
Random-Index Oblivious RAM

Shai Halevi1 and Eyal Kushilevitz2

1 Algorand Foundation, USA
2 Computer Science Department, Technion, Israel

Abstract. We study the notion of Random-index ORAM (RORAM),
which is a weak form of ORAM where the Client is limited to asking
for (and possibly modifying) random elements of the N -items memory,
rather than specific ones. That is, whenever the client issues a request,
it gets in return a pair (r, xr) where r ∈R [N] is a random index and xr

is the content of the r-th memory item. Then, the client can also modify
the content to some new value x′

r.

We first argue that the limited functionality of RORAM still suffices for
certain applications. These include various applications of sampling (or
sub-sampling) and, in particular, the very-large-scale MPC application
in the setting of Benhamouda et al. [2]. Clearly, RORAM can be imple-
mented using any ORAM scheme (by the Client selecting the random r’s
by itself), but the hope is that the limited functionality of RORAM can
make it faster and easier to implement than ORAM. Indeed, our main
contributions are several RORAM schemes (both of the hierarchical-type
and the tree-type) of lighter complexity than that of ORAM.

1 Introduction

Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky [12,19,13], is a
method to compile RAM programs into corresponding “oblivious” programs that
keep the same functionality but hide the original access pattern to the memory.
This is aimed at preventing leakage of secret information about the data that is
revealed by such access patterns and cannot be hidden by merely encrypting the
data. The study of ORAM started with software protection motivation in mind,
but since then found many applications. In particular, ORAM is used for storing
data in cloud applications, where a client stores in a cloud server N data items
that it owns and it then accesses them via a sequence of read/write operations.
ORAM schemes guarantee that the sequence of physical addresses that are read
and written by the client does not leak to the server information about which
virtual items the client accesses.

ORAM is the subject of a lot of research, resulting in many schemes (e.g.,
[12,19,16,22,9,23,5,20,1] and many more), with the goal of minimizing the over-
head incurred by the RAM to ORAM transformation. This beautiful line of work
recently culminated with the OptORAMa scheme [1], whose O(logN) overhead

2 Shai Halevi and Eyal Kushilevitz

meets the known lower bounds [13,17].3 ORAM found many uses beyond cloud
storage, for example for efficient MPC protocols, enabling simulating compu-
tations that are represented by RAM programs rather than the less efficient
circuit representation. Modern ORAM constructions are also sufficiently effi-
cient to be useful in practical systems. Other variants of ORAM (not addressed
by the current work) were also considered in the literature, motivated by other
models and by applications. Examples include Parallel ORAM [3], Distributed
ORAM [18,7,14] and others.

To further reduce the overhead below the Ω(logN) lower bound (or, al-
ternatively, to reduce the practical cost of ORAM schemes), one may consider
restricted variants of ORAM that do not provide the full ORAM functionality.
One examples is Offline ORAM (where the entire sequence is known to the client
in advance), for which Boyle and Naor [4] show an improved construction under
some assumption related to sorting circuits (in contrast to the lower bound of
[13] for offline ORAM in the “balls-and-bins” setting). Another example is Read
only ORAM, where Weiss and Wichs [25] show an improved construction, based
on an assumption related to the existence of small sorting circuits and assuming
very good locally decodable codes (LDCs),4 while, again, in the “balls-and-bins”
setting, the lower bound of [13] still holds.

1.1 Random-Index ORAM

In this work we introduce another variant of ORAM, motivated by applications,
which we term Random-index-ORAM (RORAM), that only supports random
selection of elements from the memory. As in the ORAM setting, the server
stores for the client a memory that contains N items. Differently from standard
ORAM, however, access requests by the client do not ask for specific memory
locations. Instead, whenever the client issues a request, it receives a random
sample from the memory. Namely, the client receives a pair (r, xr), with r a
uniformly random location and xr the data stored in that location. Crucially,
the location r is kept hidden from the server/adversary. (We also allow for Write
operations, where the client can replace the selected value xr by another value
x′
r.) This is clearly solvable by using a standard ORAM scheme; namely, by the

client picking the location r at random and using the standard ORAM to access
the content of the r-th memory item. The goal is to improve efficiency beyond
that of standard ORAM schemes. Note that the Goldreich-Ostrovsky “balls-
and-bins” lower bound [13] applies to RORAM just as for full ORAM, hence
we cannot expect to get asymptotic improvements, but we can get significant
practical speed-ups, as we show in the sequel.

3 For now, we concentrate only on the overhead in terms of the number of accesses
to the memory and ignore other relevant parameters, such as the overhead in server
storage, amount of local memory at the client, size of each memory item, etc.

4 Such LDCs are not known to exist but are also beyond current lower bound tech-
niques.

Random-Index Oblivious RAM 3

RORAM variants. We consider two main security notions for RORAM schemes,
depending on the application. The natural extension of standard ORAM security
demands that the index r remains secret, and the adversary should learn no
information about the sequence of locations r1, r2, r3, . . . (A weaker version of
this condition allows the adversary to learn information, so long as the sequence
retains enough min-entropy.)

In some applications however (see below), the client’s use of the returned en-
tries may reveal to the server the indexes that were received in the past. In those
cases, we still want future ri’s to look random to the server (till they are used),
but we do not care about hiding past indexes. We can therefore use a weaker con-
dition, requiring only that the next ri+1 should be pseudorandom/unpredictable
given the entire history so far. This weakening enables RORAM protocols that
intentionally leak information about past indexes to the server, which may im-
prove performance.

All these notions also have batch variants, where in each step the client re-
ceives a batch of some k items, rather than just one. Clearly, this potentially
may be more efficient than asking k times for a single item.

1.2 Applications

Clearly, RORAM is a weaker primitive than ORAM, making it possible to
achieve meaningful efficiency gains in applications where the RORAM function-
ality is sufficient. Indeed, we show in this work how to simplify existing ORAM
constructions in this case, e.g. by avoiding the need to build and maintain certain
hash tables or recursive structures. We sketch here a few applications where the
RORAM functionality is sufficient.

Oblivious statistics. Consider an information-provider with a huge dataset, stored
in the cloud, where customers/users may want to make statistical queries on this
data. (Such queries are very common in data analysis and in machine learning,
see e.g. [15,21].) Concretely, when a query q comes from a user, the provider
samples a random set S of items from its dataset (of an appropriate size, de-
pending on the desired accuracy) and estimates the answer to q based on this
sample. Using RORAM to sample the set S, ensures that S remains hidden, even
if the user and the cloud collude (i.e., it makes it difficult to link the answer to
q, known to the user, with specific items in the dataset).

Sub-Sampling. RORAM is also useful for simulating randomized algorithms that
are based on sub-sampling; namely, where the algorithm samples a set S of
N ′ ≪ N of the items in a large database, and then computes on S. A client
with very small space — not even enough to keep the sub-sample S— can use
RORAM to sample N ′ items for S (one by one, or in batches), build an ORAM
data-set of size N ′ by inserting the items in the sample S, and then execute
the computation on S using a standard ORAM scheme. The gain is that this
solution pays the more expensive ORAM complexity on a smaller data set of
only N ′ items, and pays the smaller RORAM complexity on the larger data-set
of N items.

4 Shai Halevi and Eyal Kushilevitz

Large-scale secure computation. Our original motivation for studying RORAM
comes from the work of Gentry et al. [10], where they studied a similar notion
of random-index PIR (RPIR). That work, like ours, was motivated by an ap-
plication of these notions to very-large-scale secure MPC, specifically for the
secrets-on-blockchain architecture of Benhamouda et al. [2]. The architecture
from [2] requires periodic random selection of small committees out of a huge
population, without the adversary learning who was selected to each committee
until after the fact.

A solution to the sampling problem, proposed by Gentry et al. [10], is to
assign to the previous committee the task of choosing the next one, as follows:

– The list of parties (or their public keys) is viewed as a public database, from
which we seek to sample random entries obliviously.

– The server state is public, making it possible for members of the previous
committee to simulate the server actions in their head.

– The client state is shared among the committee, hence client queries and
client output are generated via a secure-MPC protocol.

At the conclusion of the selection protocol, the identity (or keys) of the chosen
parties for the next committee are known to the client, i.e., they are shared
among the previous committee. The adversary, controlling only a minority of the
previous committee, does not know who was chosen. The previous committee
can then use anonymous public-key encryption over broadcast to transfer its
state to the next committee, thereby “activating” it while keeping the adversary
in the dark about who they are (until after they start sending messages).

Using this approach, the communication of the protocol depends only on the
client complexity. If the selection protocol features small client circuits, even
for large databases, then the overall solution could be sub-linear in the total
population size.

Gentry et al. [10] mentioned that RORAM can be used in this fashion instead
of RPIR, but did not develop this observation much. In particular, they did
not present RORAM constructions (and, moreover, it seems that the RORAM
definition from [10] would require implementing a full-fledged ORAM, see more
discussion in section 5.1).

A desirable property: bounded history. When using RORAM to implement the
above approach, all parties must be able to fully reconstruct the server state
when they are called to serve on the committee. It is therefore desirable that
this state can be recovered by looking only at the transcript of the last T queries,
for some predefined (preferably small) parameter T . This will make it easier for
parties to exercise a “lazy” strategy, ignoring the server state when they are not
on the committee and reconstructing it only when they are chosen to serve.

1.3 Our Contributions

In this work we study random-index ORAM (RORAM), introduce a few security
notions for it, and describe constructions that achieve meaningful speed-ups over
full-fledged ORAM.

Random-Index Oblivious RAM 5

Our constructions follow the two main types of constructions in the ORAM
literature: the hierarchical-type ORAM constructions (started from [19,13]) and
the tree-type ORAM constructions (started from [22]). In each case, we can forgo
some ingredients of the constructions, whose purpose is to locate specific items
of the dataset, replacing them with lighter mechanisms that still allow random
selection.

– In section 3 we describe two simple hierarchical-RORAM protocols, achieving
two different notions of security. In both protocols, we dispose of the hashing
steps that are needed in standard hierarchical-ORAM protocols in order to
find specific elements in the various levels of the hierarchy. We show that for
RORAM it is enough to use a much lighter element-fetching mechanism. We
still use the reshuffling procedures from [20,1,6] (that already improve over
the heavier oblivious sort).

– In section 4 we describe a tree-RORAM protocol, where we can eliminate
the recursive construction which is needed for full-fledged ORAM, yielding
a O(logN)-factor improvement over standard tree ORAMs.

While the constructions that we describe are all quite simple and they follow
the high level design of the corresponding ORAM schemes, in some of them
the probabilistic analysis of the scheme is a major challenge. We analyze some
variants in this work, and leave the analysis of others to future work. We also
note that in the ORAM context the hierarchical type design is the one that
enables to achieve the asymptotically optimal schemes, while the tree type design
seems to allow for practically superior schemes. Hence, there is a motivation to
consider RORAM schemes of both types (in addition to differences in the security
guarantees in the RORAM case).

Finally, in section 5 we discuss some questions and directions for future work.
One such direction are various possibilities for hybrid ORAM/RORAM schemes
that can support the full functionality of ORAM but enjoy the efficiency of RO-
RAM schemes in random selection steps. Other directions include the possibility
of constructing ORAM from RORAM (the reverse direction is trivial), issues re-
lated to data updates in the context of the application to very-large-scale MPC,
and possible directions for improving the analyses.

2 Definitions

Random-index Oblivious-RAM (RORAM) was sketched by Gentry et al. in [10],
but our definitions are somewhat different than theirs. A RORAM is a two
party protocol between a client and a server, where the server holds the state
corresponding to the database, but it does not learn the access pattern of the
client. Differently from a full-fledged ORAM, in RORAM the client can only
read and write random entries, not specific ones.

6 Shai Halevi and Eyal Kushilevitz

Similarly to ORAM, we have procedures for Init, Read, and Write, except
that the index to be accessed is not an input to the protocol but an output of
it. To allow increasing the database size, we also use Concatenate operation.5

Definition 2.1 (RORAM Syntax). A Random-Index ORAM protocol (RO-
RAM) consists of the following components:

– Init(1λ,Db) → (cst;SST): The initialization algorithm takes as input the
security parameter and initial database Db ∈ {0, 1}∗ (that could be empty),
and generates an initial secret client state cst and a public server state SST.

– Read(cst;SST) → ((r, x, cst′);SST′): The client fetches (r, x), with x the el-
ement in position r in the database (presumably for a uniformly random
index r ∈R [|Db|]). The client and server states are updated to cst′,SST′,
respectively.

– Write((cst, x′(·));SST) → ((r, x, cst′);SST′): Similar to Read, except that in
addition to returning the index r and the previous content x, the content of
position r in the database is replaced by x′ = x′(r, x). (Note that we let the
new value x′ depend on the old value x and its location r.6)

– Concatenate((cst, x);SST) → (cst′;SST′): The database size is increased by
one, and the value x is inserted in the new entry.

A RORAM protocol is nontrivial if the client and server work in each of these
operations is o(|Db|).

2.1 RORAM Security

We consider two notions of RORAM security in this work.

– The weaker notion, motivated by the application to large-scale secure MPC,
is future-randomness. It asserts that the next index to be returned to the
client is random from the server’s point of view, even conditioned on all the
indexes and elements that were returned in the past.

– The stronger notion, that we call just randomness, requires that both future
and past indexes are random from the server’s point of view.

To see the difference, consider a RORAM protocol in which the client’s next
query includes the index that it received previously.7 Such protocol does not
offer randomness, but it may still offer future-randomness.

Similarly to RPIR [10], for RORAM too we can weaken these two notions to
only require “high entropy” (or unpredictability) rather than pseudorandomness.
We can also look at batch versions, where multiple indexes are returned at once.
Below are the formal definitions.
5 We could also have a Drop operation to remove elements from the database, but since
we cannot target specific elements then dropping will create holes in the database.

6 The new x′ depends only on (r, x) and not on internals of the RORAM protocol
(such as its transcript), since the “higher level” client should not be exposed to
these internals.

7 Indeed, the most efficient hierarchical-RORAM protocol that we describe in section 3
has exactly that structure, each client query must include the index that the client
received in the previous step.

Random-Index Oblivious RAM 7

Future Randomness Here we consider a game in which together with each
client query qj , the server also gets the index rj−1 that the client received in
the previous step. The (semi honest) server answers all queries as prescribed by
the protocol, until it decides to end the game. It then outputs both the answer
to the last query qj (from which the client can deduce (rj , xrj)), as well as a
guess r′j for the index rj . We call this the future-randomness game.

Definition 2.2 (Future randomness). A RORAM protocol offers future-
randomness if for any sequence of queries and any semi-honest PPT server in
the future-randomness game, it holds that Pr[rj = r′j] ≤ 1/N + negl(λ). Here N
is the number of elements in the database after the last step, and the probability
is taken over all the randomness used by the parties throughout the game.

Randomness In the randomness game, we require that the server cannot dis-
tinguish the indexes that the client receives from a uniformly random sequence
of indexes. Specifically, at the onset of the randomness game, a bit is chosen
at random b ← {0, 1} and kept secret from the server. If b = 1 then the game
proceeds similarly to the future-randomness game, where after answering each
query qj the server is shown the index rj that the client received. If b = 0, then
instead of rj , the server is given r′j which is chosen uniformly at random from
[Nj] (where Nj is the number of elements in the database after step j). The
game proceeds in this manner until the server decides to end it, outputting a
guess b′ for b.

Definition 2.3 (Randomness). A RORAM protocol offers randomness if for
any sequence of queries and semi-honest PPT server in the randomness game,
it holds that |Pr[b = b′] − 1

2 | ≤ negl(λ). The probability is taken over all the
randomness used by the parties throughout the game.

Both these notions can be relaxed by replacing the uniform distribution by
other distributions with sufficient min-entropy.

2.2 Batch RORAM

Many RORAM applications need to draw not just one but many random sam-
ples in each step, so it makes sense to try and amortize the lookup cost. It is
straightforward to extend the definitions above to the case where each access
returns exactly k elements, where k is a parameter. We just replace the single
index rj in step j by a vector of indexes rj ∈ [Nj]

k (and the corresponding
vector of elements xj that are stored in these positions).

Another useful variant, which we employ in section 4, is where the batch
size itself could vary. The syntax is exactly the same as above, except that
the batch size k is a random variable, determined by the protocol randomness.
We are interested in this new notion in the context of not-quite-random-but-
high-entropy distributions, but measuring (min-)entropy in this case is a little
awkward. Hence we use a more special-purpose notion of guessing resilience,

8 Shai Halevi and Eyal Kushilevitz

which directly measures what we need in the application to large-scale secure
MPC.

This notion, which is a variant of future-randomness, has two parameters
ϵ ≤ δ. We consider a server with a “budget” of ϵN elements that it can guess,
and bound the probability that this server is able to guess more than a δ-fraction
of the samples drawn in the next step.

This security game proceeds similarly to the future-randomness process,
where the server gets with each query qj also all the indexes in Rj−1 that were
received by the client in the previous query. When the server decides to end the
game, it outputs a set of indexes R′ ⊂ [N]. The server is considered successful
if |R′| ≤ ϵN but |R ∩ R′| ≥ δ|R|, where R is the set of indexes returned in the
last step.

Definition 2.4. For parameters ϵ ≤ δ, a RORAM protocol offers (ϵ, δ) guessing-
resilience if for any sequence of queries and any semi-honest PPT server in the
guessing game above, it holds that Pr[|R′| ≤ ϵN but |R ∩R′| ≥ δ|R|] ≤ negl(λ).

3 Hierarchical RORAM

In this section, we describe two hierarchical RORAM protocols which are more
efficient than full-blown ORAM. Specifically, we try to reduce the use of heavy
oblivious sorts and to eliminate the use and maintenance of hash tables in each
level of the hierarchy (whose goal, in regular hierarchical ORAM, is to locate
the concrete item we search for). We assume that the reader is familiar with the
common features of all hierarchical ORAM schemes such as:

– The memory is organized in O(logN) levels of growing sizes, where the i’th
level of size 2i (the smallest level may correspond to i ≈ log log n, of size
O(log n)).

– In each step, one item in each level is accessed (to hide the level in which the
accessed item is actually found), and then the accessed item is removed from
its level and is re-inserted into the smallest level. In a bit more details, each
value that is read from some level and is not the desired item is re-encrypted
and re-written, and if the desired item is found it is replaced by an encrypted
null value (and dummy items are read from the following levels).

– Every O(2i) steps the contents of the first i levels are randomly reshuffled
into level i+ 1.

The description below is focused on the new aspects of our protocols.

3.1 Protocol 1 - Future Randomness

We start with a scheme for the future-randomness variant; i.e., where the ad-
versary gets to see the chosen locations after they are selected and before the
next selection (see definition 2.2). Since the adversary sees after the fact the
actual sequence of locations, then it can also compute which items are contained

Random-Index Oblivious RAM 9

in what levels of the hierarchy. The only information that is hidden from the
adversary is the order of items within each level. Whenever a request for a next
item comes, the following is executed:

– Server (and Client) know, for each level i, the number of items ni that
reside in this level. But the items in each level are randomly ordered, and
this ordering is secret. Client selects the winning level i0 for this round in
proportion to the level size. I.e., each level i is the winner with probability
ni/

∑
j nj .

– Client reads one item from each level (to hide the identity of i0). For sim-
plicity, say that it reads the last item in the level (i.e., the one at position
ni). It discards all those items except the one read from level i0.

8

– After the output is revealed, Server omits this item from level i0 (simply
by decreasing ni0 by one) and adds it to the top (smallest) level.9 More
concretely, this is done by the client reading the entire top level (which is
small), randomly permuting its elements, and rewriting it (and updating its
size).

– Finally, every 2i steps, all levels i and above are merged into level i+1 (with
the client’s help), to avoid overflow. As observed in [20,1], this operation
(termed “intersperse”) does not require oblivious sort, since it merges ran-
domly permuted arrays. It just needs to hide, for each item in the resulting
array, from what level it came. Moreover, in our case we also do not need
to bring each item to a specific location, determined by the hash, and/or to
construct a corresponding hash table; we only need the result to maintain a
random order.
The complexity of intersperse was bounded in PanORAMa [20] by n log log n
(vs. n log n for Oblivious Sort), and was further reduced to the asymptotically
optimal O(n) in OptORAMa [1].

For correctness, the idea is that selecting each level in proportion to its size,
together with the random order within each level, ensures uniform probability
for each output element.

The security argument. Recall that we are in the future-randomness model,
where the adversary anyway sees each ri before ri+1 is selected. Given the se-
quence so far (r1, . . . , ri) (which implies the knowledge of what level contains each
item), the actions that occur before giving ri+1 to the Client (namely, obliviously
reading the “last” item from each level) give the adversary no information and
so each element has probability 1/N to be the next item.

8 We can further reduce the time in this step at the cost of a (small) penalty in space.
That is, if Client has a little extra memory, it could keep the values of all read items
(one from each level) from one invocation to the other, instead of reading them again
in the next invocation and only update in the next invocation the single item that
is currently used (which by then will anyway be known to the adversary).

9 Note that in this way we refrain from the need to handle so-called “dummy” items,
in standard ORAM constructions.

10 Shai Halevi and Eyal Kushilevitz

Theorem 3.1. Protocol 1 is a RORAM protocol satisfying future-randomness,
and overhead of O(logN).

3.2 Protocol 2 - Randomness

In the protocol above, the server learns after the fact the level from which the
item ri was selected (as this information can be computed by knowing ri). In the
case of the randomness game (definition 2.3), where the adversary does not get
the ri’s, we must in particular hide the winning label i0 from the server. Hence,
the server no longer knows exactly how many elements are in each level, so it
cannot just read “the last item” from each level as it did above.

A naive attempt to fix the protocol is for the server to read “the next item”
from each level in each step. Namely, in the first step after levels i−1 and above
are merged into level i, the server will read the first item from level i, then the
second item, then the third, and so on. With this protocol, one could hope that
level i will contain enough items, with high probability, so the server will be able
to keep reading them for 2i steps, until that level is merged to the level below.
Unfortunately, this is not the case. In fact, it can be shown that no matter the
ratio between the level sizes, and no matter how often levels are merged into the
levels before, level i will always run out of items before the next time that it is
merged into level i+ 1.

Rather than reading one element at a time, we therefore switch to reading a
“window of elements” from each level. The idea is that (1) most read elements
are not really used, since we read from all levels at each step and only select
one (according to level sizes). (2) if the level is of size X, we expect to use it
with probability X/n, i.e. once every n/X steps (which overcomes the previous
problems when reading a new element in each step). Since this is only in ex-
pectation, if we start by reading λ elements from the level and then, every n/X
steps read one more element (and maintain the “window” of last λ elements),
we will argue that with high probability we will always have enough elements
to read. (The client rewrites everything that is read, and the selected item is
replaced by “dummy”, so the server does not know which one was actually used;
if the client reads from some level it takes the first non-dummy element in the
corresponding window.)

In more detail, each level i has size 2i, where we start from level i ≈ log λ (of
size λ, security parameter) and end in level L = log n of size n (that contains all
elements).

– Every 2i+1 steps we empty all levels i and above into level i+1. This means
that each level i is empty for 2i steps, and then level i − 1 and above are
emptied into level i. The only exception here is level L which is never emptied
and every n steps all elements are coming back to it.

– At each step, a level j is selected with probabilities proportional to level
sizes (which are known to the client). One item from the winning level is
then accessed and moved to the root; see below for details on which item is
read. (Reading from level L is simple: just one-by-one for n steps and then
when it is re-filled we start over.)

Random-Index Oblivious RAM 11

For each level we maintain a public window of size λ (the security parameter)
which are the items that the server will read and send to the client. For each
level i we have a public parameter ρi which is the rate of advancing the window.
(We set ρi slightly above 2i/n; the exact value to be determined below.) As
mentioned, level i is filled in step 2i and emptied in step 2i+1. Thereafter in each
step 2i + t (for t < 2i) we read the window [si, si + λ− 1] from this level, where
si = ⌊ρi · t⌋.

We are also keeping for each level i a secret pointer pi to the next element
to read, this pointer is known to the client but not to the server. When the level
is filled in step 2i the pointer is set to pi = 1, and thereafter it is advanced
whenever we actually access an item from that level (i.e., when that level was
selected), or when pi lags behind the rear of the window (this ensures that we
always have pi ≥ si).

We note that security of this protocol is completely straightforward, as the
server never sees any non-encrypted content and its access pattern is determinis-
tic: In each step it reads from each level i all the items in the window [si, si+λ−1].
The hard part is proving correctness, i.e. that every step indeed returns some
item to the client. The rest of this section is devoted to proving it, yielding the
following theorem:

Theorem 3.2. Protocol 2 is a RORAM protocol satisfying the randomness prop-
erty, and overhead of O(logN).

The technical proof, which not quite straightforward, is moved to the ap-
pendix to make room in the main text for our tree-based construction.

Bounded History We note that for both protocols in this section, the entire
state of the server can be reconstructed by looking at the recent n operations (or
less). Specifically, any history that includes the last intersperse operation from
levels L− 1 and above to level L, has enough information to reconstruct all the
ciphertexts in all the levels.

4 Tree-Based RORAM

Below we introduce a class of simple tree-base RORAM schemes, then describe
in detail and analyze one specific scheme in this class.

Recall that in tree-ORAM schemes ([22] and follow-up schemes), data items
are held in the nodes of a binary tree. At any point, each data item is assigned to
one leaf in the tree, and it can be found somewhere on the path from the root to
its assigned leaf. A data-access operation consists of looking up a single root-leaf
path in the tree, extracting the relevant data item from it, then assigning that
element to a new random leaf and pushing it back at the root of the tree. After
each data access, a maintenance process is invoked to push elements down the
tree towards their assigned leaves, so as to prevent overflow at the top levels.

12 Shai Halevi and Eyal Kushilevitz

Full-fledged tree-ORAM must be able to determine which root-leaf path to
read in order to find specific data items. This is solved via a recursive struc-
ture with smaller and smaller trees, where each tree contains information about
where to find data items in the next larger tree (so-called “position map”). This
solution, however, adds a O(logN) factor to the ORAM overhead.

4.1 A Class of Tree-RORAM Schemes

We note that since RORAM schemes do not need to look up specific elements,
there is no real need for the recursive construction that stores position maps.10

Instead, here we consider schemes that employ just one tree with all the data
items, and where each step just looks up an arbitrary leaf (either a random one
or according to some deterministic order). Each operation therefore consists of
the following steps:

1. Determine the leaf to read, and look up the path in the tree from the root
to that element;

2. Extract one or more data items from this path and return (their encryption)
to the client;

3. Assign a fresh random leaf to each extracted element (keep this information
within the element), optionally change the data stored in the element, and
then push the element back at the root of the tree;

4. Invoke the maintenance process to push elements down towards their as-
signed leaves.

This class of schemes has several different variations:

– The next leaf to read can be chosen at random in every step, or the scheme
can use a round-robin ordering of leaves;

– When reading a root-leaf path, it can return to the client either one data
item from the ones assigned to the target leaf, or a batch of some fixed
number of them (a parameter k), or all the data items that are assigned to
that leaf;

– The elements that were not returned to the client (if any), could either be
left in their place, or extracted and assigned new leaves as well;

– Finally, another source of variation is the maintenance process.

Not a perfectly uniform RORAM. It is important to note that RORAM schemes
from the class above do not result in a completely uniformly random choice of
data items from the server’s point of view. To see that, notice that choosing a
random data item would imply a non-uniform distribution on the leaf which is
read next (since some leaves will have more items assigned to them than others).
Conversely, choosing a uniform leaf (or using a deterministic ordering) implies
a non-uniform probability distribution over the chosen data item.

10 Another example of efficiency improvements that come from eliminating the need to
access a position map, in a different context than ours (where there is a restriction
on the access pattern due to the particular computation that is performed), can be
found in [24].

Random-Index Oblivious RAM 13

4.2 The Scheme that we Analyze

In this work, we only present one scheme from the class above that arguably
features the easiest analysis. This is a “worst case scheme”, where the server is
provided with as much information as possible (and hence unfortunately it also
has the worse parameters).

Specifically, we consider the variant where the leaves are accessed in a round-
robin fashion, where all the data-items that are assigned to the target leaf are
extracted and returned to the client, and we consider the forward-randomness
game where the server gets to see all these items after they are given to the
client.

In terms of the maintenance process, we adopt the process of Gentry et
al. from [11], which also use a deterministic leaf traversal, specifically bit-reverse
ordering. Namely, with a binary tree on L leaves, we name each leaf by a logL bit
string, describing the path from the root (MSB) to that leaf (LSB). For example
with L = 28, leaf 100 is obtained by the path right-left-left from the root, and leaf
001 is obtained by left-left-right. With this representation, the leaves are accessed
in reverse bit ordering, bitReverse(0), bitReverse(1), . . . , bitReverse(L− 1). In the
example with L = 23, the order will be (000, 100, 010, 110, 001, 101, 011, 111), or
in numbers (0, 4, 2, 6, 1, 5, 3, 7).

Hence the scheme that we consider for the rest of this section is as follows.
It maintains an L-leaf binary tree, holding N items in total, where each node
can hold upto m data items. m and L are parameters, TBD later as a function
of N and the security parameter, with L a power of two. The i’th data-access
operation (i = 0, 1, 2, . . .) is implemented as follows:

1. Let j = bitReverse(i mod L). Read the path from the root to leaf j, extract
from it all the data items that are assigned to leaf j, and return them to the
client;

2. Assign to each of these data items a fresh uniform leaf in [L], and place them
all back at the root of the tree (after possibly updating the data in them);

3. Push each data item on the root-to-j path as far down toward its assigned
leaf as it can go along that path (i.e., an item assigned to j′ is pushed as far
down as commonPrefix(j, j′));

4. Write the updated path back to the tree.

Note that as opposed to the future-randomness hierarchical-RORAM protocol
from section 3.1, the protocol here does not rely on the server learning the past
indexes. Nonetheless, below we analyze it only in the forward-randomness setting
where all these indexes are revealed to the server after the fact.

A Technical Lemma Underlying most of our analysis in this section is the
following simple technical lemma, bounding the probability of finding one specific
element in one specific leaf. This lemma is independent of the server’s view, or
the number of elements that are returned to the client. It depends only on the
fact that all the elements are evicted from the leaves that we examine, and are
then assigned independently to fresh random leaves.

14 Shai Halevi and Eyal Kushilevitz

Lemma 4.1. Fix N,L, and an arbitrary starting assignment of the N elements
into the L leaves. Assume that the first leaf to be examined is leaf zero. Then,
for every element, the probability that this element will be assigned to leaf zero
the next time that this leaf is examined, is between 1/L and e/L.

Note that the lemma talks about the next time that leaf zero is examined, not
this time. That is, we consider some initial configuration at step 0 where leaf
zero is examined, and assert that in step L, when leaf zero will be examined
again, each item has probability between 1/L and e/L of being there.

Proof. For i = 0, 1, ..., L − 1, let pi be the probability that an element which is
currently assigned to leaf i will be assigned to leaf 0 the next time that we look
at it (not this time). We can define pi inductively as follows:

– pL−1 = 1/L;

– pi = 1/L ·
∑L−1

j=i+1 1/L · pj .

Solving this recurrence, we get pi =
(1+1/L)L−i

L , hence 1/L ≤ pi ≤ e/L holds for
all i. ⊓⊔

4.3 Bounding the Prediction Probability

Recalling that the scheme above has a variable batch size, we next analyze
its security in terms of definition 2.4. Namely, motivated by the application to
large-scale secure-MPC, we focus below on a setting where the adversary has a
“budget” of upto ϵN guesses, and we bound the probability that it guesses more
than a δ-fraction of the elements that are returned in the next data access. The
rest of this subsection is devoted for proving the following:

Theorem 4.2. For every constant δ > 0, there is another constant ϵ = Ω(δ2),
such that the RORAM scheme above offers (ϵ, δ)-guessing resilience as per defi-
nition 2.4.

To simplify the analysis, we assume at first that the nodes have infinite
capacity, so we can ignore issues of overflow. As we show in appendix B, standard
analysis shows that for appropriate setting of the node-size m, overflow would
only happens with negligible probability. Assuming no overflow, we can ignore
the tree altogether and concentrate only on the leaves. That is, we consider a
process in which an element which is assigned to some leaf is immediately placed
in that leaf. For simplicity below we also ignore the reverse-bit-ordering of leaves
(which is only needed to argue about overflow probability). Instead we consider
the natural ordering of leaves, 0, 1, 2, . . . , L− 1.

Recall again that below we only analyze the “pessimistic” case where the
adversary sees all the elements that are extracted from the previous leaves. Other
cases where it only sees a few of these elements clearly reduces the server’s ability
to guess, but we were not able to analyze this improvement. We leave it as an
interesting open question.

Random-Index Oblivious RAM 15

The Optimal Adversary When the adversary sees all the extracted elements,
it is easy to describe the distribution over the locations of all the elements,
conditioned on the adversary’s view: Those elements that were last seen L − 1
steps ago must all be in the next leaf, elements that were last seen L−2 steps ago
are uniformly distributed between the next leaf and the one after that, elements
that were last seen L − 3 steps ago are uniform over the next three leaves, etc.
In general, the location of an element that was last seen (L − j) steps ago is
uniformly distributed among the next j leaves. Moreover, the location of the
different elements are all independent of each other, even conditioned on the
adversary’s view.11

Hence, the optimal strategy for an adversary that tries to guess the elements
placed in the next leaf is as follows: The adversary first guesses all the elements
that were seen L−1 steps ago, followed by those that were seen L−2 steps ago,
then L− 3, etc., until the entire budget of ϵN guesses is exhausted. The success
of that strategy is analyzed in appendix B.

Bounded History Since the protocol above examines the leaves in a round-
robin fashion, then the entire state of the server can be reconstructed by looking
only at the last L steps of the protocol.

5 Discussion and Future Directions

Before concluding, we discuss below a few other related topics and point out
possible future directions and open problems.

5.1 Hybrid ORAM/RORAM Schemes

An interesting direction is constructing a full-fledged ORAM scheme, but such
that accessing a random element costs a lot less than a specific element. This
would be used to speed up access-oblivious randomized algorithms (e.g. quick-
sort) that interleave random selections with accessing specific elements.

If the underlying dataset is fixed and need not be updated, then a simple
solution is to just keep two copies of the dataset, one in RORAM for the random
selections and the other in a full-fledged ORAM for fetching specific elements.

If updates are needed, however, then keeping such separate structures no
longer works, since we will not be able to update specific elements in the RORAM
structure. In that case, we can still offer some savings by keeping in each structure
enough extra information with each element to find that element in the other
structure. For example, if the other structure is a hierarchical ORAM then we
can keep information about which level it is found at and where in that level,
thus avoiding the need to consult the hash tables.

11 When the adversary only sees a few of the extracted elements, the location of the dif-
ferent elements may not be independent when conditioned on the view. One example
is provided in Fig. 1 in the appendix.

16 Shai Halevi and Eyal Kushilevitz

Similarly, if the other structure is a (recursive) tree ORAM, then we can keep
information about which leaf that element in assigned to (in all the recursive
levels). This way, once we locate an element in the non-recursive RORAM tree,
we can update all the recursive trees in a full ORAM in one round, rather than
having to interact for O(logN) communication rounds to find it.

Note, however, that keeping the two structures synchronized in this way
means that we have to update the heavier ORAM structure every time we read
from the lighter RORAM structure, thereby negating much of the RORAM
savings.

5.2 Refreshing Keys in Large-Scale MPC

Using RORAM for large-scale MPC as sketched in the introduction brings up the
question of how to handle key-refresh by parties. Recall that in that application,
the RORAM structure is holding the public keys of all the parties. Since RORAM
cannot fetch/update specific elements, it is not clear how can parties refresh their
keys and get the new key into the RORAM.12

One solution is to only let parties refresh their keys when they are selected
to the committee, using the RORAM write operation. This may be sensible in
setting where parties serve on committees often enough.13

Another option is to handle periodic key-refresh by keeping two structures
at any point, the current RORAM that we use and the next one that we are
building. The next-RORAM will be called on the entire new database of keys,
running the Init operation (and it can do this operation “in the background”, a
little bit at a time). Once the new RORAM is fully built, we switch to it as the
one in use, discard the old one, and begin building the next RORAM after that.

5.3 Improved Schemes and Analysis

Regarding the tree constructions, it is very likely that giving the adversary less
information will result in much better parameters (in terms of the dependence of
ϵ, δ). For example, instead of revealing all the elements that were extracted from
the last leaf, we can reveal (say) only half of them, but still extract and re-assign
all the elements from the current leaf. Or maybe even, only extract and re-assign
half the elements from the current leaf, leaving the rest of them in place. In all of
these options, it is not longer easy to describe the probability distribution over
the location of elements, conditioned on the server’s view, or to figure out the
optimal server guessing strategy. Moreover, the locations of different elements
are no longer independent of each other conditioned on this view, complicating

12 Most likely, this is the reason why the RORAM definition from [10] features ran-
dom reads but writes of specific elements, which seem to require the hybrid RO-
RAM/ORAM solution.

13 For example, in the realistic threat model where fail-stop attacks are easy to mount
but real compromise rarely happens, it may be okay to have parties refresh their
keys very rarely, when they are selected to the committee.

Random-Index Oblivious RAM 17

the analysis further. (See one example in fig. 1 in the appendix.) Getting a
good handle over the whole class of protocols of this form is an interesting open
problem.

5.4 From RORAM to ORAM

One natural question is whether we can construct full-fledged ORAM scheme
from RORAM in a black-box manner. For RPIR, Gentry et al. described a RPIR-
to-PIR black box transformation, but it requires O(N) work for the server so we
cannot use it in the RORAM/ORAM world. Finding such black-box construc-
tions (or an argument why they are unlikely) is still an open problem.

5.5 Miscellaneous

Many other questions can also be asked. For example, [17] expanded the ORAM
lower bound from the restricted “balls-and-bins” model of [13] to general schemes.
Can a similar result be shown for RORAM? The technique of [17] is based on
considering carefully structured access patterns, hence it does not seem to im-
mediately apply for RORAM. Can such a lower bound still be proved or, alter-
natively, can an upper bound that circumvents the “balls-and-bins” model be
designed (possibly, under additional assumptions)? Since the RORAM model is
weaker, such a lower bound, if true, may be more difficult to prove.

References

1. Asharov, G., Komargodski, I., Lin, W., Nayak, K., Peserico, E., Shi, E.: Optorama:
Optimal oblivious RAM. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2020 - 39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12106, pp. 403–
432. Springer (2020). https://doi.org/10.1007/978-3-030-45724-2_14, https:
//doi.org/10.1007/978-3-030-45724-2_14

2. Benhamouda, F., Gentry, C., Gorbunov, S., Halevi, S., Krawczyk, H., Lin, C.,
Rabin, T., Reyzin, L.: Can a public blockchain keep a secret? In: Pass, R.,
Pietrzak, K. (eds.) Theory of Cryptography - 18th International Conference,
TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 12550, pp. 260–290. Springer (2020).
https://doi.org/10.1007/978-3-030-64375-1_10, https://doi.org/10.1007/
978-3-030-64375-1_10

3. Boyle, E., Chung, K., Pass, R.: Oblivious parallel RAM and applications. In:
Kushilevitz, E., Malkin, T. (eds.) Theory of Cryptography - 13th International
Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 9563, pp. 175–204. Springer
(2016). https://doi.org/10.1007/978-3-662-49099-0_7, https://doi.org/10.
1007/978-3-662-49099-0_7

https://doi.org/10.1007/978-3-030-45724-2_14
https://doi.org/10.1007/978-3-030-45724-2_14
https://doi.org/10.1007/978-3-030-45724-2_14
https://doi.org/10.1007/978-3-030-45724-2_14
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-662-49099-0_7
https://doi.org/10.1007/978-3-662-49099-0_7
https://doi.org/10.1007/978-3-662-49099-0_7
https://doi.org/10.1007/978-3-662-49099-0_7

18 Shai Halevi and Eyal Kushilevitz

4. Boyle, E., Naor, M.: Is there an oblivious RAM lower bound? In: Sudan, M.
(ed.) Proceedings of the 2016 ACM Conference on Innovations in Theoreti-
cal Computer Science, Cambridge, MA, USA, January 14-16, 2016. pp. 357–
368. ACM (2016). https://doi.org/10.1145/2840728.2840761, https://doi.

org/10.1145/2840728.2840761

5. Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs, D.: Onion
ORAM: A constant bandwidth blowup oblivious RAM. In: Kushilevitz, E., Malkin,
T. (eds.) Theory of Cryptography - 13th International Conference, TCC 2016-
A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 9563, pp. 145–174. Springer (2016). https://doi.org/10.
1007/978-3-662-49099-0_6, https://doi.org/10.1007/978-3-662-49099-0_6

6. Dittmer, S., Ostrovsky, R.: Oblivious tight compaction in o(n) time with smaller
constant. In: Galdi, C., Kolesnikov, V. (eds.) Security and Cryptography for Net-
works - 12th International Conference, SCN 2020, Amalfi, Italy, September 14-
16, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12238, pp. 253–
274. Springer (2020). https://doi.org/10.1007/978-3-030-57990-6_13, https:
//doi.org/10.1007/978-3-030-57990-6_13

7. Doerner, J., shelat, A.: Scaling ORAM for secure computation. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017. pp. 523–535. ACM (2017). https://doi.
org/10.1145/3133956.3133967, https://doi.org/10.1145/3133956.3133967

8. Dubhashi, D.P., Ranjan, D.: Balls and bins: A study in negative depen-
dence. Random Struct. Algorithms 13(2), 99–124 (1998). https://doi.org/10.
1002/(SICI)1098-2418(199809)13:2<99::AID-RSA1>3.0.CO;2-M, available from
https://www.brics.dk/RS/96/25/BRICS-RS-96-25.pdf

9. Gentry, C., Goldman, K.A., Halevi, S., Jutla, C.S., Raykova, M., Wichs, D.:
Optimizing ORAM and using it efficiently for secure computation. In: Cristo-
faro, E.D., Wright, M.K. (eds.) Privacy Enhancing Technologies - 13th Inter-
national Symposium, PETS 2013, Bloomington, IN, USA, July 10-12, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 7981, pp. 1–18. Springer
(2013). https://doi.org/10.1007/978-3-642-39077-7_1, https://doi.org/10.
1007/978-3-642-39077-7_1

10. Gentry, C., Halevi, S., Magri, B., Nielsen, J.B., Yakoubov, S.: Random-index PIR
and applications. In: Nissim, K., Waters, B. (eds.) Theory of Cryptography - 19th
International Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 13044, pp. 32–
61. Springer (2021). https://doi.org/10.1007/978-3-030-90456-2_2, https://
doi.org/10.1007/978-3-030-90456-2_2

11. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM
computation. In: 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014. pp. 404–
413. IEEE Computer Society (2014). https://doi.org/10.1109/FOCS.2014.50,
https://doi.org/10.1109/FOCS.2014.50

12. Goldreich, O.: Towards a theory of software protection and simulation by obliv-
ious rams. In: Aho, A.V. (ed.) Proceedings of the 19th Annual ACM Sympo-
sium on Theory of Computing, 1987, New York, New York, USA. pp. 182–
194. ACM (1987). https://doi.org/10.1145/28395.28416, https://doi.org/

10.1145/28395.28416

https://doi.org/10.1145/2840728.2840761
https://doi.org/10.1145/2840728.2840761
https://doi.org/10.1145/2840728.2840761
https://doi.org/10.1145/2840728.2840761
https://doi.org/10.1007/978-3-662-49099-0_6
https://doi.org/10.1007/978-3-662-49099-0_6
https://doi.org/10.1007/978-3-662-49099-0_6
https://doi.org/10.1007/978-3-662-49099-0_6
https://doi.org/10.1007/978-3-662-49099-0_6
https://doi.org/10.1007/978-3-030-57990-6_13
https://doi.org/10.1007/978-3-030-57990-6_13
https://doi.org/10.1007/978-3-030-57990-6_13
https://doi.org/10.1007/978-3-030-57990-6_13
https://doi.org/10.1145/3133956.3133967
https://doi.org/10.1145/3133956.3133967
https://doi.org/10.1145/3133956.3133967
https://doi.org/10.1145/3133956.3133967
https://doi.org/10.1145/3133956.3133967
https://doi.org/10.1002/(SICI)1098-2418(199809)13:2<99::AID-RSA1>3.0.CO;2-M
https://doi.org/10.1002/(SICI)1098-2418(199809)13:2<99::AID-RSA1>3.0.CO;2-M
https://doi.org/10.1002/(SICI)1098-2418(199809)13:2<99::AID-RSA1>3.0.CO;2-M
https://doi.org/10.1002/(SICI)1098-2418(199809)13:2<99::AID-RSA1>3.0.CO;2-M
https://doi.org/10.1007/978-3-642-39077-7_1
https://doi.org/10.1007/978-3-642-39077-7_1
https://doi.org/10.1007/978-3-642-39077-7_1
https://doi.org/10.1007/978-3-642-39077-7_1
https://doi.org/10.1007/978-3-030-90456-2_2
https://doi.org/10.1007/978-3-030-90456-2_2
https://doi.org/10.1007/978-3-030-90456-2_2
https://doi.org/10.1007/978-3-030-90456-2_2
https://doi.org/10.1109/FOCS.2014.50
https://doi.org/10.1109/FOCS.2014.50
https://doi.org/10.1109/FOCS.2014.50
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/28395.28416

Random-Index Oblivious RAM 19

13. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivi-
ous RAMs. J. ACM 43(3), 431–473 (1996). https://doi.org/10.1145/233551.
233553, https://doi.org/10.1145/233551.233553

14. Gordon, S.D., Katz, J., Wang, X.: Simple and efficient two-server ORAM. In:
Peyrin, T., Galbraith, S.D. (eds.) Advances in Cryptology - ASIACRYPT 2018 -
24th International Conference on the Theory and Application of Cryptology and
Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings,
Part III. Lecture Notes in Computer Science, vol. 11274, pp. 141–157. Springer
(2018). https://doi.org/10.1007/978-3-030-03332-3_6, https://doi.org/10.
1007/978-3-030-03332-3_6

15. Kearns, M.J.: Efficient noise-tolerant learning from statistical queries. J. ACM
45(6), 983–1006 (1998). https://doi.org/10.1145/293347.293351, https://

doi.org/10.1145/293347.293351

16. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In: Rabani, Y. (ed.) Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Ky-
oto, Japan, January 17-19, 2012. pp. 143–156. SIAM (2012). https://doi.org/
10.1137/1.9781611973099.13, https://doi.org/10.1137/1.9781611973099.13

17. Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound! In:
Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO 2018 - 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2018, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10992,
pp. 523–542. Springer (2018). https://doi.org/10.1007/978-3-319-96881-0_

18, https://doi.org/10.1007/978-3-319-96881-0_18
18. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party com-

putation. In: Sahai, A. (ed.) Theory of Cryptography - 10th Theory of Cryp-
tography Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 7785, pp. 377–396. Springer (2013).
https://doi.org/10.1007/978-3-642-36594-2_22, https://doi.org/10.1007/
978-3-642-36594-2_22

19. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: Ortiz, H. (ed.)
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
May 13-17, 1990, Baltimore, Maryland, USA. pp. 514–523. ACM (1990). https:
//doi.org/10.1145/100216.100289, https://doi.org/10.1145/100216.100289

20. Patel, S., Persiano, G., Raykova, M., Yeo, K.: Panorama: Oblivious RAM with
logarithmic overhead. In: Thorup, M. (ed.) 59th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018.
pp. 871–882. IEEE Computer Society (2018). https://doi.org/10.1109/FOCS.
2018.00087, https://doi.org/10.1109/FOCS.2018.00087

21. Reyzin, L.: Statistical queries and statistical algorithms: Foundations and applica-
tions. CoRR abs/2004.00557 (2020), https://arxiv.org/abs/2004.00557

22. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Yu, X., Devadas,
S.: Path ORAM: an extremely simple oblivious RAM protocol. In: Sadeghi,
A., Gligor, V.D., Yung, M. (eds.) 2013 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS’13, Berlin, Germany, November 4-8,
2013. pp. 299–310. ACM (2013). https://doi.org/10.1145/2508859.2516660,
https://doi.org/10.1145/2508859.2516660

23. Wang, X., Chan, T.H., Shi, E.: Circuit ORAM: on tightness of the goldreich-
ostrovsky lower bound. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, Den-

https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1007/978-3-030-03332-3_6
https://doi.org/10.1007/978-3-030-03332-3_6
https://doi.org/10.1007/978-3-030-03332-3_6
https://doi.org/10.1007/978-3-030-03332-3_6
https://doi.org/10.1145/293347.293351
https://doi.org/10.1145/293347.293351
https://doi.org/10.1145/293347.293351
https://doi.org/10.1145/293347.293351
https://doi.org/10.1137/1.9781611973099.13
https://doi.org/10.1137/1.9781611973099.13
https://doi.org/10.1137/1.9781611973099.13
https://doi.org/10.1137/1.9781611973099.13
https://doi.org/10.1137/1.9781611973099.13
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1145/100216.100289
https://doi.org/10.1145/100216.100289
https://doi.org/10.1145/100216.100289
https://doi.org/10.1145/100216.100289
https://doi.org/10.1145/100216.100289
https://doi.org/10.1109/FOCS.2018.00087
https://doi.org/10.1109/FOCS.2018.00087
https://doi.org/10.1109/FOCS.2018.00087
https://doi.org/10.1109/FOCS.2018.00087
https://doi.org/10.1109/FOCS.2018.00087
https://arxiv.org/abs/2004.00557
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1145/2508859.2516660

20 Shai Halevi and Eyal Kushilevitz

ver, CO, USA, October 12-16, 2015. pp. 850–861. ACM (2015). https://doi.org/
10.1145/2810103.2813634, https://doi.org/10.1145/2810103.2813634

24. Wang, X.S., Huang, Y., Chan, T.H., Shelat, A., Shi, E.: SCORAM: oblivious RAM
for secure computation. In: Ahn, G., Yung, M., Li, N. (eds.) Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014. pp. 191–202. ACM (2014). https://doi.org/10.
1145/2660267.2660365, https://doi.org/10.1145/2660267.2660365

25. Weiss, M., Wichs, D.: Is there an oblivious RAM lower bound for online reads? In:
Beimel, A., Dziembowski, S. (eds.) Theory of Cryptography - 16th International
Conference, TCC 2018, Panaji, India, November 11-14, 2018, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 11240, pp. 603–635. Springer (2018).
https://doi.org/10.1007/978-3-030-03810-6_22, https://doi.org/10.1007/
978-3-030-03810-6_22

A Hierarchical-RORAM: More Details

We now proceed to prove our main theorem:

Theorem 3.2. Protocol 2 is a RORAM protocol satisfying the randomness prop-
erty, and overhead of O(logN).

Invariants. Recall that for each level i we have at any point a public window
[si, si + λ − 1], and a secret pointer pi (all indexes into the i’th level). What
we need to prove is that in every step, some element in indeed returned to the
client. A sufficient condition for this method to work, is maintaining these two
conditions:

1. The front of the window never exceeds the number of elements in the level,
until the level is emptied to the next one. Denoting by Si the number of
items in level i when it is filled in step 2i, we show that whp we have Si ≥
⌊ρi · 2i⌋+ λ, which ensures that we have enough elements for 2i steps.

2. The pointer pi is always included in the current window [si, si+λ−1]. Since
pi ≥ si by definition, this is reduced to showing that whp we always have
pi < si + λ.

Analysis of size behavior.

– Level L is of size n: it starts with all n elements, and every n steps all
elements are back and we start another such phase.

– Level i < L has capacity 2i. Every 2i+1 steps it is being emptied to the
level below (together with all levels above it), and every 2i steps it is being
filled from the levels above. This means that, if we look at 2i+1 consecutive
steps, during the first 2i steps this level is empty, and then we insert into it
everything from above. This can be at most 2i elements, if in all 2i steps the
selected elements are taken from levels below i. After another 2i steps, this
level is emptied again.

https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2660267.2660365
https://doi.org/10.1145/2660267.2660365
https://doi.org/10.1145/2660267.2660365
https://doi.org/10.1145/2660267.2660365
https://doi.org/10.1145/2660267.2660365
https://doi.org/10.1007/978-3-030-03810-6_22
https://doi.org/10.1007/978-3-030-03810-6_22
https://doi.org/10.1007/978-3-030-03810-6_22
https://doi.org/10.1007/978-3-030-03810-6_22

Random-Index Oblivious RAM 21

Let’s consider an interval that begins when level i is emptied, so all the
elements are at lower levels. Let us compute the expected number of elements
that remain below levels i during the 2i steps before that level is filled. (These
are the elements that will not be in level i when it is filled.)

For each element j ∈ [n], let Xj be a characteristic random variable of the
event that j was never chosen in any of the 2i steps (so it remained below level

i). Then, the expected value of each Xj is E[Xj] = Pr[Xj = 1] = (1 − 1/n)2
i

.
The size of level i when it is filled is exactly n−

∑
j Xj , so the expected size of

level i is n−
∑

j E[Xj] = n(1− (1− 1/n)2
i

).

Recalling that (1− 1/n)2
i

=
(
(1− 1/n)n

)2i/n ≤ (1/e)2
i/n, the expected size

of level L− i when it is filled is therefore bounded from below by (and very close

to) n(1− (1/e)2
−i

). To give a few example, denote by Si the size of level i when
it is filled, and its expected value by µi = E[Si], then we have

– µL−1 ≥ n
(
1−

√
1/e

)
≈ 0.393n ≈ n/2.5

– µL−2 ≥ n
(
1− 4

√
1/e

)
≈ 0.221n ≈ n/4.5

– µL−3 ≥ n
(
1− 8

√
1/e

)
≈ 0.118n ≈ n/8.5

– µL−4 ≥ n
(
1− 16

√
1/e

)
≈ 0.061n ≈ n/16.5

– . . .

It is not hard to see that µL−i < 2−in: By symmetry, all elements j ∈ [n]
have the same probability of being chosen at least once, so we might as well look
at the probability that a random element is chosen at least once. We have 2L−i

steps until we fill level L − i, so we can choose at most 2L−i distinct elements.
Hence for a random element, the probability of it being chosen (at least once)
cannot be more than 2L−i/n = 2L−i/2L = 2−i.

By a similar argument, µL−i gets closer to 2−in as i grows: Let #coli be
the expected number of collisions when choosing 2L−i elements at random with
repetitions (i.e., the number of times we’ve chosen an element that was already
chosen before). Considering again a random element, we have µL−i = 2−in −
#coli. Increasing i by one (so halving the number of elements chosen) decreases
the expected number of collisions by more than a factor of two (roughly by a
factor of four). Hence µL−i = 2−in(1 − ϵi) with ϵi monotonically decreasing in
i. We saw above that already for i = 2 we have µL−2 ≥ 2−2n · 0.88, and it gets
closer to 2−in as i increases.

Beyond computing the expected value of the size Si of level i, we need to
also get high-probability bounds on Si. To that end, we would like to use the
fact that Si =

∑
j Xj (with Xj the characteristic random variables from above)

and apply Chernoff bound, but the Xj ’s are not quite independent.
Luckily, we can use the results from [8] to argue that they are negatively

associated, and therefore the Chernoff bound apply to them as well. Specifi-
cally, [8, Thm 13] shows that the random variables Nj =#-of-times-element-i-
was-chosen are negatively associated. Then, Proposition 7 implies that also the
indicators Xj are negatively associated (since each Xj is a monotonic function
of the corresponding Nj). Finally, Proposition 5 says that Chernoff/Hoeffding

22 Shai Halevi and Eyal Kushilevitz

bounds therefore apply to the sum of the Xj ’s. We conclude that for all i and
every 0 < δ ≤ 1:

Pr[Si > µi(1 + δ)] < exp
(
− δ2µi/3

)
. (1)

Pr[Si < µi(1− δ)] < exp
(
− δ2µi/2

)
(2)

We will use the first equation to prove Invariant 1 and the second equation to
prove Invariant 2. Let us set the rate of advancing the window at level i to:

ρi = 3/2 · 2i/n for i ≤ L− 2, and rL−1 = 0.54.

With these rates, and assuming that the levels are large enough so that, for all
i, we have 2i > 4λ and also n > 25λ, we can conclude the following:

– For i ≤ L − 2, we have 2i ≤ n/4 and 2i > µi > 2i · 0.88. Together with
2i ≥ 4λ we get

⌊ρi · 2i⌋+ λ ≤ 3/2 · 22i/n+ λ ≤ 2i · (3/2 · 2i/n+ λ/2i)

≤ 2i · (3/8 + 1/4) < µi/0.88 · 0.625 < µi(1− 0.289).

Hence

Pr[Si < ⌊ρi2i⌋+ λ] < exp(−0.2892µi/2) < exp(−0.2892 · 0.88 · 2i/2)
< exp(−0.2892 · 0.88 · 2λ) < exp(−λ/7).

– For i = L−1 we have 2i = n/2, ρi = 0.54 and µi > 0.39n. Assuming n > 25λ
we get

⌊ρi2i⌋+ λ ≤ 0.27n+ n/25 = 0.31n < µi(1/4 + 1/24)/0.39 < µi(1− 0.2).

Hence

Pr[Si < ⌊ρi2i⌋+ λ] < exp(−0.22µi/2) < exp(−0.22 · 0.39n/2) < exp(−0.22µi/2)

< exp(−0.22 · 0.39 · 25λ/2) < exp(−λ/6).

To analyze the 2nd invariant, fix some level i and consider the case where this
invariant is violated at some step between 2i and 2i+1. Let t0 < 2i be such that
step 2i+ t0 was the last time that we advanced the next-element-to-read pointer
pi due to lagging behind the rear of the window (t0 = 0 if it never lagged). Let
t1 be such that step 2i + t1 is the first time that pi exceeded the front of the
window, and note that between steps 2i + t0 and 2i + t1 we only advanced the
pointer due to reading elements from level i. Denote ∆ = t1 − t0.

Hence the number of elements that we read from that level during the interval
[2i + t0, 2

i + t1] was λ + ⌊ρi · t1⌋ − ⌊ρi · t0⌋ ≥ λ + ρi∆ − 1. Since in each step
we read an element with probability at most Si/n, then the number of elements
read is bounded below a binomial random variable with ∆ trials and success

Random-Index Oblivious RAM 23

probability Si/n. We can bound the probability of violating the 2nd invariant
by

Pr[Invariant 2 is violated between steps 2i and 2i+1]

≤ Pr[∃t0, ∆, s.t. t0 +∆ < 2i and Bin(Si/n,∆) > λ+ ρi∆]

< 22i Pr[Bin(Si/n,∆) > λ+ ρi∆].

Obviously for any p, x we have Bin(p, x) ≤ x (with probability one). So Bin(Si/n,∆) >
λ+ ρi∆ has positive probability only when ∆ ≥ λ/(1− ρi). Using Inequality (1)
and the choice of ρi values from above:

– For i ≤ L− 2, assuming 2i > 4λ we have 2i ≥ µi ≥ 0.88 · 2i > 3.52λ, so

Pr[Si > 5/4 · 2i] < Pr[Si > µi(1 + 1/4)] < exp(−µi/48) < exp(−λ/14).

Moreover, with ρi = 3/2 · 2i/n, if γ := Si/n ≤ 5/4 · 2i/n = ρi/1.2 then we
get

Pr[Bin(γ,∆) > λ+ ρi∆] < Pr[Bin(γ,∆) > γ(λ/γ∆+ 1.2)∆]

≤ Pr[Bin(γ,∆) > γ(16λ/5∆+ 1.2)∆],

where the last inequality follows since, for i ≤ L−2, we have γ = 5/4·2i/n ≤
5/16. Recalling that ∆ > λ ,we consider three cases:
• ∆ > λ > ∆/4: In this case 16λ/5∆+ 1.2 > 2 and therefore

Pr[Bin(γ,∆) > λ+ ρi∆] < Pr[Bin(γ,∆) > 2γ∆]

< exp(−∆/3) < exp(−λ/3).

• ∆/4 ≥ λ > ∆/16: In this case 16λ/5∆+ 1.2 > 1.4 and therefore

Pr[Bin(γ,∆) > λ+ ρi∆] < Pr[Bin(γ,∆) > 1.4γ∆]

< exp(−0.16∆/3) ≤ exp(−λ/5).

• ∆/16 ≥ λ: In this case, we trivially have 16λ/5∆+1.2 > 1.2 and therefore

Pr[Bin(γ,∆) > λ+ ρi∆] < Pr[Bin(γ,∆) > 1.2γ∆]

< exp(−0.04∆/3) ≤ exp(−λ/5).

In any case, we get

Pr[Invariant 2 is violated between steps 2i and 2i+1]

< 22i
(
exp(−λ/14) + exp(−λ/5)

)
< n2/8 · exp(−λ/14).

– For i = L− 1 we have 0.39n < µi < 0.4n and hence (assuming n > 25λ)

Pr[Si > 0.46n] < Pr[Si > 0.46 · µi/0.40] < Pr[Si > µi(1 + 0.15)]

< exp(0.152µi/3) < exp(0.152 · 0.39n/3)
< exp(0.152 · 0.39 · 25λ/3) < exp(−0.002n) < exp(−λ/14).

24 Shai Halevi and Eyal Kushilevitz

Moreover, with ρi = 0.54, if γ := Si/n ≤ 0.46 < ρi/1.17 then we get

Pr[Bin(γ,∆) > λ+ ρi∆] < Pr[Bin(γ,∆) > γ(λ/∆γ + 1.17)∆].

The same case analysis as above (but using 1.17 instead of 1.2) implies that
here we have in all cases Pr[Bin(γ,∆) > λ + ρi∆] < exp(−λ/7). Hence for
i = L− 1 we have

Pr[Invariant 2 is violated between steps 2i and 2i+1]

< 22i
(
exp(−λ/14) + exp(−λ/7)

)
< n2/2 · exp(−λ/14).

This concludes the proof of theorem 3.2. ⊓⊔

improving the concrete efficiency by improved parameters. The analysis above
yields failure probability exponentially small in λ, but the constants are not great
(i.e., exp(−λ/14)). This can be improved a lot in various ways. Some potential
approaches include:

– Making the one-but-last level smaller: The parameters for higher-up levels
are much better than for level L− 1, if instead we make the level above the
leaves of size only n/4 rather than n/2 then the parameters will improve.
(The cost is that merging into the last level will happen twice as often.)

– For the same reason, we can make do with smaller windows at higher levels
than we do at lower ones.

– The procedure for advancing the windows could be changed, so that we move
it faster at first (when the level has more elements in it) and slower later on.

– Violating the first invariant is not necessarily a failure, what we really care
about is the next-element-to-read pointer pi exceeding Si, not necessarily
the front of the window.

B Tree-RORAM: More Details

B.1 Analysis of the optimal strategy

Recall the optimal adversary strategy: First guesses all the elements that were
seen L − 1 steps ago, followed by those that were seen L − 2 steps ago, then
L− 3, etc., until their entire budget of ϵN guesses is exhausted.

The number of correct guesses that the optimal strategy yields is a sum of
B = ϵN Bernoulli random variables, with the ones corresponding to elements
seen (L − j) steps ago having success probability of 1/j. To bound the success
probability of this optimal strategy, it remains just to bound the number of
elements of each type.

Fix some arbitrary initial configuration from at least 2L steps ago, and con-
sider the process starting from that configuration, until the current step. To fix
the indexing, assume that the leaf to be examined next is leaf 0. Below we first
devise a high-probability upper bound on the number of leaves that the strategy

Random-Index Oblivious RAM 25

above considers before running out of budget (call that upper-bound J). Then
we show an upper bound on the number of elements from these J leaves that
will end up in leaf 0, and lower-bound the number of elements from the other
L− J leaves, hence getting an upper bound on the fraction of correct guesses.

For i ∈ [1, N] and j ∈ [1, L], denote by χij the indicator random variable
which is one if element i was last seen L− j steps ago (i.e., the last time that we
examined leaf j mod L), and zero otherwise. The same analysis as in Lemma 4.1
implies that starting from any arbitrary initial configuration, the probability
that element i was found in leaf j mod L the last time that we examined it, is
bounded between 1/L and e/L. If it happens to be there, then the probability
of not seeing it again until the current step is exactly j/L. Hence we have

– For any i, j, Pr[χij = 1] ∈ [j/L2, ej/L2].
– Any set of χij ’s with distinct indexes i are independent, since the locations

of different elements are independent.
– For any fixed i the variables χi0, . . . , χi,L−1 are negatively associated (as

they sum up to one).

Given the properties above, we can use the Chernoff bound to reason about sums
of these variables. For all the lemmas below, let ϵ < 1/4 be a constant, and let
λ be the security parameter.

Fix N,L such that N > L, and denote B = ⌊ϵN⌋. We start by devising an
upper-bound on the number of leaves that the adversary considers before running
out of guessing budget. That is, we denote by Xj the number of elements that
were last seen L− j steps ago (namely Xj =

∑n
i=1 χij), and establish a number

J such that whp
∑J

j=1 Xi > B.

Lemma B.1. Assume that N > 4λ ln(2)/ϵ. Using the notations above and set-

ting J = ⌈2L
√
ϵ⌉ (and noting that J < L since ϵ < 1/4), we have Pr[

∑J
j=1 Xj <

B] < 2−λ.

Proof. The sum S =
∑J

j=1 Xj =
∑J

j=1

∑N
i=1 χij is a sum of N · J negatively

associated Bernoulli random variables, with the success probability of each χij

between j/L2 and ej/L2. Denoting the expected value of the sum by µ = E[S],
we therefore have

µ ≥
J∑

j=1

j

L2
·N = N

(
J + 1

2

)
/L2 > N/2 · (J/L)2.

Using the Chernoff bound with δ = 0.5, we have Pr[S < µ/2] ≤ exp(−µ/8). The
proof now follows just by plugging the values of λ and J : Recall that J = ⌈2L

√
ϵ⌉

and therefore (J/L)2 ≥ (2L
√
ϵ/L)2 = 4ϵ. This implies that µ ≥ N/2 · (J/L)2 ≥

N/2 · 4ϵ = 2ϵN .
On the one hand, since N > 4λ ln(2)/ϵ, then µ/8 ≥ ϵN/4 > λ ln(2) and

hence exp(−µ/8) ≤ 2−λ. On the other hand, we have B ≤ ϵN ≤ µ/2. Putting
them together, we get

Pr[S < B] ≤ Pr[S < µ/2] ≤ exp(−µ/8) ≤ 2−λ,

26 Shai Halevi and Eyal Kushilevitz

as needed.

For the next two lemmas, let γi,j be the indicator random variable which is
one if element i was last seen L − j steps ago and is currently found in leaf 0,
and zero otherwise. As we explain above, if element i was last seen L− j steps
ago then the probability of finding it now in leaf 0 is exactly 1/j. Therefore γij
is an AND of χij and an independent Bernoulli variable with success probability
1/j, which means that Pr[γij = 1] ∈ [1/L2, e/L2]. Also, just like for the χij ’s,
γij is independent of all the γi′j′ ’s with i′ ̸= i, and negatively associated with
the γij′ ’s for j

′ ̸= j. Hence we can use the Chernoff bound on their sums, as we
do in the next two lemmas. It will be convenient to denote by Yj the number
of elements that were last seen L− j steps ago and are found in leaf 0, namely
Yj =

∑N
i=1 γij .

Lemma B.2. With the setting above, assuming that N/L > 3 ln(2)
2
√
ϵ
·λ and letting

α = 12
√
ϵ ·N/L, then Pr[

∑J
j=1 Yj > α] < 2−λ.

Proof. The sum S =
∑J

j=1 Yj =
∑J

j=1

∑N
i=1 γij is a sum of N · J negatively

associated Bernoulli random variables, each with the success probability be-
tween 1/L2 and e/L2. Hence the expected value of the sum is µ = E[S] ∈
[JN/L2, JNe/L2], and using the Chernoff bound with δ = 1 we have Pr[S >
2µ] ≤ exp(−µ/3).

Substituting J = ⌈2L
√
ϵ⌉ we have µ ≥ JN/L2 ≥ 2

√
ϵN/L, and also µ ≤

JNe/L2 ≤ 6
√
ϵN/L. On the one hand, since N/L > 3 ln(2)

2
√
ϵ
· λ, then µ/3 ≥

2
√
ϵN/3L ≥ λ ln(2) so exp(−µ/3) ≤ 2−λ. On the other hand, we have α =

12
√
ϵ ·N/L ≥ 2µ. Putting them together, we get

Pr[S > α] ≤ Pr[S > 2µ] ≤ exp(−µ/3) ≤ 2−λ,

as needed.

Lemma B.3. With the setting above, assuming that N/L ≥ 8 ln(2)
(1−3

√
ϵ)
· λ and

letting β = (1−3
√
ϵ)

2 ·N/L, then Pr[
∑L

j=J+1 Yj < β] < 2−λ.

Proof. The sum S =
∑L

j=J+1 Yj =
∑L

j=J+1

∑N
i=1 γij is a sum of N · (L − J)

negatively associated Bernoulli random variables, each with success probability
between 1/L2 and e/L2. Hence the expected value of the sum is µ = E[S] ∈
[(L − J)N/L2, (L − J)Ne/L2], and using the Chernoff bound with δ = 0.5 we
have Pr[S < µ/2] ≤ exp(−µ/8).

Substituting J = ⌈2L
√
ϵ⌉ we have µ ≥ (L − J)N/L2 ≥ (1 − 3

√
ϵ)N/L. On

the one hand, since N/L ≥ 8 ln(2)
(1−3

√
ϵ)
· λ, then µ/8 ≥ (1 − 3

√
ϵ)N/8L ≥ λ ln(2)

so exp(−µ/8) ≤ 2−λ. On the other hand, we have β = (1−3
√
ϵ)

2 · N/L ≤ µ/2.
Putting them together, we get

Pr[S < β] ≤ Pr[S < µ/2] ≤ exp(−µ/8) ≤ 2−λ,

as needed.

Random-Index Oblivious RAM 27

The next lemma concludes the proof of theorem 4.2.

Lemma B.4. Let ϵ ≤ 1/9 be a constant and λ the security parameter. Fix N,L

such that L > 3
8
√
ϵ
and N/L ≥ max{ 3 ln(2)

2
√
ϵ
, 8 ln(2)
(1−3

√
ϵ)
} · λ. Also, fix some arbitrary

initial configuration from at least 2L steps ago, and consider the process starting

from that configuration, until the current step. Denote δ = 24
√
ϵ

1+21
√
ϵ
< 1.

Then, an adversary that sees all the elements that were extracted in previous
steps and can guess upto ϵN elements, has probability at most 3 ·2−λ of guessing
more than an δ-fraction of the elements that will be extracted in the current step.

Proof. The conditions on the quantities N,L, ϵ, λ ensure that all the conditions
in Lemmas B.1, B.2, and B.3 are satisfied. Hence the conclusions in all these
lemmas hold, except perhaps with probability of 3 · 2−λ.

By Lemma B.1 for the optimal adversary strategy above, the adversary ex-
hausts all the guessing budget on elements that were last seen L− j steps ago,
for j = 1, 2, . . . , J . By Lemma B.2, at most α of the elements that were last seen
in those steps will be found in the next leaf, and by Lemma B.3 at least β other
elements will be found there. Hence the fraction of elements that the adversary
guesses is at most

α

α+ β
=

12
√
ϵ ·N/L

12
√
ϵ ·N/L+ (1−3

√
ϵ)

2 ·N/L
=

24
√
ϵ

1 + 21
√
ϵ
= δ.

A remark about constants. The analysis above is very loose, giving up on many
constants (on top of using the rather loose Chernoff bound). For example, to
ensure that the adversary cannot guess more than δ = 1/2 the elements in
the leaf, the theorem above requires that the adversary’s budget be limited to
only N/729. In any real application, the constants will of course be determined
by simulation rather than by the above. Some initial simulations that we ran
indicate that the real number is something like ϵ ≈ 2δ2 (so to get δ = 1/2 we
need ϵ ≈ 1/8).

C Non-Independence for a Tree-RORAM Construction

As mentioned in section 5.3, we show in fig. 1 an example of a tree-RORAM
scheme where the location of the different elements is not independent when
conditioned on the server’s view. Specifically, in this variant we still evict and
re-assign all the elements from the current leaf at every step, but the server is
only shown one of these elements.

28 Shai Halevi and Eyal Kushilevitz

First step Second step Pr[#3 in leaf1 Pr[#1,#2 in leaf2
(sees #1) (sees #2) Pr[this history] | this history] | this history]
[1,2,3][·] [1,3] [2] 1

8
· 1
3
· 1
8
· 1 = 1

192
1 0

[1,2,3][·] [1] [2,3] 1
8
· 1
3
· 1
8
· 1
2
= 1

384
1/2 0

[1,2,3][·] [3] [1,2] 1
8
· 1
3
· 1
8
· 1
2
= 1

384
1 1/4

[1,2,3][·] [·][1,2,3] 1
8
· 1
3
· 1
8
· 1
3
= 1

576
1/2 1/4

[1,2] [3] [1] [2,3] 1
8
· 1
2
· 1
4
· 1
2
= 1

128
1/2 0

[1,2] [3] [·][1,2,3] 1
8
· 1
2
· 1
4
· 1
3
= 1

192
1/2 1/4

[1,3] [2] [1,3] [2] 1
8
· 1
2
· 1
4
· 1 = 1

64
1 0

[1,3] [2] [1] [2,3] 1
8
· 1
2
· 1
4
· 1
2
= 1

128
1/2 0

[1,3] [2] [3] [1,2] 1
8
· 1
2
· 1
4
· 1
2
= 1

128
1 1/4

[1,3] [2] [·][1,2,3] 1
8
· 1
2
· 1
4
· 1
3
= 1

192
1/2 1/4

[1] [2,3] [1] [2,3] 1
8
· 1 · 1

2
· 1
2
= 1

32
1/2 0

[1] [2,3] [·][1,2,3] 1
8
· 1 · 1

2
· 1
3
= 1

48
1/2 1/4

Pr[#3 in leaf1 | view] = 0.6374 Pr[#3 in leaf1 |#1,#2 in leaf2, view] = 0.62

A 2-step process with 3 elements and 2 leaves, starting from a random placement,
where the adversary sees element #1 coming out of leaf1 and element #2 coming out
of leaf2.

Fig. 1. An example of dependence between different elements.

	Random-Index Oblivious RAM

