-
free groups. Notably, our impossibility applies to polynomial commitments [21],
9 Where ϑ may depend on the public parameters as well as the number of queries.
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and functional commitments [26] supporting any class of functions that includes
projections, i.e., Ci(v) = vi (already captured by linear forms). Indeed, each of
these primitives allows one to build a VC with exactly the same succinctness
and type of verification.10 Therefore we obtain that any secure functional com-
mitment or polynomial commitment using a pairing-free group in a black-box
way cannot be succinct (or, more precisely, they must satisfy `c · `π = Ω(n)).

Our impossibility for algebraic signatures instead can be shown to imply
analogous results for verifiable random functions [32] and identity-based encryp-
tion [39, 5], the latter through the Naor-trick reduction, as observed in [11]. In
this way our black-box separation for signatures yield a simpler argument for
the tight result in [38].

An interesting question left open by our work is understanding if our results
can imply the impossibility of further cryptographic primitives via a connection
to the classes of algebraic signatures and vector commitments that we rule out.
Another open question concerns the minimal assumptions required to describe
a VC with constant-size commitment and openings. We notice that our impos-
sibility for VCs with generic verification holds in Maurer’s generic group model
[28]. When using Shoup’s GGM [40], our results may not hold as one could use
the group oracle as a random oracle [43], e.g., to build a Merkle tree of Pedersen
hashes (see a similar discussion for signatures in [11]). However, to the best of
our knowledge all these techniques would in the best case lead to schemes with
logarithmic-size openings.

1.4 Related Work

The study of impossibility results about the construction of cryptographic prim-
itives in restricted models is an important area of research that provides insights
on the foundations of a cryptographic problem. Starting with the seminal paper
of Impagliazzo and Rudich [19], a line of works study the (in)feasibility of con-
structing cryptographic primitives in a black-box way from general assumptions,
such as one-way functions or trapdoor permutations (e.g. [41, 23, 15, 16, 17, 14]).

Another line of works (more closely related to ours), initiated by Papakon-
stantinou, Rackoff and Vahlis [33], considers the problem of proving impossibility
of cryptographic primitives that make black-box use of a cryptographic group
without pairings. Specifically, [33] prove that identity-based encryption (IBE)
algorithms built in this model of computation cannot be secure. Following [33],
more recent works study the impossibility, in generic group models for pairing-
free groups of known order, of other cryptographic primitives, such as verifiable
delay functions [36], identity-based encryption (with a result tighter than [33])
[38] and signature schemes [11]. In addition to proving impossibility for al-
gebraic signatures with generic-group algorithms, [11] also prove the generic
impossibility of a class of algebraic signatures whose verification is a system of
linear equations over a group.

10 These constructions are trivial/folklore and we do not elaborate further on them.
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In [37], Schul-Ganz and Segev prove a lower bound on the number of group
operations needed to verify batch membership proofs in accumulators that make
black-box use of a cryptographic group. Their lower bound applies analogously
to the verification of subvector openings in vector commitments. Despite the
result and the techniques of [37] differ from ours, both [37] and our work show
certain limitations of constructing VCs in prime order groups.

Finally, we mention the work of Abe, Haralambiev and Ohkubo [1] that also
considers a question related to constructing vector commitments. Following a
research line on structure-preserving cryptography, Abe et al. [1] investigate if
it is possible to construct commitment schemes in bilinear groups in which mes-
sages, keys, commitments, and decommitments are elements of bilinear groups,
and whose openings are verified by pairing product equations. For this class of
schemes, they prove that the commitment cannot be shrinking. Implicitly this
result also implies the impossibility of constructing succinct vector commitments
in this structure-preserving setting in bilinear groups.

1.5 Organization of the paper

In Section 3 we define algebraic VCs and show our transformation to ϑ-unforgeable
signatures. Section 4 presents the definition of algebraic signatures and our im-
possibility results for strictly linear verification and generic group verification.
Finally, in Section 5 we illustrate how to relate the parameters of our VC-to-
signatures transformation with those needed by the impossibility of algebraic
signatures.

2 Preliminaries

Notation. We denote the security parameter by λ and negligible functions with
negl(λ). We say that an algorithm is PPT if it runs in probabilistic polynomial
time. For a positive integer n, [n] denotes the set {1, . . . , n}. We use (G,+) to
denote a group of known prime order q with canonical generator G, and Fq for
the field of order q. The identity (or zero) element is denoted as 0 ∈ G. Given a
vector x ∈ Fnq , we denote x ·G = (x1G, . . . , xnG).

Fn,mq is the space of matrices A with m columns and n rows and entries in Fq.
rkA denotes the rank of A, i.e. the maximum number of linearly independent
rows. A> is the transposed of A. All x ∈ Fnq are assumed to be column vectors,
whereas row vectors are denoted as x>.

In what follows ‘GGM’ stands for Maurer’s Generic Group Model [28] for a
group of known prime order q. This model can be defined through two state-
ful oracles Oadd and O0

eq such that: group element are labeled with progres-
sively increasing indices, the first being associated to the canonical generator G,
Oadd(X,Y ) associate the next index to the element X + Y and O0

eq(X) returns
1 if X equals the identity element, 0 otherwise.
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2.1 Vector Commitments

We recall the definition of vector commitments from [9].

Definition 1 (VC). A Vector Commitment scheme is a tuple of algorithms
(VC.Setup,VC.Com,VC.Open,VC.Vfy) and a message space VC.M such that

– VC.Setup(1λ) $→ pp generates the public parameters.
– VC.Com(pp,m1, . . . ,mn)

$→ c, aux produce a commitment to m1, . . . ,mn ∈
VC.M together with some auxiliary information.

– VC.Open(pp,m, i, aux) $→ π return an opening proof that the i-th entry of a
given commitment is mi.

– VC.Vfy(pp, c,m, i, π)→ 0/1 verifies the opening proof’s correctness.

We require a vector commitment scheme to satisfy perfect correctness, that is,
given public parameters pp←$ VC.Setup(1λ), commitment c, aux←$ VC.Com(pp,m1,
. . . ,mn) for any mi ∈ VC.M, and opening π ←$ VC.Open(pp,mi, i, aux), it holds

Pr [VC.Vfy(pp, c,m, i, π)→ 1] = 1

Moreover, to avoid trivial cases, in this paper we assume |VC.M| ≥ 2.
The main security property for a vector commitments is the so called position

binding, which informally states that no adversary can open the same position
of a given commitment to two different values. Formally

Definition 2 (Position binding). A vector commitment scheme satisfies po-
sition binding if for any PPT adversary A there exists a negligible function ε(λ)
such that

Pr

VC.Vfy(pp, c,m, i, π)→ 1
VC.Vfy(pp, c,m′, i, π′)→ 1
m 6= m′

∣∣∣∣∣∣ pp←
$ VC.Setup(1λ)

A(pp)→ (c,m,m′, i, π, π′)

 ≤ ε(λ).
The property that distinguishes VCs from classical binding commitments is

succinctness Following [27, 9], a VC scheme is said succinct if there is a fixed
p(λ) = poly(λ) such that for any n the size of honestly generated commitments
and openings is bounded by p(λ). One may also consider weaker notions where
the size may be bounded by p(λ) log n or p(λ, log n).

Since in our work we are interested in understanding the feasibility of VCs
based on their level of succinctness, we consider a parametric notion. We say
that a VC has succinctness (`c, `π) if for any m1, . . . ,mn ∈ VC.M, commitment
c, aux ←$ VC.Com(pp,m1, . . . ,mn) and opening π ←$ VC.Open(pp,mi, i, aux)
for any i ∈ [n], we have that c (resp. π) has bit-length `c(λ, n) (resp. `π(λ, n)).

2.2 Digital Signatures

Definition 3. A signature scheme is a tuple of PPT algorithms (S.Setup, S.Sign,
S.Vfy) and a message space set S.M such that
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– S.Setup(1λ) $→ (sk, vk) generates the secret and verification keys
– S.Sign(sk,m) $→ σ returns the signature of a message m ∈ S.M

– S.Vfy(vk,m, σ)→ 0/1 verifies the signature σ for a message m ∈ S.M

We further require a signature scheme to satisfy perfect correctness, meaning
that if (sk, vk) ←$ S.Setup(1λ) and σ ←$ S.Sign(sk,m) for any m ∈ S.M then
the verification algorithm accepts always, i.e.

Pr [S.Vfy(vk,m, σ)→ 1] = 1.

3 Algebraic Vector Commitments

In this paper we focus on vector commitments built on a pairing-free group of
known order, using it in a black box way. We start by introducing a notion of
algebraic vector commitments where the verification algorithm only consists of
a system of linear equations.

Definition 4 (Algebraic VCs with linear verification). A vector commit-
ment scheme is said to be algebraic with linear verification if the message space
is VC.M = Fq and

– VC.Setup(1λ) $→ pp such that pp = (X1, s1) ∈ Gν1 × {0, 1}∗.
– VC.Com(pp,m1, . . . ,mn)

$→ c, aux such that c = (X2, s2) ∈ Gν2 × {0, 1}∗.
– VC.Open(pp,m, i, aux)→ π such that π = (Y, z) with Y ∈ Gk and z ∈ Fhq .
– There exist A : Fh+1

q ×[n]×{0, 1}∗ → F`,nq and B : Fh+1
q ×[n]×{0, 1}∗ → F`,kq

matrices such that VC.Vfy(pp, c,m, i, π) → 1 if and only if, calling X =
X1||X2 and s = s1||s2

A(z,m, i, s) ·X = B(z,m, i, s) ·Y.

For the ease of presentation we will omit s in A and B when clear from the
context. Notice that the definition imposes linearity only with respect to group
elements while it allows procedures A,B to depend non-linearly on the field
vector element z.

As we shall see, our first impossibility result states that whenever A is an
affine function of z,m and B does not depends on z,m, then the resulting scheme
cannot be both “succinct” and position binding. We call these schemes strictly
linear since their verification equations depend linearly both in z and Y.

Definition 5 (Algebraic VCs with strictly linear verification). A vector
commitment is said to be algebraic with strictly linear verification if it satisfies
Definition 4, A(z,m, i) is an affine function11 of z,m and B(i) does not depends
on z,m.

11 i.e. A(z,m, i) = A0(i) + z1A1(i) + . . .+ zhAh(i) +mAh+1(i)
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However, if we allow A to depend quadratically, or B linearly, on z,m then we
could use arithmetization techniques, such as R1CS, to encode a circuit repre-
senting for example a Merkle tree verification into the verification equation of
Definition 4. This means that we can construct algebraic VC schemes with lin-
ear verification that are succinct and position binding. Explicit examples of such
schemes are provided in the full version.

This technique however either bypasses the underlying group and may reduce
security to external problems, or rely on non-black-box usage of the group. An
example of the latter comes by encoding a Merkle tree built using an hash
function whose collision resistance is based on discrete logarithm over the same
group G, such as Pedersen hash. Note that this construction would not retain
algebraic properties from the underlying group. For this reason, following an
approach similar to [33, 11], we study whether in the Generic Group Model
(GGM) the security of a VC can be reduced to hard problems on the underlying
group. To this aim we provide the following more general definition.

Definition 6 (Algebraic VCs with generic verification). A vector commit-
ment scheme is said to be algebraic with generic verification if, in the GGM, the
algorithms VC.Setup,VC.Com,VC.Open,VC.Vfy are oracle machines with access
to Oadd and O0

eq.

3.1 Generic Transformation from VCs to Signatures

The strategy we adopt to show our impossibility results is to establish a connec-
tion between vector commitments and signatures, providing a way to construct
the latter from the former generically. This way we will be able to bridge ex-
tensions of the impossibility results in [11] for algebraic signatures to algebraic
vector commitments.

More specifically, for a given VC (not necessarily algebraic) our transfor-
mation produces a signature scheme with polynomially bounded message space
{1, . . . , n}. The high-level idea is to compute a commitment c to random mes-
sages m1, . . . ,mn, and use (pp, c) as the verification key and the auxiliary infor-
mation aux as the secret key. In order to sign a message i ∈ {1, . . . , n}, the signer
returns mi and π, the message and opening proof for the i-th position, while ver-
ification is performed by checking the correctness of π. A formal description of
the transformation is presented in Fig. 1.

3.2 ϑ-Unforgeability

In terms of security the transformation in Fig. 1 fails in general to realize a UF-
CMA-secure signature scheme. Informally, the problem is that position binding
and succinctness do not imply, per se, that every opening proof is hard to com-
pute, after having seen other openings. Indeed the latter property could be easily
violated, for example, by a VC where VC.Open attaches to every opening the
proof (m1, π1) for position 1. Notice that one could modify any VC to do so
without violating succinctness nor position binding. Yet starting from such a
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SVC.Setup(1
λ):

1 : VC.Setup(1λ)→ pp

2 : m1, . . . ,mn ←$ VC.M

3 : c, aux←$ VC.Com(pp,m1, . . . ,mn)

4 : vk← (pp, c) sk← (aux, {mi}ni=1)

5 : Return vk, sk

SVC.Sign(sk, i):

1 : Parse sk = (aux, {mi}ni=1)

2 : π ← VC.Open(pp,mi, i, aux)

3 : σ ← (mi, π)

4 : Return σ

SVC.Vfy(vk, i, σ):

1 : Parse vk = (pp, c) and σ = (mi, π). Return VC.Vfy(pp, c,mi, i, π)

Fig. 1. Generic transformation from VCs to signature schemes

VC would allow an adversary to easily forge a signature for message 1 in the
scheme in Fig. 1.

Observe that, informally, if the VC scheme were hiding, meaning that no
information about messages in unopened positions is leaked, and |VC.M| is large
enough, then the associated signature would be secure, since an adversary would
have to guess the right message in the i-th position. This intuition can be ex-
tended to general VC assuming that the scheme is succinct. Indeed, even though
the commitment c or its openings π may leak information about unopened mes-
sages among m1, . . . ,mn, if their bit length is significantly smaller than n, no
adversary can produce “too many” forgeries given only a few openings, as cor-
rectly guessing these message would be information-theoretically hard.

For this reason we introduce a relaxed notion of unforgeability for signatures,
called ϑ-unforgeability, which is enough for our purposes. In a nutshell, it requires
a winning adversary to produce at least ϑ forgeries on distinct messages, with
ϑ being a function of the queries performed and the public parameters. Next,
using the intuition above, we prove that signature schemes obtained through the
transformation in Fig. 1 satisfy this weaker notion.

Definition 7 (ϑ-UF). Given a function ϑ : {0, 1}∗ → N and a signature scheme
we define the ϑ-Unforgeability Experiment as in Fig. 2. The advantage of an
adversary A is defined as

Advϑ-UF(A) = Pr
[
Expϑ-UFA = 1

]
.

A scheme is ϑ-Unforgeable if any PPT adversary has negligible advantage.

To provide more intuition about this notion we observe that setting ϑ = 0
yields the classic unforgeability under chosen message attacks (UF-CMA) [18]
security definition. For higher values of ϑ we obtain progressively weaker defini-
tions until ϑ(vk, Q) = |S.M|, which is trivially true for any scheme. The notion
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Expϑ-UFA with adversary A:

1 : Initialize Q← ∅, generate sk, vk←$ S.Setup(1λ) and send A ← vk

2 : When A → m ∈ S.M:
3 : Sign σ ←$ S.Sign(sk,m), store Q← Q ∪ (m,σ) and send A ← σ

4 : When A → F :
5 : Return 1 if the following conditions are satisfied:
6 : For all (m,σ) ∈ F , the signature is correct, i.e. S.Vfy(vk,m, σ)→ 1

7 : Messages in F were not queried, i.e. (m,σ) ∈ F ⇒ (m, · ) /∈ Q
8 : |{m : (m, · ) ∈ F}| > ϑ(vk, Q)

9 : Else return 0

Fig. 2. ϑ-Unforgeability Experiment for a given signature scheme

of t-time security is also captured by our definition setting

ϑ(vk, Q) =

{
0 If |Q| ≤ t
|S.M| If |Q| > t

Finally we can show that a signature scheme obtained from a “succinct” VC
satisfy this notion. A proof appears in the full version.

Theorem 1. Given a Vector Commitment with commitments of bit-length `c =
`c(n, λ) and opening proofs of bit-length `π = `π(n, λ), then there exists a PPT
black box reduction R of ϑ-UF for the derived signature scheme described in
Fig. 1 to the position binding property, where

ϑ(vk, Q) =
λ+ `c + |Q| · (`π + log |VC.M|)

log |VC.M|
.

In particular for any position binding VC, the resulting signature is ϑ-UF with
ϑ as specified above.

4 Algebraic Signatures

Having established a connection between VC and signatures we now provide
the analogous of algebraic VC with (strictly) linear/generic verification in the
signature setting. The first one is equivalent to the notion of algebraic signature
in [11] and simply constrain the verification procedure to test a system of linear
equations, albeit with a minor addition: as these signatures may come in our case
from a VC, we split S.Setup in a CRS-generator S.SetupCRS which returns the
public parameters (a list of group elements X1) and the actual key generation
algorithm S.SetupKey(X1) which produces vk and sk. Note there is no loss of
generality assuming this structure as S.SetupCRS may return an empty vector
which could then be ignored by S.SetupKey.
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Definition 8. A signature scheme (S.Setup,S.Sign,S.Vfy) is said to be algebraic
with linear verification if

– S.Setup is divided into two algorithms S.SetupCRS and S.SetupKey such that
S.SetupCRS(1λ) $→ (X1, s1) ∈ Gn1 and S.SetupKey(1λ,X1, s1)

$→ sk, vk
with

vk = (X, s) ∈ Gn×{0, 1}∗ : X = X1||X2, X2 ∈ Gn2 , s = s1||s2.

– S.Sign(sk,m) $→ σ where σ = (Y, z) with Y ∈ Gk and z ∈ Fhq .
– There exist A : Fhq ×S.M×{0, 1}∗ → F`,nq and B : Fhq ×S.M×{0, 1}∗ → F`,kq

matrices such that S.Vfy(vk,m, σ)→ 1 if and only if σ = (z,Y) and

A(z,m, s)X = B(z,m, s)Y.

Furthermore the scheme is said to have strictly linear verification if A(z,m, s)
is an affine function of z and B(m, s) does not depend on z.

When clear from the context we will omit for clarity the argument s in
the matrices A,B above. Next we provide an analogous for algebraic vector
commitments with generic verification. As in the previous definition we split the
setup algorithm into a procedure that prepares the CRS and another one that
uses the CRS, oblivious to any trapdoor information about it, to compute the
secret and verification keys.

Definition 9. A signature scheme (S.Setup,S.Sign,S.Vfy) is said to be alge-
braic with generic verification if, in the GGM, all algorithms have access to
Oadd and O0

eq. Furthermore we require S.Setup to be divided into two algo-
rithms S.SetupCRS and S.SetupKey such that S.SetupCRS(1λ) $→ (X1, s1) ∈
Gn1 × {0, 1}∗ and S.SetupKey(1λ,X1, s1)

$→ sk, vk with

vk = (X, s) ∈ Gn × {0, 1}∗ : X = X1||X2, X2 ∈ Gn2 , s = s1||s2.

4.1 Attack to Schemes with Strictly Linear Verification

We now provide an attack for algebraic signatures with strictly linear verification.
The same notation of Definition 8 will be used below without further reference.

Theorem 2. Given a signature scheme with strictly linear verification, for any
ϑ polynomially bounded such that n2+ϑ ≤ |S.M| there exists a PPT algorithm A
that in the unforgeability experiment in Fig. 2 performs at most n2 queries and
produces ϑ distinct forgeries with significant probability.

Proof. For the sake of presentation we build A describing first a subroutine B
which could break security by doing potentially more signing queries that n2.
Next, we show how A can use B in a black-box way to realize the full attack
with n2 queries.
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Similarly to the attack described in [11], upon receiving the verification key
(X, s), the subroutine B (described formally in Figure 3 ) keeps track of all
possible exponents of X in an affine space L ⊆ Fnq . Then for each message
mi either a forgery can be produced or a new condition on X is found, thus
decreasing dimL, at the cost of a signature query. This is done by checking if
the system A(z,m)x = B(m)y can be solved for a given z ∈ Fhq and all x ∈ L.
More specifically we define S(L,m), the solutions set, as the collection of all
those z for which any x ∈ L makes the systems solvable, formally

S(L,m) = {z ∈ Fhq : A(z,m) · L ⊆ ImB(m)}.

If S(L,m) is easy to compute, a strategy for B is to check whether S(L,m) 6= ∅
and in this case to get any z ∈ S(L,m) and find, using pseudo-inverses or Gaus-
sian elimination, a vector Y ∈ Gk such that A(z,m)X = B(m)Y. Conversely, if
S(L,m) = ∅, B may request a signature (Y, z), which implies that the exponent
x ofX satisfies the condition A(z,m)x ∈ ImB(m). Notice that, unlike the attack
presented in [11], B is required to be PPT and thus computing S(L,m) efficiently
is essential in our argument. This will follow as we assumed the verification to
be strictly linear, implying that S(L,m) is an affine space.

Although B effectively breaks security, we can only upper bound the number
of signatures queried by n1 + n2, i.e. one for each group element in the CRS
X1 and verification key X2, since initially L = Fn1+n2

q with dimension n1 + n2.
In order to reduce the requested signatures to be at most n2 we introduce a
preprocessing phase to find as many linear relations among group elements of
the CRS as possibile and then run B providing as input a refined space L.
Informally, if B is unable to find new relations among the elements of X1, then
dimL can at most decrease by n2, yielding the desired upper bound.

To conclude we then need to describe how the preprocessing is carried out:
The core idea is to initialize the set of possible exponents V = Fn1

q and exe-
cute several times B(vk∗, V ) replying to signing queries with S.Sign(sk∗, ·) where
vk∗, sk∗ ←$ S.SetupKey(1λ,X1, s1) is freshly sampled each time. If in some of
those executions B is able to find a new relation among the group elements, then
V is updated accordingly (lowering its dimension by at least 1), and a new round
of simulations is run. Conversely if B(vk∗, V ) fails to find new relations several
times in this simulated environment, then it is executed one last time with the
real verification key vk and signing oracle. If no new relation is found in this
last execution, A concludes by returning the forgeries found by B. Otherwise A
aborts.

Informally A aborts with low probability since the simulated and real ex-
ecutions are identically distributed from B perspective and in particular since
no relation is found among the many simulated executions, it is unlikely this
will happen in the real one. Finally we remark that simulating the signature
challenger in this preprocessing phase is crucial. In this way the only signature
queries performed by A are those requested by the last execution of B.

Having provided the intuition behind the attacker A built on top of B, we
now proceed to prove the theorem through a sequence of claims. We begin by
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Adversary B(vk, V ):

1 : Set L← V × Fn2
q ⊆ Fn1+n2

q

2 : Initialize the set of forgeries F ← ∅ and call θ ← n2 + ϑ

3 : Sample m1, . . . ,mθ ←$ S.M distinct messages
4 : For i ∈ {1, . . . , θ}:
5 : If S(L,mi) 6= ∅:
6 : Get a vector z ∈ S(L,mi)

7 : Find a solution Y ∈ Gk such that A(z,mi)X = B(mi)Y

8 : Set σ ← (Y, z) and store F ← F ∪ {(mi, σ)}
9 : Else:

10 : Query mi to the challenger and get σ = (Y, z)

11 : Update L← L ∩ {x ∈ Fnq : A(z,mi)x ∈ ImB(mi)}
12 : Return F,L

Fig. 3. B breaking ϑ-UF of an algebraic signature with strictly linear verification.

stating the following properties about B(vk, V ) where we denote vk = (X, s)
with X = X1||X2, x1 the discrete logarithm of X1 and x the discrete logarithm
of X. Finally we denote π : Fn1

q × Fn2
q → Fn1

q the projection on first component,
i.e. π(x1,x2) = x1.

Claim 1 If L is an affine space, S(L,m) is an affine space. Moreover an affine
base for S(L,m) can be computed in polynomial time.

Claim 2 If x1 ∈ V then at any step of B(vk, V ), x ∈ L.

Claim 3 If x1 ∈ V , B is PPT and upon returning (F,L), F is a set of valid
forgeries.

Claim 4 For a givenmi, if the condition at step 5 is not satisfied, i.e. S(L,mi) =
∅, then after step 11 the dimension of L decreases strictly.

Claim 5 After the execution of line 1, Fig 3, dimL = n2+dimV and if B(vk, V )
returns (F,L) with π(L) = V then dimL ≥ dimV .

Next we state the following properties about A

Claim 6 A is PPT.

Claim 7 At any step of A execution, x1 ∈ V .

Claim 8 A fails with probability Pr [A(vk)→ fail] ≤ 1/2.
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Adversary AS.Sign(sk, · )(vk):

1 : Parse vk = (X, s) with X = X1||X2 and s = s1||s2
2 : Initialize V ← Fn1

q the space of potential exponents of X1

3 : Do:
4 : For 2n1 + 1 times:
5 : vk∗, sk∗ ←$ S.SetupKey(1λ,X1, s1)

6 : Execute F ∗, L∗ ←$ BS.Sign(sk∗, · )(vk∗, V )

7 : Set V ∗ ← {x1 : ∃x2 : x1||x2 ∈ L∗} the projection of L∗ on Fn1
q

8 : If V ∗ 6= V :
9 : Update V ← V ∗, break

10 : Until the for-cycle ends without interruptions
11 : Execute F,L←$ BS.Sign(sk, · )(vk, V )

12 : Compute V ∗ as the projection of L on Fn1
q

13 : If V ∗ 6= V : Return fail

14 : Else: Return F

Fig. 4. A breaking the ϑ-UF of an algebraic signature using as subroutine an algorithm
B, which is that of Fig. 3 in the case of schemes with strictly linear verification, or that
of Fig. 5 in the case of schemes with generic verification.

First we observe these claims imply the thesis. Indeed by Claim 8, with
probability greater than 1/2, A does not return fail. By construction, this implies
that in the last execution B(vk, V ) returns (F,L) with π(L) = V . Thus by
Claim 5 n2 + dimV ≥ L ≥ dimV at any step of B during its last execution.
As a consequence dimL can decrease at most n2 times. Applying Claim 4 we
conclude that S(L,mi) = ∅ can happen at most n2 times because each time this
occurs, dimL decreases. It follows then that for at least θ − n2 = ϑ messages,
the condition S(L,mi) 6= ∅ is satisfied, meaning that B adds a new signature to
the set F , which in the end will have cardinality |F | ≥ ϑ. Finally, since x ∈ V
by Claim 7, we can apply Claim 3 to conclude that F is a valid set of forgeries,
implying that A breaks ϑ-UF.

Next, we provide a proof for each of these claims:

Proof of Claim 1. We start observing that if L is any set and x1, . . . ,xd ∈ L is
a base for the linear span of L then S(L,m) =

⋂d
i=1 S(xi,m). By construction,

xi ∈ L implies S(L,m) ⊆ S(xi,m), and in particular S(L,m) ⊆ ∩di=1S(xi,m).
Conversely let z be a vector in the intersection of all S(xi,m). We can find
vectors ui ∈ Fkq such that A(z,m)xi = B(m)ui. Since x1, . . . ,xd is a base for
the linear span of L, for any x ∈ L we can express it as a linear combination
α1x1 + . . .+ αdxd. In conclusion

A(z,m)x =

d∑
i=1

αiA(z,m)xi =

d∑
i=1

αiB(m)ui = B(m)

d∑
i=1

αiui.
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Thus A(z,m)x ∈ ImB(m) and in particular z ∈ S(L,m).
In order to show that S(L,m) is efficiently computable it suffices to show that

S(x,m) can be computed in polynomial time for any point x. To this aim let
fx : Fhq → F`q be such that f(z) = A(z,m)x. Since the scheme has strictly linear
verification (Definition 8) A( · ,m) is an affine map and so is f . Furthermore
by construction S(x,m) = f−1x (ImB(m)) since z ∈ S(x,m) if and only if
A(z,m)x ∈ ImB(m). This concludes the argument as the preimage through
an affine map of a linear space is an affine space which can be computed in
polynomial time.

Proof of Claim 2. If x1 ∈ V then x = x1||x2 ∈ V × Fn2
q which by construction

implies that, when L is initialized, x ∈ L. Next assume by induction x ∈ L in all
previous steps. The only instruction in B that may modify L is in step 11 and
when this is executed, since σ = (Y, z) is a valid signature by perfect correctness,
we have

A(z,mi)X = B(mi)Y ⇒ A(z,mi)x ∈ ImB(mi).

Proof of Claim 3. To prove that B is a PPT algorithm, observe that the for-loop
is executed θ = n2 + ϑ, that is polynomially bounded, times. Inside the loop,
checking S(L,mi) 6= ∅ and possibly computing a z ∈ S(L,mi) can be done
efficiently from Claim 1 by computing a base for it. Next, calling x the discrete
logarithm of X, we have that A(z,mi)x ∈ ImB(mi) because

z ∈ S(L,mi) ⇒ A(z,mi) · L ⊆ ImB(mi) ⇒ A(z,mi)x ∈ ImB(mi)

where the last implication follows as x ∈ L by Claim 2 and the assumption
x1 ∈ V . Thus, calling H a weak-inverse12 of B(mi), which can be computed
efficiently, the vector Y can be set as H · A(z,mi)X. Indeed, as A(z,mi)X ∈
ImB(mi) there exists a vector Z ∈ Gk such that A(z,mi)X = B(mi)Z and in
particular

B(mi)Y = B(mi)HA(z,mi)X = B(mi)HB(mi)Z = B(mi)Z = A(z,mi)X.

Finally, given the bases of two affine spaces, a base of their intersection can be
computed efficiently. This conclude the proof that B is PPT.

For the second part, by construction each entry in F is of the form (mi,Y, z)
such that

A(z,mi)X = B(mi)Y.

Therefore, by our definition of signatures with linear verification scheme, the
verifier accepts (mi,Y, z). The claim is thus proven.

Proof of Claim 4. Since the condition at step 5 is not satisfied, S(L,mi) = ∅ and
in particular z /∈ S(L,mi) implying that A(z,mi)x /∈ ImB(mi) for some x ∈ L.
Therefore L is not contained in the space of all x such that A(z,mi)x ∈ ImB(mi)
and in particular its dimension decreases after the execution of step 11
12 H is the weak-inverse of A if A ·H ·A = A
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Proof of Claim 5. The first part follow as L is initially V × Fn2
q of dimension

dimV +n2. The second part follows by linear algebra since dimL ≥ dimπ(L) =
dimV .

Proof of Claim 6. Since S.SetupKey,S.Sign and B are PPT algorithm, by Claim 3
in the last case, each step in the loop can be computed efficiently. In particular, as
2n1+1 is polynomially bounded, each for-loop in A can be performed efficiently.

Next we show that the procedure inside the Do-Until loop is repeated at
most n1 + 1 times. The key observation is that during the execution of B, the
space L forms a monotone decreasing sequence, implying that when B(vk∗, V )→
(F ∗, L∗) then L∗ ⊆ V ×Fn2

q . In particular this implies that π(L∗) ⊆ π(V ×Fn2
q ) =

V . Thus if at any point the for-loop is halted, π(L∗) = V ∗ 6= V implies V ∗ ⊆ V .
Hence the dimension of V strictly decreases, and since initially dim(V ) = n1,
the foor-loop can be halted at most n1 times.

Finally, using again that B is an efficient algorithm, computing F,L can be
done in polynomial time. It follows that A is PPT.

Proof of Claim 7. We proceed by induction. Initially V = Fn1
q implies x1 ∈ V .

Next we observe that the value of V is only changed if, within the for-loop,
V ∗ 6= V (see step 8, Fig. 4). Assume by induction that before this step is executed
x1 ∈ V . Then, when this happens, B(vk∗, V )→ (F ∗, L∗) had been executed with
x1 ∈ V . By Claim 2 this implies that x ∈ L∗ and in particular x1 = π(x) ∈
π(L∗) = V ∗. Thus when A sets V ← V ∗, x1 ∈ V .

Proof of Claim 8. Define the following events:

– Ei,j = "During the i-th iteration of the Do-Until loop, and the j-th iteration
of the for loop, BS.Sign(sk∗, · )(vk∗, V ) returns (F ∗, L∗) such that π(L∗) = V ".

– Elast = "BS.Sign(sk, · )(vk, V ) returns F,L with π(L) = V ".

Furthermore let I ∼ {1, . . . , n1 + 1} be the random variable such that A termi-
nates the Do-Until loop after the I-th execution. Then we observe that, condi-
tioned on X1, s1 and the V at iteration i, the event Ei,j depends only on the
random coins used for B, S.SetupKey and S.Sign which are chosen independently
at each execution of B. In particular, for a fixed i, the events {Ei,j}j are inde-
pendent and, since for Ei,j , Ei,k with j 6= k the procedure B is invoked with the
same input

Pr [Ei,j ] = Pr [Ei,k] .

We may therefore define pi = Pr [Ei,1] as the success probability of each execution
of B during the i-th loop. Similarly, if I = i, the vector space V given in input
to B is by construction equal to the one used during the i-th execution of the
Do-Until loop. In particular

pi = Pr [Elast|I = i] .
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To conclude we show that

Pr [A → fail] = Pr [¬Elast] =

n1+1∑
i=1

Pr [¬Elast|I = i] · Pr [I = i]

≤
n1+1∑
i=1

Pr [¬Elast|I = i] · Pr [Ei,1 ∧ . . . ∧ Ei,2n1+1]

=

n1+1∑
i=1

Pr [¬Elast|I = i] ·
2n1+1∏
j=1

Pr [Ei,j ]

=

n1+1∑
i=1

(1− pi) · p2n1+1
i

≤
n1+1∑
i=1

1

2n1 + 2
=

n1 + 1

2n1 + 2
=

1

2
.

where the first inequality comes from the fact that I = i implies Ei,j for all
j ∈ {1, . . . , 2n1 + 1}, while the second inequality comes from the fact that the
function ft(x) = (1−x)xt is upper bounded by 1/(t+1) when x ∈ [0, 1]. Indeed
ft(0) = ft(1) = 0 and its derivative vanishes only at t/(t + 1), which has to be
the maximum point, implying that

(1− x) · xt ≤
(
1− t

t+ 1

)
·
(

t

t+ 1

)t
≤ 1

t+ 1
.

4.2 Attack to Schemes with Generic Verification

Theorem 3. Given an algebraic signature scheme with generic verification, for
any ϑ such that n2 + ϑ ≤ |S.M| there exists an adversary A that in the unforge-
ability experiment in Fig. 2 performs at most n2 signature queries and produces
ϑ distinct forgeries.

Moreover, calling κ an upper bound on the signature bit-length, and χ an
upper bound on the number of queries S.Vfy performs to O0

eq, then A runs in
time O(ϑ · 2κ · 2χ · poly(λ)) and performs O(ϑ · poly(λ)) queries to Oadd and O0

eq.

Proof. As done in Theorem 4 we begin by providing an attack B which breaks
the scheme but performs potentially n1 + n2 signature queries.

At a high level B, given the verification key vk = (X, s), will keep track of all
possible exponents of X in a set L and for each message m either the dimension
of L decreases by one or B finds a forgery. Assume without loss of generality
that signatures are of the form (Y′, t′) with Y′ ∈ Gk and t′ ∈ {0, 1}κ.

For any m, our adversary attempts to produce a forgery as follows: For all
possible t ∈ {0, 1}κ, it executes the verification algorithm by simulating a generic
group G̃ with oracles Õadd and Õ0

eq. More specifically, since S.Vfy requires as
input the verification key (X, s), the message m and the signatures (Y, t), B
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reproduces all the group elements involved by assigning dummy indexes for X̃,
Ỹ and runs S.Vfy((X̃, s),m, (Ỹ, t)). During the execution, each query to Õadd is
emulated by simply returning new incremental indexes, while to emulate Õ0

eq, χ
bits β1, . . . , βχ are chosen at the beginning of the execution so that the answer
to the i-th query will be βi. Note that each element Ti the verifier queries to
Õ0

eq has to be a linear combination of the initial group elements he received,
i.e. Ti = a>i X̃ − b>i Ỹ − ci · G̃ obtained though Õadd, and B can extract these
coefficients.

Repeating the execution of S.Vfy for different values of β1, . . . , βχ implicitly
defines a tree of height χ in which paths are determined by the replies B gave at
the i-th query to Õ0

eq. If at some point a path β1, . . . , βχ that makes the verifier
accept is found, B can try to find a vector Y in the real GGM, such that the
i-query S.Vfy would do to O0

eq will be answered with βi. If such a Y is found,
then (Y, t) will be a valid forgery for m.

Recalling that the i-th query has the form Ti = aiX̃− biỸ − ci ·G, then B
needs to find a vector Y such that for all i ∈ {1, . . . , χ}

a>i X = b>i Y + ci ·G when βi = 1, a>i X 6= b>i Y + ci ·G when βi = 0

Regarding the equations on the left side, they can be packed up into a system
AX = BY + c ·G. Through pseudo-inverses or Gaussian elimination is easy to
check if solutions exists for all x ∈ L (as in the proof of Theorem 2). If this is
not the case B simply discards this path and continues its brute-force search.
However, even if the previous condition is satisfied, for some of the points x in L
it may be the case that any vector y satisfying Ax = By+c fails to satisfy some
of the inequalities above a>i x 6= b>i y+ ci, implying that no solution Y ∈ Gk can
be found if x is the discrete logarithm of X. We call these points x ∈ L faulty
and, more specifically, the set of faulty points is defined as

FA,B,ca,b,c = {x : Ax ∈ ImB+c, ∀y ∈ Fmq Ax = By+c ⇒ a>x = b>y+c}.

Three possible cases may occur now:

– If all points in L are faulty with respect to some inequality constraint, then
B gives up on the path as the solution Y does not exist.

– If not all points are faulty B attempts to solve the system, which requires
expensive queries to Oadd,O0

eq: if a solution Y satisfying all constraints is
found, this is a valid forgery.

– If not all points are faulty, but no solution can be found, it means that x,
the discrete log of X, has to be a faulty point. This information reduces the
dimension of L as not all points in L are faulty.

Finally, if no solution can be found for any t ∈ {0, 1}κ and path β1, . . . , βχ,
B queries a signature for m and uses this information to reduce the dimension of
L. As for the proof of Theorem 2, B might overall query n1 + n2 signatures (as
opposed to the desired n1) since initially it has no information on the exponents
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of X, i.e. dimL = n1 + n2, and each signature query may reveal only one new
linear combination among these group elements. To address this issue we use
the same strategy presented in Theorem 2, that is, we use B in a black-box way
inside the algorithm A, formally described in Fig. 4. The main idea is again
that A initially extracts linear combinations among CRS elements that could
be found by B, and finally executes B providing the retrieved information as
input. In this way B will, with significant probability, only find relations among
elements of X2, thus requesting at most n2 signatures.

A detailed description of A appears in Fig. 5, while a more detailed proof of
the Theorem appears in the full version.

5 Conclusions

5.1 Impossibility of Algebraic Vector Commitments

Using both the negative results provided in the previous sections for algebraic
signatures and Theorem 1 connecting the efficiency of a VC to the security of
the associated signature scheme, we obtain two lower bounds for algebraic vector
commitments

Theorem 4. Given a position binding algebraic VC with strictly linear verifica-
tion, let `c = `c(n) and `π = `π(n) be respectively the commitment and opening
bit length to commit to a vector of n entries. Then

ν2 +
λ+ `c + ν2 · (`π + log |VC.M|)

log |VC.M|
≥ n.

Proof. Assume there exists an algebraic VC with strictly linear verification con-
tradicting the above inequality and satisfying position binding. Then by Theo-
rem 1 the signature scheme obtained through the transformation in Fig. 1 would
satisfy ϑ-UF with

ϑ(vk, Q) =
λ+ `c + |Q| · (`π + log |VC.M|)

log |VC.M|

and its message space would have size |SVC.M| = n. Since vk contains ν2 group
elements excluding those that belong to the CRS, i.e. the public parameters of
the original Vector Commitment, the attacker A from Theorem 2 can produce at
least n− ν2 forgeries performing at most ν2 queries. Called Q the set of queries
performed by A we would have that

ϑ(vk, Q) ≤ λ+ `c + ν2 · (`π + log |VC.M|)
log |VC.M|

< n− ν2

where we use the fact that |Q| ≤ ν2 in the first inequality. This is then a contra-
diction since A would breaks the ϑ-UF of the derived signature, implying that
the given vector commitment was not binding.
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Adversary B(vk, V ):

1 : Initialize F ← ∅ the set of forgeries
2 : Call L = V × Fn2

q the set of possible exponents of X

3 : Call θ = n+ ϑ and sample m1, . . . ,mθ ←$ S.M distinct messages
4 : For m ∈ {m1, . . . ,mθ}:
5 : For t ∈ {0, 1}κ and (β1, . . . , βχ) ∈ {0, 1}χ:
6 : Simulate a Generic Group G̃ with generator G̃ and oracles Õadd and Õ0

eq

7 : Assign indices for two vectors X̃ ∈ G̃n and Ỹ ∈ G̃k

8 : Run S.Vfy((X̃, s),m, (Ỹ, t)) using G̃
9 : When S.Vfy queries Õadd(T, S):

10 : Store a way to express T + S as a linear combination of X̃, Ỹ and G̃
11 : Return to S.Vfy a label for T + S

12 : When S.Vfy queries Õ0
eq(Ti) the i-th time:

13 : Store ai ∈ Fnq , bi ∈ Fkq and ci ∈ Fq such that Ti = a>i X̃− b>i Ỹ − ci · G̃
14 : Return βi to S.Vfy

15 : When S.Vfy halts and returns b ∈ {0, 1}:
16 : Let A = (ai : βi = 1), B = (bi : βi = 1) and c = (ci : βi = 1)

17 : If b = 0:
18 : Continue cycle in line 5
19 : Elif A · L * ImB + c:
20 : Continue cycle in line 5

21 : Elif ∃i : βi = 0 and L ⊆ FA,B,cai,bi,ci
:

22 : Continue cycle in line 5

23 : Elif ∃i : βi = 0 and X ∈ FA,B,cai,bi,ci
·G:

24 : Update L← L ∩ FA,B,cai,bi,ci

25 : Break cycle in line 5
26 : Else:
27 : Find Y ∈ Gk s.t. AX = BY + cG and a>i X 6= b>i Y + ciG for βi = 0

28 : Store σ ← (Y, t) and F ← F ∪ {(m,σ)}
29 : Break cycle in line 5
30 : If the cycle ended without interruptions:
31 : Query a signature for m and wait for (Y, t)
32 : Reconstruct A,B, c as in step 16 using (X, s,m,Y, t) and the group G
33 : Update L← L ∩ {x ∈ Fnq : Ax ∈ ImB + c}
34 : Return F,L

Fig. 5. B breaking security of an algebraic signature scheme with generic verification.
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Theorem 5. Given an algebraic VC with generic verification that is position
binding against unbounded adversaries performing polynomially bounded queries
to the GGM oracles Oadd, O0

eq, using the same notation of Theorem 4, then

ν2 +
λ+ `c + ν2 · (`π + log |VC.M|)

log |VC.M|
≥ n.

Proof. Assuming again by contradiction that the above inequality is not satis-
fied, Theorem 1 implies that the associated signature scheme is ϑ-UF against
any unbounded adversary C making at most polynomially many signature and
group operations queries, or otherwiseRC would break position binding with sig-
nificant advantage. Notice that since R is PPT, RC still performs polynomially
many generic group operations. As in the proof of Theorem 4 then, our initial
assumption implies ϑ ≤ n − ν2. Since the adversary A of Theorem 3 returns
n − ν2 signatures performing at most ν2 queries, this contradicts the ϑ-UF of
the associated signature against this adversary.

Corollary 1. Given an algebraic vector commitment with strictly linear verifi-
cation, then `c · `π = Ω(n). Analogously, given an algebraic vector commitment
with generic verification position binding against unbounded adversary perform-
ing at most polynomially many queries to the GGM oracles, `c · `π = Ω(n).

Note that this lower bound implies in both cases that either `c = Ω(
√
n) or

`π = Ω(
√
n).

5.2 Impossibility of Algebraic Signatures

As a by-product of our study on VC we also obtain the following two impossi-
bility results for algebraic signatures which extend the one presented in [11] to
a broader family of schemes.

Theorem 6. For any UF-CMA algebraic signature scheme with strictly linear
verification, n1 ≥ |S.M|.

Theorem 7. For any algebraic signature scheme with generic verification UF-
CMA secure against any unbounded adversary performing at most polynomially
many queries to the GGM oracles, n1 ≥ |S.M|.
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