
Beyond Uber:
Instantiating Generic Groups via PGGs

Balthazar Bauer1, Pooya Farshim2, Patrick Harasser3(�), and Adam O’Neill4

1 IRIF, CNRS, France
balthazar.bauer@ens.fr

2 IOHK and Durham University, UK
pooya.farshim@gmail.com

3 Technische Universität Darmstadt, Germany
patrick.harasser@tu-darmstadt.de

4 Manning College of Information and Computer Sciences,
University of Massachusetts Amherst, USA

adamo@cs.umass.edu

Abstract. The generic-group model (GGM) has been very successful in
making the analyses of many cryptographic assumptions and protocols
tractable. It is, however, well known that the GGM is “uninstantiable,”
i.e., there are protocols secure in the GGM that are insecure when using
any real-world group. This motivates the study of standard-model no-
tions formalizing that a real-world group in some sense “looks generic.”

We introduce a standard-model definition called pseudo-generic group
(PGG), where we require exponentiations with base an (initially) un-
known group generator to result in random-looking group elements. In
essence, our framework delicately lifts the influential notion of Univer-
sal Computational Extractors of Bellare, Hoang, and Keelveedhi (BHK,
CRYPTO 2013) to a setting where the underlying ideal reference object
is a generic group. The definition we obtain simultaneously generalizes
the Uber assumption family, as group exponents no longer need to be
polynomially induced. At the core of our definitional contribution is a
new notion of algebraic unpredictability, which reinterprets the standard
Schwartz–Zippel lemma as a restriction on sources. We prove the sound-
ness of our definition in the GGM with auxiliary-input (AI-GGM).

Our remaining results focus on applications of PGGs. We first show
that PGGs are indeed a generalization of Uber. We then present a num-
ber of applications in settings where exponents are not polynomially in-
duced. In particular we prove that simple variants of ElGamal meet sev-
eral advanced security goals previously achieved only by complex and in-
efficient schemes. We also show that PGGs imply UCEs for split sources,
which in turn are sufficient in several applications. As corollaries of our
AI-GGM feasibility, we obtain the security of all these applications in
the presence of preprocessing attacks.

Some of our implications utilize a novel type of hash function, which
we call linear-dependence destroyers (LDDs) and use to convert standard
into algebraic unpredictability. We give an LDD for low-degree sources,
and establish their plausibility for all sources by showing, via a compres-
sion argument, that random functions meet this definition.

mailto:balthazar.bauer@ens.fr
mailto:pooya.farshim@gmail.com
mailto:patrick.harasser@tu-darmstadt.de
mailto:adamo@cs.umass.edu

2 B. Bauer, P. Farshim, P. Harasser, and A. O’Neill

1 Introduction

1.1 Background

Idealized models. A useful tool in cryptography are so-called idealized models
of computation, which include the random-oracle, random-permutation, ideal-
cipher, and generic-group models. In such models, all algorithms work relative to
oracles that serve to implement some information-theoretically random reference
object. Later, when a scheme defined in an idealized setting is used in practice,
the oracles are heuristically instantiated by appropriate public, efficiently com-
putable functions. On the one hand, idealized models are powerful because they
limit the adversary’s capabilities and make proofs tractable. On the other, they
are subject to well-known uninstantiability results, which show the existence of
(contrived) schemes that are secure in the idealized model, but provably inse-
cure under any possible instantiation (see, e.g., [15, 27, 33, 39]). This indicates
that idealized models are not sound in general, yet “natural” applications (with
the oracles appropriately instantiated) have withstood years of scrutiny.

The generic-group model. In this work, we mainly focus on the generic-
group model (GGM), where a generic group is an idealization of a finite cyclic
group. It was first defined by Nechaev [46] and later refined by Shoup [50], who
considered random encodings of group elements.5 More specifically, for a cyclic
group (G, ◦) of order p, Shoup’s model considers a random injection τ : Zp → S,
where S ⊆ {0, 1}∗ with |S| ≥ p. All algorithms run on input p and encodings of
application-specific group elements. To perform group operations, algorithms can
query a τ oracle and an operation oracle op defined as op(h1, h2) := τ(τ−1(h1)+
τ−1(h2)) if h1, h2 ∈ Rng(τ), and op(h1, h2) := ⊥ otherwise.

Instantiating generic groups. In practice, a generic group is typically in-
stantiated via an appropriate elliptic curve group. Indeed, for such groups no
algorithms for solving discrete-logarithm-like problems more efficiently than the
generic ones are known. Addressing the above-mentioned mismatch between ide-
alized and instantiated schemes, we investigate what assumptions are being made
when carrying out such an instantiation. Note that an indistinguishability-based
approach formalizing the idea of “behaving like a generic group” would suffer
from the same shortcomings known for random oracles [27].

This line of work has been carried out with considerable success for the ran-
dom oracle model (ROM), where the ideal reference object is a random function
(see, e.g., [10,24,54]). For generic groups on the other hand, the most compelling
formulation so far of what assumption is being made when instantiating them is
given by the so-called Uber assumption [18,20]. At a high level, the Uber assump-
tion speaks to the hardness of distinguishing the exponentiation gT (s) of a poly-
nomial evaluation T (s) from random, given exponentiations gR1(s), . . . , gRn(s) of
other polynomial evaluations. This condition holds in generic groups, and must
5 An alternative formulation of the GGM is given by Maurer [44]; we follow Shoup’s

presentation in this paper. Relations and comparisons between different flavors of
the GGM are discussed in the recent work [55].

Beyond Uber: Instantiating Generic Groups via PGGs 3

therefore be satisfied by any concrete group that aims to “faithfully” instantiate
them. However, the Uber assumption is far from the most general (standard-
model) property that might hold in generic groups and thus should also be
satisfied by their real-world counterparts.

Indeed, we observe that in a wide range of advanced cryptographic protocols
and primitives (such as security under bad randomness, deterministic encryption,
leakage resilience, and code obfuscation to name a few), inputs may not be
uniformly distributed and polynomially related, but follow distributions that
are, for example, only assumed to have high entropy. The Uber assumption
can fall short of providing means to prove security of practical schemes in such
settings. Accordingly, the main question we ask is:

Are there standard-model properties that generalize the Uber assumption and
allow instantiating generic groups in a broad range of applications?

We emphasize that our treatment is practice-oriented in that we aim for
a notion that captures standard-model properties of groups that can be used
to establish the standard-model security of existing, practical protocols in a
variety of models. Further, the new definitions should combine, as far as possible,
standard-model analyses with the ease of use offered by the GGM.

In order to develop the core ideas one step at a time, in this work we treat the
case of simple (non-bilinear) groups6 and focus on decisional problems. There
are indeed multiple directions in which our work can be extended; we will briefly
discuss some of these at the end of the Introduction.

1.2 Our Approach

Our approach is inspired by an existing framework that bridges the standard and
idealized models of computation: Universal Computational Extractors (UCEs) of
Bellare, Hoang, and Keelveedhi (BHK) [10], a security notion for hash functions
which, at a high level, requires indistinguishability from a random oracle under
unpredictable inputs. Indeed, their motivation is in some sense conceptually
analogous to ours. To that end, we seek to extend UCEs to structured ideal
primitives, and call the resulting security notion in the case of cyclic groups
pseudo-generic groups (PGGs). Before presenting PGGs, we give a brief overview
of UCEs and refer to Section 2 for formal definitions.

Universal Computational Extractors. Let H : K × D → R be a keyed
hash function. The UCE notion is defined via a game played by a source S and
a distinguisher D: Sample a challenge bit b←←{0, 1}, a hash key hk←←K, and a
RO ρ : D → R. Then, S runs with access to an oracle Hash which, when queried
on x ∈ D, returns H(hk , x) if b = 1, and ρ(x) otherwise. Eventually, S outputs
leakage L which is passed to D, who is also given the hash key hk but no access
to the hashing oracle. Distinguisher D must then guess b, and the requirement
for H is that the advantage of every PPT (S,D) in this game is small.
6 Similar work on the algebraic-group model (discussed later) was first carried out in

simple groups [36] and later in bilinear ones [5].

4 B. Bauer, P. Farshim, P. Harasser, and A. O’Neill

Notice that for this definition to be meaningful, some restriction must be
placed on S and D: Without any additional requirement, (S,D) can win with
overwhelming advantage by having S query Hash on any x ∈ D with answer y,
leak the pair (x, y) to D, and then have D (who knows the hash key hk) check
whether y = H(hk , x). To avoid such generic attacks, one requires S to be un-
predictable, a notion formalized by asking that any predictor P have small ad-
vantage in the following game: Source S runs with access to a RO and produces
leakage L. Then P runs on input L and wins if it can guess any of S’s queries.

Our new notion: PGG. To port the UCE definition to the context of cyclic
groups, our first idea is to let a random group generator g play the role of the
hash key, and to use exponentiation with base g in place of the hash.7 The PGG
security game for a group (G, ◦) then follows the UCE framework: Sample a
secret bit b←←{0, 1}, a random generator g←←G, and a generic-group encoding
σ : Zp → G. Then, a source S interacts with an exponentiation oracle Exp which,
on input x ∈ Zp, returns the real group element gx if b = 1, and a generic element
σ(x) otherwise. The source can pass some leakage L to a distinguisher D, who
is also given the generator g but loses access to the oracle and has to guess b. As
for UCEs, the requirement for G is that every such (S,D) has a small advantage
in this game. Thus, the PGG notion captures the intuition that if an adversary
does not know the random generator g of G, exponentiation with base g looks
like it returns random elements from G.

As before, for this notion not to be void we must put restrictions on the
queries that S is allowed to make. First, observe that S must be unpredictable,
because without any such requirement (S,D) can mount the attack for UCEs
sketched above. We argue now that due to the presence of a group structure on
G that was missing in the UCE setting, further conditions are needed.

Algebraic unpredictability. An important question now is for what sources
is PGG achievable in principle, meaning there are no “trivial” attacks. Recall that
for UCEs the answer was unpredictable sources. In our context, unpredictability
alone is not sufficient: Consider a source S that samples x1, x2←←Zp, queries
hi ← Exp(xi), and computes x3 ← x1 + x2 and h′3 ← h1 ◦ h2. It then queries
h3 ← Exp(x3) and passes the bit (h3 = h′3) to D, who simply returns it. The
advantage of (S,D) in the PGG game is almost 1, even though S is unpre-
dictable since x1 and x2 are random. The issue is that S can place unpredictable
queries that satisfy a known linear relation and distinguish by checking if the
corresponding relation holds for the oracle replies. Excluding this trivial/generic
attack motivates a more refined notion of unpredictability which we call algebraic
unpredictability. In the corresponding game, the source S runs with access to the
ideal exponentiation oracle while querying x1, . . . , xq, and produces leakage L.
Predictor P runs on input L and must guess a linear combination of the queries,
i.e., outputs (α0, α1, . . . , αq) not all zero and wins if

∑q
i=1 αixi = α0.

7 Recently, Bartusek, Ma, and Zhandry (BMZ) [4] studied the “fixed-generator” and
“random-generator” settings in group-based assumptions. We necessarily work in the
latter since, as we shall see, otherwise attacks arise.

Beyond Uber: Instantiating Generic Groups via PGGs 5

This condition excludes the attack above, since P can output (0, 1, 1,−1)
to win the game. One might try to modify the attack and let the source leak
(x3, h3) to D, who, given g, can compute gx3 and compare it to h3. But this also
contradicts algebraic unpredictability, with a predictor returning (x3, 1, 1).

As we shall see in Section 3, due to the existence of obfuscation-based attacks
(similar to those for UCEs [21]), algebraic unpredictability must be statistical in
nature; that is, we allow the algebraic predictors to run in unbounded time.

Parallel structure. It turns out that algebraic unpredictability by itself is
not sufficient to rule out all generic attacks. Indeed, consider a source S that sam-
ples x←←Zp, queries h1 ← Exp(x) and h2 ← Exp(x2), then computes h′2 ← hx

1

and passes the bit (h2 = h′2) as leakage to D, who decides accordingly. Again,
the advantage of (S,D) in the PGG game is almost 1, and now S is even alge-
braically unpredictable. The issue here is that S’s queries satisfy a linear relation
with coefficients that are themselves unpredictable but known to S (in this case,
x · x− 1 · x2 = 0), an attack vector not ruled out by algebraic unpredictability.

To address this problem, we consider parallel sources. Loosely speaking, this
means that S’s Exp queries are made in parallel by single-query sources Si(st)
which, other than receiving a common initial state, do not pass state among each
other. Indeed, the attack above was possible because S could learn more than
one oracle reply. Note that, in this example, although the queries x and x2 are
allowed, the equality check h2 = h′2 requires knowledge of h2 and h′2 (related to
different queries), and hence violates the definition of a parallel source.

Restricted post-processing. Surprisingly, even considering only parallel
sources does not rule out all trivial attacks. Indeed, one can modify the source S
from above and make it parallel by setting st ← x, having S1(st) compute h1

and h′2, and letting S2(st) compute h2. Leakage (h′2, h2) is passed to D, which
returns the bit (h2 = h′2). This attack works because each Si(st) still allows
arbitrary post-processing of its oracle response (here, computing the exponen-
tiation of h1). Accordingly, we further restrict the class of sources and consider
algebraically unpredictable masking sources, which are parallel sources where
each Si(st) is allowed only structured post-processing of its oracle replies (e.g.,
no post-processing or at most one group operation).

Simplification. The nature of the Exp oracle allows us to both strengthen and
simplify our notion: We consider a definition of PGG whereby the distinguisher
no longer receives the random generator g, and accordingly modify algebraic
unpredictability to hold with α0 = 0 only. This new version implies the old one,
as g can be obtained by querying 1. Second, algebraic unpredictability holds for
this source, as the non-simplified version allows for non-zero α0.

Generalizing Uber. We give a formal definition of the resulting notion in
Section 3. Note that our notion can indeed be seen as a generalization of Uber,
whereby the exponents are no longer evaluations of polynomials but may come
from arbitrarily correlated distributions, as long as they adhere to the require-
ments set above. In particular, linear independence between polynomially in-
duced exponents is now generalized to algebraically unpredictable sources.

6 B. Bauer, P. Farshim, P. Harasser, and A. O’Neill

GGM feasibility. Analogously to BHK who showed a RO is a UCE, we show
the soundness of our definition by proving that a generic group is PGG for alge-
braically unpredictable masking sources. (We adopt Shoup’s model for generic
groups here [49].) This turns out to be significantly more involved than in BHK.
Typically, GGM proofs appeal to the Schwartz–Zippel lemma to carry out a
lazy sampling of group elements. In our proof, we no longer use this lemma and
instead rely on the algebraic unpredictability of sources to carry out a consistent
lazy sampling. Here we use a weaker notion of computational algebraic unpre-
dictability. (There is no contradiction with obfuscation-based attacks, as generic
groups do not have compact representations.) A second feature of our proof is
that we allow our sources to depend on the entire function table of the group en-
coding. This choice more accurately models computationally unbounded sources
in the standard model, widens the applicability of PGGs, and due to the exis-
tence of arbitrary leakage from source, also captures the effects of preprocessing
attacks (aka. auxiliary information) on the definition. We use the recent tech-
nique of decomposition of high-entropy distribution due to Coretti, Dodis, and
Guo [28] to handle unbounded sources.

Our GGM feasibility result, beside showing that PGGs do not suffer from
structural weaknesses exposed by generic attacks, places PGGs below the GGM
in the hierarchy of assumptions on groups (cf. the so-called “layered approach” to
security explained in [10])8. Indeed, using this result, one can establish security
of an application in the GGM by first proving it secure under an appropriate
PGG assumption (in the standard model), and then lifting the result to the
GGM using the result above.

Finally, equipped with GGM feasibility, it is reasonable to conjecture that
appropriate elliptic curve groups are indeed PGGs, thus allowing the framework
to be applied to a variety of practical cryptosystems built using such groups.

Avoiding uninstantiability. We note that PGGs circumvent a variety of
uninstantiability techniques. Notably, the classical CGH-type uninstantiability
results [26,33] are avoided due to the fact that the group elements are computed
wrt. high-entropy exponents. Furthermore, attacks due to the existence of various
forms of obfuscation are avoided by requiring that the algebraic unpredictability
notion be statistical. An analogous approach has been used in works on UCEs
to avoid uninstantiability [21].

We also note that Zhandry’s recent AGM uninstantiability result [55] inher-
ently relies on the fact that an algebraic adversary has to return a representation
of the forged tag (which then either breaks DLP or compresses random strings).
This does not carry over to PGGs because adversaries are not required to be
algebraic in our setting.

8 The idea is to have assumptions and models organized into a hierarchy, where higher
levels justify lower ones and, conversely, proving a scheme secure at some level shows
that it meets higher ones as well. This allows us to identify precisely how strong an
assumption is needed for a given application. Moreover, proving security of a scheme
at a lower level typically gives more insight into its inner workings.

Beyond Uber: Instantiating Generic Groups via PGGs 7

GGM

PGG[Sduber ∩ Salg]

Uber

DDHq-DH

Uber-II

PFOLeakage

RKAUCE[Ssup ∩ Sssplt]

StoreCIHSym.
RKA

PGG[Smsk ∩ Salg]

KDMDE

Fig. 1. Implications of PGGs. Here Sssplt denotes the class of simple split sources (see
Section 6.2), CIH stands for correlated input hashing, and store for storage auditing
protocols (see [10]). Results on DE (deterministic encryption), RKA and KDM or for
ElGamal. Results for DE, RKA and UCE use LDDs if considering general sources.

1.3 Applications of Pseudo-Generic Groups

We demonstrate the applicability of our definition in three ways. First, we show
that the Uber assumption holds in PGGs, thereby allowing us to recover all its
applications within the PGG framework. For our second set of results, recall
that there are several “advanced” security models for encryption, many of which
have only been obtained via novel and often inefficient schemes. We demonstrate
that PGGs enable proving (simple variants of) the classical ElGamal encryption
scheme secure in a number of such advanced security models. According to the
discussion above, this means that these notions can be safely assumed when
ElGamal is implemented using suitable elliptic curve groups. Third, we show
how to construct UCEs in PGGs. As before, this allows us to recover all their
applications within the PGG framework. We refer to Figure 1 for a schematic
overview of our results.

PGGs generalize Uber. We prove that broad and even novel formulations of
the Uber assumption hold in PGGs. The Uber assumption family [18, 20] is an
umbrella assumption that generalizes many hardness assumptions used to study
the security of group-related schemes. Although it is commonly considered in
bilinear groups, as previously mentioned, here we focus on simple groups. Nev-
ertheless, proving that PGGs satisfy the Uber assumption allows us to recover all
its applications within the PGG framework. For instance, all constructions whose
security relies on the hardness of DDH (such as Diffie–Hellman key exchange,
ElGamal encryption, and efficient PRFs [45]) or one of a number of closely re-
lated problems (e.g., q-DDHI, strong DDH, square DDH, and divisible DDH), or
a randomized version of the recently introduced “Assumption 3” from [4], can be
instantiated with PGGs. We further demonstrate that the Uber-II assumption,
a variation of Uber with non-uniform exponents [24], also holds for PGGs. Spe-
cific instances of Uber-II have been used to build (composable) point-function
obfuscation [14,25] and leakage-resilient PKE schemes [31].

8 B. Bauer, P. Farshim, P. Harasser, and A. O’Neill

We believe that PGGs better highlight the types of problems one expects to
be hard in groups, as it places no restriction on how the exponents are sampled
beyond the fact that certain trivial attacks are ruled out.

Linear Dependence Destroyers. For some of our further implications below,
we require a particular type of hash function with domain and range Zp we call
linear dependence destroyer (LDD). LDDs are defined via a game played by a
source S and a predictor A. Source S specifies a tuple of hash inputs (x1, . . . , xq)
and state information st without seeing the random hash key hk , whereas A gets
st and hk and returns a tuple of coefficients (α0, α1, . . . , αq). Adversary (S,A)
wins if

∑q
i=1 αi · H(hk , xi) = α0, and H is an LDD if every PPT (S,A) with S

statistically unpredictable wins this game with negligible probability.
We show that the function H(hk , x) := 1/(x + hk) implicit in the work of

Goyal, O’Neill, and Rao [38] is an LDD when S is a low-degree source. These
are sources that compute their outputs as evaluations of low-degree polynomials
on points with sufficient entropy. This result, in turn, enables proofs of security
for applications that use LDDs for low-degree sources. The main step in our
proof is that different polynomials with random constant terms (given by the
hash key) are likely to be coprime. When this is the case, the numerator of the
fraction

∑q
i=1 αi/(Pi(s1, . . . , sm) + hk)− α0 is non-zero no matter the choice of

(α0, α1, . . . , αq). Winning the LDD game is thus equivalent to (s1, . . . , sm) being
a root of this numerator, which is unlikely by the Schwartz–Zippel lemma.

In fact, we conjecture that H is an LDD for all statistically unpredictable
sources, not just for low-degree ones. To further lend plausibility to this notion,
we also prove that a random function is an LDD, under mild restrictions on S.
To this end, we apply the compression technique originating from Gennaro and
Trevisan [37] in a setting where two independent parties have full access to
the code of the ideal object. The compression technique is commonly used in
cryptography, and our extension may be of wider interest.

UCEs for split sources. A natural question is how PGGs relate to the
notion of UCEs. It seems that PGGs are harder to build because they have
more structure. In other words, generic groups, which PGGs instantiate, seem
stronger than random oracles, which UCEs instantiate. As our first application
we show that, indeed, UCEs can be constructed from PGGs for dUber sources
and LDDs. The constructed UCE is for statistically unpredictable split sources.
A number of applications of UCEs, such as proofs of storage, correlated-input
secure hashing, and RKA security for symmetric encryption, only rely on UCE
for split sources. We note that a benefit of building UCEs from PGGs is that
the construction may enjoy useful algebraic properties that constructions from
symmetric-key primitives do not. Once again, in the generic-group model, we
show security against preprocessing attacks.

Key-dependent message security for ElGamal. Second, we show that
PGGs enable proof of key-dependent message (KDM) security for a slightly
tweaked version of ElGamal [16, 23]. KDM security for ElGamal does not seem
to be feasible using Uber (though less efficient constructions do exist, e.g., [3,19]).

Beyond Uber: Instantiating Generic Groups via PGGs 9

Application PGG Source Other Assumptions

Uber & Uber-II dUber –
RKA for ElGamal dUber LDD
KDM for ElGamal Mask –
Low-degree DE ElGamal Mask –
UCE for split sources dUber LDD
General DE for ElGamal Mask LDD

Table 1. Overview of applications of PGGs.

The KDM notion that we prove does not allow for adaptive queries, but it per-
mits deriving key-dependent messages in an inefficient way. Furthermore, when
combined with our GGM feasibility, we obtain KDM security against prepro-
cessing attacks in the GGM.

Hash-then-ElGamal deterministic PKE. Moving on, we prove that ElGa-
mal admits full instantiation of its corresponding random-oracle-model Encrypt-
With-Hash (EwH) deterministic encryption scheme [6], which replaces the coins
in encryption with the hash of the message. Here we need that the hash function
is an LDD. Preprocessing attacks are also accounted for in our definition and
analysis. Note that a prior result of BHK [10] also implies security of ElGamal-
based EwH, but uses an assumption on the hash that makes the result arguably
tautological. It is also known how to instantiate EwH for schemes meeting “lossi-
ness” assumptions [9, 40]. Our result is the first that does not require such an
assumption as it shifts the security assumption with non-uniform inputs from
the hash function to the underlying group.

Related-key security. We also show that ElGamal offers a form of related-
key attack (RKA) security, whereby secret keys (and their corresponding public
keys) are generated from related random coins. RKA security was systematically
studied by Bellare, Cash, and Miller [8] for PKEs. Under PGGs, and assuming
LDDs (which for polynomially induced sources we show to exist) we can handle
unpredictable related-key deriving functions that are claw-free (or more generally
as long as the repetition pattern of secret keys does not affect unpredictability).

We summarize the above applications in Table 1. For each application, we
record what type of source class is used in the reduction and whether the addi-
tional assumption of LDD is needed. For applications requiring LDDs we note
that our results are modular wrt. the underlying source class. This means that for
whatever source class we achieve LDDs, we also obtain an end application wrt. a
corresponding source class. For example, low-degree LDDs (which we achieve
unconditionally) translate to instantiations of UCEs and deterministic encryp-
tion wrt. low-degree sources and RKA security for low-degree related keys. The
latter includes affine functions, which are often considered in the RKA literature.

We envision that several other security goals are also feasible under PGGs, of
which we consider only a representative sample. Examples include security under
bad randomness [7], joint RKA and KDM security [17], randomness-dependent

10 B. Bauer, P. Farshim, P. Harasser, and A. O’Neill

message security [13], related-randomness security [47], and more generally ap-
plication scenarios whereby the input distributions are not necessarily random
and only guaranteed to come from high entropy distributions.

1.4 Other Related Work and Discussions

Public-seed pseudorandom permutations. Soni and Tessaro [51] define a
UCE-like, standard-model notion for random (two-sided) permutations called
public-seed pseudorandom permutations (psPRPs). They provide constructions
of UCEs from psPRPs (for a variety of sources) by showing, for example, that
the five-round Feistel [51] and the more efficient Naor–Reingold construction [52]
yield psPRPs when the round functions are UCEs. Our work continues these lines
of research by extending the UCE approach to defining security from random
oracles and random permutations to generic groups.

Algebraic group model. An intriguing notion that has recently received con-
siderable attention is the algebraic group model (AGM) [5,36]. We observe that
the AGM places restrictions on adversaries that are qualitatively different com-
pared to PGGs: Algebraic adversaries must output a representation of returned
group elements, which makes the AGM a powerful and useful model since this
additional information allows to carry out certain reductions.9 Restrictions on
PGG adversaries on the other hand are of standard-model type.

Nevertheless, it would be interesting to study the relation between the two
notions and also to knowledge assumptions. Following work on instantiating
UCEs [22] and on constructing groups in which the AGM can be realized and
the Uber assumption holds [1,2,41], another goal for future work is to construct
PGGs from well-known assumptions (such as iO, dual-mode NIZKs, FHE, etc.).

Extensions of PGGs. In this work, we develop the necessary techniques and
set the stage for the pseudo-generic approach to group-related assumptions. In
doing so, we leave a number of directions for future research.

A natural extension to our work would be to formulate analogous PGG-type
notions for bilinear groups (as considered by Boyen for the Uber assumption [20]
and extended via matrix DDH in [34]) or multi-linear groups. We anticipate
further applications of this notion, as in the bilinear setting a host of schemes
are only known to have a proof in the GGM and may be provable in PGGs.

The matrix DDH assumption (MDDH) [34] considers matrix-vector multi-
plication in the exponent in multi-linear groups, where a matrix is sampled from
a general distribution and the vector is uniform. However, this assumption is
only studied for polynomially induced distributions. As such, MDDH is not a
generalization of Uber in the sense of PGG to arbitrary distributions.

Certain applications require assumptions that lie beyond the reach of PGGs
as currently formulated. PGGs do not capture applications where exponents may
depend on a group generator that is not random (as, for example, in recent work

9 We note that our understanding of the role played by the AGM in assessing the
hardness of group-related assumptions is evolving in light of recent works [42,55].

Beyond Uber: Instantiating Generic Groups via PGGs 11

on non-malleable point-function obfuscation [4, 35, 43]). The PGG framework
also does not capture interactive [1] or knowledge-type [12] assumptions.

1.5 Structure of the Paper

In Section 2 we define the basic notation and recall the definition of UCEs.
Section 3 contains our definitional contributions, where we define pseudo-generic
groups, algebraically unpredictable and masking sources, and discuss the choices
made in devising these notions. In Section 4 we prove that a generic group is
a PGG, and then introduce LDDs and a candidate construction in Section 5.
Section 6 contains the applications of PGGs. In Section 6.1 we show that an
entropic variant of the decisional Uber assumption (and thus many implications
thereof) holds in PGGs. Afterwards, we show how to apply PGG directly to the
analysis of cryptosystems, by proving that PGGs and LDDs can be used to build
UCEs for (simple) split sources. Further applications of PGGs are presented in
the full version of the paper.

2 Preliminaries

Basic notation. If n ∈ N, we write [n] for the set {1, . . . , n}. Unless otherwise
stated, an integer p ∈ Z is assumed to be prime, and we let Zp denote the field
of integers modulo p. We denote the set of all bit strings of finite length by
{0, 1}∗, and the empty string by ε. We use boldface characters x := (x1, . . . , xn)
to denote vectors and write x[i], with i ∈ [n], to denote the ith entry xi of x.
By x←←S we mean sampling x according to distribution S. Similarly, x←←S
means sampling x uniformly at random from a finite set S. The cardinality of a
set S is denoted |S|. We let L← [] denote initializing an ordered list to empty,
and L : x denote appending an element x to the list L. A table T is a list of
pairs (x, y), and we write T [x] ← y to mean that the pair (x, y) is appended
to T . We let Dom(T) denote the set of all values x such that (x, y) ∈ T for
some y, and similarly Rng(T) denote the set of all values y such that (x, y) ∈ T
for some x. For two sets D and R we denote by Fun(D,R) and Inj(D,R) the
set of all functions and the set of all injections from D to R, respectively. When
|D| = |R|, an injection is also a bijection.

Min-entropy. The min-entropy of a random variable X over a domain D is
H∞(X) := − logmaxx∈D Pr[X = x]. X is called a k-source if H∞(X) ≥ k.

Polynomials and rational functions. We let F[X1, . . . , Xm] be the ring of
polynomials in m ∈ N variables over a field F, and F(X1, . . . , Xm) be the field of
rational functions of the form R(X1, . . . , Xm) = R̂(X1, . . . , Xm)/Ř(X1, . . . , Xm),
with R̂, Ř ∈ F[X1, . . . , Xm] and Ř ̸= 0. Here, as usual, R̂ is called the numerator
and Ř the denominator of R. If 0 ̸= R ∈ F[X1, . . . , Xm] is a polynomial, we
denote its total degree by deg(R). We extend this notation to rational functions
via deg(R) := deg(R̂)−deg(Ř) for every 0 ̸= R = R̂/Ř. Observe that the degree

12 B. Bauer, P. Farshim, P. Harasser, and A. O’Neill

of a rational function is well-defined, since it does not depend on its represen-
tation as a fraction of polynomials. Finally, if R1, . . . , Rn ∈ F(X1, . . . , Xm) such
that Ri ̸= 0 for every i ∈ [n], we let deg(R1, . . . , Rn) := maxi∈[n]{deg(Ri)}.

Linear dependence. Let R1, . . . , Rn, T ∈ F(X1, . . . , Xm). We say that T is
linearly dependent on R1, . . . , Rn (over F) if there exist a1, . . . , an ∈ F such that
T (X1, . . . , Xm) =

∑n
i=1 ai ·Ri(X1, . . . , Xm).

Hash function families. A hash function family is a tuple of PPT algorithms
H := (H.Setup,H.KGen,H.Eval). Here, algorithm H.Setup(1λ) outputs a tuple π
containing the descriptions of valid domain and range points D and R, as well
as a key space K and other system-wide parameters. Algorithm H.KGen(π) is
the hash key generation algorithm which returns a key hk ∈ K. The evaluation
algorithm H.Eval(π, hk , x), called on a hash key hk and a domain point x ∈ D,
outputs a point y ∈ R. To help readability, by slight abuse of notation we will
simply write H(hk , x) in place of H.Eval(π, hk , x).

Remark. Our definition of hash function families augments the usual syntax
with a setup algorithm H.Setup. Accordingly, we will extend the UCE definition
to incorporate system parameters. Overloading notation, we allow H.Setup to
alternatively take the description of a domain D and a range R as inputs, and
let it return corresponding parameters π.

Universal computational extractors [10]. Let H be a hash function fam-
ily. The advantage of a pair of PPT adversaries (S,D) (called UCE source and
UCE distinguisher) in the UCE game for H is defined as

AdvuceH,S,D(λ) := 2 · Pr[UCES,DH (λ)]− 1 ,

where the UCE game is defined in Figure 2 (left). We say that H is UCE[S]
secure, if the advantage of any PPT (S,D) with S ∈ S in the UCE game for H
is negligible. This is usually written as H ∈ UCE[S].

Without any restriction on the class of sources S, the UCE notion of security
is unachievable [10]. BHK exclude trivial attacks by requiring that the source be
unpredictable, meaning that it is hard to predict any of its oracle queries when
observing the leakage L. Due to the obfuscation-based attack of [21], the flavor
of unpredictability needs to be statistical. We recall the formal definition below.

(Statistically) unpredictable sources [10,21]. Let H be a hash function
family and S a UCE source. We define the advantage of a (possibly unbounded)
adversary P (called predictor) in the predictability game against (H,S) as

AdvpredH,S,P(λ) := Pr[PredPH,S(λ)] ,

where the game Pred is defined in Figure 2 (center). A source S is called sta-
tistically unpredictable if the above advantage is negligible for any (possibly
unbounded) predictor P. The class of all statistically unpredictable sources is
denoted Ssup. We say that H is UCE secure if it is UCE[Ssup] secure.

Beyond Uber: Instantiating Generic Groups via PGGs 13

Game UCES,D
H (λ):

b←←{0, 1}
π←←H.Setup(1λ)
ρ←←Fun(D,R)
hk←←H.KGen(π)
L←←SHash(π)
b′←←D(π, hk , L)
return (b = b′)

Proc. Hash(x):
if (b = 0) then return ρ(x)
else return H(hk , x)

Game PredP
H,S(λ):

Q← []
π←←H.Setup(1λ)
ρ←←Fun(D,R)
L←←SHash(π)
x←←P(π, L)
return (x ∈ Q)

Proc. Hash(x):
Q← Q : x
return ρ(x)

Game SZA
S :

(π := (pα,m, st))←←A0

for i ∈ [m] do
(x[i], z[i])←←Si(π)

(P, y)←←A1(π, z)
return (y = P (x))

Sources Xi / Zi:
(π := (pα,m, st))←←A0

(x, z)←←Si(π)
Xi : return x
Zi : return z

Fig. 2. Left: The UCE game. Center: The unpredictability game. Top right: The
Schwartz–Zippel game. Bottom right: The sources Xi and Zi.

Schwartz–Zippel Lemma. We now recall the Schwartz–Zippel Lemma [32,48,
57], a simple yet powerful tool to bound the probability of finding a root of a non-
zero polynomial when evaluating it at a random point. We also generalize the
standard Schwartz–Zippel lemma and obtain a more general and game-based
version of this result. In this variant, the points can be chosen according to
distributions with enough min-entropy, and the polynomial picked given some
leakage. This version may be more suitable for use in a cryptographic setting. A
proof of the game-based Schwartz–Zippel lemma can be found in the full version
of the paper.

Lemma 1 (Schwartz–Zippel). Let α, p ∈ N with p prime, S ⊆ Fpα , and let
0 ̸= P (X1, . . . , Xm) ∈ Fpα [X1, . . . , Xm]. Then

Pr
x1,...,xm←←S

[P (x1, . . . , xm) = 0] ≤ deg(P)

|S|
.

Lemma 2 (Game-based Schwartz–Zippel). Let A = (A0,A1) be a two-
stage algorithm, where A0 takes no input and returns a set of public parameters
π := (pα,m, st) ∈ N2 × {0, 1}∗ with α, p ∈ N and p prime, and A1 takes π
and values z1, . . . , zm ∈ {0, 1}∗ as input and returns a non-constant polynomial
P (X1, . . . , Xm) ∈ Fpα [X1, . . . , Xm] with deg(P) ≤ d ∈ N and a value y ∈ Fpα .
Let S := {Si}i∈N be a family of sources, each taking π as input and returning
values (x, z) ∈ Fpα × {0, 1}∗. Then

Pr[SZAS ()] ≤ d · E
π←←A0,

(x1,z1)←←S1(π),...,(xm,zm)←←Sm(π)

[
1

2mini∈[m]{H∞(Xi | (A0=π)∧(Zi=zi))}

]
,

where the game SZAS () is defined in Figure 2 (top right), and the sources Xi and
Zi are given in Figure 2 (bottom right).

14 B. Bauer, P. Farshim, P. Harasser, and A. O’Neill

Observe that if m = 1, the expectation above is the prediction probability
of X given A0 and Z. In general, the minimum cannot be taken out of the
expectation, because it reflects A’s choices of which variables appear in P .

3 Pseudo-Generic Groups

We now formally define pseudo-generic groups (PGGs), where group elements
are required to be indistinguishable from random, as long as their exponents
satisfy a specific unpredictability condition. PGGs lift the definition of UCEs of
Bellare, Hoang, and Keelveedhi [10] from the setting of hash functions to that of
groups. In other words, the underlying ideal object in the PGG definition, from
which a concrete group is supposed to be indistinguishable, is a generic group
rather than a random oracle. We start by giving some background on computa-
tional group schemes and generic groups, and then proceed to defining PGGs.

Computational group schemes [30]. A computational group scheme is a
randomized algorithm Γ which, on input the security parameter 1λ, outputs
group parameters π consisting of a group operation ◦, an arbitrary group gener-
ator g, and a prime group order p ∈ [2λ−1, 2λ). Implicit in these parameters is a
set G such that (G, ◦) forms a cyclic group of order p with generator g ∈ G. We
write the sampling of group parameters as (π := (◦, g, p))←←Γ(1λ), with the un-
derstanding that π implicitly defines the underlying set G. As usual, the group
operation gives rise to an exponentiation algorithm exp(h, x) whose output is
denoted as hx. We will often omit explicitly writing the operation ◦.

Generic groups [44,46,50]. Given a group (G, ◦) of prime order p, the generic
group on G is the uniform distribution over Inj(Zp,S), where S ⊆ {0, 1}∗ with
|S| ≥ p. Recall that every map τ ∈ Inj(Zp,S) allows one to define an associated
group operation op : S × S → S ∪ {⊥} via op(h1, h2) := τ(τ−1(h1) + τ−1(h2))
if h1, h2 ∈ Rng(τ), and op(h1, h2) := ⊥ otherwise. The generic group model is
a model of computation in which all parties, honest or otherwise, are run on
inputs p and encodings of application-specific elements, and have oracle access
to a random encoding τ ∈ Inj(Zp,S) and its associated operation oracle op.

Pseudo-generic groups. Let Γ be a computational group scheme. We define
the advantage of a pair of adversaries (S,D) (called PGG source and PGG
distinguisher) in the PGG game for Γ as

AdvpggΓ,S,D(λ) := 2 · Pr[PGGS,DΓ (λ)]− 1 ,

where the PGG game is defined in Figure 3 (left).10 We say that Γ is PGG[S]
secure if the advantage of any (S,D) with S ∈ S and D a PPT algorithm in the
PGG game is negligible. We denote this as Γ ∈ PGG[S].

Recall from our earlier discussion that, similarly to UCEs and psPRPs, this
notion of security is not achievable without restrictions on the class of PGG
10 Note that σ can be lazily sampled, so that the game runs in polynomial time.

Beyond Uber: Instantiating Generic Groups via PGGs 15

Game PGGS,D
Γ (λ):

b←←{0, 1}
(π := (◦, g0, p))←←Γ(1λ)
r←←Z∗

p; g ← gr0
σ←← Inj(Zp,G)
L←←SExp(π)
b′←←D(π, L)
return (b = b′)

Proc. Exp(x):
if (b = 0) then return σ(x)
else return gx

Game AlgPredP
Γ,S(λ):

Q← []
(π := (◦, g0, p))←←Γ(1λ)
σ←← Inj(Zp,G)
L←←SExp(π)
(α1, . . . , αq)←←P(π, L)
[x1, . . . , xq]← Q
return (

∑q
i=1 αixi = 0)

Proc. Exp(x):
Q← Q : x
return σ(x)

Masking source SExp(π):

(x,m, L)←←S̄(π)
for i = 1 to |m| do

y[i]←m[i]◦Exp(x[i])
return (y, L)

dUber source SExp(π):

(x, L)←←S̄(π)
for i = 1 to |x| do

y[i]← Exp(x[i])
return (y, L)

Fig. 3. Left: The PGG game. Center: The algebraic unpredictability game. Top
right: A generic masking source. Bottom right: A generic dUber source.

sources S. As a first step towards excluding trivial attacks, we introduce the
notion of algebraic unpredictability, the core definition which allows us to extend
UCE-type security notions beyond unstructured primitives (like hash functions
and permutations). We require that no predictor be able to guess a non-trivial
linear combination between the points queried by the source, as formalized below.

Algebraically unpredictable sources. Let Γ be a computational group
scheme and S a PGG source, and assume that the leakage L produced by S
encodes the number of Exp queries made by S. We define the advantage of
a (possibly unbounded) algorithm P (called predictor) in the algebraic unpre-
dictability game against (Γ,S) as

Advalg-predΓ,S,P (λ) := Pr[AlgPredPΓ,S(λ)] ,

where the game AlgPred is defined in Figure 3 (center). We require that the
output of P be different from the trivial all-zero tuple. A source S is called
statistically algebraically unpredictable if the above advantage is negligible for
any (possibly unbounded) predictor P. We denote the class of all statistically
algebraically unpredictable sources by Salg. Observe that any such source must
output distinct points (with high probability).

Masking and dUber sources. Algebraic unpredictability turns out to be
insufficient to rule out all trivial attacks, as explained earlier. We thus restrict
the set of sources for which we require PGG security even further and consider
the class Smsk of masking sources. These are sources S for which there exists a
(possibly unbounded) auxiliary algorithm S̄ with polynomially bounded output,
such that S takes the form in Figure 3 (top right). Here, S̄ returns vectors x ∈ Zq

p

and m ∈ Gq of the same length, and leakage L. Source S then queries Exp on all
entries of x, and multiplies the replies with the corresponding elements from m.
We also define the subclass Sduber ⊆ Smsk of distributional Uber (dUber) sources,
as shown in Figure 3 (bottom right), where we require m = (1G, . . . , 1G). To

16 B. Bauer, P. Farshim, P. Harasser, and A. O’Neill

simplify notation, we define sources S in these classes via their corresponding
auxiliary algorithms S̄, and call them auxiliary masking (resp., dUber) sources.
Notice that masking and dUber sources always reveal the number of Exp queries
through their leakage via the length |y| of y.

Focusing on masking sources, and dUber sources in particular, provides a new
perspective to our contribution. Indeed, dUber sources generalize the adversary
in the Uber assumption insofar as oracle queries are no longer obtained as poly-
nomial evaluations on a product distribution, but from a general distribution.
To avoid trivial attacks, the target polynomial in the Uber assumption must be
linearly independent from the other ones, a requirement covered by algebraic
unpredictability in this setting.

PGG security. We say that a computational group scheme Γ is PGG secure if
it is PGG[Salg ∩Smsk] secure. In order to establish confidence in this notion and
show that it hides no other obvious structural weaknesses, we prove in Section 4
that PGG security is indeed achievable in the generic-group model. However, we
note that, for specific applications, PGG security with respect to subclasses of
Salg ∩Smsk may be sufficient. On the other hand, there may exist larger, or even
incomparable source classes for which PGG security is also feasible.11

Definitional choices. Observe that, in the PGG game, the randomized group
generator g plays the role of the hash key hk in the UCE game. The fact that g
remains hidden from the source prevents it from trivially winning the PGG game
by sampling x←←Zp, querying h ← Exp(x), and checking if gx = h. Similarly,
g (or r) cannot be given to the distinguisher D, since the source could query
h← Exp(1), leak h to D, who then checks if g = h (resp., gr0 = h).

Note also that the random injection σ that the game samples has G (the real
group), and not some larger set S, as its range. This is needed because the source
can check group elements for validity (e.g., using exponentiation to power p− 1,
or directly via an element validity algorithm if such a procedure is available).

Also observe that the source does not get oracle access to the operation op
defined by σ. The reason is that, with such access, once again trivial attacks arise:
The source samples two random group elements, then multiplies them first using
the op oracle and then again locally using the input group operation ◦, and finally
checks if the results match.12 Removing access to the operation oracle from S
does not restrict our ability to prove security results in the PGG model, as we
shall see in Section 6.

Computational algebraic unpredictability. In [21], Brzuska, Farshim
and Mittelbach demonstrate an attack against UCEs with respect to a com-
putational notion of unpredictability. The types of sources that we consider for
PGG are analogous to the so-called split UCE sources. As BFM discuss, their
iO-based attack does not extend to such sources. However, under the existence of
11 For instance, one could allow for more expressive forms of post-processing. However,

we have not yet been able to find applications of this wider class of sources.
12 On the other hand, it is unclear how to rule this attack out using an extended notion

of algebraic unpredictability that takes operation queries into account.

Beyond Uber: Instantiating Generic Groups via PGGs 17

a plausible form of obfuscation, attacks arise. In more detail, if the function map-
ping x to the obfuscation of the circuit C[x] : h 7→ hx is one-way, the following
attack emerges: The dUber source picks x←←Zp, defines x← (1, x), and sets L
to be an obfuscation of C[x]. The distinguisher then returns (y[2] = L(y[1])).
For this reason we focus on statistical algebraic unpredictability.

Despite this attack, there is a benefit in considering a computational notion
of algebraic unpredictability when it comes to the analysis in idealized models.
Indeed, as we show, PGG with respect to this wider class of sources is achievable
in the GGM, and thus a wider class of applications can be proven secure in the
GGM. This does not contradict potential security in the standard model since
PGG with respect to computational algebraic unpredictability may still exist for
sources that take specific forms.

Multi-base PGGs. For the UCE and psPRP notions, BHK and ST respectively
considered multi-key extensions to cover a wider range of applications. These no-
tions are not known to be equivalent to their simpler single-key counterparts. For
pseudo-generic groups, on the other hand, a simple generator re-randomization
argument shows that the multi-base and single-base notions are equivalent. We
thus focus on the (single-base) PGG version above.

4 Generic Groups are PGGs

In this section we show the feasibility of PGGs in the generic-group model. The
importance of this result is that it rules out generic attacks against the PGG
notion, thus forming a check on the soundness of the definitional framework.
Furthermore, it automatically lifts the security of each of the applications of
PGGs that we consider to the GGM, as long as algebraically unpredictable,
masking sources are used. This is similar to the Uber assumption family, where
one relies on a specific assumption within Uber, and reuses the GGM hardness
proved once for the whole family. As discussed above, we show GGM hardness
of PGGs for a computational notion of algebraic unpredictability, which widens
its applicability.

Definitional choices. Before stating our result, we clarify what it means for a
generic group to be PGG secure. The PGG and AlgPred games in the GGM for
a group of size p with target set S are presented in Figures 4 (left) and 4 (center),
masking sources are given in Figure 4 (right). We stress that the oracles τ and op
defining the generic group and its operation are independent of the injection σ
used to define PGG security—only the ranges of the two encodings coincide,
since, as in the standard model, σ must take values in the group (which is given
by Rng(τ) in the GGM). Advantage terms are defined as usual.

Recall that masking sources can be unbounded, which means that they are
allowed an unlimited amount of group operations. Following [4], we mirror this
in the GGM by giving S the entire function table of τ . Distinguisher D on the
other hand is bounded, which means that it is only given oracles for τ and op
and that the leakage L must be short. This choice of modeling more accurately

18 B. Bauer, P. Farshim, P. Harasser, and A. O’Neill

Game PGGS,D
p,S :

b←←{0, 1}; r←←Z∗
p

τ←← Inj(Zp, S)
σ←← Inj(Zp,Rng(τ))
L←←SExp(τ)
b′←←Dτ,op(L)
return (b = b′)

Proc. Exp(x):
if (b = 0) then

return σ(x)
else return τ(rx)

Game AlgPredP
p,S,S :

Q← []
τ←← Inj(Zp, S)
σ←← Inj(Zp,Rng(τ))
L←←SExp(τ)
(α1, . . . , αq)←←Pτ,op(L)
[x1, . . . , xq]← Q
return (

∑q
i=1 αixi = 0)

Proc. Exp(x):
Q← Q : x
return σ(x)

Masking source SExp(τ):

(x,m, L̄)←←S̄(τ)
for i = 1 to |m| do

y[i]← op(m[i],Exp(x[i]))
return (y, L̄)

Comm. proc. op(h1, h2):

return τ(τ−1(h1) + τ−1(h2))

Fig. 4. Left: The PGG game in the GGM. Center: The AlgPred game in the GGM.
Right: A masking source S in the GGM. In all games, |S| ≥ p, and without loss of
generality, all algorithms know p.

reflects unbounded sources in the GGM by allowing an arbitrary number of
group operations. Furthermore, it allows us to derive security in the presence
of preprocessing attackers, as our sources can leak information about τ to the
distinguisher.13

We are now ready to state the main result of this section. We only give an
overview of the proof here, and provide the formal details in the full version.

Theorem 1 (GGM feasibility). Let (G, ◦) be a group of order p, and S a set
with |S| ≥ p. Then the generic group on G is PGG[Salg ∩ Smsk] secure. More
precisely, for every adversary (S,D) in the PGG game with S ∈ Salg ∩ Smsk,
there exists a predictor P in the game AlgPred such that

Advpggp,S,S,D ≤ O

(
T 2 ·Advalgp,S,S,P +

√
ST 2

p

)
,

where S := 2qS(⌊log p⌋+1)+ ℓ+⌊log qS⌋+⌊log ℓ⌋+2 and T := qS+qD,τ +qD,op.
Here qS , qD,τ , and qD,op are upper bounds on the number of queries made by S
and D to their respective oracles, ℓ is an upper bound on the length of the leakage
L̄ returned by S, and we assume T ≤

√
Sp.

Proof Overview. Fix any (S,D) as in the statement of the theorem. Without loss
of generality, assume that S always returns exactly S bits (this can be achieved
by padding the leakage L̄ returned by S). We use the game-playing framework
and consider the following sequence of games:

13 In particular, this model allows a restricted class of sources that leak arbitrary in-
formation (without any unpredictability requirements), as long as the sampling of
the exponents is unpredictable (e.g., random, as is the case for the DLP).

Beyond Uber: Instantiating Generic Groups via PGGs 19

Game0 is the PGG game for (S,D) with respect to b = 1, i.e., where the oracle
Exp uses the generic group injection τ .

Game1 is the same as Game0, but we additionally require that the queries S
makes to the Exp oracle be all distinct. The distinguishing probability can
be bounded by reducing to the algebraic unpredictability of a predictor that
picks two coordinates i and j of y at random, and returns the zero vector
with ±1 at positions i and j.

Game2 is the same as Game1, but we use the “bit-fixing lemma” [4, Lemma 9]
(with γ := 1/p) to resample τ right after the execution of S̄, whose output
is treated as leakage. Also, we do not sample the new injection all at once,
but implement it via lazy sampling. The loss in this transition is given by
Lemma 9 in [4].

Game3 is the same as Game2, but we replace the randomly chosen exponent
r←←Z∗p with a formal variable R. We also start to lazy sample the new
encoding σ with the values returned by Exp. The last two games are only
different if, at the end of the execution of D in Game3, D has queried two
different polynomials that coincide when evaluated on a random r ∈ Z∗p, or
if either S or D have made a query that belongs to the set of fixed points. All
these events are bounded by the Schwartz–Zippel lemma: It is at this step
that we use the fact that PGG is defined wrt. a random group generator.

Game4 is the same as Game3, but for every Exp query x[j], instead of saving an
entry for Rx[j] to the encoding table, we index it with a different and inde-
pendent variable Zj . This game is indistinguishable from the preceding one
unless, at the end of the execution of D in Game4, D has queried two distinct
polynomials that coincide when evaluated on (Rx[1], . . . , Rx[q]). Any such
collision yields a non-trivial linear relation among the entries of x. It is at
this step that we appeal to the algebraic unpredictability of the source S.

Game5 is the same as Game4, but we evaluate the variables Zj at random values
cj←←Zp. The two games are close up to a Schwartz–Zippel term.

Game6 is the same as Game5, but we insist that the values cj be pairwise distinct.
The distinguishing probability can be bounded by a collision argument.

Game7 is the same as Game6, but we do not populate the encoding table in oracle
calls to Exp. By construction, the last two games are indistinguishable.

Game8 is the same as Game7, but when we lazily sample replies to Exp queries,
we do so consistently with σ rather than τ . Notice that the Exp oracle now
only depends on σ and is completely decoupled from τ . The two games are
close because the sets from where we sample have a large overlap.

Game9 is the same as Game8, but we undo lazy sampling of σ and instead sample
it all at once. Also, we again use the bit-fixing lemma [4, Lemma 9] to undo
resampling of τ . Since we are essentially reverting the second game hop from
above, the distinguishing advantage can be bounded as before.

Game10 is the same as Game9, but we remove the constraint that all queries S
makes are pairwise different. Doing so, we have obtained the PGG game with
b = 0, i.e., where the oracle Exp uses an independent encoding σ. Again,
the distinguishing advantage here is the same as in the first game hop.

20 B. Bauer, P. Farshim, P. Harasser, and A. O’Neill

Collecting the terms above, we obtain

Advpggp,S,S,D ≤ 3T 2 ·Advalgp,S,S,P +
26T 2

p
+ 36T

(
S

P
+

P

p

)
,

where P is a predictor against algebraic unpredictability of S and P ∈ N an
arbitrary number (coming from the application of the bit-fixing lemma). Setting
P :≈

√
Sp to minimize the term on the right, we obtain the claimed result. ⊓⊔

Uber with preprocessing. Looking ahead, we observe that Uber and Uber-II
sources are statistically algebraically unpredictable (even in the GGM) and, in
particular, their algebraic unpredictability bound does not depend on the number
of queries made by the predictor to the generic group oracles. This in turn implies
that when the above theorem is applied to the Uber and Uber-II sources (with
q polynomials of degree at most d and at most T generic group and operation
queries) we obtain Advdua-iip,A ≤ Õ

(
d(T + q)2/p+

√
S(T + q)2/p

)
in the GGM.

When setting q = 4 and d = 2, the bound matches that established for the DDH
problem [28,29].

Discussion on DDH-II. As a second corollary, we obtain the hardness of the
r-DDH-II assumption14 in the GGM (here “r” stands for randomized generator).
This result was also established by Bartusek, Ma, and Zhandry (BMZ) [4, Theo-
rem 12]. Our proof, besides establishing the hardness of a winder class of assump-
tion, is more modular and also avoids asymptotics. Furthermore, since our fea-
sibility only relies on computational algebraic unpredictability, it can be applied
in a setting where some group elements are directly leaked to the distinguisher.

5 From Simple to Algebraic Unpredictability: LDDs

We define a new type of hash function family called linear-dependence destroyer
(LDD) that is useful for building schemes secure in PGGs. Intuitively, LDDs are
hash functions with domain and range Zp that remove, in a statistical sense, any
linear dependence among a list of distinct but potentially correlated values.

Linear-Dependence Destroyers (LDDs). Let H be a hash function family
with domain and range Zp for some prime p. We define the advantage of a pair
of adversaries (S,A) in the LDD game for H as

AdvlddH,S,A(λ) := Pr[LDDS,AH (λ)] ,

where the LDD game is defined in Figure 5 (top left). We require that the outputs
of S be pairwise distinct and the output of A be different from the all-zero tuple.
We say that H is LDD[S] secure if the advantage of any (S,A) in the LDD game
is negligible, with S ∈ S and A a PPT machine. We write this as H ∈ LDD[S].
14 Distinguish (g, gx, gy, gxy) from (g, gx, gy, gz) for a random generator g, unpre-

dictable x, and random y and z.

Beyond Uber: Instantiating Generic Groups via PGGs 21

Game LDDS,A
H (λ):

π←←H.Setup(1λ)
(x1, . . . , xq, st)←←S(π)
hk←←H.KGen(π)
(α0, α1, . . . , αq)←←A(π, hk , st)
return (

∑q
i=1 αi · H(hk , xi)

= α0)

Game PredP
H,S(λ):

π←←H.Setup(1λ)
(x1, . . . , xq, st)←←S(π)
x′←←P(π, st)
return (x′ ∈
{x1, . . . , xq})

Source S(π):
(P1, . . . , Pq, st)←←S0(π)
for i = 1 to m do

si←←S1(i, π)
for i = 1 to q do

xi ← Pi(s1, . . . , sm)
return (x1, . . . , xq, st)

H[Γ].Setup(1λ):

π←←Γ(1λ)
return π

H[Γ].KGen(π):
(◦, g0, p)← π; hk←←Zp

return hk

H[Γ](hk , x):
if (x = −hk) then return 0
return 1/(x+ hk)

Fig. 5. Top left: The LDD game. Top center: The predictability game. Top right:
Structure of a low-degree LDD source. Bottom: Candidate construction of an LDD
family H[Γ] from a computational group scheme Γ.

We call an LDD source S statistically unpredictable if

AdvpredH,S,P(λ) := Pr[PredPH,S(λ)]

is negligible for any (possibly unbounded) predictor P, where the game Pred is
defined in Figure 5 (top center). We denote the class of all statistically unpre-
dictable LDD sources by Ssup. We say that H is an LDD if it is LDD[Ssup] secure.

In the full version of this work we show that, for a computational group
scheme Γ, the hash function family H[Γ] with domain and range Zp defined in
Figure 5 (bottom) is an LDD for the class of low-degree sources Slow. These are
sources that compute their output as evaluations of low-degree polynomials on
high-entropy points, as in Figure 5 (top right). We present an informal statement
of our theorem in the following, and refer the reader to the full version for formal
definitions and proofs.

Theorem 2 ((Informal) LDD for low-degree sources). Let Γ be a com-
putational group scheme, and let H[Γ] be the hash function family defined in
Figure 5 (bottom). Then H[Γ] ∈ LDD[Slow].

We were unable to prove that this construction is an LDD for all unpre-
dictable sources, though we have not been able to break it either. We conjecture
that LDDs exist for all statistically unpredictable sources, and not just for low-
degree ones. More strongly, we conjecture that the hash function H[Γ] defined
in Figure 5 (bottom) is LDD secure for all statistically unpredictable sources.
We emphasize that LDD is an information-theoretic notion and thus uncon-
ditional constructions (as for randomness extractors) may exist. We note that
positive results for smaller classes of sources are also meaningful, as they would
translate, via our constructions and proofs, into deterministic PKE, UCEs, and
RKA-secure encryption.

As evidence towards the first conjecture, we can easily prove that a random
oracle ρ : Z2

p → Zp is an LDD, if all algorithms only get polynomially bounded

22 B. Bauer, P. Farshim, P. Harasser, and A. O’Neill

oracle access to ρ (rather than the entire function table). Assume that A makes
at most n queries, and let E denote the event that A queries ρ on one of the
points (hk , x1), . . . , (hk , xq). Then we can build a predictor P such that Pr[E] ≤
n · Pr[PredPρ,S(p)], which is small by unpredictability of S. If E does not occur,
then the equation

∑q
i=1 αi · H(hk , xi) = α0 is satisfied with probability at most

1/p, because at least one coefficient αj , 1 ≤ j ≤ q, is non-zero, and thus the
random-looking value H(hk , xj) is determined by the winning condition.

We provide a stronger feasibility result for LDDs by showing that random
functions are LDDs for any unpredictable source, even when both the source S
and the adversary A have full access to the table of the random function.15
This result would thus establish the existence of LDDs, similarly to that for
other information-theoretic objects such as randomness extractors. At a very
high level, we prove this result in two steps: First, we decompose arbitrary
high-entropy sources into a convex combination of flat sources (i.e., sources
that are uniform on subsets of the support of the distribution). This is a stan-
dard technique in the study of randomness extractors [53]. Second, we apply
a compression-style argument [37] to show that any predictor that has a high
LDD-advantage against unpredictable sources can be used to compress the ran-
dom function. The complete proof is rather technical, and we refer to the full
version for a more detailed overview as well as the formal details.

6 Applications of PGGs

We now explore some examples of how PGGs can be used to prove the hardness
of group-based assumptions and the security of practical cryptosystems under
a variety of notions. As our first application, we prove that the decisional Uber
assumption (DUA) family holds in PGGs. In doing so we also capture all of its
implications. We then turn our attention to applications which do not seem to fall
under the umbrella of the DUA. In the interest of space, we show here only how
to construct UCEs from PGGs and LDDs. Further applications, namely KDM-
CPA and RKA-CPA security of (modified versions of) ElGamal, and security
of the ElGamal-with-Hash deterministic encryption scheme, are discussed in the
full version. Interestingly, all these applications enjoy reductions under PGGs
which furthermore retain to a large extent the simplicity of proofs in the GGM.
Standard-model constructions of such schemes under Uber (for example, the
KDM-secure PKE scheme of Boneh et al. [19]) are often substantially more
complex and less efficient.

6.1 Uber Assumptions in PGGs

The Uber assumption family [18,20] is an umbrella assumption that generalizes
many hardness assumptions used to analyze the security of concrete cryptosys-
tems. It has been formalized for both simple and bilinear groups, and has been
15 Accordingly, we also impose a statistical notion of unpredictability on sources by

giving predictors access to the full table.

Beyond Uber: Instantiating Generic Groups via PGGs 23

Game DUA-IIAΓ (λ):

d←←{0, 1}; (π := (◦, g0, p))←←Γ(1λ); r←←Z∗
p; g ← gr0

(R1, . . . , Rn, T, st)←←A0(π); Rn+1 ← T
for i = 1 to m do s[i]←←A1(i, π)
if (∃i ∈ [n+ 1])(Ři(s) = 0) then return true
for i = 1 to n do hi ← gRi(s)

if (d = 0) then r′←←Zp else r′ ← T (s)

h← gr
′
; d′←←A2(π, h1, . . . , hn, h, st); return (d = d′)

Fig. 6. The decisional Uber assumption II (DUA-II) game. Here, m is an upper bound
on the number of variables of the Ri, i ∈ [n + 1]. The (ordinary) decisional Uber
assumption (DUA) is a special case of DUA-II whereA1(i, π) is the uniform distribution
over Zp for all i ∈ [m] and all π.

shown to hold in (bilinear) generic groups [18]. In this work we focus on simple
(i.e., non-bilinear) groups and show that Uber assumptions for them fall within
the PGG framework. More precisely, we show that non-interactive, generator-
independent Uber assumptions hold for PGGs.

We present an entropic generalization of the decisional version of the Uber
assumption, which we call DUA-II, and show that it holds for PGGs. Loosely
speaking, DUA-II extends DUA by sampling the inputs to the polynomials from
independent, high-entropy distributions, rather than uniformly at random. Re-
stricted versions of DUA-II and applications thereof have previously appeared
in the literature. (See, for example, Canetti’s DDH-II assumption [24].)

Decisional Uber Assumption II (DUA-II). Let Γ be a computational group
scheme. We define the advantage of an adversaryA = (A0,A1,A2) in the DUA-II
game for Γ as

Advdua-iiΓ,A (λ) := 2 · Pr[DUA-IIAΓ (λ)]− 1 ,

where the DUA-II game is defined in Figure 6. Here, A0 and A1 can be un-
bounded with polynomially bounded output, and A2 is PPT. We require that T
be linearly independent from R1, . . . , Rn, and that H∞(A1(i, π)) = ω(log λ) for
every i ∈ N and every π←←Γ(1λ). We say that Γ is DUA-II secure if, for any A
as above, the advantage of A in the DUA-II game for Γ is negligible.

Notice that we can assume without loss of generality that the rational func-
tions R1, . . . , Rn returned by A0 are linearly independent. Indeed, linear (in)de-
pendence can be checked by computing D := lcm(Ř1, . . . , Řn), then writing
a generic linear combination

∑n
i=1 ai · RiD = 0, and then solving the ensu-

ing linear system for (a1, . . . , an). This yields a nonzero solution if and only if
R1, . . . , Rn are linearly dependent. Now observe that if Rk is linearly depen-
dent on R1, . . . , Rk−1, then gRk(x) can be computed directly by A2 (who knows
gR1(x), . . . , gRk−1(x)) before guessing d′, without having to rely on the challenger.

We now show that the Uber-II assumption holds in pseudo-generic groups.
(We thus recover several cryptographic applications that fall under the reach of

24 B. Bauer, P. Farshim, P. Harasser, and A. O’Neill

Uber and Uber-II.) We only give an informal statement and a proof sketch here,
and refer to the full version for the formal statement and a full proof.

Theorem 3 ((Informal) PGG =⇒ DUA-II). Let Γ be a computational group
scheme. If Γ is PGG[Salg ∩ Sduber] secure, then it is DUA-II secure.

Proof Overview. Given an adversary A = (A0,A1,A2) in the DUA-II game,
consider a PGG adversary (S,D) defined as follows: Source S runs A0 and
A1, and queries Exp on R1(s), . . . , Rn(s), r

′, where r′ is either T (s) or a random
value, the choice being made at random. DistinguisherD then runsA2 and checks
if it did predict the choice made by S. By construction, S is a dUber source.

By direct inspection, the game PGGS,DΓ (λ) with challenge bit b = 1 coincides
with the game DUA-IIAΓ (λ). On the other hand, when b = 0, the probability
of (S,D) winning the PGG game is negligible. This follows from a bad event
analysis: We transition to a game where r′ ̸= Ri(s) for all i ∈ [n]. Given that
σ is a random injection, we can then move to a game where the corresponding
reply is picked at random, independently of the random choice of S, so that A
has no advantage in this game.

For algebraic unpredictability, let P be any predictor that returns a linear
combination of the queries with coefficients α1, . . . , αn, αn+1 given the leakage
computed using the ideal Exp oracle. We again transition to a game where the
Exp queries are pairwise distinct, and then replace the answers with pairwise
different random elements that are independent of s. Winning the algebraic
unpredictability game then means that s (which P now knows nothing about) is
a root of α1R1+ · · ·+αnRn+αn+1r

′, which is unlikely by Schwartz–Zippel. ⊓⊔

6.2 Building UCEs

In this section we show how to construct UCEs based on PGGs and LDDs.
We consider UCEs for statistically unpredictable and split sources [10], whose
definition we recall below; see Figure 7 (left). Split sources are required to make
distinct queries to prevent iO-based attacks. BHK use split sources to prove
security of a number of applications, including RKA security, point-function
obfuscation, and storage-auditing protocols, as well as several other applications
that rely on computationally unpredictable split sources.

As can be seen in Figure 7 (left), a split UCE source allows for limited post-
processing of the outputs of the hash. This feature of split sources, however, is
not used in any of its applications: The very simple S1 that merely returns y is
sufficient for proving the security of the applications that BHK consider for split
sources.16 Our result in this section allows to recover applications of UCEs with
respect to split sources (with a trivial S1) under PGGs and LDDs.17

16 Interestingly, this simplification provides another avenue to circumvent iO-based
attacks that exploit repetitions in x.

17 We note, however, that in iterative constructions of block-ciphers from hash func-
tions [11], or indeed in domain extenders for hash functions [51], adaptive calls to
the hash function seem to be necessary.

Beyond Uber: Instantiating Generic Groups via PGGs 25

Split source SHash(π):
(x, L0)←←S0(π)
for i = 1 to |x| do

y[i]← Hash(x[i])
L1←←S1(π,y)
L← (L0, L1)
return L

H.Setup(1λ):

(◦, g0, p)←←Γ(1λ)
r←←Z∗

p; g ← gr0
πldd←←Hldd.Setup(Zp,Zp)
π ← (πldd, ◦, g, p)
return π

H.KGen(π):
(πldd, ◦, g, p)← π
s←←Z∗

p; h← gs

hk←←Hldd.KGen(πldd)
return (h, hk)

H((h, hk), x):
y ← Hldd(hk , x)
return hy

Fig. 7. Left: Structure of the split source S = Splt[S0,S1] associated to S0 and S1. In
simple split sources, S1 returns L1 = y. Right: A UCE built from a PGG and an LDD
hash function.

Our construction of UCEs from PGGs is inspired by the correlated-input
(CI) secure hash of Goyal, O’Neill, and Rao (GOR) [38], where outputs of a hash
function are required to look random on high-entropy, but possibly correlated,
inputs. GOR show that the hash function which maps x 7→ g1/(x+hk), where
hk←←Zp is the hash key, is non-adaptively CI secure for polynomially induced
correlations under the q-DDH assumption. This assumption falls within Uber
and thus together with Theorem 3, we re-obtain this result. This, however, falls
short of achieving split UCE security, since the hash inputs are polynomially
induced.

We make progress towards building fully secure UCEs from group-based as-
sumptions. We present our construction in a modular way in terms of an under-
lying LDD as shown in Figure 7 (right). (The GOR hash is that associated with
the conjectural LDD (hk , x) 7→ 1/(x+ hk).) Based on the conjectured existence
of LDDs for all unpredictable sources, we obtain a fully secure UCE (beyond
polynomial sources) for all statistically unpredictable and split sources. As for
KDM security, in the GGM, we can account for preprocessing too.

Looking ahead into the proof, there is a close correspondence between the
class of sources for which one achieves LDD security and UCE security. That is,
if LDDs for a certain (e.g., low-degree) class of sources can be built, this would
translate into UCE security for an analogous source class. Thus, we obtain an
unconditional result for low-degree sources (since Theorem 2 shows that 1/(x+
hk) is an LDD for low-degree sources).

Split sources. A UCE source S is called split if there exist PPT algorithms S0
and S1 such that S takes the form in Figure 7 (left). Here, S0 returns a vector x
whose entries are required to be pairwise distinct, and some leakage L0. We write
S = Splt[S0,S1] if S is a split source constructed from algorithms S0 and S1 as
above, and we denote by Ssplt the class of all such split sources. We further define
the class Sssplt ⊆ Ssplt of simple split sources, which are split sources where S1
simply returns L1 = y.

Theorem 4 (PGG ∧ LDD =⇒ UCE[Ssup∩Sssplt]). Let Γ be a computational
group scheme, Hldd a hash function family, and H the hash function family based

26 B. Bauer, P. Farshim, P. Harasser, and A. O’Neill

Auxiliary dUber source S̄ ′(π):

(◦, g0, p)← π; r′, s′←←Z∗
p; g′ ← gr

′
0

πldd←←Hldd.Setup(Zp,Zp)
π′ ← (πldd, ◦, g′, p)
hk←←Hldd.KGen(πldd)
(x, L0)←←S0(π′); n← |x|; L′ ← (L0, π

′, hk)
for i = 1 to n do x′[i]← s′ · Hldd(hk ,x[i])
x′[n+ 1]← s′

return (x′, L′)

PGG distinguisher D′(π, (y′, L′)):

n+ 1← |y′|
h← y′[n+ 1]
(L0, π

′, hk)← L′

y← y′[1..n]; L← (L0,y)
b′←←D(π′, (h, hk), L)
return b′

Fig. 8. Reduction from a UCE adversary (S,D) to a PGG adversary (S ′,D′).

on Γ and Hldd as defined in Figure 7 (right). If Γ is PGG[Salg∩Sduber] secure and
Hldd is LDD[Ssup] secure, then H is UCE[Ssup ∩ Sssplt] secure. More precisely,
for any adversary (S,D) in the UCE game for H, there are an adversary (S ′,D′)
in the PGG game for Γ, and LDD source S an adversary Acr such that

AdvuceH,S,D(λ) ≤ 2 ·AdvpggΓ,S′,D′(λ) + q(λ)2 ·AdvlddHldd,S,Acr
(λ) +

q(λ)2

2λ−1
.

Here, q(λ) is an upper bound on the number of queries made by S to its Hash
oracle. Algorithm S ′ makes at most q(λ) + 1 queries to its Exp oracle and runs
in similar time, and algorithm D′ runs in similar time to D.

Furthermore, S ′ ∈ Salg∩Sduber is algebraically unpredictable. More precisely,
for any PGG algebraic predictor P ′ there is an LDD adversary A for Hldd such
that

Advalg-predΓ,S′,P′ (λ) ≤ AdvlddHldd,S,A(λ) +
q(λ)2

2
·AdvlddHldd,S,Acr

(λ) .

Moreover, S ∈ Ssup. That is for any predictor P ′′, there is a predictor P
against the original UCE source S in the Pred game such that

AdvpredHldd,S,P′′(λ) ≤ AdvpredH,S,P(λ) .

Proof Overview. Let (S,D) be PPT adversaries against UCE security of H. We
build (S ′,D′) against the PGG security of the underlying group as shown in
Figure 8.

Advantage bound. Let b denote the challenge bit in the PGG game. Then it
is easy to see that

Pr
[
PGGS

′,D′

Γ (λ)
∣∣∣ b = 1

]
= Pr

[
UCES,DH (λ)

∣∣∣ b = 1
]
.

Indeed, when b = 1 the exponentiation oracle is implemented via the real group
operations. Parameter π′ contains a random generator g′ = gr

′

0 . Hash values are
computed with respect to h = grs

′

0 = g
r′·rs′/r′
0 . This means that the exponent

of the first element of the hash key is rs′/r′, which results in a random group

Beyond Uber: Instantiating Generic Groups via PGGs 27

element. Thus the UCE source and distinguisher are run as they would be in the
UCE game with respect to the real hash function.

We next claim that

Pr
[
PGGS

′,D′

Γ (λ)
∣∣∣ b = 0

]
≤ Pr

[
UCES,DH (λ)

∣∣∣ b = 0
]

+ q(λ)2 ·AdvlddHldd,S,Acr
(λ) +

q(λ)2

2λ
.

This claim follows from the fact that when b = 0 the Exp oracle returns random
values subject to injectivity. We now transition to a game where Exp implements
a random function. Using the random-function/random-permutation switching
lemma, we incur an additive loss of q(λ)2/2λ. We modify this game further and
replace the random function with a forgetful random function. The two games
are identical unless there is a collision in the inputs to the random function.
We may bound the probability of this event via the collision probability of the
LDD, which itself can be bounded in terms of the LDD advantage: consider an
adversary Acr that picks two indices, sets their coefficients to +1 and −1, the
rest of the coefficients to 0, and α0 = 0. The LDD source here is identical to the
UCE source. Thus any LDD predictor can be converted into a UCE predictor:
simply ignore the hash values and run the LDD predictor. This justifies the final
inequality in the theorem.

The final game that we arrive at is equivalent to the UCE game with respect
to a random oracle (recall that the source outputs distinct inputs).

Algebraic unpredictability. We now show that the PGG source constructed
above is algebraically unpredictable. Consider a modified algebraic prediction
game whereby Exp returns random group elements, still subject to injectivity
but not respecting equality across inputs. These two games are identical unless
there is a collision among the inputs. We may bound the probability of collision
via the LDD adversary Acr as above. This incurs a loss of q(λ)2/2 times LDD
advantage of Acr.

We now rely on the LDD security of the hash function to bound the prob-
ability of winning the modified algebraic predictability. Suppose there exists an
algebraic predictor P ′ against PGG source S ′. We construct an LDD source S ′′
and an LDD adversary A as follows. Source S runs S ′, which is itself running
S and hence is identical to S. (This source is unpredictable as shown above.)
Adversary A receives a hash key and leakage, and simulates the group elements
that the algebraic predictor P ′ in the modified game expects randomly but sub-
ject to injectivity. Together with the collision bound above, this establishes the
second inequality stated in the theorem. ⊓⊔

Remark. We note that the above proof can be easily extended to multi-key
UCEs [10, Figure 8] for split sources by generating multiple hash keys and hash
public keys via re-randomization. BHK conjectured that UCE and multi-key
UCE are in general equivalent, which remains open.

An alternative construction of UCEs from PGGs would first compute grx

and then chop half of the output bits so that group operations on hash outputs

28 B. Bauer, P. Farshim, P. Harasser, and A. O’Neill

are no longer possible. (This was previously suggested, for example, as a way
to build a RO in the GGM by Zhandry and Zhang [56].) An analysis of this
construction may be made possible in the PGG framework by defining new
sources that permit different forms of post-processing.

Acknowledgments

We thank Sogol Mazaheri for collaborating in the early stages of this work. We
also thank anonymous reviewers who helped improve the presentation of our
results. Pooya Farshim was supported in part by EPSRC grant EP/V034065/1.
Patrick Harasser was funded by the Deutsche Forschungsgemeinschaft (DFG) –
SFB 1119 – 236615297. Adam O’Neill is supported in part by a gift from Cisco.

References

1. T. Agrikola and D. Hofheinz. Interactively secure groups from obfuscation. In
PKC 2018, Part II.

2. T. Agrikola, D. Hofheinz, and J. Kastner. On instantiating the algebraic group
model from falsifiable assumptions. In EUROCRYPT 2020, Part II.

3. B. Applebaum. Key-dependent message security: Generic amplification and com-
pleteness. In EUROCRYPT 2011.

4. J. Bartusek, F. Ma, and M. Zhandry. The distinction between fixed and random
generators in group-based assumptions. In CRYPTO 2019, Part II.

5. B. Bauer, G. Fuchsbauer, and J. Loss. A classification of computational assump-
tions in the algebraic group model. In CRYPTO 2020, Part II.

6. M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable
encryption. In CRYPTO 2007.

7. M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, and
S. Yilek. Hedged public-key encryption: How to protect against bad randomness.
In ASIACRYPT 2009.

8. M. Bellare, D. Cash, and R. Miller. Cryptography secure against related-key at-
tacks and tampering. In ASIACRYPT 2011.

9. M. Bellare and V. T. Hoang. Resisting randomness subversion: Fast deterministic
and hedged public-key encryption in the standard model. In EUROCRYPT 2015,
Part II.

10. M. Bellare, V. T. Hoang, and S. Keelveedhi. Instantiating random oracles via
UCEs. In CRYPTO 2013, Part II.

11. M. Bellare, V. T. Hoang, and S. Keelveedhi. Cryptography from compression
functions: The UCE bridge to the ROM. In CRYPTO 2014, Part I.

12. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In CRYPTO 2004.

13. E. Birrell, K.-M. Chung, R. Pass, and S. Telang. Randomness-dependent message
security. In TCC 2013.

14. N. Bitansky and R. Canetti. On strong simulation and composable point obfusca-
tion. In CRYPTO 2010.

15. J. Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-based
hash function. In FSE 2006.

Beyond Uber: Instantiating Generic Groups via PGGs 29

16. J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the pres-
ence of key-dependent messages. In SAC 2002.

17. F. Böhl, G. T. Davies, and D. Hofheinz. Encryption schemes secure under related-
key and key-dependent message attacks. In PKC 2014.

18. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In EUROCRYPT 2005.

19. D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption
from decision Diffie-Hellman. In CRYPTO 2008.

20. X. Boyen. The uber-assumption family (invited talk). In PAIRING 2008.
21. C. Brzuska, P. Farshim, and A. Mittelbach. Indistinguishability obfuscation and

UCEs: The case of computationally unpredictable sources. In CRYPTO 2014,
Part I.

22. C. Brzuska and A. Mittelbach. Using indistinguishability obfuscation via UCEs.
In ASIACRYPT 2014, Part II.

23. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In EUROCRYPT 2001.

24. R. Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In CRYPTO’97.

25. R. Canetti and R. R. Dakdouk. Obfuscating point functions with multibit output.
In EUROCRYPT 2008.

26. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited
(preliminary version). In 30th ACM STOC.

27. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
J. ACM, 51(4), 2004.

28. S. Coretti, Y. Dodis, and S. Guo. Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models. In CRYPTO 2018, Part I.

29. H. Corrigan-Gibbs and D. Kogan. The discrete-logarithm problem with prepro-
cessing. In EUROCRYPT 2018, Part II.

30. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In CRYPTO’98.

31. I. Damgård, C. Hazay, and A. Zottarel. Short paper on the generic hardness of
DDH-II, 2014.

32. R. A. Demillo and R. J. Lipton. A probabilistic remark on algebraic program
testing. Information Processing Letters, 7(4), 1978.

33. A. W. Dent. Adapting the weaknesses of the random oracle model to the generic
group model. In ASIACRYPT 2002.

34. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework
for Diffie-Hellman assumptions. In CRYPTO 2013, Part II.

35. P. Fenteany and B. Fuller. Same point composable and nonmalleable obfuscated
point functions. In ACNS 20, Part II.

36. G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applica-
tions. In CRYPTO 2018, Part II.

37. R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic crypto-
graphic constructions. In 41st FOCS.

38. V. Goyal, A. O’Neill, and V. Rao. Correlated-input secure hash functions. In
TCC 2011.

39. M. D. Green, J. Katz, A. J. Malozemoff, and H.-S. Zhou. A unified approach to
idealized model separations via indistinguishability obfuscation. In SCN 16.

40. B. Hemenway and R. Ostrovsky. Building lossy trapdoor functions from lossy
encryption. In ASIACRYPT 2013, Part II.

30 B. Bauer, P. Farshim, P. Harasser, and A. O’Neill

41. J. Kastner and J. Pan. Towards instantiating the algebraic group model. Cryptol-
ogy ePrint Archive, Report 2019/1018, 2019.

42. J. Katz, C. Zhang, and H.-S. Zhou. An analysis of the algebraic group model.
Cryptology ePrint Archive, Report 2022/210, 2022.

43. I. Komargodski and E. Yogev. Another step towards realizing random oracles:
Non-malleable point obfuscation. In EUROCRYPT 2018, Part I.

44. U. M. Maurer. Abstract models of computation in cryptography (invited paper).
In 10th IMA International Conference on Cryptography and Coding.

45. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In 38th FOCS.

46. V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes, 55(2), 1994.

47. K. G. Paterson, J. C. N. Schuldt, and D. L. Sibborn. Related randomness attacks
for public key encryption. In PKC 2014.

48. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identi-
ties. J. Assoc. Comput. Mach., 27(4), 1980.

49. V. Shoup. On fast and provably secure message authentication based on universal
hashing. In CRYPTO’96.

50. V. Shoup. Lower bounds for discrete logarithms and related problems. In EURO-
CRYPT’97.

51. P. Soni and S. Tessaro. Public-seed pseudorandom permutations. In EURO-
CRYPT 2017, Part II.

52. P. Soni and S. Tessaro. Naor-Reingold goes public: The complexity of known-key
security. In EUROCRYPT 2018, Part III.

53. S. P. Vadhan. Pseudorandomness. Now Publishers, 2012.
54. M. Zhandry. The magic of ELFs. In CRYPTO 2016, Part I.
55. M. Zhandry. To label, or not to label (in generic groups). In CRYPTO 2022.
56. M. Zhandry and C. Zhang. The relationship between idealized models under com-

putationally bounded adversaries. Cryptology ePrint Archive, Report 2021/240,
2021.

57. R. Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and alge-
braic computation EUROSAM. Springer, Berlin-New York, 1979.

	Beyond Uber: Instantiating Generic Groups via PGGs

