
Round-Optimal Black-Box Secure Computation
from Two-Round Malicious OT

Yuval Ishai1, Dakshita Khurana2, Amit Sahai3, and Akshayaram Srinivasan4

1 Technion
yuvali@cs.technion.il

2 UIUC
dakshita@illinois.edu

3 UCLA
sahai@cs.ucla.edu

4 Tata Institute of Fundamental Research
akshayaram.srinivasan@tifr.res.in

Abstract. We give round-optimal black-box constructions of two-party
and multiparty protocols in the common random/reference string (CRS)
model, with security against malicious adversaries, based on any two-
round oblivious transfer (OT) protocol in the same model. Specifically,
we obtain two types of results.

1. Two-party protocol.We give a (two-round) two-sided NISC proto-
col that makes black-box use of two-round (malicious-secure) OT in
the CRS model. In contrast to the standard setting of non-interactive
secure computation (NISC), two-sided NISC allows communication
from both parties in each round and delivers the output to both
parties at the end of the protocol. Prior black-box constructions of
two-sided NISC relied on idealized setup assumptions such as OT
correlations, or were proven secure in the random oracle model.

2. Multiparty protocol. We give a three-round secure multiparty
computation protocol for an arbitrary number of parties making
black-box use of a two-round OT in the CRS model. The round
optimality of this construction follows from a black-box impossi-
bility proof of Applebaum et al. (ITCS 2020). Prior constructions
either required the use of random oracles, or were based on two-
round malicious-secure OT protocols that satisfied additional secu-
rity properties.

1 Introduction

The round complexity of secure multiparty computation (MPC) has been the
subject of intensive research. In this work, we continue this study, focusing on
the case of computationally secure MPC protocols without an honest majority.
We start with some relevant background.

The semi-honest model. Consider first the simpler setting of semi-honest
adversaries, who may passively corrupt an arbitrary subset of the parties. In

the two-party case, Yao’s protocol [Yao86] is a two-round protocol that can
rely on any two-round oblivious transfer (OT) protocol. The latter primitive
is not only simple and minimal (as a special case of the general result), but
also one that pragmatically serves as a useful basis for protocol design. Indeed,
two-round OT can be implemented at a low amortized cost with interactive
preprocessing [Bea95, IKNP03] and even from scratch [BCG+19]. The question
of generalizing Yao’s two-round protocol to the multiparty setting remained open
for many years. This question was settled by Garg and Srinivasan [GS18] and
Benhamouda and Lin [BL18], who showed that two-round OT indeed suffices
also for two-round MPC with an arbitrary number of parties.

Black-box vs. non-black-box constructions. A major distinction between
Yao’s two-party protocol and the recent MPC protocols from [GS18, BL18] is the
way in which the OT primitive is used. While the former makes a black-box5 use of
OT, in the sense that the construction uses the next-message function of the OT
protocol as an oracle, the latter MPC protocols cannot use the OT protocol as
an oracle and need to depend on its implementation. This qualitative difference
results in a big efficiency gap between the two types of protocols, raising a
question about the possibility of a black-box alternative for the multiparty case.
Unfortunately, Applebaum et al. [ABG+20] obtained a negative answer: for any
n ≥ 3, general two-round n-party MPC protocols cannot make a black-box use of
two-round OT. More recently, Patra and Srinivasan [PS21] closed the remaining
gap, presenting a black-box construction of three-roundMPC protocols from two-
round OT (improving over a previous four-round protocol from [ACJ17]). This
gives us a full understanding of the round complexity of black-box semi-honest
MPC based on two-round OT.

From semi-honest to malicious. The case of security against malicious adver-
saries is far less understood. Targeting the goal of matching the round complexity
of semi-honest protocols, one needs to rely on a setup assumption. (See Sec-
tion 1.2 for discussion of results in the plain model.) A minimal form of setup,
originating from non-interactive zero knowledge (NIZK) proofs [BFM88], as-
sumes the availability of a common random string or, more generally, a (struc-
tured) common reference string. Our results will apply to both kinds of setup, to
which we collectively refer as a CRS setup. Given a CRS setup, NIZK can serve
as a general round-preserving tool for enforcing an honest behavior by malicious
parties. However, general NIZK-based protocols are inherently non-black-box.
This raises the following natural question about the round complexity of black-
box MPC in the CRS model:

Can we make a black-box use of two-round OT to obtain two-round
(resp., three-round) two-party (resp., multiparty) MPC protocols with se-
curity against malicious adversaries?

5 A bit more precisely, we refer here to the usual notion of a fully black-box reduc-
tion [IR90, RTV04], where not only the construction makes a black-box use of OT
but also the security reduction makes a black-box use of the adversary.

2

To make this question more precise, we need to specify which kind of two-
round OT we consider. Ideally, one would have liked to use semi-honest two-
round OT as a basis for round-optimal malicious-secure MPC. However, even if
we restrict our attention to realizing the OT functionality, it is not known how
to construct two-round malicious-secure OT in the CRS model from two-round
semi-honest OT, let alone in a black-box way.6 Indeed, while semi-honest two-
round OT protocols are quite easy to construct from essentially every concrete
assumption known to imply public-key encryption, obtaining similar protocols
with malicious security required ingenious new ideas [PVW08, DGH+20, BF22].
Given this state of affairs, we use malicious-secure two-round OT in the CRS
model as our basic building block.
Known results. In the case of two-party “sender-receiver” functionalities, which
take inputs from both parties but only deliver the output to the designated re-
ceiver, the above question was answered in the affirmative in [IKO+11]. Such
two-party protocols, known as non-interactive secure computation (NISC) pro-
tocols, provide a black-box extension of Yao’s protocol that offers security against
malicious parties while still requiring only two rounds. However, for general two-
party functionalities that deliver outputs to both parties, no analogous result
is known. Note that such a “two-sided NISC” protocol cannot be obtained by
simply running two instances of standard (one-sided) NISC in parallel, since
there is nothing preventing a malicious party from using different inputs in the
two executions. The question is similarly open for three-round MPC with n ≥ 3
parties. Partial progress was made in [PS21], where black-box protocols were
constructed from a stronger variant of two-round OT that required some form
of adaptive security. However, this extra requirement not only makes the OT
primitive qualitatively stronger, but also excludes some existing protocols from
the literature (such as CDH- and LPN-based protocols from [DGH+20]). A dif-
ferent kind of progress was recently made in [IKSS21, IKSS22], where positive
answers were given using two distinct kinds of idealized setups: either the ran-
dom oracle model or a random OT correlations setup. To conclude, without
strong idealized setups and without strengthening the OT primitive, the above
question remained open in both the two-party and the multiparty case.

1.1 Our Contribution

We settle the above question by presenting the first round-optimal black-box
constructions of MPC protocols from two-round (malicious-secure) OT in the
CRS model. In the two-party case, we obtain the first extension of the black-box
NISC protocol from [IKO+11] to general functionalities that deliver outputs to
both parties.

6 The same is true even for the plain-model variant of OT with unbounded receiver
simulation [NP01, AIR01]. Here we only consider OT and MPC with efficient simu-
lation in the CRS model.

3

Informal Theorem 1 There is a (two-round, malicious-secure) two-sided NISC
protocol in the CRS model that makes a black-box use of two-round malicious-
secure OT in the CRS model.

See Theorem 1 for a formal version. From a concrete efficiency perspective,
this compiler may be better than the recent random-oracle based compiler
from [IKSS22] in that it replaces a computational security parameter by a sta-
tistical one.7 We also obtain an arithmetic variant of this result that makes
a black-box use of the underlying field as well as a two-round malicious-secure
OLE protocol over the same field [CDI+19, BDM22]. (See Theorem 2 for a formal
statement.) This variant leverages another advantage of black-box constructions,
namely respecting the arithmetic nature of an underlying semi-honest protocol.

Informal Theorem 2 There is a three-round malicious-secure MPC protocol
in the CRS model that makes a black-box use of two-round malicious-secure OT
in the CRS model.

See Theorem 3 for a formal statement. The optimality of three rounds follows
from the proof of the black-box separation in [ABG+20]. While the main theorem
statement of [ABG+20] only refers to a separation between two-round MPC and
two-round semi-honest OT, the oracle used for the separation actually implies
malicious-secure two-round OT.

Open questions. Our results leave several avenues for future work.

– Is two-round semi-honestOT sufficient? As discussed above, the non-triviality
of realizing malicious-secure two-round OT from concrete assumptions sug-
gests that even a non-black-box round-preserving compiler from semi-honest
to malicious OT would be difficult to obtain. Moreover, the existence of
black-box constructions in the random oracle model [MR19, IKSS22] makes
a potential black-box separation more challenging.

– Does three-round OT suffice in the multiparty case? We conjecture that
the black-box separation from [ABG+20] can be extended to rule out this
possibility, and leave formalizing this to future work.

– Can similar results be obtained in the OT-hybrid model, namely using calls
to an ideal OT oracle rather an OT protocol? For standard (one-side) NISC,
this is achieved by the construction from [IKO+11]. In the multiparty case,
this question is open even in the semi-honest model, where evidence for the
difficulty of settling it in the negative is given in [ABG+20]. Our proto-
cols, similarly to the ones from [PS21], inherently make use of the messages
generated by the OT protocol, and thus cannot replace the protocol by an
oracle.

7 Jumping ahead, both compilers use a virtual honest-majority MPC protocol in which
the number of parties serves as a security parameter. The use of the Fiat-Shamir
paradigm in [IKSS22] requires the use of a computational security parameter instead
of a statistical one.

4

1.2 Related Work

A long line of work [KOS03, KO04, Wee10, Goy11, ORS15, GMPP16, ACJ17,
BHP17, BGJ+18, HHPV18, CCG+20] studied the question of minimizing the
round complexity of MPC with security against any number of malicious par-
ties in the plain model. In this setting, one cannot hope to match the round
complexity of our protocols in the CRS model regardless of the underlying as-
sumptions. Indeed, protocols with black-box simulators must use at least four
rounds [KO04, GMPP16]. Even if one allows a non-black-box (polynomial-time)
simulation, two-round two-party protocols are unlikely to exist even for the spe-
cial case of zero knowledge functionalities [BLV03]. We note that there is an in-
teresting line of work [GGJS12, KMO14, GKP17, BGJ+17, BGI+17, ABG+21,
FJK21, AMR21] that aims to get around this lower bound by considering a
weaker notion of security, namely, security with super-polynomial time simula-
tion (SPS) security.

The quest for minimizing the round complexity of MPC in the plain model,
with a standard notion of simulation-based security, culminated in the work
of Choudhuri et al. [CCG+20], who obtained a four-round protocol making a
non-black-box use of four-round malicious-secure OT. The round complexity of
this protocol is optimal for protocols with black-box simulation. Additionally
requiring the construction to be black-box, as in this work, a five-round protocol
in the plain model making use of strong flavors of two-round semi-honest OT
was given in [IKSS21]. See [CCG+20, IKSS21] and references therein for a more
comprehensive survey of this line of work.

2 Technical Overview

In this section, we describe the key technical ideas behind our construction of
black-box two-sided NISC (in Section 2.1) and our black-box three-round secure
multiparty computation protocol (in Section 2.2).

2.1 Black-Box Two-Sided NISC

Challenges. The main challenge in constructing a two-sided NISC protocol is
to design a “black-box” mechanism wherein the adversarial party is somehow
forced to use the same input when it plays the role of the sender and the re-
ceiver respectively. This is the reason why a natural attempt of constructing a
two-sided NISC by running two versions of one-sided NISC in opposite direc-
tions fails. The prior works of Ishai et al. [IKSS21, IKSS22] constructed such a
“black-box” mechanism by making use of the IPS compiler [IPS08]. However,
both these works resorted to idealized setups such as OT correlations, or made
use of random oracles in order to implement the watchlist mechanism, one of
the key building blocks in this compiler. As we explain later, we encounter sig-
nificant barriers while trying to remove these idealized setups from the above

5

works. To circumvent these barriers, we develop new techniques to implement
this mechanism and prove the security of the protocols based only on a two-
message malicious OT. In the rest of the subsection, we elaborate on this in
much more detail. As our work also builds on the IPS compiler, we recall the
main ideas behind this compiler below.

IPS Compiler. At a high level, the IPS compiler constructs a malicious-secure
MPC in the dishonest majority setting via a combination of: (1) a malicious-
secure honest-majority client-server MPC (called the outer protocol)8, and (2)
a semi-honest secure protocol in the dishonest majority setting (called the inner
protocol). In more detail, each party in the compiled protocol plays the role
of a client in the outer protocol. The parties then invoke the inner protocol to
emulate the computation done by the servers. Since the outer protocol can be
information-theoretic, the computations done by the servers avoid any crypto-
graphic operations. This feature enables the compiled protocol to be black-box.
However, as such, this compilation results in an insecure protocol. This is be-
cause an adversary can cheat in all the executions of the inner protocol and
break their security (as they are only secure against semi-honest adversaries).
Since the outer protocol is only guaranteed to be secure as long as a constant
(< 1/2) fraction of the servers are corrupted, by corrupting all the servers, the
adversary has effectively broken the security of the outer protocol and could
extract non-trivial information about the honest party inputs. To prevent such
an attack, the IPS compiler uses a novel cut-and-choose mechanism referred to
as the watchlist protocol. In this protocol, each party chooses a random subset of
the servers as part of its private “watchlist”. The watchlist protocol provides the
input and the randomness used by every other party for those server executions
that are being watched by this party. The input and randomness of the other
server executions are hidden. Every party then checks if the server executions
in its watchlist are emulated correctly and aborts if it detects any inconsistency.
This guarantees that if the adversary cheats in many server executions, then
all the honest parties will detect this and abort, preventing the adversary from
learning any useful information about the inputs of the honest parties. On the
other hand, if the adversary only cheats in a small number of server executions,
then we can rely on the security of the outer MPC protocol to show that the
adversary only learns the output of the functionality.

Prior Works. For two-sided NISC, recent black-box protocols from [IKSS21,
IKSS22] used the watchlist mechanism to catch a cheating adversary that is using
different inputs while playing the role of the sender and the receiver respectively.
Specifically, if the adversary is using inconsistent inputs in many server execu-
tions, then the honest party detects this via the watchlist mechanism and aborts
the execution. On the other hand, if the adversary is using inconsistent inputs
in a small number of executions, then the servers that are emulated by these

8 By an honest-majority client-server MPC, we mean a setting where a malicious
adversary can corrupt any subset of the clients and a constant fraction of the servers.

6

executions can be considered as corrupted in the outer protocol. Since the outer
protocol is secure as long as a constant fraction of the servers are corrupted, this
prevents the adversary from breaking the privacy of the honest party’s inputs.
This was the main intuition behind both works. However, these works differed
in their choice of the outer protocol, the inner protocol, and the implementation
of the watchlist mechanism. We tabulate these choices in Table 1. A common
limitation of these two works is their reliance on idealized setups, such as OT
correlations [IKSS21] or a random oracle [IKSS22] to implement the watchlist
mechanism. We now explain the challenges in trying to remove the idealized
setups from these works.

Citation Outer Protocol Inner Protocol Watchlist Implementation

[IKSS21]
2-round client-server MPC

with selective abort

Two-round semi-malicious
protocol with first-message

equivocality

1-out-of-2 OT
correlations model

[IKSS22]
2-round pairwise
verifiable MPC

Two-round semi-honest
protocol

Random Oracle Model

Table 1: Choice of outer protocol, inner protocol, and idealized model for watchlist
implementation in prior works.

Need for Idealized Models. The key reason why the prior works needed to
resort to idealized models is due to a subtle technical difficulty in implement-
ing the IPS compiler. Specifically, the simulator in the IPS compiler needs to
know the set of executions that are watched by the corrupted party before it
sends its first-round message on behalf of the honest party. Note that in the real
world, the honest party’s input and randomness corresponding to the adversar-
ial watched executions pass the consistency check and hence, we need to make
sure that these checks pass even in the ideal world. Hence, the simulator needs
to produce a consistent input and randomness that explains the inner protocol
messages in all the executions that are watched by the corrupted party. This
is further complicated in the rushing adversarial model where the adversary ex-
pects to see the first-round message from the honest party before it sends its own
first-round message. Hence, if the set of watched executions are known to the
simulator only after it sends the first-round message, then the simulator needs
produce randomness that consistently explains the “simulated” first-round in-
ner protocol message w.r.t. some input. In other words, the simulator needs to
equivocate the first-round message of the inner protocol. This requires stronger
assumptions. However, if we use idealized setups, then the simulator can learn
the watched executions of the corrupted party before it sends the first-round
message. In particular, this is done by allowing the simulator to implement the
dealer while setting up the OT correlations in [IKSS21], or program the out-
put of the random oracle in [IKSS22]. The above issue also precludes a natural

7

attempt of trying to implement the watchlist functionality using a two-round
k-out-of-m OT protocol. Indeed, the first-round message that encodes the set
of watched executions is sent by the adversary only after it receives the first-
round message from the honest party and hence, this approach too requires the
first-round message of the inner protocol to be equivocal.

Our Solution. To overcome this difficulty, we need a watchlist protocol imple-
mentation where the simulator can bias the watched executions of the corrupted
parties whereas the corrupted parties cannot bias the watched executions of the
honest parties. These two conflicting features are obtained simultaneously via a
coin-tossing protocol. Specifically, the watched executions of each party is sam-
pled randomly where the randomness is contributed by both the parties and
not just by the receiver party. This ensures that the simulator can set the ran-
domness on behalf of the honest party in such a way that the corrupted party
receives a randomly sampled set of executions that was chosen prior to sending
the first-round message. At the same time, since the receiver party also pro-
vides a part of the randomness, this ensures that the corrupted party cannot
bias the set of watched executions of the honest party. This helps in overcoming
the above mentioned technical difficulty in implementing the IPS compiler. The
next question is can we construct such a watchlist protocol? Indeed, the work
of Ishai et al. [IKO+11] provides an instantiation that makes black-box use of a
two-round malicious-secure OT. However, such a watchlist protocol alone does
not solve all the issues and we elaborate more on this below.

Need for Watchlist Output at the End of the First Round. While the
above watchlist protocol ensures that the simulator has the power to bias the
watched executions of the corrupted parties, it leads to new incompatibility
issues with the prior techniques. Specifically, the prior works crucially relied
on the output of the watchlist protocol to be delivered to the honest parties
at the end of the first round. This is indeed possible if we rely on idealized
setups. However, in the above described approach, the honest party learns the
output of the watchlist protocol only after the corrupted party sends its second-
round message. Hence, it can only perform all the watchlist checks after it has
sent its final round message in the protocol (since we are dealing with rushing
adversaries). This leads to new problems and let us explain them in a bit more
detail.

Firstly, the work of Ishai et al. [IKSS21] considered a two-round semi-honest
inner protocol where the first-round message could be equivocated (see Table 1).
However, a malicious party can also equivocate its first-round message and
thereby, break the security of the inner protocol. This was not a problem in
their setting since the output of the watchlist protocol is made available to the
honest parties at the end of the first round (this is possible in the OT correlations
model). Hence, the honest party can detect if the first-round message is equivo-
cated in many inner protocol executions and abort if it is the case. However, in
our watchlist protocol, the output is delivered to the honest party only at the

8

end of the second round. By this time, the honest party would have sent the
second-round message in the inner protocol and the adversary could potentially
recover the entire input of the uncorrupted party.

In a more recent work, Ishai et al. [IKSS22] removed the need for an inner
protocol with first message equivocality by considering a “stronger” outer proto-
col. This outer protocol which they termed as pairwise verifiable MPC protocol is
a two-round client-server MPC protocol that additionally satisfies a special error
correction property. Specifically, for any choice of second-round message from the
corrupted servers, the error correction property requires that the output of the
honest client remains the same. Unfortunately, obtaining such a protocol against
standard malicious adversaries is hard due to the known barriers [GIKR02]. To
overcome this, Ishai et al. considered security against weaker adversaries called
pairwise verifiable adversaries. Roughly speaking, pairwise verifiable adversar-
ial clients are restricted to send a first-round message such that the messages
received by all the honest servers pass some consistency check. However, this
restriction of only considering pairwise verifiable adversaries also seems incom-
patible with our watchlist protocol. Specifically, before we send the second-round
message, we need to make sure that the first-round message in the outer protocol
pass the pairwise consistency check and we must proceed only if these checks
pass. In the work of Ishai et al. [IKSS22], this was made possible by making
use of a random oracle. But in our setting, since the output of the watchlist
functionality is only delivered after the honest party sends the second-round
message, we cannot perform this check before sending the final message. Thus,
an adversarial party can use first-round messages in the outer protocol that do
not pass the pairwise consistency check and completely break the privacy of the
honest party’s inputs.

Our Approach. We note that the above mentioned incompatibility issue could
be alleviated if we use a two-round malicious secure oblivious transfer protocol
that has equivocal first-round message [GS18, PS21]. Specifically, such an OT
protocol forces a corrupt receiver to send a valid first-round message but enables
the simulator to equivocate the first-round message to both bits 0 and 1. Indeed,
a malicious party is forced to send a valid first-round message whereas the sim-
ulator could equivocate the first-round message as in [IKSS21]. However, we do
not know of a black-box construction of this primitive from any two-round mali-
cious secure OT protocol.9 Moreover, recent protocols from the literature (such
as ones based on CDH and LPN [DGH+20]) do not satisfy this property. Our
goal here is to overcome this issue by only making black-box use of a two-round
malicious secure OT.

Instead of relying on a pairwise verifiable MPC protocol, our solution to
this problem is to rely on a standard outer protocol satisfying security with
abort, say for instance, the one given by Ishai, Kushilevitz, and Paskin [IKP10,
Pas12]. To make this outer protocol compatible with the IPS compiler, Ishai
et al. [IKSS21] observed that the inner protocol needed to additionally satisfy

9 We note that [GS18] gave a non-black-box construction.

9

first-round equivocality (see Table 1). The key insight behind our solution is that
first-round equivocality of the inner protocol is actually on overkill and we could
instead use a far weaker security property. We now explain this in detail.

Recall that the watchlist mechanism is guaranteed to catch a malicious party
that cheats in a large number of inner protocol executions. However, a malicious
party can cheat in a small number of executions such that it goes undetected
by the watchlist of the honest party with some non-negligible probability. In
this case, we should be able to rely on the security of the outer protocol as the
number of malicious server corruptions is “small”. However, in order to invoke
this security property, we need to compute the inner protocol output received
by the honest party in each of the executions where the adversary has cheated.
This corresponds to the second-round message sent by the corrupted servers
to the honest client and we need to provide this information to the simulator
of the outer protocol. [IKSS21] argued that if the inner protocol satisfies first-
round equivocality then it is possible for the simulator to compute this output.
In particular, the simulator can equivocate the first-round message as per the
honest party’s input and then use the corresponding randomness to compute
the output of this inner protocol execution. In this work, we observe that this
property can be weakened, specifically, to what we call as output equivocality.
This property requires that if the adversary cheated in generating the second-
round message, then the simulator (that is additionally provided the input of the
honest party) must produce an output that is computationally indistinguishable
from the honest party’s output in the real execution. Specifically, instead of
requiring the entire first-round message to be equivocable, we only need the
output computation to be equivocable. This property is implied by first message
equivocality and could be potentially be realized under weaker assumptions.
Further, since the output of our watchlist protocol is only delivered after we
send the second-round message, we need our inner protocol to also be secure
against malicious receivers. Hence, it is sufficient to construct an inner protocol
that is secure against malicious receivers and also satisfies output equivocality.

Somewhat surprisingly, both of these properties can be obtained simultane-
ously if we simply replace the two-round semi-honest OT in the Yao’s protocol
with a two-round malicious secure OT. Specifically, the security against mali-
cious receivers follows from the folklore observation about Yao’s protocol when
instantiated with a two-round malicious secure OT protocol. The output equiv-
ocality property is argued using the security of the oblivious transfer against
malicious senders. In particular, the simulator could use the extractor for the
OT protocol and extract the set of both labels for each input wire of the gar-
bled circuit that was generated. Now, given the honest party’s input, the output
equivocal simulator can just evaluate the received garbled circuit on the chosen
set of labels according to the honest receiver’s input and output the result of the
evaluation. From the sender security of the OT protocol, we infer that the output
of this evaluation is computationally indistinguishable from the honest evalua-
tion. This allows us to construct an inner protocol with the desired properties
and thereby instantiate the IPS compiler.

10

The full description of the inner protocol along with the security properties it
needs to satisfy is given in Section 3. The construction and the security analysis
of our two-sided black-box NISC protocol can be found in Section 4.

Further Remarks. We observe that there is no need to rely on a special inner
protocol that was constructed based on Yao’s garbled circuits. Instead, we can
start with any one-sided OT-based NISC protocol. This follows from the fact that
security against malicious receivers comes for free, and the output equivocality
follows from security of the one-sided NISC against malicious senders. Thus, our
work can be viewed as a black-box construction of two-sided NISC from any one-
sided NISC. This allows us to directly transfer any efficiency improvements in the
one-sided NISC setting to the more challenging two-sided NISC. Furthermore,
this allows us to upgrade known one-sided NISC protocols in the arithmetic
setting [CDI+19, DIO21] (making a black-box use of the underlying field) to
similar two-sided NISC protocols.

2.2 Black-Box Three-Round MPC

To construct a black-box three-round MPC protocol, we again rely on the IPS
compiler. Specifically, we start with an outer protocol that supports an arbitrary
number of clients and satisfying security with selective abort (such a protocol
was constructed in [IKP10, Pas12]). As in the black-box two-sided NISC case, we
implement the watchlist protocol via a coin-tossing based approach. This enables
the simulator to bias the watched executions of the corrupted parties before it
sends its first-round message on behalf of the honest parties. The only difference
from the two-sided NISC case is that we need to rely on an inner protocol that
runs in three rounds (due to the black-box impossiblity of [ABG+20]). To make
the inner protocol compatible with the above outer protocol, we need it to satisfy
the following two additional properties:

– Robustness: Even if the adversary cheats in generating the messages in the
first two rounds of the protocol, it cannot break the privacy of the honest
party inputs. This is needed since the output of the watchlist is delivered
only at the end of the second round and any cheating in the first two rounds
should not enable the corrupted party to break the privacy of the honest
parties.

– Last Round Equivocality: If the adversary has cheated in the first two
rounds, then the simulator when provided with the inputs of all the honest
parties must produce a last round message which is computationally indistin-
guishable from the real execution. This is needed to generate the last round
message in the inner protocol executions where the adversary has cheated in
the first two rounds.

We note that robustness and last round equivocality was also needed in the
inner protocol used in [IKSS21]. However, their inner protocols could either run
in two rounds (in the presence of OT correlations), or four rounds in the plain

11

model. Here, our focus is on constructing such an inner protocol in three rounds
in the CRS model.

Constructing Multiparty Inner Protocol. Our first observation is that to
construct such an inner protocol for computing arbitrary functionalities, it is
sufficient to construct an inner protocol that computes the 3MULTPlus function-
ality. 3MULTPlus is a special multiparty functionality that takes (x1, y1) from
the first party, (x2, y2) from the second party, and (x3, y3) from the third party
where xi, yi are bits and delivers x1 · x2 · x3 + y1 + y2 + y3 to all the parties.
Indeed, the standard bootstrapping results from 3MULTPlus to general func-
tions [BGI+18, GIS18, ABG+20] for the case of semi-honest adversaries also
extends to the above security definition. Thus, it is sufficient to construct an
inner protocol for 3MULTPlus functionality that satisfies both robustness and
last round equivocality.

The starting point of our construction of such a protocol is the work of Patra
and Srinivasan [PS21] who gave a construction in the semi-honest setting based
on any two-round semi-honest OT protocol. The main result that we prove is
that if we replace the two-round semi-honest OT protocol in their construc-
tion with a two-round malicious-secure version, then the resultant protocol is
robust. However, proving this is not straightforward and requires a careful secu-
rity analysis (this appears in Proposition 2). To prove last round equivocality, we
observe that the last round message sent by each party in the protocol of [PS21]
is obtained by decrypting some sender OT message. As in the case of two-sided
NISC setting, we show that this message can be equivocated if the two-round
OT protocol is secure against malicious senders. This allows us to construct a
three-round inner protocol that satisfies robustness and equivocality by making
black-box use of a two-round malicious-secure OT.

The formal description of the security properties along with the construction
and the proof of security of the multiparty inner protocol appears in Section 5.

Putting things together. As mentioned before, our three-round black-box
multiparty protocol is obtained by combining the two-round coin-tossing based
watchlist protocol along with a three-round inner protocol satisfying both ro-
bustness and last round equivocality. At the end of the second round, the output
of the watchlist protocol is delivered to all the parties. If the adversary cheats
in many inner protocol executions, then this is detected by the honest parties
who abort before sending the final round message. In this case, we rely on the
robustness property of the inner protocol to show that the adversary learns no
information about the private inputs of the honest parties. On the other hand, if
the adversary only cheats in a small number of executions, then we corrupt the
corresponding servers in the outer protocol. We use the last round equivocality to
generate the final message in the inner protocol for these executions. We finally
rely on the security of the outer protocol to argue that only the output of the
functionality is leaked to the adversary since the number of server corruptions
is “small”.

12

The construction of the three-round black-box MPC protocol and the proof
of security can be found in Section 6.

2.3 Another Perspective

A different way to view our techniques is as follows. Let us start with the simplest,
round-optimal semi-honest protocols for 2PC and MPC that make black-box
use of two-round semi-honest OT. For the case of two parties, we consider Yao’s
protocol and for the case of multiple parties, we consider the protocol from the
work of Patra and Srinivasan [PS21]. In both these protocols, we replace the
underlying semi-honest OT protocol with a malicious secure OT protocol and
ask what security properties are satisfied by this modification. In this work,
we show that the properties satisfied correspond to that of the inner protocols.
Later, we use the IPS compiler to bootstrap this “weaker” security notion to the
standard malicious security. However, this runs into several technical hurdles (as
explained earlier) and we develop new techniques to overcome them.

Organization. We assume basic familiarity with the definitions of the standard
building blocks used in our construction. We provide the formal definitions in the
full version. We give the description of the two-party inner protocol in Section 3.
In Section 4, we give our construction of black-box two-sided NISC protocol. We
give the construction of our multiparty inner protocol in Section 5. In Section 6,
we give our construction of black-box multiparty protocol that runs in three
rounds.

3 Two-Party Inner Protocol

In this section, we give a definition of a two-party protocol that satisfies some
special properties (known as two-party inner protocol). We give a construction of
such a two-party inner protocol making black-box use of a two-round malicious-
secure OT. In the next section, we use this protocol to construct a two-sided
NISC.

3.1 Definition

A two-round two-party protocol for computing a two-party function f is given by
a tuple of PPT algorithms (Setup, Π1, Π2, outΠ). Setup algorithm takes in the
security parameter 1λ (encoded in unary) and outputs the common reference
string crs. Π1 is run by the receiver and takes in crs and the receiver input x0

and outputs π1. Π2 is run by the sender and takes in crs, π1, the sender input
x1 and outputs π2. outΠ takes in crs, π2, x0 and the random tape of Π1 and
outputs f(x0, x1).

Definition 1. A two-party protocol (Setup, Π1, Π2, outΠ) for computing a func-
tionality f that delivers the output to the receiver is said to be a two-party inner
protocol if there exists a (stateful) PPT simulator-extractor pair (SimΠ ,ExtΠ)
such that the following properties hold:

13

– Security Against Malicious Receivers: For any (stateful) non-uniform
PPT adversary A corrupting the receiver and for any sender input x1, we
have:

RealR(1
λ,A, x1) ≈c IdealR(1

λ,A, x1, (SimΠ ,ExtΠ))

where RealR and IdealR are described in Figure 1.
– Correctness of Extraction. For any non-uniform PPT adversary A cor-

rupting the receiver, we have

Pr
[
ExtΠ(R, td, Π1(crs, x0; r0)) ̸= x0

∣∣
(crs, td)← SimΠ(1λ, R), (x0, r0)← A(crs)

]
≤ negl(λ)

– Robust Security Against Semi-Malicious Senders (a.k.a., output
equivocality): Informally, this property requires that if a malicious sender
sends a second round message that is not explainable (by providing a valid
(input, randomness) pair), then we require an equivocal simulator that when
given the private input of the honest receiver computes an output such that
the joint distribution of the view of A and the output of the honest receiver
in the real execution is indistinguishable to the ideal execution using this
special simulator. Formally, for any (stateful) non-uniform PPT adversary
A corrupting the sender and for any receiver input x0, we have:

RealS(1
λ,A, x1) ≈c IdealS(1

λ,A, x0, (SimΠ ,ExtΠ))

where RealS and IdealS are described in Figure 2.

RealR(1
λ,A, x1)

1. crs← Setup(1λ).
2. π1 ← A(crs).
3. π2 ← Π2(crs, π1, x1).
4. Output A(π2).

IdealR(1
λ,A, x1, (SimΠ ,ExtΠ))

1. (crs, td)← SimΠ(1λ, R).
2. π1 ← A(crs).
3. x0 ← ExtΠ(R, td, π1).
4. π2 ← Sim(crs, x0, f(x0, x1)).
5. Output A(π2).

Fig. 1: Descriptions of RealR and IdealR experiments.

Remark 1. We note that correctness of extraction is implicitly implied by se-
curity against malicious receivers. However, for the ease of usage in the next
section, we state it as a separate property.

We defer the proof of the following proposition to the full version.

14

RealS(1
λ,A, x0)

1. crs← Setup(1λ).
2. π1 ← Π1(crs, x0; r0) where r0 ←
{0, 1}λ.

3. (π2, (x1, r1))← A(crs, π1).
4. Output

(crs, π1, outΠ(crs, π2, (x0, r0))).

IdealS(1
λ,A, x0, (SimΠ ,ExtΠ))

1. (crs, td, π1)← SimΠ(1λ, S).
2. (π2, (x1, r1))← A(crs, π1).
3. st← ExtΠ(S, td, π2).
4. If π2 = Π2(crs, π1, x1; r1) then:

(a) Output (crs, π1, f(x0, x1)).
5. If π2 ̸= Π2(crs, π1, x1; r1) then:

(a) Output
(crs, π1, SimΠ(st, π2, x0)).

Fig. 2: Descriptions of RealS and IdealS experiments.

Proposition 1. Assume black-box access to a two-round oblivious transfer pro-
tocol secure against malicious adversaries in the common random/reference string
model. There exists a two-party inner protocol for computing any two-party
functionality f satisfying Definition 1. The computational and communication
complexity of the protocol is poly(λ, |f |) where |f | denotes the circuit-size of f .

3.2 Construction from One-Sided NISC

We note that any one-sided NISC protocol gives rise to a two-party protocol
satisfying Definition 1. This is because security against malicious receivers is
implied by the security of one-sided NISC against malicious receivers. Robust
security against semi-malicious senders is implied by security of one-sided NISC
against malicious senders. Thus, we get the following corollary.

Corollary 1. Let f be an arbitrary two-party functionality. Assume black-box
access to an one-sided NISC protocol that securely computes f . Then, there exists
a two-party inner protocol for computing f satisfying Definition 1. The compu-
tational and communication complexity of the protocol are the same as that of
the NISC protocol.

4 Two-Sided Black-Box NISC

In this section, we give our construction of black-box two-sided NISC protocol.
We prove the following theorems.

Theorem 1 (Black-box two-sided NISC). Assume black-box access to a
two-round oblivious transfer protocol secure against malicious adversaries in the
common random/reference string model. Then, there exists a two-round protocol
for securely computing any two-party functionality f against malicious adver-
saries in the common random/reference string model where both parties get the
output of f at the end of the protocol. The computational and communication
complexity of the protocol is poly(λ, |f |) where |f | denotes the circuit-size of f .

15

Theorem 2 (Black-box arithmetic two-sided NISC). Let F be a finite
field and let f be a two-party functionality that is computable by an arithmetic
branching program over F. Assume black-box access to a two-round oblivious
linear evaluation (OLE) protocol over F and an oblivious transfer protocol that
is secure against malicious adversaries in the common random/reference string
model. Then, there exists a two-round protocol for securely computing f against
malicious adversaries in the common random/reference string model where both
parties get the output of f at the end of the protocol. The computational and
communication complexity of the protocol is poly(λ, |f |) where |f | denotes the
size of the branching program computing f and the protocol makes black-box use
of F.

4.1 Building Blocks

The construction makes use of the following building blocks:

1. A two-round, two client, m server outer MPC protocol Ψ = (Share,Eval,Dec)
for computing the function f that satisfies security with abort against t server
corruptions. We set t = 2λ and m = 3t + 1. Based on [IKP10, Pas12], we
give a construction of such a protocol making black-box use of a PRG in the
full version where Eval does not involve cryptographic operations.

2. A two-round, two-party inner protocol (see Definition 1) (SetupΠj
, Πj,1, Πj,2,

outΠj
) that delivers output to the receiver and computes Eval(j, ·) for each

j ∈ [m]. From Proposition 1 and Corollary 1, such a protocol can be con-
structed making black-box use of a two-round malicious secure OT protocol
or an one-sided NISC protocol.

3. A two-round malicious-secure two-party computation protocol (CRSGen, Φ1,
Φ2, outΦ) for computing the Selλ,m functionality. The Selλ,m functionality
takes in a string ρ1 from the receiver, (ρ2, (s1, . . . , sm)) from the sender. It
computes ρ1 ⊕ ρ2 and uses it as random tape to select a random multiset
(with replacement) K of [m] of size λ. It then outputs (K, {si}i∈K) to the
receiver. [IKO+11] gave a two-round black-box protocol for computing Selλ,m
based on two-round malicious-secure OT protocol.

The key lemma that we will prove in this section is the following.

Lemma 1. Assume black-box access to a PRG and the protocols {Πj}j∈[m] and
Φ as described above. Then, there exists a two-round protocol for securely com-
puting any two-party functionality f against malicious adversaries where both
parties get the output of f at the end of the protocol.

Theorem 1 is obtained by instantiating {Πj}j∈[m] from Proposition 1. To
obtain Theorem 2, we observe that in the protocols of [IKP10, Pas12], if f is
computable by an arithmetic branching program then Eval(j, ·) is computable by
a log-depth arithmetic circuit and does not involve any cryptographic operations.
Thus, we can instantiate Πj for each j ∈ [m] using the one-sided NISC protocol

16

for computing log-depth arithmetic circuits based on two-round malicious secure
OLE [IKO+11, CDI+19, DIO21] using Corollary 1.

We give the construction of the protocol in Section 4.2 and the proof of
security in Section 4.3

4.2 Construction

Let P0 and P1 be the two parties with private inputs x0 and x1 respectively. The
parties additionally have as a common input the description of the function f .
We give the formal description of the construction in Figure 3.

4.3 Proof of Security

We give the description of the simulator below and show that the real and
the ideal executions are computationally indistinguishable. Since the protocol is
symmetric w.r.t. both P0 and P1, we assume without loss of generality that P1

is corrupted by A.

Description of Sim.

– CRSGen(1λ): Sim does the following:
1. It chooses (crs0, td0, ϕ0

1)← SimΦ(1
λ, S) and (crs1, td1)← SimΦ(1

λ, R).
2. It samples a uniform multiset K1 of [m] of size λ.
3. For each j ∈ K1, it samples crs0j , crs

1
j ← SetupΠj

(1λ).

4. For each j ̸∈ K1, it samples (crs0j , td
0
j , π

0
j,1)← SimΠj

(1λ, S) and (crs1j , td
1
j)←

SimΠj
(1λ, R).

5. It outputs ({crs0j , crs1j}j∈[m], crs
0, crs1) as the CRS of the overall protocol.

– Round-1: To generate the first round message, Sim does the following:
1. It runs the simulator SimΨ for the outer protocol by corrupting the client

P1 and the set of servers given by K1. SimΨ provides with {x0
j}j∈K1 .

2. For each j ∈ K1, it computes πj,1 ← Πj,1(crs
0
j , x

0
j ; r

0
j) for uniformly

chosen r0j .

3. It sends ϕ0
1 and {π0

j,1}j∈[m] to A.
4. It receives the first round message from A. For each j ̸∈ K1, it computes

x1
j ← Extπj

(td1j , π
1
j,1). It computes ρ11 ← ExtΦ(R,ϕ1

1, td
1).

– Round-2: To generate the second round message, Sim does the following:
1. It sends {x1

j}j ̸∈K1 to SimΨ as the first round message from the corrupted
client to the honest servers. SimΨ queries the ideal functionality on in-
put x1 and Sim forwards this query to its own ideal functionality. It
forwards the response from the ideal functionality back to SimΨ . SimΨ

sends {z1j }j ̸∈K1 as the second round message from the honest servers to
the corrupted client.

2. For each j ̸∈ K1, it generates π1
j,2 ← SimΠj

(R, crs1j , z
1
j , x

1
j). For each

j ∈ K1, it generates π1
j,2 as Πj,1(crs

1
j , π

1
j,1, x

0
j ; t

1
j) for uniformly chosen

t1j .

17

– CRS Generation: To generate the CRS,
1. Sample crs0j , crs

1
j ← SetupΠj

(1λ) for each j ∈ [m].

2. Sample crs0, crs1 ← CRSGen(1λ).
3. Output ({crs0j , crs1j}j∈[m], crs

0, crs1).
– Round-1: In the first round, each party Pi for i ∈ {0, 1} does the following:

1. It computes (xi
1, . . . , x

i
m) ← Share(1λ, i, xi; ri) for uniformly chosen ri ←

{0, 1}λ.
2. For each j ∈ [m], it samples a uniform random string rij and computes

πi
j,1 ← Πj,1(crs

i
j , i, x

i
j ; r

i
j).

3. It samples a uniform random string ρi1 ← {0, 1}∗ and computes ϕi
1 ←

Φ1(crs
i, i, ρi1).

4. It sends {πi
j,1}j∈[m] and ϕi

1 to the other party.
– Round-2: In the second round, each party Pi for i ∈ {0, 1} does the following:

1. For each j ∈ [m], it samples a uniform random string t1−i
j and computes

π1−i
j,2 ← Πj,2(crs

1−i
j , i, π1−i

j,1 , xi
j ; t

1−i
j).

2. For each j ∈ [m], it sets sij = (xi
j , r

i
j , t

1−i
j).

3. It samples a uniform random string ρ1−i
2 ← {0, 1}∗ and computes ϕ1−i

2 ←
Φ2(crs

1−i, i, ϕ1−i
1 , (ρ1−i

2 , (si1, . . . , s
i
m))).

4. It sends {π1−i
j,2 }j∈[m] and ϕ1−i

2 to the other party.
– Output Computation: To compute the output Pi for i ∈ {0, 1} does the

following:
1. It computes (Ki, {s1−i

j }j∈Ki) using outΦ on crsi, ϕi
2 and the random tape

used to generate ϕi
1.

2. For each j ∈ Ki, it:
(a) Parses s1−i

j as (x1−i
j , r1−i

j , tij).

(b) Checks if (x1−i
j , r1−i

j) is a consistent input, randomness pair that ex-

plains the message π1−i
j,1 and if (x1−i

j , tij) is a consistent input, ran-

domness pair that explains the message πi
j,2.

3. If any of the above checks fail, then Pi aborts and outputs ⊥.
4. Else, for each j ∈ [m], it computes zij := outΠj (crs

i
j , π

i
j,2, (x

i
j , r

i
j)).

5. It outputs Dec(zi1, . . . , z
i
m, ri).

Fig. 3: Black-Box Two-Sided NISC Protocol

3. It generates ϕ1
2 ← SimΦ(R, {K1, {x0

j , r
0
j , t

1
j}j∈K1}).

4. It sends ϕ1
2 and {π1

j,2}j∈[m] to A.
5. It receives the second round message from A. For each j ̸∈ K1, it com-

putes stj ← ExtΠj
(S, td0j , π

0
j,2).

6. It also computes (ρ02, s
1
1, . . . , s

1
m)← ExtΦ(S, ϕ

0
2, td

0).
– Output Computation: To compute the output, Sim does the following:

1. It chooses a uniform multiset K0 of [m] size λ and uses it to perform the
same checks as done by honest P0 using {s1j}j∈K0 . If any of the checks
fail, it instructs the ideal functionality to deliver ⊥ to P0.

2. Otherwise, it initializes an empty set C1.

18

3. For each j ̸∈ K1,
(a) It parses s1j as (x1

j , r
1
j , t

0
j).

(b) If either (x1
j , r

1
j) is not a consistent input, randomness pair that ex-

plains the message π1
j,1 or if (x1

j , t
0
j) is not a consistent input, ran-

domness pair that explains the message π1
j,2, then we add j to C1.

4. If |C1| ≥ λ, then it instructs the ideal functionality to output ⊥ to
P1. Otherwise, it instructs SimΨ to adaptively corrupt the set of servers
indexed by C1 and obtains {x0

j}j∈C1 .

5. For each j ∈ C1, it computes z0j as SimΠj
(S, stj , π

0
j,2, x

0
j). For each j ∈

K1, it computes z0j as outΠj (crs
0
j , π

0
j,2, (x

0
j , r

0
j)).

6. It sends {z0j }j∈C1∪K1 to SimΨ as the second round message from the
corrupted servers to the honest client. If SimΨ instructs the P0 to abort,
then Sim instructs the ideal functionality to deliver ⊥ to P0. Otherwise,
it instructs it to deliver the output of f to P0.

Proof of Indistinguishability.

– Hyb1 : This corresponds to the output of the real experiment which comprises
of the view of A corrupting P1 and the output of honest P0.

– Hyb2 : In this hybrid, we make the following changes:

1. Sample (crs0, td0, ϕ0
1)← SimΦ(1

λ, S).
2. Obtain ϕ0

2 from A.
3. Compute (ρ02, (s

1
1, . . . , s

1
m))← ExtΦ(S, ϕ

0
2, td

0).
4. Sample ρ01 uniformly from {0, 1}∗ and sample a multiset K0 of size λ

from [m] using ρ01 ⊕ ρ02 as the random tape.
5. Use (K0, {s1j}j∈K0) to perform the same checks described in output com-

putation.
In Lemma 2, we show from the simulation security of Φ against corrupted
senders that Hyb1 ≈c Hyb2.

– Hyb3 : In this hybrid, we make the following changes:

1. Sample (crs1, td1)← SimΦ(1
λ, R).

2. Obtain ϕ1
1 from A.

3. Compute ρ11 ← ExtΦ(R,ϕ1
1, td

1).
4. Sample a multiset K1 of size λ from [m] using a random tape ρ1.
5. Generate ϕ1

2 ← SimΦ(R, {K1, {s0j}j∈K1}).
6. Use ϕ1

2 to generate the final round message in the protocol.
In Lemma 3, we use the simulation security of Φ against corrupted receivers
to show that Hyb2 ≈c Hyb3.

– Hyb4 : In this hybrid, we make the following changes:

1. For each j ∈ [m], we parse s1j as (x1
j , r

1
j , t

0
j).

2. We initialize an empty set C1.
3. For each j ̸∈ K1,

(a) If either (x1
j , r

1
j) is not a consistent input, randomness pair that ex-

plains the message π1
j,1, or if (x1

j , t
0
j) is not a consistent input, ran-

domness pair that explains the message π1
j,2, then we add j to C1.

19

4. If |C1| ≥ λ, then we abort and use ⊥ as the output of honest P0.

In Lemma 4, we show that Hyb3 ≈s Hyb4.
– Hyb5 : In this hybrid, we make the following changes:

1. Before generating the CRS, we sample a uniform multiset K1 of [m] with
size λ.

2. We sample (crs0j , td
0
j , π

0
j,1) ← SimΠj

(1λ, S) for each j ̸∈ K1. We use

{crs0j}j ̸∈K1 as part of the CRS and use {π0
j,1}j ̸∈K1 to generate the first

round message from P0.
3. We receive the second round message from A (that includes π0

j,2 for each

j ∈ [m]) and extract {(x1
j , r

1
j , t

0
j)}j∈[m] as before.

4. For each j ̸∈ K1, we compute stj ← ExtΠj (S, td
0
j , π

0
j,2).

5. We compute the set C1 as before.
6. For each j ∈ C1, we set z0j = SimΠj

(S, stj , π
0
j,2, x

0
j).

7. For each j ∈ K1, we compute z0j as before.

8. For each j ̸∈ C1 ∪K1, we set z0j = Eval(j, x0
j , x

1
j).

In Lemma 5, we rely on the robust security of Πj against semi-malicious
senders to show that Hyb4 ≈c Hyb5.

– Hyb6 : In this hybrid, we make the following changes:

1. We generate (crs1j , td
1
j)← SimΠj

(1λ, R) for each j ̸∈ K1.

2. On receiving {π1
j,1}j∈[m] from A, we run ExtΠj (td

1
j , π

1
j,1) to obtain x1

j for

each j ̸∈ K1.
3. For each j ̸∈ K1, we generate π1

j,2 ← SimΠj (R, crs1j , z
1
j = Eval(j, x0

j , x
1
j), x

1
j).

We use this to generate the second round message from P0.

In Lemma 6, we use the security of Πj against malicious senders for each
j ∈ [m] to show that Hyb5 ≈c Hyb6.

– Hyb7 : In this hybrid, for each j ̸∈ K1∪C1, we use z
1
j instead of z0j to compute

the output of honest P0. It follows from the correctness of extraction property
of {Πj}j ̸∈K1∪C1

that z0j = z1j for each j ̸∈ K1 ∪ C1 except with negligible
probability and hence, Hyb6 ≈s Hyb7.

– Hyb8 : In this hybrid, we make the following changes:

1. We start running the simulator SimΨ by corrupting the client P1 and the
set of servers indexed by K1. We receive {x1

j}j∈K1 from the simulator
and use this to generate the first round message from P0.

2. On receiving {π1
j,1}j∈[m] from A, we run ExtΠj

(td1j , π
1
j,1) to obtain x1

j for

each j ̸∈ K1. We send {x1
j}j ̸∈K1 to SimΨ as the first round message from

the adversarial client P1 to the honest servers.
3. SimΨ queries its ideal functionality on an input x1 and we forward this

to our ideal functionality and respond with f(x0, x1).
4. SimΨ provides {z1j }j ̸∈K1 . We use this to generate π1

j,2 ← SimΠj
(z1j , x

1
j)

for each j ̸∈ K1.
5. We receive the second round message from A and use this to extract
{s1j}j∈[m] as before. We compute the set C1 and abort if |C1| ≥ λ.

6. For each j ̸∈ K1, we compute stj ← ExtΠj (S, td
0
j , π

0
j,2).

20

7. We now instruct SimΨ to adaptively corrupt the set of servers corre-
sponding to C1 and obtain {x0

j}j∈C1
. We then compute z0j = SimΠj

(stj , π
0
j,2, x

0
j)

for each j ∈ C1. We compute z0j for each j ∈ K1 as before.

8. We send {z0j }j∈C1∪K1 as the second round message from the corrupted
servers to the honest client to SimΨ . If SimΨ instructs the client to abort,
we instruct P0 to do the same. Otherwise, we instruct P0 to output
f(x0, x1).

In Lemma 7, we use the security of the outer protocol to argue that Hyb7 ≈c

Hyb8. Notice that Hyb8 is identically distributed to the ideal world using
Sim.

Lemma 2. Assuming the simulation security of the protocol Φ against corrupted
senders, we have Hyb1 ≈c Hyb2.

Proof. Assume for the sake of contradiction that Hyb1 and Hyb2 are computa-
tionally distinguishable with non-negligible advantage. We show that this con-
tradicts the simulation security of the protocol Φ against corrupted senders.

We start interacting with the external challenger and provide a uniformly
chosen random string ρ01 as the challenge receiver input. The challenger responds
with crs0. We use this to generate the CRS in the overall protocol. The challenger
also sends ϕ0

1. We use this to generate the first round message in the protocol by
sampling the other components of the first round message as in Hyb1. We gen-
erate the second round message as before and obtain the second round message
from A. We forward ϕ0

2 from the second round message received from A to the
external challenger. The external challenger provides with K0, {s1j}j∈K0 as the
output of the honest P0. We use this to perform the same checks as described in
the output computation. We finally output the view of A and the output of P0.

If the messages in the protocol Φ and the CRS and the output of honest P0

are generated as in the real experiment, then the output of the above reduction
is identically distributed to Hyb1. Else, it is identically distributed to Hyb2.
Thus, if Hyb2 and Hyb1 are computationally distinguishable with non-negligible
advantage then this breaks the simulation security of Φ against corrupted senders
and this is a contradiction.

Lemma 3. Assuming the simulation security of SimΦ against corrupted senders,
we have Hyb2 ≈c Hyb3.

Proof. Assume for the sake of contradiction that Hyb2 and Hyb3 are computa-
tionally distinguishable with non-negligible advantage. We show that this con-
tradicts the simulation security of Φ against corrupted receivers.

We interact with the external challenger and provide a uniformly chosen ρ12
and (s01, . . . , s

0
m) as the challenge sender input. The external challenger provides

with crs1 and we use this to generate the CRS of the overall protocol. We start
interacting with the adversary and obtain the first round message ϕ1

1 from it.
We forward this to the external challenger. The external challenger provides
with the second round message ϕ1

2 and we use this to generate the second round

21

message in the overall protocol. We compute the output of honest P0 as before
and finally output the view of A and the output of the honest P0.

Note that if the messages in the protocol Φ and the CRS are generated by the
external challenger as in the real experiment then the output of the above reduc-
tion is distributed identically to Hyb2. Else, it is distributed identically to Hyb3.
Thus, if Hyb3 and Hyb2 are computationally distinguishable with non-negligible
advantage then this breaks the simulation security of Φ against corrupted re-
ceivers and this is a contradiction.

Lemma 4. Hyb3 ≈s Hyb4.

Proof. Note that the only difference between Hyb3 and Hyb4 is that in Hyb4 we
abort if |C1| ≥ λ To show that Hyb3 and Hyb4 are statistically close, we prove
that if the above condition holds, then in Hyb3, the checks done by the honest
P0 fails with overwhelming probability.

Note thatK0 is distributed as a random multiset of [m] of size λ. If C1∩K0 ̸=
∅, then the the honest P0 in Hyb3 also aborts. We show that this event happens
with overwhelming probability.

Pr[|K0 ∩ C1| = 0] = (1− |C1|
m

)λ

≤ e−|C1|λ/m

≤ e−λ2/m

≤ e−O(λ)

where the last inequality follows since m = O(λ). This completes the proof of
the lemma.

Lemma 5. Assuming the robust security of Πj against semi-malicious senders
for each j ∈ [m], we have Hyb4 ≈c Hyb5.

Proof. Assume for the sake of contradiction that Hyb4 and Hyb5 are distinguish-
able with non-negligible advantage. We sample a uniform multiset K1 of [m] of
size λ. We now show that if Hyb4 and Hyb5 are computationally distinguishable
then this contradicts the robust security of Πj against semi-malicious senders
for some j ̸∈ K1.

Let ≺ be a total order on the set [m] \ K1. If Hyb4 and Hyb5 are distin-
guishable with non-negligible advantage, then by a standard averaging argument
there exists Hyb4,j and Hyb′4,j (described below) that are distinguishable with
non-negligible advantage. In both the hybrids, for each j∗ ≺ j, (crs0j∗ , π

0
j∗,1) is

generated as in Hyb5 whereas for each j ≺ j∗, (crs0j∗ , π
0
j∗,1) is generated as in

Hyb4. The only difference is that in Hyb4,j , (crs
0
j , π

0
j,1) is generated as in Hyb5

whereas it is generated as in Hyb4 in Hyb′4,j . We use this to construct an attacker
that breaks the robust security of Πj against semi-malicious senders.

We interact with the external challenger and provide x0
j as the challenge

receiver message. The challenger provides (crs0j , π
0
j,1). We use this to generate the

22

CRS and the first round message of the overall protocol. We receive the second
round message from the adversary and use it to extract {(x1

j , r
1
j , t

0
j)}j∈[m]. We

compute the set C1 as before and abort if |C1| ≥ λ. For each j ∈ C1, we send
x1
j and an arbitrary t0j (that does not explain the messages correctly) along with

π0
j,2 to the external challenger. If j ̸∈ C1 ∪K1, we send (x1

j , t
0
j) along with π0

j,2

to the external challenger. We receive the output z0j and use this to compute the
output of the overall protocol as before.

We note that if (crs0j , π
0
j,1, z

0
j) was generated by the external challenger as

in the RealS experiment then the output of the above reduction is identically
distributed to Hyb′4,j . Else, it is distributed identically to Hyb4,j . Thus, if Hyb4,j
and Hyb′4,j are distinguishable with non-negligible advantage, then the above
reduction breaks the robust security of Πj against semi-malicious senders with
non-negligible advantage and this is a contradiction.

Lemma 6. Assuming the security of Πj against malicious receivers for each
j ∈ [m], we have Hyb6 ≈c Hyb5.

Proof. Assume for the sake of contradiction that Hyb5 and Hyb6 are distinguish-
able with non-negligible advantage. We sample a uniform multiset K1 of [m] of
size λ. We now show that this contradicts the security of Πj against malicious
receiver for some j ̸∈ K1.

Let ≺ be a total order on the set [m] \ K1. If Hyb5 and Hyb6 are distin-
guishable with non-negligible advantage then by a standard averaging argument,
there exists Hyb5,j and Hyb′5,j (described below) that are distinguishable with
non-negligible advantage. In both the hybrids, for each j∗ ≺ j, (π1

j∗,2, crs
1
j∗) is

generated as in Hyb6 whereas for each j ≺ j∗, (π1
j∗,2, crs

1
j∗) is generated as in

Hyb5. The only difference is that in Hyb5,j , (crs
1
j , π

1
j,2) is generated as in Hyb6

whereas it is generated as in Hyb5 in Hyb′5,j . We use this to construct an attacker
that breaks the security of Πj against malicious receivers.

We interact with the external challenger and provide x0
j as the challenge

sender input. We obtain crs1j from the external challenger. We receive π1
j,1 from

the adversary and forward this to the challenger. The challenger responds with
π1
j,2 and we use these to generate the view of the adversary A and compute the

output of P0 as in Hyb′5,j .
We note that if (π1

j,2, crs
1
j) was generated by the external challenger as in

RealR then the output of the above reduction is identically distributed to Hyb′5,j .

Else, it is distributed identically to Hyb5,j . Thus, if Hyb5,j and Hyb′5,j are dis-
tinguishable with non-negligible advantage, then the above reduction breaks the
security of Πj against malicious receivers with non-negligible advantage and this
is a contradiction.

Lemma 7. Assuming the security of the outer MPC protocol Ψ = (Share,Eval,Dec),
we have that Hyb7 ≈c Hyb8.

Proof. Assume for the sake of contradiction that Hyb7 and Hyb8 are computa-
tionally distinguishable with non-negligible advantage. We show that this con-
tradicts the security of outer protocol Ψ .

23

We start interacting with the outer protocol challenger and provide x0 as the
honest client input. We instruct the challenger to corrupt P1 and the set of servers
indexed byK1. The challenger provides {x0

j}j∈K1 as the first round message from
the honest client to the corrupted servers and we use this to generate the first
round message in the protocol. On receiving the first round message from A,
we obtain x1

j ← ExtΠj (td
1
j , π

1
j,1) for each j ̸∈ K1 and send {x1

j}j ̸∈K1 as the first
round message from the adversarial client to the honest servers. The challenger
replies with {z1j }j ̸∈K1 . We use this to generate π1

j,2 ← SimΠj
(z1j , x

1
j) for each

j ̸∈ K1 and compute the second round message of the overall protocol. We receive
the second round message from the adversary. We use this to extract {s1j}j∈[m]

as before. We compute the set C1 and abort if |C1| ≥ λ. Additionally, for each
j ∈ C1, we compute stj ← ExtΠj (S, td

0
j , π

0
j,2). We now instruct the challenger to

adaptively corrupt the set of servers corresponding to C1 and obtain {x0
j}j∈C1 .

We then compute z0j = SimΠj
(stj , π

0
j,2, x

0
j) for each j ∈ C1. We compute z0j for

each j ∈ K1 as before. We send {z0j }j∈C1∪K1 as the second round message from
the corrupted servers to the honest client to the challenger. If the challenger
instructs the client to abort, we instruct P0 to do the same. Otherwise, we
instruct P0 to output whatever is provided by the challenger as the output. We
output the view of A and the output of P0.

Note that if the messages received from the challenger are computed as in
the real execution of the protocol Ψ , then the output of the above reduction is
identically to Hyb7. Else, it is distributed identically to Hyb8. Hence, if Hyb7 and
Hyb8 are distinguishable with non-negligible advantage, then the above reduction
breaks the security of the outer protocol Ψ with non-negligible advantage and
this is a contradiction.

5 Multiparty Inner Protocol

In this section, we give the definition of a three-round multiparty protocol that
satisfies some special properties (known as multiparty inner protocol) and give
a construction based on two-round malicious secure oblivious transfer. In the
next section, we will use this multiparty inner protocol as the key ingredient to
construct a three-round malicious secure protocol for general functionalities.

5.1 Definition

A three-round n-party protocol for computing a function f is given by a tuple of
PPT algorithms (Setup, Π1, Π2, Π3, outΠ) and has the following syntax. Setup
algorithm takes in the security parameter 1λ (encoded in unary) and outputs
the common reference string crs. For each r ∈ [3], Πr is the r-th round message
function that takes in crs, index i of the party, the transcript seen so far (denoted
by π(r − 1)), the i-th party’s private input xi, its random tape ri and outputs
πi
r. outΠ is the public decoder (see [ABG+20] for the definition of a publicly

decodable MPC) that takes in the transcript of the three rounds π(3) and outputs
f(x1, . . . , xn).

24

Definition 2. A three-round n-party protocol (Setup, Π1, Π2, Π3, outΠ) for com-
puting a function f is said to be a multiparty inner protocol with publicly decod-
able transcript if it satisfies:

– Correctness: For any choice of inputs x1, . . . , xn, we have:

Pr[outΠ(π(3)) = f(x1, . . . , xn)] = 1

where π(3) is the transcript generated in the first three rounds of the protocol.
– Security: For any subset M ⊂ [n] of the parties, there exists a (stateful)

PPT simulator SimΠ such that for any (stateful) non-uniform PPT adver-
sary A corrupting the set of parties given by M and for any set {xi}i∈[n]\M
of the honest party inputs, we have:∣∣∣Pr[Real(1λ,M,A, {xi}i∈[n]\M) = 1]−

Pr[Ideal(1λ,M,A, {xi}i∈[n]\M ,SimΠ) = 1]
∣∣∣ ≤ negl(n)

where Real and Ideal experiments are described in Figure 4.

In this section, we state the following proposition and defer the proof to the full
version.

Proposition 2. Assume black-box access to a two-round oblivious transfer pro-
tocol that is secure against malicious adversaries in the common random/reference
string model. Then, there exists a three-round inner protocol for computing any
n-party functionality f satisfying Definition 2. The computational and commu-
nication complexity of this protocol is poly(λ, n, |f |) where |f | is the circuit-size
of f .

6 Round-Optimal Black-Box MPC

In this section, we give a construction of a three-round MPC protocol that
makes black-box use of two-round malicious secure oblivious transfer. The round-
optimality of this construction follows from [ABG+20]. We prove the following
theorem.

Theorem 3 (Black-box three-round MPC). Assume black-box access to
a two-round oblivious transfer protocol that is secure against malicious adver-
saries in the common random/reference string model. Then, there exists a three-
round protocol for computing any n-party functionality f in the common ran-
dom/reference string model that satisfies security with unanimous abort against
malicious adversaries corrupting an arbitrary subset of the parties. The pro-
tocol works over broadcast channels and its computational and communication
complexity is poly(λ, n, |f |) where |f | is the circuit-size of f .

The proof of this theorem is deferred to the full version of the paper.

25

Real(1λ,M,A, {xi}i∈[n]\M)

1. crs← Setup(1λ).
2. Compute πi

1 ← Π1(crs, xi; ri) for
each i ∈ [n] \M where ri ← {0, 1}∗.

3. {πi
1}i∈M ← A(crs{πi

t}i∈[n]\M).
4. Set π(1) = {πi

1}i∈[n].
5. Compute πi

2 ← Π2(crs, π(1), xi; ri)
for each i ∈ [n] \M .

6. {πi
2, (xi, ri)}i∈M ← A({πi

2}i∈[n]\M).
7. Set π(2) = π(1) ∪ {πi

2}i∈[n].
8. Compute πi

3 ← Π3(crs, π(2), xi; ri)
for each i ∈ [n] \M .

9. {πi
3}i∈M ← A({πi

3}i∈[n]\M).
10. Set π(3) = π(2) ∪ {πi

3}i∈[n]

11. Output A(crs, π(3)).

Ideal(1λ,M,A, {xi}i∈[n]\M ,SimΠ)

1. (crs, td, {πi
1}i∈[n]\M)← SimΠ(1λ,

M).

2. {πi
1}i∈M ← A(crs, {πi

1}i∈[n]\M).
3. Set π(1) = {πi

1}i∈[n].
4. {πi

2}i∈[n]\M ← SimΠ(π(1), td).

5. {πi
2, (xi, ri)}i∈M ← A({πi

2}i∈[n]\M).
6. Set π(2) = π(1) ∪ {πi

2}i∈[n].
7. For each i ∈ M , if (xi, ri) is a valid

input/randomness pair w.r.t. π(2):
(a) {πi

3}i∈[n]\M ←
SimΠ(π(2), f(x1, . . . , xn)).

8. Else,
(a) {πi

3}i∈[n]\M ←
SimΠ(π(2), td, {xi}i∈[n]\M).

9. {πi
3}i∈M ← A({πi

3}i∈[n]\M).
10. Set π(3) = π(2) ∪ {πi

3}i∈[n].
11. Output A(crs, π(3)).

Fig. 4: Descriptions of Real and Ideal experiments.

Acknowledgments. Y. Ishai was supported in part by ERC Project NTSC
(742754), BSF grant 2018393, and ISF grant 2774/20. D. Khurana was sup-
ported in part by DARPA SIEVE award, a gift from Visa Research, and a C3AI
DTI award. A. Sahai was supported in part from a Simons Investigator Award,
DARPA SIEVE award, NTT Research, NSF Frontier Award 1413955, BSF grant
2012378, a Xerox Faculty Research Award, a Google Faculty Research Award,
and an Okawa Foundation Research Grant. This material is based upon work
supported by the Defense Advanced Research Projects Agency through Award
HR00112020024. A. Srinivasan was supported in part by a SERB startup grant.

References

ABG+20. Benny Applebaum, Zvika Brakerski, Sanjam Garg, Yuval Ishai, and Aksha-
yaram Srinivasan. Separating two-round secure computation from oblivious
transfer. In ITCS 2020, volume 151 of LIPIcs, pages 71:1–71:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

ABG+21. Amit Agarwal, James Bartusek, Vipul Goyal, Dakshita Khurana, and
Giulio Malavolta. Two-round maliciously secure computation with super-
polynomial simulation. In Kobbi Nissim and Brent Waters, editors, Theory
of Cryptography - 19th International Conference, TCC 2021, Raleigh, NC,

26

USA, November 8-11, 2021, Proceedings, Part I, volume 13042 of Lecture
Notes in Computer Science, pages 654–685. Springer, 2021.

ACJ17. Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new
approach to round-optimal secure multiparty computation. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401
of LNCS, pages 468–499, Santa Barbara, CA, USA, August 20–24, 2017.
Springer, Heidelberg, Germany.

AIR01. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer:
How to sell digital goods. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 119–135, Innsbruck, Austria, May 6–10, 2001.
Springer, Heidelberg, Germany.

AMR21. Behzad Abdolmaleki, Giulio Malavolta, and Ahmadreza Rahimi. Two-round
concurrently secure two-party computation. IACR Cryptol. ePrint Arch.,
page 1357, 2021.

BCG+19. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent non-
interactive secure computation. In CCS 2019, pages 291–308. ACM, 2019.

BDM22. Pedro Branco, Nico Döttling, and Paulo Mateus. Two-round oblivious linear
evaluation from learning with errors. In PKC 2022, Part I, pages 379–408,
2022.

Bea95. Donald Beaver. Precomputing oblivious transfer. In Don Coppersmith,
editor, CRYPTO’95, volume 963 of LNCS, pages 97–109, Santa Barbara,
CA, USA, August 27–31, 1995. Springer, Heidelberg, Germany.

BF22. Nir Bitansky and Sapir Freizeit. Statistically sender-private OT from LPN
and derandomization. In Crypto 2022, 2022.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In STOC 1988, pages
103–112, 1988.

BGI+17. Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and
Akshay Wadia. Two-message witness indistinguishability and secure com-
putation in the plain model from new assumptions. In Tsuyoshi Takagi
and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume 10626 of
LNCS, pages 275–303, Hong Kong, China, December 3–7, 2017. Springer,
Heidelberg, Germany.

BGI+18. Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro. Foun-
dations of homomorphic secret sharing. In ITCS 2018, pages 21:1–21:21,
January 2018.

BGJ+17. Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khu-
rana, and Amit Sahai. Round optimal concurrent MPC via strong simula-
tion. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume
10677 of LNCS, pages 743–775, Baltimore, MD, USA, November 12–15,
2017. Springer, Heidelberg, Germany.

BGJ+18. Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman
Kalai, Dakshita Khurana, and Amit Sahai. Promise zero knowledge and
its applications to round optimal MPC. LNCS, pages 459–487, Santa Bar-
bara, CA, USA, 2018. Springer, Heidelberg, Germany.

BHP17. Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round
secure computation without setup. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part I, volume 10677 of LNCS, pages 645–677, Baltimore, MD,
USA, November 12–15, 2017. Springer, Heidelberg, Germany.

27

BL18. Fabrice Benhamouda and Huijia Lin. k-round MPC from k-round OT via
garbled interactive circuits. EUROCRYPT, 2018.

BLV03. Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower bounds for non-
black-box zero knowledge. In FOCS 2003, pages 384–393, 2003.

CCG+20. Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and
Rafail Ostrovsky. Round optimal secure multiparty computation from min-
imal assumptions. In Rafael Pass and Krzysztof Pietrzak, editors, TCC
2020, Part II, pages 291–319, 2020.

CDI+19. Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren
Liu, Rafail Ostrovsky, and Vinod Vaikuntanathan. Reusable non-interactive
secure computation. LNCS, pages 462–488, Santa Barbara, CA, USA, 2019.
Springer, Heidelberg, Germany.

DGH+20. Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and
Daniel Wichs. Two-round oblivious transfer from CDH or LPN. In EURO-
CRYPT 2020, Part II, pages 768–797, 2020.

DIO21. Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowl-
edge and its applications. In ITC 2021, pages 5:1–5:24, 2021.

FJK21. Rex Fernando, Aayush Jain, and Ilan Komargodski. Maliciously-secure mr-
nisc in the plain model. IACR Cryptol. ePrint Arch., page 1319, 2021.

GGJS12. Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently
secure computation in constant rounds. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 99–
116, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.

GIKR02. Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-
round secure multiparty computation. In Moti Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 178–193, Santa Barbara, CA, USA, August 18–
22, 2002. Springer, Heidelberg, Germany.

GIS18. Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Two-round MPC:
Information-theoretic and black-box. In TCC 2018, Part I, LNCS, pages
123–151. Springer, Heidelberg, Germany, March 2018.

GKP17. Sanjam Garg, Susumu Kiyoshima, and Omkant Pandey. On the exact round
complexity of self-composable two-party computation. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II,
volume 10211 of LNCS, pages 194–224, Paris, France, May 8–12, 2017.
Springer, Heidelberg, Germany.

GMPP16. Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychro-
niadou. The exact round complexity of secure computation. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 448–476, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany.

Goy11. Vipul Goyal. Constant round non-malleable protocols using one way func-
tions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC,
pages 695–704, San Jose, CA, USA, June 6–8, 2011. ACM Press.

GS18. Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure
computation from minimal assumptions. LNCS, pages 468–499. Springer,
Heidelberg, Germany, 2018.

HHPV18. Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrish-
nan Venkitasubramaniam. Round-optimal secure multi-party computation.
LNCS, pages 488–520, Santa Barbara, CA, USA, 2018. Springer, Heidelberg,
Germany.

28

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending obliv-
ious transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume
2729 of LNCS, pages 145–161, Santa Barbara, CA, USA, August 17–21,
2003. Springer, Heidelberg, Germany.

IKO+11. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and
Amit Sahai. Efficient non-interactive secure computation. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 406–
425, Tallinn, Estonia, May 15–19, 2011. Springer, Heidelberg, Germany.

IKP10. Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty com-
putation with minimal interaction. In Tal Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 577–594, Santa Barbara, CA, USA, August 15–
19, 2010. Springer, Heidelberg, Germany.

IKSS21. Yuval Ishai, Dakshita Khurana, Amit Sahai, and Akshayaram Srinivasan.
On the round complexity of black-box secure MPC. In CRYPTO 2021, vol-
ume 12826 of Lecture Notes in Computer Science, pages 214–243. Springer,
2021.

IKSS22. Yuval Ishai, Dakshita Khurana, Amit Sahai, and Akshayaram Srinivasan.
Round-optimal black-box protocol compilers. In EUROCRYPT, 2022.

IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography
on oblivious transfer - efficiently. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 572–591, Santa Barbara, CA, USA, August 17–
21, 2008. Springer, Heidelberg, Germany.

IR90. Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In Shafi Goldwasser, editor, CRYPTO’88,
volume 403 of LNCS, pages 8–26, Santa Barbara, CA, USA, August 21–25,
1990. Springer, Heidelberg, Germany.

KMO14. Susumu Kiyoshima, Yoshifumi Manabe, and Tatsuaki Okamoto. Constant-
round black-box construction of composable multi-party computation pro-
tocol. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages
343–367, San Diego, CA, USA, February 24–26, 2014. Springer, Heidelberg,
Germany.

KO04. Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party
computation. In Matthew Franklin, editor, CRYPTO 2004, volume 3152
of LNCS, pages 335–354, Santa Barbara, CA, USA, August 15–19, 2004.
Springer, Heidelberg, Germany.

KOS03. Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Round efficiency of
multi-party computation with a dishonest majority. In Eli Biham, edi-
tor, EUROCRYPT 2003, volume 2656 of LNCS, pages 578–595, Warsaw,
Poland, May 4–8, 2003. Springer, Heidelberg, Germany.

MR19. Daniel Masny and Peter Rindal. Endemic oblivious transfer. In CCS 2019,
pages 309–326. ACM, 2019.

NP01. Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In
S. Rao Kosaraju, editor, Proceedings of the Twelfth Annual Symposium on
Discrete Algorithms, January 7-9, 2001, Washington, DC, USA., pages 448–
457. ACM/SIAM, 2001.

ORS15. Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal
black-box two-party computation. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
339–358, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidel-
berg, Germany.

29

Pas12. Anat Paskin-Cherniavsky. Secure Computation with Minimal Interaction.
PhD thesis, Technion, 2012. Available at http://www.cs.technion.ac.il/users/
wwwb/cgi-bin/tr-get.cgi/2012/PHD/PHD-2012-16.pdf.

PS21. Arpita Patra and Akshayaram Srinivasan. Three-round secure multiparty
computation from black-box two-round oblivious transfer. In CRYPTO
2021, volume 12826 of Lecture Notes in Computer Science, pages 185–213.
Springer, 2021.

PVW08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 554–571, Santa Barbara, CA,
USA, August 17–21, 2008. Springer, Heidelberg, Germany.

RTV04. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility
between cryptographic primitives. In Moni Naor, editor, TCC 2004, volume
2951 of LNCS, pages 1–20, Cambridge, MA, USA, February 19–21, 2004.
Springer, Heidelberg, Germany.

Wee10. Hoeteck Wee. Black-box, round-efficient secure computation via non-
malleability amplification. In 51st FOCS, pages 531–540, Las Vegas, NV,
USA, October 23–26, 2010. IEEE Computer Society Press.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended ab-
stract). In 27th Annual Symposium on Foundations of Computer Science,
Toronto, Canada, 27-29 October 1986, pages 162–167. IEEE Computer So-
ciety, 1986.

30

http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2012/PHD/PHD-2012-16.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2012/PHD/PHD-2012-16.pdf

	Round-Optimal Black-Box Secure Computation from Two-Round Malicious OT

