
Adaptive Multiparty NIKE

Venkata Koppula1, Brent Waters2,3, and Mark Zhandry2,4

1 IIT Delhi, Delhi, India, kvenkata@cse.iitd.ac.in
2 NTT Research, Sunnyvale, USA

3 UT Austin, Austin, USA, bwaters@cs.utexas.edu
4 Princeton University, Princeton, USA, mzhandry@gmail.com

Abstract. We construct adaptively secure multiparty non-interactive
key exchange (NIKE) from polynomially-hard indistinguishability ob-
fuscation and other standard assumptions. This improves on all prior
such protocols, which required sub-exponential hardness. Along the way,
we establish several compilers which simplify the task of constructing
new multiparty NIKE protocols, and also establish a close connection
with a particular type of constrained PRF.

1 Introduction

Non-interactive key exchange (NIKE) is a fundamental application in public key
cryptography. In a G-party NIKE protocol, a group of G users simultaneously
publish individual public keys to a bulletin board, keeping individual secret keys
to themselves. Then just by reading the bulletin board and using their individual
private keys but no further interaction, the G users can arrive at a common key
hidden to anyone outside the group.

In this work, we build multiparty NIKE attaining adaptive security un-
der polynomially-hard non-interactive assumptions. Our assumptions are in-
distinguishability obfuscation (iO) and standard assumptions on cryptographic
groups1. The main restriction is that we must bound the number of users that
can be adaptively corrupted. The number of honest users, and even the number
of adversarially generated users, can be unbounded; only the number of users
that were initially honest and later corrupted must be bounded. This improves on
prior standard-model adaptively secure schemes [BZ14, Rao14], which all bound
the total number of users, and also required either interactive or sub-exponential
assumptions. Along the way, we several compilers to simplify the design process
of iO-based multiparty NIKE. We also explore adaptive security for constrained
PRFs, giving a new construction for “one symbol fixing” constraints, and show
a close connection to multiparty NIKE.

1.1 Prior Work and Motivation

NIKE has a long history, with the 2-party case dating back to the founda-
tional work of Diffie and Hellman [DH76], and the multiparty case already re-

1 We note two uses of the term “group”: the group of users establishing a shared key,
and the cryptographic group used as a tool. Which use should be clear from context.



ferred to as “a long-standing open problem” in 2002 [BS02]. Joux gave a 3-
party protocol from pairings [Jou00]. The first protocol for G ≥ 4 used mul-
tilinear maps [GGH13], though the only protocols directly based on multilin-
ear maps that have not been attacked are limited to a constant number of
users [MZ18]. Currently, the only known solutions for a super-constant num-
ber of users are built from indistinguishability obfuscation (iO). The first such
construction for polynomially-many users was due to Boneh and Zhandry [BZ14]
(using punctured programming techniques [SW14]), with a number of follow-up
works [Rao14, KRS15, HJK+16, MZ17, GPSZ17, BGK+18].

Multiparty NIKE remains a fascinating object: the central feature of non-
interactive key exchange (as opposed to protocols requiring multiple interac-
tion rounds) is that public keys can be re-used across many groups, simplifying
key management and significantly reducing communication. This feature makes
NIKE an important tool with many applications. Multiparty NIKE in particular
is a useful tool for group key management [STW96] and broadcast encryption
with small parameters [BZ14]. Multiparty NIKE is also interesting from a foun-
dational perspective, being perhaps the simplest cryptographic object which
currently is only known via obfuscation2.

Adaptive Security. The re-use of public keys in a NIKE protocol, on the other
hand, opens the door to various active attacks. For example, if a shared key
for one group is accidentally leaked, it should not compromise the shared key
of other groups, including those that may intersect. Worse, an adversary may
participate in certain groups using maliciously generated public keys, or may
be able to corrupt certain users. Finally, decisions about which groups’ shared
keys to compromise, how the adversary devises its own malicious public keys,
which users to corrupt, and even which set of users to ultimately attack, can all
potentially be made adaptively.

Adaptive security is an important goal in cryptography generally, being the
focus of hundreds if not thousands of papers. Numerous works have considered
adaptive NIKE. In the 2-party case, adaptive security can often be obtained
generically by guessing the group that the adversary will attack. If there are a
total of N users in the system, the reduction loss is N2, a polynomial. The focus
of works in the 2-party case (e.g. [CKS08, FHKP13, BJLS16, HHK18, HHKL21])
has therefore been tight reductions, which still remains unresolved.

The situation becomes more critical in the multiparty case, where the generic
guessing reduction looses a factor of

(
N
G

)
≈ NG, which is exponential for polyno-

mial group size G. In order to make this generic reduction work, one must assume
the (sub)exponential hardness of the underlying building blocks and scale up the
security parameter appropriately. This results in qualitatively stronger under-
lying computational assumptions. A couple works have attempted to improve
on this reduction, achieving security in the random oracle model [HJK+16], or

2 Multiparty NIKE can also be built via functional encryption [GPSZ17], which is
equivalent to iO [BV15a, AJ15] under sub-exponential reductions.
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under interactive assumptions [BZ14, Rao14] 3. In fact, Rao [Rao14] argues that
exponential loss or interactive assumption is likely necessary, giving a black box
impossibility of a polynomial reduction to non-interactive assumptions. This im-
possibility will be discussed in more depth momentarily. We also note existing
standard-model adaptively secure schemes all limit the total number of users,
including both honest and dishonest users, to an a priori polynomial bound.

Constrained PRFs. A constrained PRF is a pseudorandom function which al-
lows the key holder to produce constrained keys kC corresponding to functions
C. The key kC should allow for evaluating the PRF on any input x where
C(x) = 1, but the output should remain pseudorandom if C(x) = 0. First pro-
posed in three concurrent works [BW13, KPTZ13, BGI14], constrained PRFs
have become a fundamental concept in cryptography, with many follow-up works
(e.g. [BV15b, BFP+15, CRV16, DKW16, CC17, BTVW17, AMN+18]). A par-
ticularly interesting class of constrained PRFs are those for bit-fixing constraints,
which give secret key broadcast encryption [BW13], for example.

Adaptivel secure constrained PRFs of of particular interest [Hof14, FKPR14,
HKW15, HKKW14, DKN+20]. Unfortunately, with one exception, all known
adaptively secure constrained PRFs require random oracles, super-polynomial
hardness, or a constant collusion resistance bound. The one exception is [HKW15]
for simple puncturing constraints, where C contains a list of polynomially-many
points, and accepts all inputs not in the list. Even with such simple constraints,
the construction requires iO, algebraic tools, and a non-trivial proof.

1.2 Technical Challenges

Rao’s impossibility. Rao [Rao14] proves that multiparty NIKE protocols with
standard model proofs relative to non-interactive assumptions (including iO)
must incur an exponential loss. The proof follows a meta-reduction, which runs
the reduction until the reduction receives the challenge from the underlying non-
interactive assumption. At this point, Rao argues that the adversary need not
commit to the group it will attack. Now, we split the reduction into two branches:

– In the first branch, choose and corrupt an arbitrary honest user i, obtaining
secret key ski. Then abort the branch.

– In the second branch, choose the group S to attack such that (1) S contains
only honest users for this branch, and (2) i ∈ S. User i is honest in this
branch since it was never corrupted here, despite being corrupted in the
other branch. Use ski to compute the shared group key.

From the view of the reduction, the second branch appears to be a valid adver-
sary. Hence, by the guarantees of the reduction, it must break the underlying
hard problem, a contradiction. Hence, no such reduction could exist.

Rao’s proof is quite general, and handles reductions that may rewind the
adversary or run it many times concurrently. It also works in the more restricted
setting where there is an upper bound on the total number of users in the system.

3 Note that multiparty NIKE itself is an interactive assumption.
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There is one way in which Rao’s result does not completely rule out a con-
struction: in order to guarantee that the second branch is successful, one needs
that the shared key derived from ski must match the shared key in the second
branch. This would seem to follow from correctness, as i is a member of the group
S. However, correctness only holds with respect to honestly generated public and
secret keys. The reduction may, however, give out malformed public or secret
keys that are indistinguishable from the honest keys. In this case, it may be that
ski actually computes the wrong shared key, causing the meta-reduction to fail.

Rao therefore considers “admissible reductions” where, roughly, the public
keys of users outputted by the reduction, even if not computed honestly, uniquely
determine the shared key. Analogous lower bounds have been shown for tight
reductions in the 2-party setting [BJLS16, HHK18, HHKL21], making similar
restrictions on the reduction referred to as “committing reductions.”

All existing reductions for multiparty NIKE from iO are admissible. A closer
look reveals that all such schemes derive the shared key from a constrained PRF
applied to the public values of the users. While the secret key is used to compute
this value, the value itself is not dependent on the secret key, only the public key.
Therefore, Rao’s impossibility captures all the existing techniques, and new ideas
are required to achieve adaptive security from static polynomial assumptions.

Dual system methodology? The situation is reminiscent of HIBE and ABE, where
Lewko and Waters [LW14] showed that adaptive security cannot be proved under
polynomially hard non-interactive assumptions, using reductions that always
output secret keys which decrypt consistently. Solutions overcoming this barrier
were already known, say based on dual system encryption [Wat09, LOS+10].
The point of [LW14] was to explain necessary features of those proofs.

The multiparty NIKE setting appears much more challenging. HIBE and
ABE benefit from a central authority which issues keys. In the proof, the re-
duction provides the adversary with all of the keys, which will have a special
structure that allows for decrypting some ciphertexts and not others. In the
NIKE setting, the adversary is allowed to introduce his own users. This presents
many challenges as we cannot enforce any dual system structure on such users.
It also gives the adversary a lot more power to distinguish the reduction’s keys
from honestly generated keys, as the adversary can request the shared keys of
groups containing both honest and malicious users.

Recently, Hesse et al.[HHKL21] circumvent the above barriers in the 2-party
setting. However there is no obvious analog to the multiparty setting.

Another barrier: adaptive constrained PRFs. Looking ahead, we will show that
adaptive multiparty NIKE implies adaptive constrained PRFs for a “one symbol
fixing” functionality (1-SF-PRF). Here, inputs are words over a polynomial-
sized alphabetΣ, and constrains have the form (?, ?, · · · , ?, s, ?, . . . ), constraining
only a single position to some character. The resulting PRFs are fully collusion
resistant. 1-SF-PRFs can be seen as a special case of bit-fixing PRFs, where only
a single contiguous block of bits can be fixed. Adaptive constrained PRFs for
even very simple functionalities have remained a very challenging open question.
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In particular, no prior standard-model construction from polynomial hardness
achieves functionalities that have a superpolynomial number of both accepting
and rejecting inputs. Any adaptive multiparty NIKE construction would along
the way imply such a functionality, representing another barrier.

1.3 Result Summary

– We give several compilers, allowing us to simplify the process of designing
multiparty NIKE schemes. One compiler shows how to generically remove
a common setup from multiparty NIKE (assuming iO). We note that many
iO-based solutions could be tweaked to remove setup, but the solutions were
ad hoc and in the adaptive setting often required significant effort; we ac-
complish this generically.
Another compiler shows that it suffices to ignore the case where the adversary
can compromise the security of shared keys for a different groups of users.
That is, we show how to generically compile any scheme that is secure against
adversaries that cannot compromise shared keys into one that is secure even
if the adversary can.

– We show a close connection between multiparty NIKE and 1-SF-PRFs:
• Adaptively secure multiparty NIKE implies adaptively secure one-symbol-

fixing PRF.
• One-symbol-fixing PRFs, together with iO, imply a multiparty NIKE

protocol with a bounded number of honest users (and hence also cor-
ruption queries) and group size, but an unbounded number of malicious
users. This result starts by constructing a weaker NIKE protocol, and
then applying our compilers.

– We construct adaptively secure 1-SF-PRFs from iO and DDH, thus obtaining
multiparty NIKE from the same assumptions with bounded honest users.

– We give a direct construction of multiparty NIKE from iO and standard
assumptions on groups, allowing for an unbounded number of honest users.
The construction roughly follows the path above, but opens up the abstrac-
tion layers and makes crucial modifications to attain the stronger security
notion. The main limitation is that there is still a bound on the number of
users that the adversary can adaptively corrupt, as well as on the group size.

1.4 Technical Overview

We first briefly recall the types of queries an adversary can make:

– Corrupt User. The adversary selects an honest user’s public key, and learns
the secret key.

– Shared Key. The adversary selects a list of public keys, which may contain
both honest users adversarially-generated users, and learns the shared key
for the group of users. Since the adversary’s public keys may be malformed,
different users may actually arrive at different shared keys. So the query
specifies which of the users’ version of the shared key is revealed.

– Challenge. Here, the adversary selects a list of honest public keys, and tries
to distinguish the shared key from random.
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Upgrading NIKE. In addition to providing the first iO-based NIKE, Boneh and
Zhandry [BZ14] also construct the first NIKE without a trusted setup, or crs.
Their basic idea is to first design an iO-based protocol with a crs, but where the
resulting crs is only needed to generate the shared keys, but not the individual
public keys. Then they just have every user generate their own crs; when it
comes time to compute the shared key for a group, the group arbitrarily selects
a “leader” and uses the leader’s crs.

The above works in the selective setting. However, in the adaptive setting,
problems arise. The crs contains an obfuscated program that is run on the user’s
secret key. The adversary could therefore submit a Shared Key query on an
adversarial public key containing a malicious crs. If that malicious user is selected
as the leader for the group, honest users’ secret keys will be fed into the malicious
program, the output being revealed to the adversary, leading to simple attacks.
Worse, in Rao’s basic scheme with setup, the users need to know the crs in order
to generate their public key. So in the setup-less scheme, each user would need to
wait until the leader outputs their crs before they can publish their public key,
resulting in an interactive protocol. Boneh and Zhandry and later Rao [Rao14]
therefore devised more sophisticated techniques to remove the trusted setup.

Our first result sidesteps the above difficulties, by considering the setting
where Shared Key queries are not allowed. In this setting, we can make the
above strategy of having each party run their own trusted setup fully generic.
To accommodate the case where the public keys may depend on the trusted
setup, we actually have each user produce an obfuscation of a program that
takes as input the crs, and samples a public key. In order to prove security, we
also have the secret key for a user be an obfuscated program, which is analogous
to the public key program except that is samples the corresponding secret key.
In the reduction, this allows us to adaptively embed information in the secret
key, which is needed to get the proof to work. See Section 3.2 for details.

Then we show how to generically lift any NIKE scheme that does not support
Shared Key queries into one that does support them, without any additional
assumptions. Combined with the previous compiler, we therefore eliminate the
crs and add Shared Key queries to any scheme. The high-level idea is to give the
reduction a random subset of the secret keys for honest users. The hope is that
these keys will be enough to answer all Shared Key queries, while not allowing
the reduction to answer the Challenge query. This requires care, as this will not
be possible if some of the Shared Key queries have too much overlap with the
Challenge query. See Section 3.3 for details.

Connection to Constrained PRFs. Multi-party NIKE already had a clear con-
nection to constrained PRFs, with all iO-based NIKE crucially using constrained
PRFs. In Section 4, we make this precise, showing that one symbol fixing (1-SF)
PRFs are equivalent to NIKE, assuming iO.

One direction is straightforward: to build a 1-SF PRF from multiparty NIKE,
create n × |Σ| users, which are arranged in an |Σ| × n grid. Each input in Σn

then selects a single user from each column, and the value of the PRF is the
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shared key for the resulting set of n users. To constrain the ith symbol to be σ,
simply reveal the secret key for user σ in column i.

The other direction is more complicated, and requires additionally assuming
iO. The high-level idea is that the shared key for a group of users will be a PRF
evaluated on the list of the users’ public keys. If we pretend for the moment that
user public keys come from a polynomial-sized set Σ, we could imagine using a
1-SF PRF for this purpose.

Following most iO-based NIKE protocols, we will then have a crs be an
obfuscated program which takes as input the list of public keys, together with
one of the users secret keys, and evaluates the PRF if the secret key is valid. Our
novelty is how we structure the proof to attain adaptive security. Observe that
user σ’s secret key allows them to evaluate the PRF on any input that contains
at least one σ. This is the union of the inputs that can be computed by keys
that constrain symbol i to σ, as i ranges over all input positions.

We therefore switch to a hybrid where user σ has the aforementioned con-
strained keys covertly embedded in their secret key. In this hybrid, we crucially
allow the reduction to generate the user’s public key without knowing the con-
strained keys, and only later when the adversary makes a corruption query will
it query for the constrained keys and construct the user’s secret key. This strat-
egy is our first step to overcoming Rao’s impossibility result: the shared key is
no longer information-theoretically determined by the public keys, and is only
determined once the secret key with the embedded constrained key is specified.
We note, however, that a version of Rao’s impossibility still applies to the un-
derlying adaptively secure constrained PRFs, which we will have to overcome
later when constructing our PRF.

Moving to this hybrid is accomplished using a simplified version of delayed
backdoor programming [HJK+16]. After switching the secret keys for each user,
we switch the crs program to use the embedded constrained keys to evaluate the
PRF, rather than the master key. At this point, adaptive NIKE security follows
directly from adaptive 1-SF PRF security.

Of course, NIKE protocols cannot have public keys in a polynomial-sized set.
Our actual protocol first generically compiles a 1-SF PRF into a more sophis-
ticated constrained PRF where now Σ is exponentially large. By adapting the
above sketch to this special kind of constrained PRF, we obtain the full proof.
See Section 4 for details.

Constructing 1-SF PRFs. We turn to constructing a 1-SF PRF. As mentioned
above, a version of Rao’s impossibility result still applies even to constrained
PRFs. Namely, an “admissible” reduction would commit at the beginning of
the experiment to the PRF functionality it provides to the adversary. Such an
admissible reduction cannot be used to prove adaptive security for constrained
PRFs, for almost identical reasons as with Rao’s impossibility. This means our
reduction must actually have the PRF seen by the adversary be specified dy-
namically, where its outputs are actually dependent on prior queries made by
the adversary.
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One may be tempted to simply obfuscate a puncturable PRF. Boneh and
Zhandry [BZ14] show that this gives a constrained PRF for any constraint,
though only with selective security. Unfortunately, it appears challenging to to
get adaptively secure constrained PRFs with this strategy. In particular, the
punctured PRF specifies the value of the PRF at all points but one, which is
problematic given that we need to dynamically determine the PRF function in
order to circumvent Rao’s impossibility.

We will instead use algebraic tools to achieve an adaptively secure construc-
tion. Our PRF will be Naor-Reingold [NR97], but adapted from a binary al-
phabet to a polynomial-sized alphabet. The secret key contains n× |Σ| random
values ej,σ, and the PRF on input (x1, . . . , xn) ∈ Σn outputs

F(k, x) = h
∏n

i=1 ei,xi ,

where h is a random generator of a cryptographic group. Without using any
computational assumptions, F is already readily seen to be a 1-SF constrained
PRF for a single constrained key. To constrain position i to σ, simply give out
ei,σ and ej,x for all x ∈ Σ and all j 6= i.

However, we immediately run into trouble even for two constrained keys,
since constrained keys for two different i immediately yield the entire secret key.
Instead, we constrain keys in this way, except that we embed the constrained
keys in an obfuscated program. While this is the natural approach to achieve
many-key security, it is a priori unclear how to actually prove security.

We show that obfuscating the constrained keys does in fact upgrade the
single-key security of the plain scheme to many-time security. The proof is quite
delicate. Essentially, we move to a hybrid where each constrained key uses its
own independent h. The main challenge is that, since multiple keys will be able
to compute the PRF at the same point, we need to ensure consistency between
the keys. Our proof has each constrained key only use its particular h for inputs
that cannot be computed by previous constrained keys. For outputs that can
be computed by previous keys, the new constrained key will use the h for those
keys.

Interestingly, this means that keys in this hybrid must actually contain the
h’s of all previous constrained keys, and the evaluation of the PRF will actually
depend on the order constrained keys are queried. The salient point is that, when
the ith constrained key query is made, we only commit to the structure of the
PRF on the points that can be evaluated by the first i queries, but the PRF on
the remaining part of the domain is unspecified. Structuring the proof in this
way is the main insight that allows us to circumvent Rao’s impossibility and
prove adaptive security.

By careful iO arguments, we show that we are able to move to such a setting
where the h for different pieces are random independent bases. The challenge
query is guaranteed to be in its own piece, using a different h than all the
constrained keys. Therefore, once we move to this setting the constrained keys
do not help evaluate the challenge, and security follows. See the Section 5 for
details. By combining with our compilers, we obtain the following:
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Theorem 1 (Informal). Assuming polynomial iO and DDH, there exist an
adaptively secure multiparty NIKE where the number of honestly generated users
is a priori bounded, but where the number of maliciously generated users is un-
bounded.

In addition to improving to only polynomial hardness, the above improves
on existing works by enhancing the security definition to allow an unbounded
number of malicious users.

Our Final Construction. Finally, we give another NIKE construction which fur-
ther improves on the security attained in Theorem 1, at the cost of a slightly
stronger group-based assumption:

Theorem 2 (Informal). Assuming polynomial iO and the DDH-powers as-
sumption, there exist an adaptively secure multiparty NIKE where the group size
and number of corruptions is bounded, but otherwise the number of honest and
malicious users unbounded.

We note that bounding the number of corruptions is very natural, and
has arisen in many cryptographic settings under the name “bounded collu-
sions.” Examples include traitor tracing [CFN94], Broadcast encryption [FN94],
identity-based encryption [DKXY02] and its generalizations to functional en-
cryption [GVW12], to name a few. Bounded collusions are often seen as a rea-
sonable relaxation, and in many cases are stepping-stones to achieving full secu-
rity. We view bounded collusion security for NIKE similarly, except that in some
ways, bounded corruptions for NIKE is even stronger than bounded collusions,
in that we allow the NIKE adversary to control an unbounded number of users,
only limiting the number of users that can be corrupted adaptively.

In our construction, we no longer go through 1-SF-PRFs explicitly, but in-
stead open up the layers of abstraction that gave Theorem 1 and make several
crucial modifications to the overall protocol. The main technical challenge is
that, in our proof of security for 1-SF-PRFs, we must hard-code all prior queries
into each secret key. In the obtained NIKE scheme, this means hard-coding all
the keys of users generated by the challenger. But as the number of hard-coded
users can never be more than the bit-length of the secret key, this limits the
number of honest users.

In our solution, we no longer explicitly hardcode the challenger-generated
users, but switch to a hybrid where they are generated with a trigger. Only
the obfuscated programs can detect this trigger so that they look like honestly
generated users, and it moreover is impossible for the adversary to generate
users with the trigger. By a delicate hybrid argument, we are able to mimic
the security proof above using these triggers instead of the explicitly hardcoded
public keys. See the Full Version [KWZ22] for details.

Note that the DDH-powers assumption is a q-type assumption, but this can
be proved from a single assumption in the composite order setting, assuming
appropriate subgroup decision assumptions [CM14].
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1.5 Organization

Section 2 covers the definitions of multiparty NIKE and constrained PRFs that
we will study. Section 3 gives our compilers for enhancing multiparty NIKE.
Section 4 demonstrates the equivalence of 1-SF-PRFs and multiparty NIKE in
the iO setting. Section 5 gives our construction of 1-SF-PRFs from iO. Due to
lack of space, the proof of Theorem 2 removing the bound on the number of
honest users is deferred to the Full Version [KWZ22].

2 Preliminaries

2.1 Multiparty NIKE

Here, we define the version of NIKE that we will be considering.

Definition 1 (Multiparty NIKE, Syntax). A multiparty NIKE scheme with
bounded honest users is a pair (Pub,KeyGen) with the following syntax:

– Pub(1λ, 1`, 1n, 1c) takes as input the security parameter λ, an upper bound
n on the number of honest users, an upper bound ` on the number of users
in a set, and an upper bound c on the number of corruptions. It outputs a
public key pk and secret key sk.

– KeyGen(U, sk) takes as input a list U of t ≤ ` public keys, plus the secret key
for one of the public keys. It outputs a shared key. We have the following
correctness guarantee: for any `, n, c > 0, t ∈ [`] and any i, j ∈ [t],

Pr[KeyGen({pk1, . . . , pkt}, ski) = KeyGen({pk1, . . . , pkt}, skj)] ≥ 1− negl

where the probability is over (pki, ski)← Gen(1λ, 1`, 1n, 1c) for i = 1, . . . , t.

Enhanced correctness notions. As a technical part of our compilers, we will also
consider stronger variants of correctness. The first is perfect correctness, where
the probability above is exactly 1. The second notion is adversarial correctness,
which is defined via the following experiment with an adversary A:

– On input 1λ, A computes 1`, 1n, 1c.
– The challenger runs (pkb, skb) ← Pub(1λ, 1`, 1n, 1c) for b = 0, 1, and sends

pk0, pk1 to A
– A then computes a set U of public keys such that |U | ≤ ` and pk0, pk1 ∈ U .
– The challenger computes kb = KeyGen(U, skb) for b = 0, 1. A wins if and

only if k0 6= k1.

A NIKE scheme is adversarially correct if, for all PPT adversaries A, there exists
a negligible function ε such that the A wins with probability at most ε.

Definition 2 (Multiparty NIKE, Adaptive Security). Consider the fol-
lowing experiment with an adversary A:
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– The challenger initializes empty tables T and U . T will contain records
(pk, sk, b) where pk, sk are the public key and secret key for a user, and b
is a flag bit indicating if the user is honest (0) or corrupted (1). We will
maintain that if the flag bit is 0, then sk 6= ⊥. U will contain sets of public
keys. The challenger also stores a set S∗, initially set to ⊥.

– A receives 1λ, replies with 1`, 1n, 1c, and then makes several kinds of queries:
• Register Honest User. Here, A sends nothing. The challenger runs

(pk, sk)← Pub(1λ, 1`, 1n, 1c). If there is a record containing pk in T , the
challenger replies with ⊥. Otherwise, it adds (pk, sk, 0) to T , and sends
pk to A. The total number of such queries is not allowed to exceed n.

• Corrupt User. Here, A sends an pk. The challenger finds a record
(pk, sk, 0) in the table T . If no such record is found, or if a record is
found but with flag bit set to 1, the challenger replies with ⊥. Otherwise
it replies with sk. It then updates the record in T to (pk, sk, 1). The total
number of such queries is not allowed to exceed c.

• Register Malicious User. Here, A sends a public key pk. If there is no
record in T containing pk, the challenger adds to T the record (pk,⊥, 1).
There is no limit to the number of such queries.

• Shared Key. The adversary sends an unordered set S = (pk1, . . . , pkt)
of up to t ≤ ` distinct public keys, as well as an index i ∈ [t]. If S∗ 6= ⊥
and S = S∗, then the challenger replies with ⊥. Otherwise, the challenger
checks for each j ∈ [t] if there is a (pkj , skj , bj) ∈ T . Moreover, it checks
that ski 6= ⊥. If any of the checks fail, the challenger replies with ⊥. If
all the checks pass, the challenger replies with KeyGen(S, ski). It adds the
list S to U . There is no limit to the number of such queries.

• Challenge. The adversary makes a single challenge query on an un-
ordered list S = (pk∗1, . . . , pk

∗
t ) of up to t ≤ ` distinct public keys. The

challenger sets S∗ = S. The challenger then checks for each j ∈ [t] that
there is a record (pk∗j , sk

∗
j , b
∗
j ) in T such that b∗j = 0. The challenger

also checks that S∗ is not in U . If any of the checks fails, the challenger
immediately aborts and outputs a random bit.
If the checks pass, the challenger chooses a random bit b∗ ∈ {0, 1} and
replies with kb∗ where k0 ← KeyGen(S∗, sk1) and k1 is uniformly random.

– A produces a guess b′ for b∗. The challenger outputs 1 iff b′ = b∗.

A Multiparty NIKE is adaptively secure if, for all PPT adversaries A, there
exists a negligible function ε such that the challenger outputs 1 with probability
at most 1

2 + ε.

Other security notions. We can also consider multiparty NIKE with unbounded
honest users, where the input 1n is ignored in Pub, and there is no limit to the
number of Register Honest User. We can similarly consider multiparty NIKE
with unbounded corruptions where there is no limit to the number of Corrupt
User queries, and unbounded set size, where there is no limit to the set size t
that can be inputted to KeyGen or queried in Shared Key or Challenger queries.

We can also consider NIKE that is “secure with out X queries”, which means
that security holds against all adversaries that do not make any type X queries.

11



Common Reference String. We can also consider a crs model, where there is
a setup algorithm crs ← Setup(1λ, 1`, 1n, 1c). Then Pub is changes to have the
syntax (pk, sk) ← Pub(crs). In the adaptive security experiment, we have the
challenger run crs ← Setup(1λ, 1`, 1n, 1c) and give crs to A. It then uses the
updated Pub algorithm when registering honest users.

2.2 Constrained PRFs

A special case of bit-fixing PRFs. Here, we define a type of bit-fixing PRF.

Definition 3 (1-Symbol-Fixing PRF, Syntax). 1-SF-PRF is a tuple
(Gen,Eval,Constr,EvalC) with the following syntax:

– Gen(1λ, 1|Σ|, 1`) takes as input a security parameter λ, an alphabet size |Σ|,
and an input length `, all represented in unary. It outputs a key k.

– Eval(k, x) is the main evaluation algorithm, which is deterministic and takes
as input a key k and x ∈ Σ`, and outputs a string.

– Constr(k, i, z) is a potentially randomized algorithm that takes as input a key
k, index i ∈ [`], and symbol z ∈ Σ. It outputs a constrained key ki,z.

– EvalC(ki,z, x) takes as input a constrained key ki,z for an index/symbol pair
(i, z), and an input x. It outputs a string. We have the correctness guarantee:

EvalC(ki,z, x) =

{
⊥ if xi 6= z

Eval(k, x) if xi = z

Definition 4 (1-SF-PRF, Adaptive Security). Consider the following ex-
periment with an adversary A:

– A on input 1λ, produces 1|Σ|, 1`. The challenger runs k ← Gen(1λ, 1|Σ|, 1`).
It returns nothing to A.

– Then A can adaptively make the following types of queries:
• Constrain. A sends i, z, and receives ki,z ← Constr(k, i, z). The chal-

lenger records each (i, z) in a table C. There is no limit to the number
of constrain queries.

• Eval. A sends an input x, and receives Eval(k, x). The challenger records
each x in a table E. There is no limit to the number of Eval queries.

• Challenge. A can make a single challenge query on an input x∗ ∈ Σ`.
The challenger flips a random bit b ∈ {0, 1} and replies with y∗ = yb
where y0 = Eval(k, x) and y1 is sampled uniformly and independently.

If at any time, x∗i = z for some (i, z) ∈ C or x∗ ∈ E, the challenger
immediately aborts and outputs a random bit.

– The adversary outputs bit b′. The challenger outputs 1 if b = b′, 0 otherwise.

A 1-SF-PRF is adaptively secure if, for all PPT adversaries A, there exists a
negligible function ε such that the challenger outputs 1 with probability at most
1
2 + ε. It is adaptively secure without Eval queries if this holds for all A that
make no Eval queries.

A 1-SF-PRF scheme is said to be adaptively secure against unique-query
adversaries if the above holds for any adversary A that makes unique constrained
key queries to the challenger.
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3 Enhancing Multi-party NIKE

Here give some compilers for multi-party NIKE, which allow for simplifying the
task of designing new NIKE protocols built from iO. Our ultimate goal is to show
that one can safely ignore Shared Key and Register Malicious User queries, and
also employ a trusted setup. Our compilers then show how to lift such a scheme
into one secure under all types of queries and without a trusted setup.

3.1 Achieving Adversarial Correctness

First, we convert any NIKE that is perfectly correct into one with adversarial
correctness. While adversarial correctness is not a particular design goal in mul-
tiparty NIKE, this step will be needed in order to apply our later compilers.

Theorem 3. Assume there exists a multi-party NIKE with perfect correctness,
potentially in the crs model. Assume additionally there exists a NIZK. Then there
exists a multi-party NIKE with both perfect and adversarial correctness in the crs
model. If the perfectly correct scheme has unbounded honest users, corruptions,
and/or set size, then so does the resulting adversarially correctscheme.

Theorem 3 follows from a standard application of NIZKs, and is similar to a
theorem used in the context of two-party NIKE by [HHK18]. The proof is given
in the Full Version [KWZ22].

3.2 Removing the CRS

Next, we use iO to remove the common reference string (crs) from any multi-
party NIKE. A side-effect of this transformation, however, is that we only achieve
security without Register Malicious User queries.

Theorem 4. Assuming there exists iO an adaptively secure multi-party NIKE
in the common reference string (crs) model, then there also exists adaptively
multi-party NIKE in the plain model that is secure without Register Malicious
User queries. If the crs scheme has unbounded honest users, corruptions, and/or
set size, or has perfect and/or adversarial correctness, or only has secure without
X queries for some X, then the same is true of the resulting plain model scheme.

Proof. Theorem 4 formalizes the ad hoc techniques for removing the CRS in
iO-based constructions starting from Boneh and Zhandry [BZ14]. The proofs
of the bounded/unbounded cases and perfect/adversarial correctness cases are
essentially the same, so we focus on the case where everything is bounded. We
will let (Setup,Pub′,KeyGen′) be a multi-party NIKE with setup.

Let F be a puncturable PRF. F can be constructed from any one-way function,
which are in turn implied by any NIKE scheme. We construct a new mutliparty
NIKE (Pub,KeyGen) without setup as follows:

13



– Pub(1λ, 1`, 1n, 1c): Run crs ← Setup(1λ, 1`, 1n, 1c). Sample a random PRF
key k for F. Let PKeyk,SKeyk be the programs in Figures 1 and 2, and let

P̂Key = iO(PKeyk), ŜKey = iO(SKeyk). pk = (crs, P̂Key) and sk = ŜKey.
– KeyGen(S, ski): Let pk∗ ∈ S be the minimal pk ∈ S according to some

ordering; we will call pk∗ the distinguished public key.

Write pk∗ = (crs∗, P̂Key
∗
). Let S′ be derived from S, where for each pk =

(crs, P̂Key) ∈ S, we include pk′ = P̂Key(crs∗) in S′. Also let ski = ŜKeyi, and

run sk′i = ŜKeyi(crs
∗). Then run and output KeyGen′(crs, S′, sk′i).

Fig. 1: The program PKeyk.

Inputs: crs
Constants: k

1. (pk′, sk′)← Pub′(crs; F(k, crs) )
2. Output pk′

Fig. 2: The program SKeyk.

Inputs: crs
Constants: k

1. (pk′, sk′)← Pub′(crs; F(k, crs) )
2. Output sk′

Correctness: Correctness follows from the correctness of the underlying scheme:

KeyGen(S, ski) = KeyGen′(crs, S′, sk′i) = KeyGen′(crs, S′, sk′j)

= KeyGen(S, skj)

Security: Security is proved in the Full Version [KWZ22], following a careful
application of iO techniques.

3.3 Adding Shared Key Queries

The final compiler generically convert a NIKE scheme whose security does not
support shared key queries into one that does.

Theorem 5. Assume there exists a multi-party NIKE with adversarial cor-
rectness and adaptive security without Shared Key or Register Malicious User
queries. Then there exists a multi-party NIKE with adversarial correctness and
adaptive security ( with Shared Key and Register Malicious User queries). If the
original scheme is also perfectly correct, then so is the resulting scheme. If the
original scheme has unbounded honest users, corruptions, and/or set size, then
so does the resulting scheme. The resulting scheme is in the CRS model if and
only if the original scheme is.

Note the requirement that the underlying NIKE protocol have adversarial cor-
rectness. The proof of Theorem 5 exploits the structure of multiparty NIKE,
together with combinatorial tricks, to ensure that the reduction can answer all
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Shared Key queries (even on sets involving malicious users) while not being able
to answer the challenge query.

In slightly more detail, the rough idea is to randomly give the reduction some
of the secret keys for users. We give the reduction enough secret keys so that
with non-negligible probability it will be able to answer all shared key queries,
while simultaneously being unable to answer the challenge query.

The main challenge is that shared key queries can be very “close” to the
challenge query, potentially differing in only a single user. In order to be able
to answer the shared key query but not the challenge query, we must give out
the secret key for exactly the differing user, which we do not know in advance.
In our solution, every user will actually contain many sub-users. The shared key
for a group of users is then the shared key for some collection of the sub-users.
The collections of sub-users will be chosen so that the collections for each group
are “far” apart. The proof is given in the Full Version [KWZ22].

3.4 Putting It All Together

We can combine Theorems 3, 4, and 5 together, to get the following corollary:

Corollary 1. Assume there exists iO and perfectly correct multi-party NIKE in
the crs model with adaptive security without Shared Key or Register Malicious
User queries. Then there exists perfectly correct (and also adversarially correct)
multi-party NIKE in the plain model with adaptive security (under both Shared
Key and Register Malicious User queries). If the original scheme has unbounded
honest users, corruptions, and/or set size, then so does the resulting scheme.

Corollary 1 shows that, for multiparty NIKE from iO, it suffices to work in the
CRS model and ignore Shared Key and Register Malicious User queries.

4 The Equivalence of Multiparty NIKE and 1-SF-PRF

In this section, we show that NIKE is equivalent to a 1-SF-PRF. In the Full
Version [KWZ22], we show that NIKE implies 1-SF-PRF, following a simple
combinatorial construction. Here, we focus on the other direction.

4.1 From 1-SF-PRF to Special Constrained PRF

Here, we define an intermediate notion of constrained PRF, which enhances a
1-SF-PRF. The idea is that the symbol space Σ is now exponentially large.
However, at the beginning a polynomial-sized set S is chosen, and a punctured
key is revealed that allows for evaluating the PRF on any point not in S. The
points in S then behave like the symbol space for a plain 1-SF-PRF, where it is
possible to generate keys that fix any given position to some symbol in S.

Looking ahead to our NIKE construction, the set S will correspond to the
public keys of the honest users of the system, while the rest of Σ will correspond
to maliciously-generated keys. The abstraction of our special constrained PRF in
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this section is the missing link to formalize the connection between 1-SF-PRFs
and NIKE as outlined in Section 1.

Definition 5 (Special Constrained PRF, Syntax). SC-PRF is a tuple of
algorithms (Gen, Eval, Punc, EvalP, Constr, EvalC) with the following syntax:

– Gen(1λ, |Σ|, 1`, 1n) takes as input a security parameter λ, an alphabet size
|Σ|, an input length `, and a maximal set size n. Here, |Σ| is represented in
binary (thus allowing exponential-sized Σ), but everything else in unary.

– Eval(k, x) is the main evaluation algorithm, which is deterministic and takes
as input a key k and x ∈ Σ`, and outputs a string.

– Punc(k, S) is a randomized puncturing algorithm that takes as input a key k
and set S ⊆ Σ of size at most n. It outputs a punctured key kS.

– EvalP(kS , x) takes as input an x ∈ Σ`, and outputs a value such that

EvalP(kS , x) =

{
⊥ if x ∈ Sn

Eval(k, x) if x /∈ Sn

– Constr(k, S, i, z) is a potentially randomized constraining algorithm that takes
as input a set S, a key k, an index i ∈ [`], and symbol z ∈ S. It outputs a
constrained key kS,i,z.

– EvalC(kS,i,z, x) takes as input a constrained key kS,i,z for a set/index/symbol
triple (S, i, z), and input x. It outputs a string. The correctness guarantee is:

EvalC(kS,i,z, x) =

{
⊥ if xi 6= z

Eval(k, x) if xi = z

Definition 6 (Special Constrained PRF, Adaptive Security). Consider
the following experiment with an adversary A:

– A on input 1λ, outputs |Σ|, 1`, 1n, and set S of size at most n. The challenger
runs k ← Gen(1λ, |Σ|, 1`, 1n) and kS ← Punc(k, S). It sends kS to A.

– Then A can adaptively make the following types of queries:
• Constrain. A sends i, z, and receives kS,i,z ← Constr(k, S, i, z). The

challenger records each (i, z) in a table C.
• Eval. A sends an input x, and receives Eval(k, x). The challenger records

each x in a table E. There is no limit to the number of Eval queries.
• Challenge. A can make a single challenge query on an input x∗ ∈ S`.

The challenger flips a random bit b ∈ {0, 1} and replies with y∗ = yb
where y0 = Eval(k, x) and y1 is sampled uniformly and independently.

If at any time, x∗i = z for some (i, z) ∈ C or x∗ ∈ E, the challenger
immediately aborts and outputs a random bit.

– The adversary outputs bit b′. The challenger outputs 1 if b = b′, 0 otherwise.

A Special Constrained PRF is adaptively secure if, for all PPT adversaries A,
there exists a negligible function ε such that the challenger outputs 1 with prob-
ability at most 1

2 + ε.
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Theorem 6. If 1-SF-PRFs exist, then so do Special Constrained PRFs.

The proof of Theorem 6 use purely combinatorial techniques. The idea is to set
the symbol space Σ for the Special Constrained PRF to be codewords over the
symbol space for the 1-SF-PRF, where the code is an error correcting code with
certain properties. We defer the details to the Full Version [KWZ22].

4.2 From Special Constrained PRF to Multiparty NIKE with Setup

As a warm up, we construct multiparty NIKE in the common reference string
model. We will need the following ingredients:

Definition 7. A single-point binding (SPB) signature is a quadruple of algo-
rithms (Gen,Sign,Ver,GenBind) where Gen,Sign,Ver satisfy the usual syntax of
a signature scheme. Additionally, we have the following:

– (vk, σ)← GenBind(1λ,m) takes as input a message m, and produces a veri-
fication key vk and signature σ.

– For any messages m,m′ 6= m, with overwhelming probability over the choice
of (vk, σ) ← GenBind(1λ,m), Ver(vk,m′, σ′) = ⊥ for any σ′. That is, there
is no message m′ 6= m where there is a valid signature of m′ relative to vk.

– For any m, GenBind(1λ,m) and (vk,Sign(sk,m)) are indistinguishable, where
(vk, sk)← Gen(1λ). Note that this property implies that Ver(vk,m, σ) accepts,
when (vk, σ)← GenBind(1λ,m).

Definition 8. A multi-point binding (MPB) hash function is a triple of algo-
rithms (Gen, H,GenBind) where:

– Gen(1λ, 1n) takes as input the security parameter λ, and an upper bound n
on the number of inputs to bind. It produces a hashing key hk.

– H(hk, x) deterministically produces a hash h.
– GenBind(1λ, 1n, S∗) takes as input λ, n, and also a set S∗ of inputs of size at

most n. It produces a hashing key hk with the property that, with overwhelm-
ing probability over the choice of hk ← GenBind(1λ, 1n, S∗), for any x ∈ S∗
and any x′ 6= x (which may or may not be in S∗), H(hk, x) 6= H(hk, x′).

– For any n and any set S∗ of size at most n, (S∗,Gen(1λ, 1n)) is computa-
tionally indistinguishable from (S∗,GenBind(1λ, 1n, S∗)).

A single-point binding (SPB) hash function is as above, except we fix n = 1.

We will rely on the following Lemmas of Guan, Wichs, and Zhandry [GWZ22]:

Lemma 1 ([GWZ22]). Assuming one-way functions exist, so do single-point
binding signatures.

[GWZ22] show how to construct single-point binding hash functions. We adapt
their construction to multi-point binding hashes:

Lemma 2. Assuming one-way functions and iO exist, then so do multi-point
binding hash functions.
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This lemma is proved in the Full Version [KWZ22], following almost identical
ideas to the proof as [GWZ22].

We use multi-point binding hash functions in order to statistically bind to a
set of inputs S∗ with a hash that is much smaller than the inputs. Such hash
functions will contain many collisions, but the point binding guarantee means
that there is no collision with S∗. The SPB signature is used for similar reasons.

Our NIKE Construction. We don’t bound collusion queries c (that is, the num-
ber of corruption queries), but bound the number of honest users, which implic-
itly bounds the collusion queries at n.

– Setup(1λ, 1`, 1n): Run hk← GenHash(1λ, 1`). Let Y be the range of H. Also
sample k ← GenPRF (1λ, |Y|, 1`, 1n). Let KGenhk,k be the program given in
Figure 3, padded to the maximum size of the programs in Figures 3 and 4,

and let K̂Gen = iO(KGenhk,k). Output crs = K̂Gen.

– Pub(crs): Sample a random message m and run (vk, σ)← GenBindSig(1
λ,m).

Output pk = vk and sk = (m,σ).

– KeyGen(crs, pk1, . . . , pk`, i, ski): assume the pkj are sorted in order of increas-
ing pk according to some fixed ordering; if the pkj are not in order sort them,

and change i accordingly. Write crs = K̂Gen, pkj = vkj and ski = (mi, σi).

Then output K̂Gen(vk1, . . . , vk`, i,mi, σi).

Fig. 3: The program KGenhk,k.

Inputs: vk1, . . . , vk`, i,mi, σi
Constants: hk, k

1. If the vki are not sorted in increasing order, immediately abort and output ⊥.
2. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.
3. For each t ∈ [`], let ut = H(hk, vkt).
4. Output EvalPRF (k, u1||u2|| . . . ||u`)

Correctness. We need for any n and i, j ∈ [`], that KeyGen(crs, {pkj}j , i, ski)
outputs a value equal to KeyGen(crs, {pk1, . . . , pk`}, j, skj) with overwhelming
probability. This follows from the correctness of the signature scheme. With
overwhelming probability, Ver(vki,mi, σi) =Ver(vkj ,mj , σj)=1. Once the signa-
ture check passes, the outputs are identical.

Security. We will prove security via a sequence of hybrid experiments.

– Gamereal : This corresponds to the security game.
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• Setup Phase:
The challenger samples hk← GenHash(1λ, 1`).
Next, it samples k ← GenPRF (1λ, |Y|, 1`, 1n).

The challenger computes K̂Gen = iO(KGenhk,k) and sends crs = K̂Gen to
the adversary. It also maintains a table T which is initially empty.

• Pre-challenge Queries The adversary makes the following queries:
∗ Honest user registration query : For the ith registration query, the

challenger chooses m∗i , computes (vk∗i , σ
∗
i ) ← GenBindSig(1

λ,m∗i ),
sets vk∗i as the public key and (m∗i , σ

∗
i ) as the secret key. It adds

(vk∗i , (m
∗
i , σ
∗
i ), 0) to the table T .

∗ Corruption query : On receiving a corruption query for vk∗i , the chal-
lenger sends (m∗i , σ

∗
i ) to the adversary, and updates the ith entry in

T to (vk∗i , (m
∗
i , σ
∗
i ), 1).

∗ Registering Malicious user : On receiving pk, the challenger adds
(pk,⊥, 1) to T .

• Challenge Query On receiving (vk1, . . . , vk`), the challenger checks
the table T contains a (vki, (mi, σi), 0) for each i ∈ [`]. If so, it chooses a
random bit b ← {0, 1}. If b = 0, it sends EvalPRF (k, u1|| . . . ||u`), where
ui = H(hk, vki). Else it sends a uniformly random string.

• Post-challenge Queries Same as pre-challenge queries.
• Guess Finally, the adversary sends its guess b′, and wins if b = b′.

– Game1: This experiment is identical to Game0, except that the challenger
chooses the n pairs (vk∗, σ∗) and m∗ during setup. These are used to answer
registration queries. The distribution of all components is identical to that
in the previous experiment.

– Game2: In this experiment, the challenger uses the honest users’ verifica-
tion keys to sample a hash key that is binding to all the verification keys.
That is, it replaces hk ← GenHash(1λ, 1`) in Game0 and Game1 with hk ←
GenBindHash

(
1λ, {vk∗i }i∈[n]

)
.

– Game3: In this game, the challenger uses a different (but functionally iden-
tical) program (KGenAlt, defined in Figure 4) for computing the CRS. The
Setup phase is now the following, with the changes from Game2 in yellow:
• Setup Phase:

For j ∈ [n], sample m∗j and (vk∗j , σ
∗
j )← GenBindSig(1

λ,m∗j ).

The challenger samples hk← GenBindHash
(

1λ,
{
vk∗j
}
j∈[n]

)
.

Next, it samples k ← GenPRF (1λ, |Y|, 1`, 1n).

The challenger computes u∗j = H(hk, vk∗j ) and sets S = {u∗j}j∈[n].

It computes KS ← Punc(k, S) and constrained keys

K∗j =
(
Constr(k, S, t, u∗j )

)
t∈[`]. It sets v∗j = m∗j ⊕K∗j for each j ∈ [n].

The challenger computes ̂KGenAlt = iO
(
KGenAlthk,{u∗

j ,v
∗
j ,K

∗
j },KS

)
and

sends crs = ̂KGenAlt to the adversary. It also maintains a table T which
is initially empty.
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Fig. 4: The program KGenAlthk,{u∗
j ,v

∗
j ,K

∗
j },KS

.

Inputs: vk1, . . . , vk`, i,mi, σi
Constants: Hash key hk

S =
{
u∗j
}
j∈[n]{

v∗j
}
j∈[n]

Punctured key KS

1. If the vki are not sorted in increasing order, immediately abort and output ⊥.
2. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.
3. For each t ∈ [`], let ut = H(hk, vkt).

4. If ui ∈ {u∗j}j∈[n], compute K∗j =
(
K∗j,t

)
t∈[`] = mi ⊕ v∗i ,

then output EvalC(K∗j,i, u1||u2|| . . . ||u`). Else output EvalP(KS , u1||u2|| . . . ||u`).

– Game4: In this experiment, during setup, the challenger replaces (vk∗j , σ
∗
j )←

GenBindSig(1
λ,m∗j ) from Game3 with (sk∗j , vk

∗
j ) ← GenSig(1

λ) and σ∗j ←
Sign(sk∗j ,m

∗
j ).

– Game5: This game represents a syntactic change. Instead of choosing m∗j
first and then computing v∗j , the challenger chooses uniformly random v∗j ,
and sets m∗j = v∗j ⊕K∗j . In terms of the adversary’s view, this experiment is
identical to the previous one.
Now the constrained keys are not needed during setup, and can instead be
generated adaptively during the corruption queries, which are now answered
as follows (changes from Game4 in yellow): On receiving a corruption query

for vk∗i , the challenger computes K∗i =
(
Constr(k, S, t, u∗j )

)
t∈[`]. It then

computes m∗j = v∗j ⊕K∗j and sends (m∗i , σ
∗
i ) to the adversary, and updates

the ith entry in T to (vk∗i , (m
∗
i , σ
∗
i ), 1).

In the Full Version [KWZ22], we analyse the adversary’s advantage in each of
these experiments, showing these games are computationally indistinguishable.

5 Construction of 1-SF-PRFs

The previous section worked to distill adaptively secure NIKE to the more basic
primitive of constrained PRFs for one symbol fixing. While these transforma-
tions simplify the problem, the central barriers to proving adaptive security still
remain. In this section we address these head on.

We review the main issues for adaptivity. Consider an adversary A that first
makes several constrained key queries (index1, sym1), . . . , (indexQ, symQ). Next
the A submits a challenge input x∗ such that x∗i 6= z for any pre-challenge
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key query (i, z) and receives back the challenge output from the challenger.
Before submitting its guess, A will first perform some consistency checks on the
constrained keys it received. For example, it can run the evaluation algorithm
on multiple points that are valid for different sets of constrained keys and verify
that it receives the same output from each. If not, it aborts and makes no guess.

Dealing with such an attacker is difficult for multiple reasons. First, a re-
duction cannot simply guess x∗ or which index/symbol pairs will be queried
without an exponential loss. Second, it cannot issue constrained keys that are
deviate much from each other less this be detected by A’s consistency checks.

We overcome these issues by having the challenger gradually issues con-
strained keys that deviate from a canonical PRF which is used to evaluate on
the challenge input. However, we endeavor to keep all subsequent issued keys
consistent with any introduced deviation so that this will avoid being detected.

Diving deeper our construction will use constrained keys which are obfuscated
programs. Initially, the obfuscated program will simply check if an input x is
consistent with the single symbol fixing of the key. If so, it evaluates the canonical
PRF which is a Naor-Reingold style PRF.

The proof will begin by looking at the first key that is issued by the challenger
for some query (index1, sym1). For this key the obfuscated program will branch off
and evaluate any inputs x where xindex1 = sym1 in a different, but functionally
equivalent way to the canonical PRF. By the security of iO this will not be
detected. Moreover, this alternative evaluation for when xindex1 = sym1 will be
adopted by all further issued keys. Once this alternative pathway is set for all
keys, we can change the evaluation on such inputs to be inconsistent with the
canonical PRF, but mutually consistent with all issued keys. This follows from
the DDH assumption. The proof can then proceed to the transforming the second
issued key in a similar way such that there is a separate pathway for all inputs
x where xindex2 = sym2. The one exception is that the second and all future
keys will give prioritization to the first established pathway whenever we have
an input x where both xindex1 = sym1 and xindex2 = sym2.

The proof continues on in this way where each new key issued will establish
an alternative evaluation which will be used except when it is pre-empted by an
earlier established alternative. In this manner the constrained keys issued will
always be mutually consistent on inputs, even while they gradually deviate from
the canonical PRF. Finally, at the end of the proof all issued keys will use some
alternative pathway for all evaluations. At this point we can use indistinguisha-
bility obfuscation again to remove information about the canonical PRF from
the obfuscated programs since it is never used. With this information removed
no attacker can distinguish a canonical PRF output from a random value.

We remark that in order to execute our proof strategy, our initial obfuscated
program must be as large as any program used in the proof. In particular, it
must be large enough to contain an alternative evaluation programming for all
corrupted keys. Thus our constrained PRF keys must grow in size proportional
to ` · |Σ| and our resulting NIKE is parameterized for a set number of collusions.
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5.1 Construction

– Gen(1λ, Σ, 1`): The key generation algorithm first runs G(1λ) to compute
(p,G). Next, it chooses v ← G, exponents ej,w ← Zp for each j ∈ [`], w ∈ Σ.
The PRF key K consists of (v, {ej,w}).

– Eval(K, x): Let K = (v, {ej,w}) and x = (x1, . . . , x`) ∈ Σ`. The PRF evalua-

tion on input x is vt, where t =
(∏

j≤n ej,xj

)
.

– Constr(K, i, z) : The constrained key is an obfuscation of the program
ConstrainedKeyK,i,z (defined in Figure 5). The program is sufficiently padded
to ensure that it is of the same size as the programs ConstrainedKeyAlt,
ConstrainedKeyAlt′ (defined in Figure 6, 7) as well as an additional program
that is used in the security proof. This additional program is specified in the
Full Version [KWZ22].
It outputs Ki,z ← iO(1λ,ConstrainedKeyK,i,z) as the constrained key.

ConstrainedKeyK,i,z

Input: x = (x1, . . . , x`) ∈ Σ`

Constants: Group element v
Exponents {ej,w}j∈[`],w∈Σ
Constraining index/symbol i ∈ [`], z ∈ Σ

1. If xi 6= z output ⊥.

2. Compute t =
(∏

j≤` ej,xj

)
.

3. Output vt.

Fig. 5: Program ConstrainedKey

– EvalC(Ki,z, x): The constrained key Ki,z is an obfuscated program. The eval-
uation algorithm outputs Ki,z(x).

5.2 Security Proof

We will prove that the above construction satisfies security against unique-query
adversaries, via a sequence of hybrid games. The first game corresponds to the
original security game (security against unique query adversary). Next, we define
Q hybrid games {Gamey}y∈[Q], where Q is a bound on the total number of

constrained key queries by the adversary.

– Gamereal:
• Setup Phase: The challenger chooses v ← G, ej,w ← Zp for each j ∈

[`], w ∈ Σ. Let K = (v, (ej,w)j,w).

The challenger also maintains an ordered list L of (index, sym) pairs.
This list is initially empty, and for each (new) query, the challenger adds
a tuple to L.
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• Pre-challenge queries: Next, the challenger receives pre-challenge con-
strained key queries. Let (indexj , symj) be the jth constrained key query.
The challenger adds (indexj , symj) to L.
The challenger computes the constrained key
Kj ← iO(1λ,ConstrainedKeyK,indexj ,symj

) and sends Kj to the adversary.

• Challenge Phase: Next, the adversary sends a challenge x∗ such that
x∗i 6= z for any pre-challenge key query (i, z). The challenger chooses
b ← {0, 1}. If b = 0, the challenger computes t =

∏
i ei,x∗

i
and sends vt.

If b = 1, the challenger sends a uniformly random group element in G.
• Post-challenge queries: The post-challenge queries are handled sim-

ilar to the pre-challenge queries.
• Guess: Finally, the adversary sends the guess b′ and wins if b = b′.

– Gamey: In this game, the challenger uses an altered program for the first y
constrained keys. It makes the following changes to Gamereal:
• Setup Phase: The challenger additionally samples hj ← G for all j ∈

[y]. Let H = (hj)j∈[y].

• Pre-challenge queries: Let (indexj , symj) be the jth constrained key
query. The challenger adds (indexj , symj) to L. Let s = min(y, j), and
let Ls (resp. Hs) denote the first s entries in L (resp. H). The challenger

computes the key Kj ← iO(1λ,ConstrainedKeyAlts,Ls,Hs,v,(ej,w),indexj ,symj
)

and sends Kj to the adversary.

ConstrainedKeyAlts,Ls,Hs,v,(ej,w),i,z

Input: x = (x1, . . . , x`) ∈ Σ`

Constants: s ∈ ` · |Σ|

List Ls =
((
indexj , symj

))
j∈[s]

Hs = (hj)j∈[s]

Group element v,
Exponents (ej,w)j,w,
Constraining index/symbol i ∈ [`], z ∈ Σ

1. If xi 6= z output ⊥.

2. Compute t =
(∏

j≤` ej,xj

)
.

3. Find the smallest j ∈ [s] such that xindexj = symj .

(a) If such j exists, then output htj .

(b) Else output vt.

Fig. 6: Program ConstrainedKeyAlt
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Analysis We will now show that Gamereal and Gamey are computationally
indistinguishable for all y ∈ [Q]. Finally, we will show that no polynomial time
adversary has non-negligible advantage in GameQ, showing that the scheme is
secure against unique query adversaries. For any adversaryA, let advA,real denote
A’s advantage in Gamereal, and let advA,y denote A’s advantage in Gamey.

Lemma 3. Assuming iO is secure, for any PPT adversary A, there exists a
negligible function negl such that for all λ, |advA,real − advA,0| ≤ negl(λ).

Proof. For y = 0, the lists Ly and Hy are empty, and as a result, the programs
are functionally identical. On any input x, both programs output vt. Therefore,
their obfuscations are computationally indistinguishable.

Lemma 4. Fix any y ∈ [Q]. Assuming DDH and security of iO, for any PPT
adversary A making at most Q queries, there exists a negligible function negl
such that for all λ, |advA,y − advA,y+1| ≤ negl(λ).

Proof. We will define hybrid games to show that Gamey and Gamey+1 are compu-
tationally indistinguishable. The main difference in the two games is with regard
to the last Q− y constrained key queries. Note that the first y constrained keys
are identical in both experiments. For each of the last Q− y constrained keys, if
(i, z) is the constrained key query, then the adversary receives an obfuscation of

– Py,i,z ≡ ConstrainedKeyAlty,Ly,Hy,v,(ej,w),i,z in Gamey,
– Py+1,i,z ≡ ConstrainedKeyAlty+1,Ly+1,Hy+1,v,(ej,w),i,z in Gamey+1

Note that the programs Py,i,z and Py+1,i,z only differ on inputs x where
xi = z (in one case the output is vt, while in the other case the output is
hty+1). We will prove that these two hybrid games are indistinguishable, using a
sequence of sub-hybrid experiments defined below.

– Gamey,a: This security game is similar to Gamey, except that the challenger
guesses the (y + 1)th query in the setup phase.

• Setup Phase: The challenger chooses v ← G, hj ← G for all j ∈ [y]
and ej,w ← Zp for all j ∈ [`], w ∈ Σ. Let Hy = (hj)j∈[y].

The challenger maintains an ordered list L of (index, sym) pairs which is
initially empty.

The challenger also chooses (indexy+1, symy+1)← [`]×Σ.

• Pre-challenge queries: Next, the challenger receives pre-challenge con-
strained key queries. Let (indexq, symq) be the qth constrained key query.
The challenger adds (indexq, symq) to L.

If the (y + 1)th query is not (indexy+1, symy+1), then the challenger

aborts. The adversary wins with probability 1/2.

Let s = min(y, q), and let Ls denote the first s entries in L. The chal-
lenger computes the constrained key
Kq ← iO(1λ,ConstrainedKeyAlts,Ls,Hs,v,(ej,w),indexq,symq

) and sends Kq to

the adversary.
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• Challenge Phase: Next, the adversary sends a challenge x∗ such that
x∗i 6= z for any pre-challenge key query (i, z). The challenger chooses
b ← {0, 1}. If b = 0, the challenger computes t =

∏
i ei,x∗

i
and sends vt.

If b = 1, the challenger sends a uniformly random group element in G.
• Post-challenge queries: The post-challenge queries are handled sim-

ilar to the pre-challenge queries.
• Guess: Finally, the adversary sends the guess b′ and wins if b = b′.

– Gamey,b: This security game is similar to Gamey,a, except that the challenger
chooses the hj constants and one of the ej,w exponents differently. However,
the distribution of these components is identical to their distribution in the
previous game.

• Setup Phase: The challenger chooses g ← G, b← Zp, cj ← Zp for

all j ∈ [y]. It sets v = gb, hj = gcj .

The challenger maintains an ordered list L of (index, sym) pairs which is
initially empty.
The challenger also chooses (indexy+1, symy+1)← [`]×Σ.

It chooses ej,w ← Zp for all j ∈ [n], w ∈ Σ, (j, w) 6= (indexy+1, symy+1) .

It chooses a← Zp and sets eindexy+1,symy+1
= a, A = ga and T = va .

Note that the terms A and T are not used in this experiment; they will
be used in some of the following hybrid experiments. Let Hy = (hj)j∈[y].

– Gamey,c: In this security game, the challenger computes the constrained keys
differently. Instead of sending an obfuscation of ConstrainedKeyAlt (with ap-
propriate hardwired constants), the challenger computes an obfuscation of
ConstrainedKeyAlt′ (with appropriate hardwired constants). The program
ConstrainedKeyAlt′ is defined in Figure 7, and is padded to be of the same
size as ConstrainedKey, ConstrainedKeyAlt and ConstrainedKeyEnd.
The main difference is that ConstrainedKeyAlt′ does not contain the expo-
nent eindexy+1,symy+1

(recall (indexy+1, symy+1) is the (y+1)th constrained key
query, and the challenger guesses this query during setup). Instead, the pro-
gram contains geindexj+1,symj+1 and veindexj+1,symj+1 . As a result, the final output
is computed differently (although the outputs are identical).
We will show that the two programs are functionally identical, and therefore
their obfuscations are computationally indistinguishable.

• Pre-challenge queries: Let (indexq, symq) be the qth constrained key
query. The challenger adds (indexq, symq) to L. Let Lj denote the first j
entries in L.
If q ≤ y, the challenger computes
Kq ← iO(1λ,ConstrainedKeyAltq,Lq,Hq,v,(ej,w),indexq,symq

) and sends Kq to

the adversary.
If the (y + 1)th query is not (indexy+1, symy+1),4 then the challenger
aborts. The adversary wins with probability 1/2.

4 Recall (indexy+1, symy+1) is chosen during the setup phase.
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If q > y, the challenger sends an obfuscation of the program:

ConstrainedKeyAlt′y,Ly,(indexy+1,symy+1),{cy},g,v,B,T,(ej,w)(j,w),indexq,symq

ConstrainedKeyAlt′

Input: x = (x1, . . . , x`) ∈ Σ`

Constants: y ∈ [ ` · |Σ| ]
List of first y queries Ly =

((
indexj , symj

))
j∈[y]

(y + 1)th query (indexy+1, symy+1)
exponents for computing (hj)j : (cj)j∈[y]
Group elements g, v, A, T
PRF eval exponents = (ej,w)(j,w)6=(indexy+1,symy+1)

Constraining index/symbol i ∈ [`], z ∈ Σ

1. If xi 6= z output ⊥.
2. Compute t as follows:

(a) If xindexy+1 = symy+1 then set t =
(∏

j 6=indexy+1
ej,xj

)
(b) Else t =

(∏
j ej,xj

)
3. Find the smallest j ∈ [y] such that xindexj = symj .

(a) If such j exists and xindexy+1 = symy+1 then output (A)t·cj

(b) If such j exists and xindexy+1 6= symy+1 then output
(
gcj
)t

(c) Else if no such j exists and xindexy+1 = symy+1 output (T )t.
(d) Else if no such j exists and xindexy+1 6= symy+1 output vt.

Fig. 7: Program ConstrainedKeyAlt′

– Gamey,d : In this security game, the challenger sets T to be a uniformly
random element in G instead of T = va.

– Gamey,e : This security game represents a syntactic change. We choose
hj+1 ← G and set T = haj+1. The element hj+1 is not used anywhere else.

– Gamey,f : In this experiment, the challenger uses ConstrainedKeyAlt for the
last Q− y constrained key queries. On receiving query (i, z), the challenger
sends an obfuscation of ConstrainedKeyAlty+1,Ly+1,Hy+1,v,(ek,w),i,z. Here Ly+1

and Hy+1 are defined as in Gamey,e.
– Gamey,g : This security game is identical to Gamey,f , and the changes in this

game are syntactic. Instead of sampling exponents cj and setting hj = gcj ,
the challenger chooses hj ← G. Similarly, the challenger samples v ← G, and
samples all the exponents ej,w ← Zp. Note that this experiment is identical
to Gamey+1, except that the challenger guesses (indexy+1, symy+1) in the
setup phase.

Claim 1 For any y ∈ [Q], and any adversary A making at most Q constrained
key queries, |advA,y − advA,y+1| = 1

`·|Σ| (|advA,y,a − advA,y,g|).
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Proof. Note that the only difference between Gamey,a and Gamey is that the
challenger guesses the (y + 1)th constrained key query in the setup phase. Sim-
ilarly, the only difference between Gamey,g and Gamey+1 is that the challenger
guesses the (y+1)th constrained key query. This guess is correct with probability
1/(` · |Σ|), and therefore |advA,y − advA,y+1| = 1

`·|Σ| (|advA,y,a − advA,y,g|).

Therefore, it suffices to show that Gamey,a, . . . ,Gamey,g are computation-
ally indistinguishable. This is proved in the Full Version [KWZ22]. Proving the
indistinguishability of these hybrids completes the proof of Lemma 4.
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Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666
of LNCS, pages 124–153. Springer, Heidelberg, May 2016.

DKXY02. Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-
insulated public key cryptosystems. In Lars R. Knudsen, editor, EURO-
CRYPT 2002, volume 2332 of LNCS, pages 65–82. Springer, Heidelberg,
April / May 2002.

28



FHKP13. Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Pa-
terson. Non-interactive key exchange. In Kaoru Kurosawa and Goichiro
Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 254–271.
Springer, Heidelberg, February / March 2013.

FKPR14. Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Van-
ishree Rao. Adaptive security of constrained PRFs. In Palash Sarkar and
Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS,
pages 82–101. Springer, Heidelberg, December 2014.

FN94. Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stin-
son, editor, CRYPTO’93, volume 773 of LNCS, pages 480–491. Springer,
Heidelberg, August 1994.

GGH13. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 1–17. Springer, Heidel-
berg, May 2013.

GPSZ17. Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark
Zhandry. Breaking the sub-exponential barrier in obfustopia. In Jean-
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